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Abstract 

The purpose of this research was to design, build and test an apparatus for the 

measurement and characterization of radar-frequency metamaterials.  Measurement and 

characterization is vital to metamaterial taxonomy and ultimately vital to metamaterial 

definitions.  Thus, the current lack of clarity in metamaterial definitions has served as the 

primary motivation for pursuing a method for taxonomy and thus, this apparatus.  The 

technical goal of this thesis was to aid understanding of a metamaterial’s radar-frequency 

response by developing an apparatus that would take simple, yet significant 

measurements of a metamaterial’s S-parameters and electric field distributions in near-

field regions.   

The apparatus under design became a hybridized form of the designs of three 

existing measurement systems: a focused-beam system housed in a moveable-plate, 

parallel-plate transmission line.  Some of the system components were borrowed directly 

from the existing designs, whereas some components were designed from the examples 

of existing designs and some components were designed altogether new. 

The culmination of this effort was a newly-built measurement device that upon 

inauguration provided the basic utility of measuring the radar-frequency responses of 

both traditional materials and metamaterials. 
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DEVELOPMENT OF A RADAR-FREQUENCY METAMATERIAL 

MEASUREMENT AND CHARACTERIZATION APPARATUS 

 

 

 

I.  Introduction 

 

Background 

Within the Radio Frequency electromagnetic spectrum, the Institute of 

Electrical and Electronics Engineers has standardized the S-band (2-4 GHz), C-band 

(4-8 GHz), X-band (8-12 GHz), Ku-band (12-18 GHz) and K-band (18-27 GHz) as 

designator bands for characterizing frequency-dependent radar applications [1].  The 

materials used in these radar applications play a key role in manipulating 

electromagnetic phenomena for practical use.  The study and development of these 

materials has been an area of interest in materials science, solid-state physics, and 

electrical and electronics engineering for decades [2].  Recently, the vast catalog of 

radar-frequency materials has been expanding to include what are popularly referred 

to as metamaterials.  Radar-frequency metamaterials, as an alternative or complement 

to traditional radar-frequency materials, is a maturing area of study.  Development of 
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an apparatus for measurement and characterization of metamaterial performance in 

the S-band through Ku-band (2-18 GHz) is the focus of this thesis. 

 

Metamaterials Defined 

In growing maturity, the exact nature of metamaterials and the benefits they 

provide can be defined in many different ways.  Definitions vary with potential 

technical applications and performance expectations.  In short, by the definition of the 

prefix, meta-, a metamaterial is a conceptual extension of another common material.  

The conceptual extension may apply to either the physical characteristics of the 

material or the application of the material.  Determining the conceptual extension is 

the foundation of the metamaterial definition.   

Outright, this thesis recognizes the inherent ambiguity and deficiency in 

generally defining a metamaterial.  However, given a specific class of applications 

such as radar-frequency applications, definitions can become much more accurate.  

For use in this thesis, the definition of a radar-frequency metamaterial is that of a bulk 

material which exhibits a response to radar-frequencies which it would not otherwise 

exhibit in its classical component form.  In general, engineering the properties of 

radar-frequency metamaterials can lead to responses that are unique and possibly 

superior to those of conceptually adjacent, i.e. traditional, materials.  Theoretically, 

metamaterial responses may be so unique that the response cannot be, or has yet to 

be, observed in nature. 
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Chapter 2 of this thesis will briefly discuss the broad idea of metamaterial 

definitions.  However, care must be taken in managing expectations of metamaterial 

performance relative to a particular definition.  This caution is due to the lack of 

community consensus towards a particular definition and the common 

misinterpretation of the prefix, meta- which implies that a metamaterial is akin to a 

supernatural material.  A famous and enlightening example of this linguistic faux pas 

is in interpreting the title of Aristotle’s work, Metaphysics.  By the proper 

interpretation, the treatises of Metaphysics are simply Aristotle’s writings following 

his treatises of Physics.  Physics dealt with physical phenomena and Metaphysics, 

logically, dealt with consciousness, thought, existence of self and of God [3].  The 

two writings are conceptually adjacent in that they both function in the context of 

man’s attempt to understand the universe, not that Metaphysics is a science book of 

supernaturally physical phenomena.  In like manner, a metamaterial, properly 

interpreted, is that concept of a material which logically follows another common 

concept.  By misinterpretation, a metamaterial would seem to possess supernaturally 

physical characteristics. 

In conducting research for this thesis, misinterpretations have been noticed in 

technical publications, some hardly obvious, but some quite exaggerated.  Chapter 2 

will not attempt to discredit any metamaterial concept or author of such, but instead, 

by revealing the degree of the tendency of metamaterial definitions to be ambiguous 

and misguided, this chapter will attempt to justify the importance of systematic 

measurement and characterization of actual metamaterial performance.  It is 

anticipated that ongoing measurement and characterization will lead to an accepted 
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metamaterial taxonomy which would better shape a metamaterial definition within a 

specific application.  It should be noted that at the writing of this thesis, there is no 

common, coherent, community-accepted definition for a metamaterial.   

It is hoped that this thesis can provide something of intellectual value that will 

not only further the technical development of radar-frequency metamaterials, but also 

guide metamaterial philosophies in general.  The intent behind the design of a 

measurement and characterization apparatus is not to prove or disprove metamaterial 

concepts, but to provide an additional tool to the taxonomy toolkit.   

 

Characterization and Measurement Overview 

This thesis will address development of a measurement and characterization 

apparatus for radar-frequency metamaterials in the S-band through Ku-band.  

Accepted techniques for measuring and characterizing electromagnetic properties of 

traditional materials will be applied.  Chapter 2 of this thesis will discuss in detail 

several techniques that form the basis for the apparatus under design.  Though many 

measurement techniques are available and many have been applied to metamaterials 

already, this thesis will focus primarily on developing an apparatus that takes direct 

field measurements in the near-field region of a metamaterial sample.  Secondarily, 

this thesis will focus on developing, in physical combination with the primary 

apparatus, an apparatus that takes measurements of metamaterial scattering 

parameters in a 2-dimensional configuration.  In order to obtain these functions in 

physical combination, the proper component devices must be designed and built.  
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According to AFIT professor, Dr. Peter Collins, who can be credited for the original 

design concepts and subsequent design guidance, the final product of this thesis will 

be a patentable design for a near-field and S-parameter measurement device that can 

be applied to both metamaterials and traditional radar-frequency materials [4].   

The efforts of this thesis will be scoped such that the measurements provided 

by the apparatus under design will be limited to near-field measurements and 2-D 

scattering parameters.  Any discussion of other measurement types or techniques will 

be presented for reference only.  There will be allowance for general comparison of 

different techniques, but there will be no measurements taken by these other 

techniques.  The resultant raw measurements will be used to effectively rate the utility 

of the apparatus under design, but they will not be used to immediately characterize a 

particular material.  It is anticipated that the apparatus will deliver all the necessary 

raw measurements of sufficient quality such that material characterization could be 

performed at any time.  

All design parameters of the apparatus components will be simulated in 

Computer Simulation Technology Microwave Studio (CST-MWS) Transient Domain 

Solver prior to the components being fabricated.  Full system simulations will be 

generated to the extent possible and comparisons will be made with the actual system 

performance.  When the apparatus is built and completed, actual measurements of 

material and metamaterial samples will be compared to simulated measurements. 
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Near-Field Measurements. 

Near-field electric field measurements are relevant to the cause of 

characterizing metamaterials as they help to define the overall performance of the 

metamaterial in the wave-material interaction.  Conventionally, measurements of an 

electromagnetic scattering target are taken in the far-field of the target where 

spherical, cylindrical, asymmetrical, or otherwise non-planar wavefronts have 

propagated far enough to be considered planar and uniform by a measuring device.  

The near-field measurement becomes relevant under the assumption that 

understanding the wave-material interaction near the surface of the target is more 

valuable than understanding the wave-target interaction at a distance.  Particular 

advantages of near-field over far-field measurements are 1) many measurements and 

many types of measurements can be obtained with standard lab equipment due to the 

proximity of the measurement probe to the target; 2) near-field imaging of field 

distributions can provide diagnostic tools for analyzing a material’s spatial elements; 

3) near-field measurements not only supplement far-field measurements but can be 

used to predict and validate far-field measurements [5].  For use in this thesis, the 

definition of the near-field region will follow the convention shown in Figure 1 and as 

given in [6].  
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Figure 1: Conventional Near-Field and Far-Field Regions 

 

Scattering Parameter Measurements. 

In like manner, measuring S-parameters is relevant to the cause of 

characterizing metamaterials.  The S-parameters of the wave-material interaction 

consist of electromagnetic wave reflections from the metamaterial surfaces and 

electromagnetic wave transmissions through the metamaterial surfaces.  Measuring 

these reflections and transmissions and comparing them to the incident 

electromagnetic wave will result in derived values of the metamaterial’s constituent 

parameters of permittivity and permeability.  These constituent parameters can then 

be used to further characterize the bulk metamaterial.     
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Design Inspirations and Issues. 

Design inspiration for the near-field measurement function comes from the 

AFIT Broadband Antenna Near-Field Test and Measurement Range (BANTAM).  In 

brief, the BANTAM is a compact (large enough for a single technician to work 

comfortably), shielded, anechoic chamber with two linear translation rails capable of 

scanning a probe from side to side and from front to back within the chamber.  An 

antenna under test is placed on a rotary pedestal in the BANTAM floor.  The height 

difference between the probe and the antenna is adjustable by either lowering the 

translation rails or by raising the antenna on the pedestal [5].   

The BANTAM chamber, to include the current configuration of anechoic 

absorber, will be used to house the apparatus under design.  The translation rails, the 

current control software and the current network analyzer will be used to direct the 

probe’s scanning motion and data collection.  The BANTAM will be described 

further in Chapter 2. 

In general, the most important issues in taking near-field measurements are 

characterizing the measurement probe and correcting for probe-target interaction.  

Ideally, the measurement probe should not interact with the target, the probe should 

have an isotropic radiation pattern, the probe should have a dual polarization 

capability, and the probe should have a frequency-independent response [7].  In 

designing the near-field measurement function for this apparatus, it is assumed for 

simplicity that the initial measurement probe will be metallic, it will interact with 

metamaterial samples over the desired set of radar frequencies and it will utilize a 

single polarization.  As a limitation in scope, the issues of probe characterization and 
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probe-target interaction will not be addressed in this thesis.  It is intended that the 

apparatus under design will be open to modification for different types of probes in 

the future.        

Design inspiration for the scattering parameter measurement function comes 

from the Georgia Tech Research Institute (GTRI) Focused Beam System (FBS) and 

the parallel-plate waveguide (PPWG) apparatus of R. A. Shelby et als’ (2001), 

Experimental Verification of a Negative Index of Refraction [8][9].  In brief, the 

GTRI Focused Beam System simulates plane-wave illumination of a material sample 

in free-space by using lenses to focus microwave energy as radiated from horn 

antennas - the system is symmetric such that S-parameters can be obtained.  Shelby’s 

parallel-plate waveguide apparatus consists of a radiating antenna and a material 

sample sandwiched between two conductive plates.  At the end of the waveguide near 

the material sample, a detector can be circumferentially positioned around the sample 

to gather angularly-dependent S-parameter measurements.   

Conceptually, the apparatus under design will implement a 2-dimensional 

focused beam system housed in a parallel-plate waveguide for S-parameter 

measurements.  The GTRI and Shelby systems will be described further in Chapter 2. 

In general, the most important issue in developing the scattering parameter 

measurement function is designing the layout of the apparatus within the BANTAM 

chamber.  The BANTAM chamber must house two parallel plates that sandwich an 

excitation source, a lens, a material sample, another lens, and a detector.  In addition, 

the BANTAM chamber must house any necessary support and control structure.  In 

particular, the most important issue is that the pre-existing size and shape of the 
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BANTAM chamber will dictate the allowable electrical path length between source 

and detector.  The allowable path length must be segmented into focal lengths and 

material lengths respectively which must be optimized electrically as well as 

geometrically.  Simultaneously, the entire apparatus must be physically combined 

with the BANTAM’s linear translation rails to provide the capability of the near-field 

measurement function without degrading the performance of the S-parameter 

measurement function.  Conceptually, the near-field measurements will be achieved 

by scanning the top plate over the bottom plate with the top plate serving as the 

mounting point for the scanning probe.    

The apparatus under design will be hereafter referred to as the BANTAM 2-D 

Focused Beam System.  The details behind the design and construction methodology 

of the BANTAM 2-D Focused Beam System will be discussed in Chapter 3.     

 

Thesis organization 

The remainder of this thesis is divided into several chapters.  Chapter 2 is a 

literature review that addresses metamaterial history and the issues involving 

metamaterial definitions – this is the primary motivation behind development of the 

BANTAM 2-D Focused Beam System.  Technical details of the original BANTAM, 

the GTRI FBS and the Shelby PPWG will be discussed further with design 

advantages and disadvantages as they relate to the design of the BANTAM 2-D FBS.  

Chapter 3 will present detailed theories, simulations, specifications, and fabrication 

techniques as they were applied to the design of the BANTAM 2-D FBS components.  
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Chapter 4 will attempt to analyze the initial performance of the BANTAM 2-D FBS 

by comparing material measurements taken by the physical to material measurements 

taken by a simulated system.  Chapter 5 will use the results of Chapter 4 to rate the 

utility of the BANTAM 2-D FBS as a measurement device and reach conclusions that 

are pertinent to the technical and philosophical significance of metamaterial 

measurement.  Chapter 5 will also provide recommendations for future actions and 

future research necessary for the continued success of the BANTAM 2-D FBS. 
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II.  Literature Review 

 

This chapter presents the background information necessary to thoroughly 

understand the motivation and goals of this thesis.  In brief, this chapter provides an 

overview of the history of metamaterials, followed by, more importantly, how a 

metamaterial is popularly defined and how metamaterial performance is popularly 

characterized.  Following this discussion, three accepted techniques for measuring and 

characterizing electromagnetic properties of materials will be introduced as they provide 

design inspiration to this thesis. 

A Brief History of Metamaterials 

In conducting research for this thesis, popular metamaterial literature had been 

pored over to determine what key topics and events had contributed to the making of the 

metamaterial subject.  Reviewing commonly cited literature was one avenue to discover 

the subject’s rich history.  Another avenue was randomly reviewing literature simply 

because it contained the word, metamaterial in the body of the text.  Another avenue still 

was to follow the work of metamaterial intellectual giants in hope that their progress and 

insights would reveal the historical big picture.  The most meaningful avenue was 

reviewing a formal record of metamaterial history and its forerunners.  This formal record 

seemed to hold the most applicability and authority on the subject. 
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Shamonina and Solymar’s, Metamaterials: How the Subject Started is number 

seven of the top-10 cited articles of the past five years from the peer-reviewed scientific 

journal, Metamaterials [10].  According to Shamonina and Solymar, there are four 

seminal papers that have established the initial momentum in the birth of the subject of 

metamaterials [11].  The four papers are Viktor Veselago’s (1968), The Electrodynamics 

of Substances with Simultaneously Negative Values of ε and µ, David R. Smith et als’ 

(2000), Composite Medium with Simultaneously Negative Permeability and Permittivity, 

R. A. Shelby et als’ (2001), Experimental Verification of a Negative Index of Refraction, 

and J. B. Pendry’s (2001), Negative Refraction Makes a Perfect Lens.    

Shamonina and Solymar assert that Veselago’s speculation on negative ε and µ, 

though it should have grabbed headlines at the time, remained dormant until uncovered 

by Smith et al.  Smith et al validated Veselago’s speculation by publishing an 

experimentally verified design for an artificial material which produced both negative 

permeability and negative permittivity in the same frequency band.  Later, Shelby et al 

(to include Smith) published their experimental observations of the negative index of 

refraction in an artificial material.  It was finally Pendry’s publication, which, in 

providing the new theory with the practical application of a perfect lens, opened the 

scientific floodgates. 

Though these four papers are considered pivotal for launching the subject of 

metamaterials, Shamonina and Solymar also enumerate those forerunning topics which 

were alive and flourishing at the time of the metamaterial upsurge.  Accordingly, there 

also have been a large number of springboard topics which continue to sustain interest 

and development in the subject.  The forerunners of the metamaterials subject include: 
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1. Effective Medium Theory (beginning 1850) 

2. Negative permittivity (beginning 1929) 

3. Negative permeability (beginning 1955) 

4. Plasmon polaritons (beginning 1969) 

5. Backward waves (beginning 1904) 

6. Theory of Periodic Structures (beginning 1892) 

7. Resonant elements small relative to the wavelength (beginning 1939) 

8. Frequency filters made of periodically arranged resonant elements 

(beginning 1965) 

9. Slow-wave structures (beginning 1960) 

10. Super-directivity, super-resolution, sub-wavelength focusing and imaging 

(beginning 1922) 

11. Inverse scattering (beginning 1970) 

12. Bi-anisotropy (beginning 1992) 

13. Photonic band-gap materials (beginning 1987) 

14. Waves on nano-particles (beginning 1998) 

Using the forerunners as the historical foundation, Shamonina and Solymar 

explain that the four seminal papers taken together served as a catalyst for creating a new 

field of study.   

Papers started to pour in.  The subject had not had a name as yet but 
everyone knew which the fundamental papers were.  People agreed and 
disagreed.  The large majority agreed with a few dissenting voices… The beauty 
of this new field was that it had so many different aspects and a very low barrier 
to entry.  Reading the four seminal papers anyone doing research (or just having 
an interest) in any of the topics mentioned must have been tempted to become a 
Metamaterialist…  Scores of people entered the field, contributions poured in 
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leading to an exponential increase in the usual measures of research activities 
(scientific papers and books, number of groups involved, number of citations, 
grants received, articles in popular science journals, etc.) bringing forth the 
necessity of baptism.  [11] 
 

Defining Metamaterials and Metamaterial Science 

Despite the sense of history, it is important to note that to date there is neither a 

formal definition for a metamaterial nor for metamaterial science.  According to 

Shamonina and Solymar, “By now there is a consensus that all the phenomena associated 

somehow with wave propagation on resonant elements and with negative refraction 

should be known under the generic term of metamaterials.” 

Ari Sihvola, in the journal, Metamaterials, introduces the critical difficulty of 

defining a metamaterial.  “Metamaterials are hard to define and classify… What do all 

the concepts mean that are being used in discussions on material electromagnetics?… 

And what are all those abbreviations?” [12] 

Sihvola analyzes some of the most visible definitions of metamaterials to include 

those from Wikipedia, the Metamorphose Network of Excellence (European Union), the 

DARPA Technology Thrust program on metamaterials, and researchers Pendry and 

Smith.  With no universal consistency, Sihvola’s concern is that in the great activity of 

research and in the high rate of publications on metamaterials, the number of different 

definitions will overwhelm any complete understanding of the term.   

However, within the many definitions, certain salient characteristics can be 

distinguished.  Specifically, metamaterials are popularly expected to exhibit properties 

that are neither observed in the separate constituent materials nor observed in nature.  
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Secondary to these, the scale (physical dimensions) and periodicity (the order of the 

structure) of a metamaterial is also deemed to be important.  In some definitions, these 

secondary characteristics may either be present or absent, so Sihvola questions if the 

emphasis for scale and periodicity is essential or if the emphasis is just a side-effect of 

holding unproven expectations.     

Sihvola further demonstrates that attempting to classify any material in general is 

very difficult.  Sihvola assumes two extremes of material type: that which possesses 

global properties qualitatively different than its constituents and that which possesses 

global properties quantitatively averaged by its constituents.  Starting with one extreme 

and working towards the other, Sihvola quickly concludes that definitions are sometimes 

too restrictive and problematic, sometimes too inclusive and contradictory, or otherwise 

inconsistent with common characterizations.  Of particular concern is how difficult it is to 

find unambiguous language altogether.   

Sihvola concludes that perhaps the trouble with metamaterial definitions is due to 

attempts to qualitatively distinguish the metamaterial mixture from the metamaterial 

ingredients.  In the expectations for emergent global properties there is no popular 

expectation of the mixture to directly inherit properties of the ingredients.  Actually, the 

expectation is for the mixture to exhibit traits not present in any ingredient.  The 

difficulty then, is, anticipating what the global properties will be without any indication 

of where or how they will originate.   

By comparing metamaterial science to chemistry, Sihvola ponders whether a 

reductionist approach is an appropriate way to define a metamaterial.  The reductionist 

approach says that higher-level phenomena are explainable by deeper disciplines, i.e. all 
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chemical phenomena can be predicted by the principles of quantum physics.  However, 

the popular expectations of metamaterial science imply the opposite in that the higher-

level phenomena of the mixture cannot be readily predicted by the lower-level 

phenomena of the ingredients.     

Therefore, in quoting the paleontologist Stephen Gould, “Taxonomy (the science 

of classification) is often undervalued as a glorified form of filing… but taxonomy is a 

fundamental and dynamic science…,” Sivhola implies that defining metamaterials  

cannot be a simple, rote and reductionist task.  Rather, it can involve extensive amounts 

of creativity and familiarity with metamaterial ingredients and mixtures that are tirelessly 

measured, characterized and sorted. 

 

Technical Details from Design Inspirations 

In support of the aforementioned need for taxonomy, the BANTAM 2-D FBS 

implements a hybridized form of three accepted techniques for measuring and 

characterizing electromagnetic properties of materials.  Technical details of these design 

inspirations are introduced below and are discussed throughout the methodology of 

Chapter 3. 

 

BANTAM 

The BANTAM was originally constructed to supplement the far-field 

measurement capability of the Air Force Research Laboratory (AFRL) Radiation and 

Scattering Compact Antenna Laboratory (RASCAL).  The BANTAM validated and 
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predicted RASCAL far-field measurements through a large dynamic range of near-field 

measurements [5].  Full technical detail can be found in C. M. Shaffe's (2004), Air Force 

Research Laboratory: BANTAM.  

 

BANTAM Chamber 

The BANTAM chamber is rectangular and constructed of aluminum beams 

manufactured by 80/20 Inc.  The chamber is roughly 8.5’ wide, 6’ deep, and 6’ tall.  The 

front wall contains three side-by-side access doors and the ceiling contains two side-by-

side access panels.  The floor is divided into nine removable panels of honey-combed 

aluminum.  A rotary pedestal is mounted to the central floor panel.  The BANTAM 

chamber stands on four legs with the BANTAM floor 11” above the laboratory floor. 

 

Linear Translation Rails 

The BANTAM’s linear translation rails are manufactured by THK Co., Ltd.  The 

rail running from side-to-side is designated the long axis and the rail running from front-

to-back is designated the short axis.  The long axis is mounted with linear bearings to the 

80/20 wall studs of the chamber.  The short axis is mounted to the underside of the long 

axis, but the short axis does not mount directly to the chamber frame.  The moment load 

rating for the free-hanging ends of the short axis, significant to the methodology of 

Chapter 3, is 160.48 ft-lbs.  Together, the two rails can be raised or lowered on the linear 

bearings. 
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Absorber 

The anechoic absorber is manufactured by Cuming Microwave.  Each piece of 

absorber is approximately 2’ by 2’, but each piece has been custom trimmed to ensure the 

best fit within the chamber.  The absorber on the floor is the 12” pyramid style.  The 

absorber on the ceiling and the top two feet of each wall is the 8” pyramid style.  The 

absorber on the bottom four feet of each wall is the 8” wedge style.  The reflectivity of 

the absorber at normal incidence is approximately 30-50% from 2-18 GHz.  Figure 2 

depicts the original configuration of the BANTAM. 

 

 

Figure 2: Original Configuration of BANTAM 
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Control Hardware 

All BANTAM functions are controlled by a single computer.  The primary 

BANTAM functions are RF measurement and motion control.  RF measurements are 

taken through an HP8720C (50 MHz – 20 GHz) network analyzer.  Motion control is 

maintained by a Computroller 6k4 motion controller.  The network analyzer is connected 

to the antenna under test and the near-field probe with RF cable leading through the floor 

and the left BANTAM wall.  The motion controller is connected to three stepper motor 

drives on each of the long, short and rotary axes.  Each axis has magnetic limit switches 

to prevent over-reach during scanning and a home switch to give an absolute position 

reference at power-up. 

 

 Control Software 

The BANTAM control software was written by Charles McNeely (AFIT/ENG 

staff collaborator for thesis detailed design) in LabVIEW.  The LabVIEW control 

software offered tremendous flexibility for incorporating the BANTAM 2-D FBS.  There 

are three software pages to be viewed: the HP8720 Setup Page, the Data Collection Page 

and the Motion Control Page.   

The HP8720 Setup Page has seven main controls: Scan Type Selector (full area 

scan, single-axis scan or single-position scan); Frequency List (frequency start, stop and 

increment); Scan Channel (S11, S12, S21 or S22); Number of Averages ( 2 , n=0...8n ); 

Power Level (dBm); Step/Ramp Mode; Polarization (vertical or horizontal).   
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The Data Collection Page has two main controls: acquire data and save data.  

During data acquisition, a coordinate display allows the user to monitor the progress of 

the scan.  Saved data is readable in ASCII format and consists of a series of three-axis, 

frequency, and real/imaginary field data points.     

The Motion Control Page provides software limit switches, acceleration and 

speed control, and scan-position control (start, stop and increment) for each axis.  The 

Motion Control Page can be useful to test-drive the scan area prior to taking 

measurements. 

 

Additional Information 

The appendices in [5] provide standard measurement procedures, drawings and 

parts lists for the motion control box, diagrams for the network analyzer interconnects, 

functional diagrams of the LabVIEW software, and other hardware documentation.  Of 

immediate importance to the BANTAM 2-D FBS are the specifications of the absorber, 

the stepper motors, the limit switches, and the linear rails.  These will be considered in 

the methodology of Chapter 3. 

 

Advantages and Disadvantages to Thesis Design 

The BANTAM offers many design advantages to this thesis.  Foremost is the pre-

existing near-field scanning capability.  Other advantages, not in priority order, are: 1) the 

pre-fabricated and dedicated anechoic chamber; 2) the developed software and controls; 

3) the full documentation of all hardware and software; 4) the plug-and-play nature of the 

chamber.   
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The primary disadvantage is the size of the BANTAM chamber.  The BANTAM 

2-D FBS, being housed within the chamber, must be built to pre-defined dimensions.  

Other potential disadvantages arise from using the pre-existing hardware.  For example, 

the top plate of the PPWG is expected to be much heavier than the current near-field 

probe, so static and dynamic limits of both the stepper motors and the linear rails must be 

investigated and components must be replaced or reinforced as necessary.  Mitigation of 

these disadvantages is addressed by design and detailed in Chapter 3.  

       

 GTRI Focused Beam System 

The intent behind the design of the GTRI FBS was to compliment the S-

parameter measurement capabilities of common transmission-line systems such as 

waveguides, coaxial lines and resonant cavities.  Transmission-line fixtures are designed 

for homogeneous, low-loss material samples and suffer from inaccuracies caused by 

inhomogeneities, sample conductivity, and air gaps between the sample and transmission 

line.  The primary advantage of the free-space focused-beam system over a transmission 

line is broadband coverage, easy sample preparation, use of varying incidence angles, and 

elimination of air gap errors (no physical contact with sample).  The free-space method is 

often more appropriate for characterizing inhomogeneous, lossy and anisotropic materials 

as well.  Full technical detail can be found in GTRC's (2007), Users Guide: Theory and 

Operation of the GTRI Focused Beam System [8].   

The standard GTRI FBS was derived from the Naval Research Laboratory Arch 

and uses lenses to focus microwave energy onto a sample.  This focusing simulates plane 

wave illumination of the sample while minimizing illumination of a sample's edges (a 



 

23 

 

source of measurement error caused by diffraction).  The GTRI FBS uses HP/Agilent 

Network Analyzers and Octave/MATLAB© data processing for S-parameter 

measurements.  The system is shown in Figure 3. 

 

 

Figure 3: GTRI Free-Space Focused Beam System 

 

Theory and Design of GTRI FBS 

The GTRI FBS is modular in design such that it can be used for monostatic and a 

variety of bistatic configurations.  The system has two arms, each supporting an antenna 

and a Rexolite ® lens.  The sample holder, residing between the arms, can be turned by a 
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computer.  The position of the antennas and lenses on the arms can be varied along 

translation rails for varying focus. 

The system is usable in bandwidths from 2-110 GHz per antenna performance.  

Optimally positioning the antennas and lenses results in an assumed plane wave on the 

target with all energy assumed to be interacting with the target.  These assumptions 

require a minimum sample size to eliminate illumination of the sample edges.  Absorber 

carts surround the system to reduce spurious emissions and reflections from other 

laboratory equipment.  A parts list is included in [8]. 

GTRI derives many equations in [8] that result in the design of the lens' physical 

profiles.  Parameters under consideration include the excitation antenna's radiation 

pattern, desired lens focal lengths, lens material index of refraction, desired Gaussian 

beamwaist and position, sample size, etc.  Each lens is considered as having a collimating 

half and a focusing half.  In designing the profile for the collimating half, geometrical 

optics was used, and in designing the profile for the focusing half, Gaussian optics was 

used.  In their document, GTRI provides many rules of thumb when considering focusing 

limit constraints, amplitude taper on lens and target, phase change within the beam, etc. 

 

Calibration and Data Processing 

As detailed in [8], the GTRI FBS uses response and response/isolation calibration 

methods for S-parameter measurements.  Each method solves for and corrects a different 

set of systematic errors.  Such errors include directivity ( dfE ), reflection tracking ( rfE ), 

transmission tracking ( tfE ) and isolation ( xfE ) errors 
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In response calibration, the GTRI FBS uses one calibration standard (a thru for 

transmission paths and a short or open for reflection paths) to measure the signal path 

frequency response exclusive of source/load match and directivity/isolation effects.  With 

this style of calibration, the transmission coefficient of a sample is simply  

 21
21

21
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RESPONSE

SS
S

  (1.1) 

where 21
RESPONSES  is the measurement of the standard and 21

measuredS is the measurement of 

the sample.  The reflection coefficient of a sample is then,  
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In response/isolation calibration the GTRI FBS uses two calibration standards 

(thru, short, open, or load) for transmission and reflection measurements.  In 

response/isolation calibration, more accuracy is expected than in response calibration 

because response/isolation calibration accounts for more error sources.  The coefficients 

for transmission and reflection are respectively,   
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Equation 1  
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In each calibration method, GTRI advises on the criticality of precise use of the 

calibration planes to measurement accuracy.  Shifting the sample from the calibration 

plane will introduce phase shifts in the electrical path and defocusing in the beam.  
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Further, GTRI discusses appropriate techniques for gating and windowing measurement 

signals for optimum data extraction. 

 

Advantages and Disadvantages to Thesis Design 

The GTRI FBS offers many design advantages to this thesis.  Primarily, the lens 

design process is readily applicable and covers the frequency band of interest.  It is 

anticipated that the BANTAM 2-D FBS will also inherit easy sample preparation and 

plane wave illumination with minimized sample edge effects.  Further advantages are, not 

in priority order: 1) the availability of the GTRI FBS for study, use and practice; 2) near-

identical maintenance expectations for lenses; 3) analogous calibration methods and kits; 

4) similar target positioning options (normal vs. oblique incidence); 5) similar 

measurement and data-processing techniques. 

The primary disadvantages of the GTRI FBS are the potential for external noise 

and clutter interference (despite the absorber carts) and the frequency-driven shift of the 

horn antennas' phase center.  These disadvantages are respectively mitigated by the 

BANTAM anechoic chamber and use of monopole antennas as described in Chapter 3. 

 

Shelby Parallel-Plate Waveguide 

The intent behind Shelby's PPWG was to study microwave scattering (8-12 GHz) 

of a structured metamaterial that exhibits a negative effective index of refraction.  Full 

technical details can be found in R. A. Shelby et als' (2001), Experimental Verification of 

a Negative Index of Refraction [9].   
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The Shelby PPWG was used to measure the scattering angle of waves transmitted 

through a metamaterial prism.  The illumination was transverse magnetic polarization 

(electric field perpendicular to the parallel plates) with the excitation fed into the PPWG 

through a coaxial cable (effectively a monopole) one meter from the prism.  The waves 

were confined above and below by metal plates and laterally by flat anechoic absorber.  

The waves, after propagating down the rectangular plates and being refracted by the 

prism, were measured by a waveguide detector that swung around the circular plates in 

1.5 degree steps.  This detector measured the exit angle of the waves for the subject 

metamaterial prism and a Teflon prism used as an experimental control.   

A Shelby PPWG model was recreated in CST for use in this thesis and is shown 

in Figure 4.  In the model, the dimensions of the rectangular plates are approximately 100 

cm long by 30 cm wide.  The circular plates are 30 cm in diameter.  The space between 

the plates is 1.2 cm.  The type of absorber used in the experiment had not been defined in 

the document, so Eccosorb LS-30 was used arbitrarily in the model.  The space between 

the absorber is 9.3 cm and the width of the absorber was estimated to be about 9 cm.  The 

angle between the two prism faces was defined as 18.43 degrees.  In the model, the prism 

was Teflon. 
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Figure 4: CST Model of Shelby PPWG 

 

For referencing in this thesis, CST was used to model the propagation of 8-12 

GHz waves through the Teflon prism.  This is shown in Figure 5 for 8 GHz.  In this 

figure, the waveguide is clearly over-moded between the absorber.  The presence of over-

moding would seem to spread the exiting beam as the numerous modes approach the 

prism from different incident angles, but nothing is mentioned in the article to this effect.   

CST fields were then evaluated along a circular path around the prism to 

determine the exit angle of the waves.  This evaluation is shown in Figure 6 for 8, 10 and 

12 GHz.  At approximately 11-13 cm around a 24 cm diameter evaluation circle, the peak 

amplitude corresponds to an exit angle of approximately 30 degrees off the normal of the 

prism's second face.  This is in close agreement to the 27-degree refraction angle 

published in the experiment. 

 

Advantages and Disadvantages to Thesis Design 

The Shelby PPWG offers one distinct design advantage to this thesis - a simple 

structure to excite and guide waves towards a material sample.  This advantage presumes 

the ideal operation of the waveguide, i.e. operation in the fundamental mode only (even 
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though the Shelby PPWG does not operate this way).  This advantage also relies on the 

use of monopoles, having a common phase center for all frequencies. 

The primary disadvantage of the Shelby PPWG is the method of confining the 

illumination beam in the transverse direction.  The use of flat anechoic absorber confines 

the beam to the area of the first prism face, but it also appears to be the cause of the over-

moding, i.e. what should be a PPWG is behaving more like a rectangular waveguide with 

heavy loss in the side walls.  Confining the beam in this way eliminates edge illumination 

of the prism, but it is accomplished at the expense of introducing higher-order modes.  In 

order to use differently sized targets, it is assumed that the absorber would have to be 

custom packed around each target, changing the mode structure each time. 

 

 

Figure 5: CST Model of Shelby PPWG Operating at 8 GHz 
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In designing the BANTAM 2-D FBS, this disadvantage will be addressed by 

maintaining a true PPWG.  The incident beam will be confined to the interior of the 

target by the focusing action of the lenses.  The targets can then be fabricated to a 

standard length in the transverse direction. 

Minor disadvantages of the Shelby PPWG are the small gap between the plates 

(1.2 cm or 0.47") and the design frequency of 8-12 GHz.  The small gap would allow 8-

12 GHz to propagate in the fundamental mode only but it leads to small targets heights by 

necessity.  The BANTAM 2-D FBS will be designed for 2-18 GHz, propagating as near 

the fundamental mode as possible, and will allow targets up to 2" tall.  

 

 

Figure 6: CST Model of Shelby PPWG Evaluated Along Circular Path 
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III.  Methodology 

This chapter presents the methodology of designing, fabricating, building and 

tuning the BANTAM 2-D FBS.  The first section highlights the pre-existing design 

constraints placed on the BANTAM 2-D FBS by the original BANTAM design and by 

the lens material - the lens material was already on-hand at the commencement of this 

thesis.  The second section highlights the geometrical and electrical design theory of the 

individual hardware components, presenting the component design information in the 

form of theory, simulation and material specification.  Following each component's 

design data, the details behind fabrication are discussed.  The third section highlights 

building the components, including the pre-existing software and control components, 

into the final system architecture and discusses mechanical tuning and basic electrical 

calibration.  This final section will lead to the results of Chapter 4 where the BANTAM 

2-D FBS is characterized and raw material measurements made by the physical system 

will be compared to raw material measurements made by the simulated system. 

Pre-existing Design Constraints 

BANTAM Chamber 

The primary design constraint for the BANTAM 2-D FBS was the physical size 

of the BANTAM chamber.  With anechoic absorber in place, the usable space within the 

chamber measures approximately 76” from side to side and approximately 52” from front 
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to back.  Without the 12” pyramidal absorber on the floor, the maximum usable vertical 

space measures approximately 50” from the floor to the underside of the short axis.  If 

necessary, the floor panels could be removed to gain the additional 11” to the laboratory 

floor. 

Given these dimensions, the largest expected size of the parallel-plate waveguide 

is approximately 76” x 52”.  In the vertical direction, placement of the top plate is 

constrained by the position of the translation rails.  Though adjustable, the current 

position of the rail system, approximately 50” above the BANTAM floor, will be a 

constraint due to the difficulty in properly lowering, leveling and squaring it relative to 

the rest of the chamber.  Vertical placement of the bottom plate is constrained by the 

optimum spacing between the two plates and the distance to the BANTAM floor.  

Outright, this constraint is addressed by using a scissor lift, placed on the BANTAM 

floor, to raise the bottom plate into position below the top plate.   

The translation rail system provides a further constraint in its mounting fixtures.  

The ends of the long axis are mounted to the 80/20 wall studs of the chamber, but the 

short axis is mounted to the underside of the long axis at a central point.  The constraint is 

in the moment loads that can be placed on the ends of the short axis as the top plate scans.  

This rating is 160.48 ft-lbs.  This means that at an arbitrary forward or reverse scan 

distance of 12", the top plate must weigh no more than 160 lbs.  This rating does not 

indicate how the axis rail will flex under the load, so to be safe, an arbitrary weight buffer 

of 25% indicates that the top plate must weigh no more than 120 lbs.  For ideal scanning 

performance (to maintain plates in parallel), an unknown amount and type of rail flexing 

indicates that the short axis rail should be reinforced with a structure that ties it securely 
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to the BANTAM frame.  The reinforcements will allow the short axis to travel the length 

of the long axis, but the ends of the short axis will no longer hang free of the BANTAM 

frame.  The specifications of the reinforcements will be described later.  The same load 

concern could be addressed in the performance of the stepper motors as well – 

fortunately, the weights involved do not approach the motor load ratings as closely.    

For translation of the top plate over the bottom plate, the perimeter of the 

BANTAM chamber puts a constraint on the size of the top plate, i.e. the top plate must be 

small enough to move over a meaningful scan area within the confines of the chamber.  

The size of the top plate is also inversely constrained by the size of the components that 

will be sandwiched between the parallel plates.  The top plate must be large enough to 

cover all components and maintain a quality waveguide structure while scanning. 

Finally, the BANTAM floor provides the constraint of static weight.  While there 

is no specific rating published, the weight of the bottom plate and an appropriately sized 

scissor lift must be considered.  It would be reasonable to assume that the combined 

weight of these components should not exceed that of several men (400-500 lbs). 

 

Lens Material Constraints 

To achieve similarity with the GTRI FBS lenses, Rexolite was provided for the 

BANTAM 2-D FBS lenses prior to the commencement of this thesis.   

Rexolite is advertised as a unique, cross-linked polystyrene microwave plastic 

with outstanding dielectric properties.  The dielectric constant is maintained at 2.53 

(index of refraction is 1.59) through 500 GHz with extremely low dissipation factors.  

Rexolite is able to withstand high voltages and has been proven superior to acrylics, 
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epoxies, urethanes and other plastics for electrical resistance applications.  Rexolite 

castings are stress-free and do not permanently deform under normal loading.  Optical 

transmission is approximately equal to acrylic and acoustical impedance is close to that 

of water.  Rexolite handles well in all machining operations and handles well with water, 

alkalis, alcohols, and aliphatic hydrocarbons (aromatic and chlorinated hydrocarbons will 

cause swelling and should be avoided).  Rexolite is 15% lighter than acrylic and less than 

half the weight of Teflon.  Rexolite adhesives and copper claddings are commercially 

available [13].  

The Rexolite on-hand at AFIT was in the form of a 48” x 24” slab approximately 

2” thick.  Practical and timely machining constrained the thickness of the lenses to the 

slab thickness of 2” and thus constrained the spacing of the waveguide to 2”.   

At a 2” spacing, higher-order propagating modes will be supported in the PPWG 

over the 2-18 GHz band.  Traditionally, it is desirable to operate a waveguide such that it 

only supports the dominant mode for all frequencies, but in this case, to achieve 

propagation of only the fundamental (dominant) mode for all frequencies, the spacing of 

the plates must be less than 0.328”, or, less than a half-wavelength at 18 GHz.  The 2” 

spacing constraint given by the lens material thus introduces a 600% increase in spacing 

and thus, allows the support of six higher-order propagating modes at 18 GHz.  Allowing 

the excitation of these modes into the PPWG will cause undesirable phase variations and 

interference in the vertical direction between the plates and thus, over the face of a target.  

Exciting the higher-order modes will also cause phase variations and interference in the 

propagation direction as each mode simultaneously propagates down the waveguide at 
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different velocities.  The nature of the higher-order mode structure will be detailed later 

alongside a design for a component that should mitigate these effects. 

 

Hardware Design Data (Theories, Simulations, Specifications & Fabrication) 

Monopoles 

Theory and Simulation 

A monopole is an obvious choice to excite the BANTAM 2-D FBS as it is the 

best candidate to represent a point source that emanates cylindrical wavefronts having a 

common phase center for all frequencies.  As the GTRI FBS lenses are designed to 

reformat spherical wavefronts emanating from horn antennas, the BANTAM 2-D FBS 

lenses will be designed to reformat cylindrical wavefronts emanating from monopoles. 

Monopoles were simulated in CST-MWS to determine the proper length of the 

monopole beyond the surface of the PPWG plates.  The monopole was modeled as a 

coaxial line with its outer conductor and internal dielectric mating flush with the inside 

surface of a ground plane.  The inner conductor extends to a given length beyond the 

surface.  The model dimensions were based on the coaxial line available in the 

laboratory.  This model is shown in Figure 7.  An example of the cylindrical wavefronts 

within a PPWG for 2 GHz (a snapshot of a CST phase animation) is shown in Figure 8. 
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Figure 7: CST Model of a Monopole 

 

 

Figure 8: CST Monopole Cylindrical Wavefronts at 2 GHz  
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A parametric study was conducted in CST to determine if there was an optimum 

monopole length.  For a particular frequency, a monopole on a single ground plane will 

be most directive in the radial direction (under far-field considerations) if its height is 

approximately one-quarter wavelength to one-half wavelength.  This is illustrated in 

Figure 9 (elevation) and Figure 10 (azimuth) for a quarter-wavelength (0.164") and half-

wavelength (0.328") monopole operating at 18 GHz. 

 

 

Figure 9: Quarter-Wave (red) and Half-Wave Monopole Elevation Pattern at 18 GHz 

 

As the height of the monopole increases, the radiation pattern becomes lobed for 

this particular frequency and less directive and less powerful in the radial direction.  This 

is illustrated in Figure 11 (elevation) and Figure 12 (azimuth) for a 3-wavelength (1.969") 

monopole operating at 18 GHz.  A monopole of this height, at this frequency, and with 

this lobe structure, will directly excite higher-order modes into the 2" PPWG at the 

relative strengths as indicated in the figure and as indicated in upcoming discussion.     
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Figure 10: Quarter-Wave (red) and Half-Wave Monopole Azimuth Pattern at 18 GHz 

 

 

Figure 11: Three-Wavelength Monopole Elevation Pattern at 18 GHz 
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Figure 12: Three-Wavelength Monopole Azimuth Pattern at 18 GHz 

 

As the height of the monopole decreases below a quarter-wavelength for a 

particular frequency, both the radiation pattern and the radial power stays consistent 

down to approximately an eighth-wavelength.  Below an eighth-wavelength, the radiation 

pattern becomes directed primarily at 45 degrees of elevation and the radial power 

decreases.  This is illustrated in Figure 13 (elevation) and Figure 14 (azimuth) for a 

0.025-wavelength (0.148"), eighth-wavelength (0.738") and a quarter-wavelength (1.48") 

monopole operating at 2 GHz. 

Based on these far-field considerations, for operating over frequencies between 2-

18 GHz, the monopole's optimum length should be between 0.328" (half-wavelength at 

18 GHz) and 0.738” (eighth-wavelength at 2 GHz).  The number halfway between these 

values (0.533") corresponds roughly to a half-wavelength at 10 GHz which is the 

midband frequency.  Operation of an antenna of this length would give the radiation 

patterns for a tenth-wavelength monopole for 2 GHz, a half-wavelength monopole for 10 

GHz, and approximately a one-wavelength monopole for 18 GHz as shown in Figure 15, 
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Figure 16, and Figure 17.  Of course, this optimization is bound to a single monopole 

operating over 2-18 GHz, rather than, ideally, several monopoles of various heights 

operating over frequency octaves. 

 

 

Figure 13: Quarter-Wave, Eighth-Wave and 0.025-Wave (blue) Elevation at 2 GHz 

 

 

 

Figure 14: Quarter-Wave, Eighth-Wave and 0.025-Wave (blue) Azimuth at 2 GHz 
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Figure 15: Half-inch Monopole (Tenth-Wavelength at 2 GHz) Radiation Patterns 

 

 

Figure 16: Half-inch Monopole (Half-Wavelength at 10 GHz) Radiation Patterns 

 

 



 

42 

 

 

Figure 17: Half-inch Monopole (One-Wavelength at 18 GHz) Radiation Patterns 

 

Specification 

Independent of the height study, it was determined that the length of the scanning 

probe (also a monopole) should be approximately 2” just as the lens height and the plate 

spacing is 2”.  Spanning 2” achieves the best coupling between the scanning monopole 

and the energy in the gap between the plates.  If the scanning monopole were as short as 

the optimum monopole length, coupling with all the available energy between the plates 

would be reduced.  Based on the coupling requirement, and for similarity, the excitation 

monopoles on the bottom plate will be approximately 2" as well.     

The actual length of the monopoles will be such that a small gap exists between 

the tip of the monopole and the opposite plate.  Introducing this gap during the 

fabrication process brought the average monopole length to 1.916". 

A final consideration on the use of a monopole in the PPWG is that with omni-

directional radiation, the system will waste radiated energy to all directions but the 

forward direction of each monopole.  However, the energy waste is a worthy trade-off to 
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maintaining a point source representation.  Upcoming component design will address 

how to manage this wasted energy.   

 

Fabrication 

Figure 18 shows the actual monopole to be used in the PPWG.  The average 

length beyond the plate surface is approximately 1.916".  The collar (outer conductor) of 

the coaxial adapter was ground flush with the internal dielectric.  The monopole rod was 

stripped from a separate coaxial line (inner conductor) and is removable from the coaxial 

adapter.  The monopole is installed into the PPWG by threading the coaxial adapter into 

the plate from the outside surface, ensuring a flush fit, and inserting the monopole rod.  

Of the three monopoles used in the BANTAM 2-D FBS, a left-side and right-side 

monopole on the bottom plate is used for the S-parameter measurements.  A  monopole 

extending downward from the surface of the top plate is used in conjunction with the left-

side or right-side monopole for near-field scanning.  All three monopoles are similar 

except that the scanning monopole is upside-down.    

 

         

Figure 18: PPWG Monopole 
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Aluminum Sheets 

Theory and Simulation 

For a monopole with waves traveling in the radial direction, the waves’ variation 

in that direction is represented by either Hankel function, (1) (2) or m mH H .  Such radial 

waves possess equiphases that are constant radius planes.  The PPWG of the BANTAM 

2-D FBS is a structure that supports radial waves and for the monopoles being used, the 

zTM modes (electric field perpendicular to plates) are considered. 

For the given analysis in [14], applying the boundary conditions of the PPWG to 

the magnetic vector potential function zA  results in  
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Based on the boundary conditions,   
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and the cutoff frequencies of the PPWG can be shown to be 
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Further,  
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where  mK  is the modified Bessel function of the second kind.  For the wave 

impedance it can be shown that below the cutoff frequency for each mode, the wave 

impedance is capacitive and the modes are evanescent, i.e. the waveguide behaves as a 

capacitive storage element. 

Table 1 displays cf  for each mode in the 2" PPWG.  Note that the seventh mode 

is not supported when operating over 2-18 GHz.  

  

Table 1: Higher-Order Modes in 2" PPWG 

Mode 0 1 2 3 4 5 6 7 

cf (GHz) 0.000 2.951 5.901 8.852 11.803 14.754 17.704 20.655 

 

By ray-tracing, the angle of incidence for the travel of each mode between the 

plates for a particular frequency can be reviewed.  The incidence angle is defined by 
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Table 2 displays the angles of incidence for each mode of 2, 4, 8, 12 and 18 GHz.  

A dashed entry indicates an evanescent mode.  Note that for each particular angle of 

incidence, as a mode reflects off of the top plate, a mirror wave is simultaneously being 

reflected from the bottom plate.   

 

Table 2: Angles of Incidence for Propagating Higher-Order Modes 

f (GHz) 2 4 8 12 18 

Tsi-0 (deg.) 0.000 0.000 0.000 0.000 0.000 

Tsi-1 (deg.) - 47.535 21.644 14.235 9.435 

Tsi-2 (deg.) - - 47.535 29.458 19.139 

Tsi-3 (deg.) - - - 47.535 29.458 

Tsi-4 (deg.) - - - 79.603 40.974 

Tsi-5 (deg.) - - - - 55.050 

Tsi-6 (deg.) - - - - 79.603 

 

From these angles, the propagation path of each mode can be visualized.  Figure 

19 depicts a ray trace diagram of half of the mirrored propagating modes for 18 GHz.  

This serves as a basic guide to show where and how phase variations and interference 

will occur within the waveguide.  The propagation path of each mode is depicted in order 

from the fundamental mode path to the sixth-order mode path followed by the overlaying 
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of all mode paths.  Figure 19 does not indicate the relative power excited into each mode 

so the actual degree of interference cannot be visualized here.   

 

 

Figure 19: Ray-Trace Diagram of Propagating Modes for 18 GHz in 2" PPWG 

 

However, the radiation pattern of a 3-wavelength monopole operating at 18 GHz 

(Figure 11) will aid the visualization.  Referring back to Figure 11, it is apparent that the 

fundamental mode (propagating at zero degrees of elevation) will be excited the least.  
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The relative power of Mode 1, Mode 3 and Mode 5, propagating at the angles indicated 

in Table 2, correspond to the tips of the first, second and third elevated lobes of Figure 

11.  The relative power of Mode 2 and Mode 4 correspond to the first and second 

elevated nulls of Figure 11.  The relative power of Mode 6 corresponds to the area 

slightly prior to the deep null at the monopole's zenith.  From this visualization, it is 

apparent that a 3-wavelength monopole, operating at 18 GHz, will more readily excite, in 

order, Mode 5, Mode 3, Mode 1, Mode 6, Mode 4, Mode 2, then Mode 0.       

Initially, the PPWG was modeled in CST as a small (12” diameter) circular-plate 

PPWG to study the qualitative aspects of the higher order mode propagation.  Figure 20 

shows the model.  The excitation source is a coaxial monopole as describe above.  The 

plates are modeled as perfect electrical conductors (PEC) of zero thickness for simplicity.  

The blue lines between the plates are field evaluation lines, along which, magnitude and 

phase variations can be plotted.  For the overall qualitative effect, Figure 21, Figure 22, 

and Figure 23 each show a snapshot of phase animation in the radial direction for 2 GHz, 

4 GHz, and 18 GHz.  For these frequencies, 2 GHz is below the first-order cutoff so the 

figure shows only a propagating fundamental mode (planar wavefronts).  For 4 GHz, the 

first-order mode has been excited so the figure shows the combined effects of a 

propagating fundamental mode and a propagating first-order mode.  For 18 GHz, all 

higher-order modes that are supported by the spacing of the PPWG have been excited and 

the effects are apparent.   
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Figure 20: Circular Plate (12" Diameter)  PPWG 

 

 

Figure 21: Phase Animation in 12” Circular Plate PPWG for 2 GHz 
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Figure 22: Phase Animation in 12” Circular Plate PPWG for 4 GHz 

 

 

Figure 23: Phase Animation in 12” Circular Plate PPWG for 18 GHz 
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Figure 24 and Figure 25 show the forward-directed magnitude and phase 

variations along the various evaluation lines for 2 GHz.  Overlaying the plots for the 

individual evaluation lines depicts the magnitude and phase variation in the vertical 

direction as well.  It can be seen that for 2 GHz,  away from the monopole antenna, 

magnitude and phase values converge to a narrow band, i.e. only propagation of the 

fundamental mode is established.  Figure 26 and Figure 27 show the same information 

for 4 GHz and Figure 28 and Figure 29 show this for 18 GHz, but as expected, there is no 

convergence of magnitude or phase values.  This data will be considered again when 

designing a component to mitigate the higher-order mode effects. 

 

 

Figure 24: Mag. Variation Along Evaluation Lines for Circ. Plate PPWG at 2 GHz 
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Figure 25: Phase Variation Along Evaluation Lines for Circ. Plate PPWG at 2 GHz 

 

 

Figure 26: Mag. Variation Along Evaluation Lines for Circ. Plate PPWG at 4 GHz 
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Figure 27: Phase Variation Along Evaluation Lines for Circ. Plate PPWG at 4 GHz 

 

 

Figure 28: Mag. Variation Along Evaluation Lines for Circ. Plate PPWG at 18 GHz 
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Figure 29: Phase Variation Along Evaluation Lines for Circ. Plate PPWG at 18 GHz 

 

Finally, the total propagating power in the PPWG is distributed among the 

existing modes.  The radially-directed power density can be written as  
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where the electric and magnetic field components can be determined from zA . 

The associated power is obtained by integrating over a cross-section of the guide  
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where h  is the spacing between the plates and   is an angular span (azimuth) of 

radiation.  The usable fraction of power is in the forward section of the monopole's 

radiation and the wasted fraction of power is everywhere else.  The azimuth of usable 
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power can be defined by the angle formed by the monopole and the two tips of the 

adjacent lens.  The total power is equal to the sum of all power components associated 

with each mode,  

 
,

zTM
total mn

m n
P P  (1.14) 

By completing this power analysis, a more exact contribution of each mode to the 

total power in the PPWG could be determined.  This information could be used to guide 

steps towards mitigating the effects of each mode in a priority order (similar to the 

visualization technique above).   

The mathematical analysis is left incomplete for the purpose of proposing a 

general solution to the mitigation of higher-order mode effects.  This solution is the 

design of a basic mode-matching component that introduces a miniature PPWG inside the 

BANTAM PPWG.  The miniature PPWG would be suitably spaced for supporting only 

the fundamental mode of 18 GHz (less than 0.328" as indicated earlier).  Transitioning 

from the miniature PPWG to the BANTAM PPWG should favorably affect the overall 

mode structure within the 2” spacing.  The technical details of the mode-matching 

component will be discussed later. 

 

Specification 

The BANTAM chamber allowed for a bottom plate size of 76” x 52”.  The plates 

were constructed using three sheets of aluminum that were on-hand at AFIT.  The sheets 

were approximately 72” x 48” with a thickness of 0.1915”.  In anticipation of diffraction 

effects related to the blunt edges of the aluminum, the sheets would have to be framed 
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with rolled edges.  To make room for the rolled-edge framing, the sheet for the bottom 

plate was sized to 66.8" x 42.8".  The technical details of the rolled-edge framing will be 

discussed later, but with the framing, it was expected that the bottom plate would span 

75.625” x 51.625” leaving a perimeter of only 0.375” wide between the bottom plate and 

the tips of the wall absorber.   

Similarly, the aluminum sheet for the top plate was sized to 52.3" x 27.8".  With 

the same rolled-edge framing, the top plate would span 61.125” x 36.625”.  Derivation of 

the top sheet dimensions will be included in the technical details of the lens design since 

the top plate is further constrained by the size of the components that will be housed 

between the two plates.   

For the given size of the top plate relative to the bottom plate, a maximum 

(approximate) scan area of 14.5” x 15” over the center of the bottom plate is expected.  

The maximum scan area dimensions are only approximated as they relate to the 

recommended positions of the interior components and the outer limits of top-plate travel 

due to software limit switches, hardware limit switches and the tips of the wall absorber.  

The recommended maximum scan area is 14.25" x 14.25".   

The top and bottom sheets are expected to weigh approximately 60 lbs and 80 lbs 

respectively.  The degree of sheet flatness went undetermined, but by Figure 30 it can be 

seen that a very slight bend can be expected in both. 
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Figure 30: Flatness of Aluminum Sheets 

 

Fabrication 

The on-hand aluminum sheets were cut to size by the AFIT Model & Fabrication 

Shop.  A series of thru holes were drilled and tapped into each for mounting the 

monopoles and for mounting the sheets onto their respective plate frames.    

 

Rolled Edge Framing 

Theory and Simulation 

For the monopoles of the BANTAM PPWG, energy is radiated omni-directionally 

within the plates with a fraction of  that energy being put to use and a fraction being 

wasted.  Of the fraction being wasted, energy will either be expelled from the sides and 

ends of the PPWG or it will ring throughout the PPWG.  The energy expelled from the 

PPWG will be directed into the wall absorber directly across from the PPWG openings.  

It is assumed for simplicity that the absorber will attenuate this energy completely and 

that nothing will be reflected back into the PPWG openings.  The energy available for 
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ringing will come from the energy being expelled as that energy crosses over the joint 

formed by the top surface of the aluminum sheet and the side surface of the blunt 

aluminum edge.  The same effect occurs at the corners of the sheet where three 

orthogonal surfaces meet.  These slope diffraction effects are described in full detail in 

[15] where a line source illuminates the edge of a half-plane.   

It is desirable to minimize the opportunity for diffraction since ringing energy can 

go back and forth throughout the PPWG and interfere with the monopole’s usable energy.  

To soften the diffraction effects, the bluntness of the joint of the sheets’ surface and edges 

can be transitioned in a way to smoothly guide more energy out of the PPWG.  This 

transition will blend the top surface of an aluminum sheet (with radius of curvature  ) 

with the surface of a rolled-edge frame (with radius of curvature   ) and bypass 

altogether the orthogonal surface of the edges (also with radius of curvature  ).  These 

effects of diffraction and the joining of two surfaces with different radii of curvature are 

described in full detail in [15] where energy coupling between a source and observer is 

considered on and off a variety of curved surfaces. 

For modeling diffraction effects, an 12” square-plate PPWG was simulated in 

CST.  This model can be seen in Figure 31.  A snapshot of the phase animation at 2 GHz 

is used to qualitatively review the diffraction effects.  This is shown in Figure 32.  It can 

be seen how the fields are immediately altered by the presence of edges and corners when 

compared to the circular-plate PPWG of Figure 20.  Similar to the circular-plate PPWG, 

field evaluation lines are used to quantitatively review magnitude and phase due to 

diffraction effects at 2 GHz.  This data is shown in Figure 33 and Figure 34.  When 

overlaid with the data of Figure 24 and Figure 25 for the circular-plate PPWG, it can be 
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seen how the square edges affect both magnitude and phase.  The asterisks in the legend 

of Figure 33 and Figure 34 represent the newest (square PPWG) plots. 

 

 

Figure 31: Square Plate (12") PPWG 

 

The model for a 12" square-plate PPWG with rolled-edge framing is shown in 

Figure 35.  The rolled-edge framing was designed with a diameter of 6.625" - the 

significance of this diameter will be revealed later.  A snapshot of the phase animation at 

2 GHz is used to qualitatively review the effects of the rolled edges.  This is shown in 

Figure 36.  The field evaluation lines are re-evaluated and are overlaid with those of the 

original square PPWG in Figure 37 and Figure 38.  The asterisks in the legend represent 

the newest (rolled edge) data.  In all these figures, it can be seen that the rolled edges 

heavily reduce the effects of diffraction. 
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Figure 32: Phase Animation in 12" Square Plate PPWG for 2 GHz 

 

 

Figure 33: Mag. Variation Along Evaluation Lines for Square Plate PPWG at 2 GHz 
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Figure 34: Phase Variation Along Evaluation Lines for Square Plate PPWG at 2 GHz 

 

 

Figure 35: Square Plate (12") PPWG with Rolled-Edge Frame 
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Figure 36: Phase Animation in 12" Square Plate PPWG with Rolled-Edges for 2 GHz 

 

 

Figure 37: Mag. Variation Along Eval. Lines for PPWG with Rolled-Edges 
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Figure 38: Phase Variation Along Eval. Lines for PPWG with Rolled-Edges 

 

Specifications 

The radius of curvature for the rolled-edge frame for both the CST modeling and 

the BANTAM PPWG is 3.3125” (slightly greater than 20.5 GHz ).  While it would be 

helpful to simulate a parametric study to examine the effects of different radii of 

curvature, it is intuitive that a larger radius will soften diffraction effects more than a 

smaller radius.  Thus, it is clear that a rolled-edge frame should be designed to have the 

longest, practical radius of curvature relative to the longest wavelength of operation.  The 

radius of 3.3125” comes from the first convenient, practical, machinable, and available 

material found.  The material is 6.625”-diameter PVC drain, waste and sewer pipe from 

Lowe's. 
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The PVC pipe was purchased in 10’ lengths and had to be cut to length to fit the 

edges of the top and bottom aluminum sheets and their respective plate frames.  The 

corners of the pipe were designed with a miter to join each other at 45 .  With the given 

diameter of the PVC pipe, the bottom sheet with rolled-edge frame occupies the entire 

space available within the BANTAM chamber.  During scanning, at the extreme outside 

positions, the outside tangents of the top plate run plumb with the outside tangents of the 

bottom plate.  The diameter of the PVC is also the height of the fully assembled top and 

bottom plates, which as a new design constraint, must be considered when designing the 

plate frames and when designing the interface of the top plate with the translation axis 

and the interface of the bottom plate with the scissor lift.   

 

Fabrication 

 The 10’ PVC pipes were cut to length and mitered by hand using a custom 

designed miter box.  The miter box was made of 80/20 aluminum extrusion and included 

clamps to prevent the pipe from moving along its length and rotation axes.  Pilot holes 

were designed into the 80/20 miter box so that drilling holes for mounting the pipe to the 

plate frames could be accomplished alongside cutting.  Figure 39 depicts the machining 

process. 
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Figure 39: Machining PVC Pipe for PPWG Rolled-Edge Frame 

     

80/20 Plate Frames 

Theory and Simulation 

The plate frames were not modeled for the purpose of simulation.  However, since 

CST offers many file formats for drawings, the design of the plate frames took place in 

CST.  The basic intent for the plate frames is to provide a mounting structure for the 

aluminum sheets and the PVC pipe so that each plate can be considered as a single unit.  

Each plate frame resembles a small table with many legs.     
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Specification 

The complete technical specifications of the top and bottom plate frames will be 

made available at a later date. 

  

Fabrication 

The plate frames were designed in collaboration with a product specialist from 

Voelker Controls, a vendor of 80/20 material.  Upon receipt of the material, the frames 

were simply assembled to specification.  The frame pieces consisted of various lengths of 

1.5” x 1.5” T-slotted aluminum extrusion.  The legs on each side of each frame were 

designed pre-drilled to match the holes placed in the PVC pipe.  A long, rectangular 

washer was included in the design of the frame to assist in mounting the pipes securely.   

The bottom frame included two adjustable cross-members used to mount the 

frame to the scissor life.  The adjustable cross members were prepositioned and tightened 

prior to installing the aluminum sheets and PVC pipe.  The scissor lift, described shortly, 

was fitted with three beams of 80/20 that run orthogonally to the adjustable cross 

members.   

The top frame, intended to hang upside-down, included four vertical posts that 

slide along linear bearings.  The bearing pads were made of a self-lubricating, low 

friction ultra-high molecular weight polyethylene.  The bearings were mounted to the 

short axis by a 12” x 12” aluminum adapter plate.  The linear bearings give the top plate 

approximately 1.5” of vertical play as it hangs.   

Figure 40 shows a picture of one of the completed frames.  Figure 41 shows a 

frame after the installation of the PVC pipe.  The long, rectangular washer runs the length 
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of each pipe and is hidden inside.  Figure 42 shows a frame with pipes after the 

installation of the aluminum sheet.  The aluminum sheet straddles the frame like a 

tabletop and a series of bolts are used to fasten the sheet to the frame.  At this point in the 

construction, the holes for the monopoles are small pilot holes.  There is also a 1.1” wide 

perimeter gap between each edge of each sheet and the top tangent of each pipe.  This 

perimeter gap was to be filled with a fiberglass filler to smooth the transition from the 

aluminum sheet to the PVC pipe. 

 

 

Figure 40: Top Plate Frame (Ref. 12" Square Floor Tiles) 
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Figure 41: Bottom Plate Frame with PVC Pipes Installed  

 

 

Figure 42: Top Plate Frame with Pipes and Aluminum Sheet Installed 
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Fiberglass Filler 

Theory and Simulation 

The fiberglass filler was a practical and acceptable gap filler to smooth the 

transition from the aluminum sheets to the PVC pipe.  It also was used to fill the heads of 

the sunken fasteners that hold the aluminum sheets to the frames.  The was no simulation 

of the fiberglass filler.   

 

Specification 

The fiberglass filler came in two brands: 3M Bondo 272 heavy-weight filler and 

Evercoat light-weight filler.  The heavy-weight filler was used to fill the primary 

perimeter gap.  The light-weight filler was used to fill any remaining minor gaps, air 

bubbles, and groves between the aluminum and PVC surfaces. 

 

Fabrication 

The aluminum and PVC surfaces had to be prepared to receive the heavy-weight 

Bondo.  This entailed a surface sanding with medium-grit sandpaper.  The PVC was 

sanded from the PVC-aluminum joint to approximately 270 degrees around the pipe.  The 

aluminum was sanded in a perimeter approximately 6” wide.  Sanding these extended 

areas prepared each surface for paint as well.  The interior of the aluminum was sanded to 

a much finer level to give a slightly polished appearance.   

After sanding the surfaces, heavy-weight Bondo was applied to the perimeter gap 

of both plates.  A cure time of at least two hours was required for the Bondo to set.  After 

setting, the heavy-weight Bondo was sanded flat and the light-weight filler was applied.  
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The light-weight filler was applied to a much wider area than the heavy-weight Bondo to 

further smoothen the aluminum-to-PVC transition.  In turn, the light-weight filler was 

sanded flat to prepare the surface for paint.  Figure 43 shows a plate after the heavy-

weight Bondo application.  Figure 44 shows a plate after the light-weight filler 

application. 

 

 

Figure 43: Bottom Plate with Heavy-Weight Bondo Applied 
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Figure 44: Top Plate with Light-Weight Filler Applied 

 

Conductive Paint 

Theory and Simulation 

As the filler and PVC pipes provide a smooth geometrical transition to the plates, 

a conductive coating applied to the filler and pipes provide a smooth electrical transition 

as well.  Conductive paint will complete the rolled-edge frame and soften the diffraction 

effects of radiation as it exits the PPWG openings.   

CST simulations were not performed for the conductive paint, but it could have 

been characterized to determine how well it is electrically matched with the aluminum 

sheets.  Characterization would have also allowed the application process to be optimized 

in that a desired resistivity could have been reached by applying a predetermined number 
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of coats.  For use in this thesis, the conductive paint was used for its ballpark 

effectiveness in matching the rolled edges to the aluminum sheets. 

   

Specifications 

All the coatings used were manufactured by SprayLat Corporation and supplied 

by Sherwin Williams.  These coatings included a zinc-chromate primer for the aluminum 

surfaces, a conductive silver-coated copper paint, and a clear top coat.   

The conductive paint is a sprayable form of silver-coated copper that is typically 

used on plastic substrates.  The paint was advertised to possess effective shielding at less 

than 1.0 mil (25 microns) dry film thickness (dB levels not immediately available).  The 

dried conductive film is supposed to be extremely hard, tough and durable with excellent 

adhesion.  Sheet resistance was advertised at less than 0.015 
square
 per 1.0 mil dry film.   

The clear top coat is a talc-based coating that protects the copper in the paint from 

mineral salts, moisture and oxidation.  This is mainly used to preserve the appearance of 

the painted portions of the PPWG.        

 

Fabrication 

Following the final preparation of the filled surfaces, the plates were painted.  

Final filling, sanding and painting was accomplished by L&M Dry Wall, a local 

company, because they had the properly-sized facilities to perform the paint job while the 

AFIT Model & Fabrication Shop did not.  The cure time between the conductive coats 

and the top coat was approximately 24 hours.  The cure time following application of the 
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top coat was approximately 48 hours.  Figure 45 shows a plate following the application 

of zinc-chromate primer.  Figure 46 shows a plate following the application of two coats 

of conductive paint and the clear top coat.   

 

 

Figure 45: Top Plate with Primer Applied 
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Figure 46: Bottom Plate with Two Conductive Coats and Clear Top Coat Applied 

 

A miscommunication with L&M Drywall on how much aluminum was to be 

painted resulted in the over-spraying of the primer on most of the aluminum.  The 

aluminum wasn’t to be fully painted, but left bare over much of the plates' center to 

ensure reliable conductivity.  If the paint were to fleck off, and the non-conductive primer 

layer was exposed, the conductivity of the flat portion of the plate would be degraded.  

Albeit, if the paint flecked off of the PVC, the conductivity would be degraded there also, 

but since the vital components (antennas, lenses and material samples) are on the flat 

portion, it is best to rely on the conductivity of the aluminum.  Figure 47 shows a plate 

under the repair process of removing the primer from the central metal area.  Both plates 
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had to be repaired in this way.  The bare-metal area of both plates is surrounded by 

approximately a 6" wide paint perimeter. 

 

 

Figure 47: Top Plate Under Repair to Remove Excess Primer 

 

To examine the effectiveness of the conductive paint, small vinyl and aluminum 

coupons were painted alongside the plates.  Half of each coupon was taped off so that the 

thickness of each layer could be measured by a surface profiler.  A sheet resistance meter 

(direct-current, four-point probe) was used to measure the sheet resistance of each 

coupon as well.  The coupons are displayed in Figure 48.  They represent respectively, 

from left to right, bare vinyl and aluminum, primed aluminum, the addition of a single 
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coat of paint, the addition of a second coat of paint, and the addition of the clear top coat.  

The overall number of coats of paint was limited to two based on cost.    

 

Figure 48: Paint Coupons 

 

Figure 49 shows the texture of the vinyl coupon with two coats of paint and a 

clear top coat. The magnification is 10x.   

 

Figure 49: Fully Coated Vinyl Coupon at 10x Magnification 
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Paint thickness and sheet resistance measurements were taken to determine the 

representative quality of the paint.  For the future, these measurements should assist in 

determining 1) how many coats would be necessary to achieve the appropriate sheet 

resistance; 2) how many coats were optimum from a cost perspective; 3) how uniformly 

the paint coatings can be applied.  Figure 50 and Figure 51 show the thickness 

measurements for each coating.  Figure 52 and Figure 53 show the sheet resistance 

measurements.  Note that the sheet resistance of the primer and top coat were too 

resistive to measure.  Table 3 and Table 4, with means and standard deviations, 

accompany the figures. 

 

 

Figure 50: Coating Thickness on Aluminum Substrate 
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Figure 51: Coating Thickness on Vinyl Substrate 

 

Table 3: Thickness of Conductive Coatings 

 

 

 



 

79 

 

 

Figure 52: Sheet Resistance of Coatings on Al. Substrate 

 

 

Figure 53: Sheet Resistance of Coatings on Vinyl Substrate 
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Table 4: Sheet Resistance of Conductive Coatings 

 

 

Based on the average values of coating thickness and sheet resistance, values for 

DC conductivity can be derived.  DC conductivity is derived by  

 1
RS t

 


 (1.15) 

where RS  is sheet resistance and t  is thickness. 

For bare aluminum, CST gives a DC conductivity value of 3.56e7 S/m.  The 

derived DC conductivity of primed aluminum and top coated substrates is zero S/m.  The 

derived conductivity of the first and second coat of paint on aluminum is 1.72e7 S/m and 

0.84e7 S/m respectively.  The derived conductivity of both the first and second coat of 

paint on vinyl is 0.03e7 S/m. 

Concerning this data, coating thickness was very sporadic across all data points 

for all coatings.  For example, on average, two coats on vinyl was thinner than one coat 

on vinyl!  Sheet resistance values also varied wildly across all data points for most 

coatings.  However, there is consistency in that the paint on aluminum is about 40 times 

more conductive than the paint on PVC.  On average, conductivity went down with a 

second coat on aluminum because, on average, the thickness went up dramatically.  

Conductivity was consistent on painted PVC as both thickness and sheet resistance 
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average values were similar.  As can be inferred from these figures, without consistent 

measurements, it may be impossible to tell how many coats would be needed to achieve 

the paint's specified sheet resistance (0.015 m
square

 ) and bring the conductivity of the 

painted PVC to the closest match with the aluminum.  Of course, consistent 

measurements depend heavily on a consistent application process. 

 

Scissor Lift 

Theory and Simulation 

Based on the constraints of the original BANTAM design, specifically the vertical 

position of the linear translation rails, it became necessary to provide a lift mechanism to 

bring the bottom plate into position with the hanging top plate.   

For the chosen lift, with the bottom plate installed and in the lowered position, the 

surface of the bottom plate could be conveniently utilized as a work surface to prepare 

the antennas, lenses and material samples.  In the upper position, all the cabling below the 

bottom plate could be easily accessed.  The lift was also a convenient tool for installing 

the top plate. 

Specification 

The scissor lift is a part of a Low Boy dog grooming table from Ascot Products.  

The lift came with leveling legs and an up/down foot pedal.  The starting height is 6" and 

the maximum height is 42".  The jackscrew that moves the lift is equipped with a 

protective clutch and prevents continued motion at the maximum and minimum limits.  
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The maximum weight capacity for the lift is 250 lbs.  The weight of the lift was not 

indicated in the product sheet.   

The lift requires very little routine maintenance.  The frame articulation points 

(scissor joints) should be lubricated periodically with a spray lubricant.  The bearing 

races must remain free of dirt and debris and should not be lubricated.  The threads of the 

jackscrew can be lubricated with automotive grease if operation of the lift becomes 

louder. 

 

Fabrication 

The lift was initially used as a tool for mounting the top plate onto the short axis 

rail.  This procedure is illustrated in Figure 54 and Figure 55 with the lift raised and 

lowered respectively. 

Three beams of 80/20 extrusion were fastened to the lift in preparation for the 

bottom plate.  The three beams orthogonally span three cross members of the bottom 

plate's 80/20 frame.  The two outer cross members of the bottom frame were adjustable 

such that a rubber mallet could be used to position them on the beams of the lift.  Once in 

position, all fasteners could be tightened.  This arrangement is shown in Figure 56.  The 

lift had to be generally prepositioned in the BANTAM chamber prior to installing the 

bottom plate.  The general positioning is depicted in Figure 57.  Details for exact 

positioning follow in the section on mechanical tuning. 
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Figure 54: Using Lift to Install Top Plate (Raised) 

 

 

Figure 55: Using Lift to Install Top Plate (Lowered) 
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Figure 56: Bottom Plate Installed on Scissor Lift 

 

 

Figure 57: General Positioning of Scissor Lift and Bottom Plate 
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Rexolite Lenses 

Theory and Simulation 

The Rexolite lenses were designed by following the example set by GTRI for 

their 3-D FBS.  However, the design steps were re-arranged.  GTRI has designed their 

lenses for quadridge horn antennas which have a specific forward beam pattern whereas 

the BANTAM 2-D FBS will use an omni-directional monopole.  Furthermore, being a 

free-space FBS, GTRI did not have any apparent spatial constraints along the propagation 

direction whereas the BANTAM 2-D FBS will be confined within two plates and a 

chamber of restricted volume. 

There are multiple design parameters in the 2-D FBS lenses which facilitate trade-

offs.  The goal is plane-wave like illumination on a material sample (while minimizing 

sample edge effects) so that plane-wave models can be applied to calculate permittivity 

and permeability from reflection and transmission coefficients.  The material illumination 

is based on Gaussian optics but differences between Gaussian and plane-wave 

illumination can lead to errors in calculating permittivity and permeability.  The error will 

largely depend upon the size of the beamwaist produced by the lenses.  Error should 

decrease with increasing 0 0k w  (focusing factor) and increase with increasing lens 

thickness.  Gaussian illumination can be approximated as plane-wave illumination with 

less than 1% error (in freespace) if beams have waists such that 0 0 10k w  .  A design 

rule-of-thumb on the lower limit of the focusing factor is a beamwaist approximately one 

wavelength in diameter or 0 0k w   [8].  The relationship between beamwaist and 

wavelength is  
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 0
0 0

2 wk w 


  (1.16) 

where beamwaist on the left side of the equation is part of the desired focus factor.  

The design for the BANTAM 2-D FBS lenses will begin with this lower focusing 

limit applied near the lower frequency side of 2-18 GHz.  The actual design-to frequency 

for focusing factor is 2.574 GHz as this frequency translated directly to the optimum lens 

size.  As shown in Figure 58, focusing factor improves with frequency and approaches a 

value of 10 as recommended for minimizing error. 

 

 

Figure 58: Focusing Factor of 2-D FBS Lenses 

 

The relationship between beamwaist and frequency shows that the desired 

beamwaist for 2.574 GHz is 2.294".  Beamwaist is then plotted against frequency for the 

BANTAM 2-D FBS lenses in Figure 59. 
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Figure 59: Beamwaists of 2-D FBS Lenses 

 

Following the GTRI example, a value for amplitude taper at the lens aperture (the 

tip-to-tip plane through the two lens halves) and at the edge of illumination on the sample 

material was chosen to be  

 0.01,  or 20lens edgeT dB   

0.01,  or 20tT dB   

From the beamwaist and taper values presented thus far, the minimum size of the 

sample material can be determined for 2.574 GHz in the following relationship.   

  2
0 ln

2
t

t

w T
r 


 (1.17) 

For 2.574 GHz, the minimum [radius] size of 3.481" can be applied to all 

frequencies 2.574-18 GHz.  For 2-2.574 GHz the minimum size will be slightly larger.  

The minimum size is only that size of a target that will fit in the beam and receive the 
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required amplitude taper.  The actual targets will be longer such that their edges do not 

cause significant diffraction effects in the beam. 

Similar to the beam's radius at its waist, the beam's radius can be defined at other 

points along the beam.  By knowing the beam's radius at the lens aperture plane, the lens 

design can progress into defining where to place the target relative to the beamwaist to 

achieve the desired taper.  With the desired value of amplitude taper at the aperture plane, 

the beam radius at the aperture plane can be derived from  

 
 

2

 

2
ln

lens
L

lens edge

rw
T


  (1.18) 

where lensr is the lens tip-to-tip radius and is defined by the BANTAM constraints.  This 

results in a target placement of  
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 (1.19) 

relative to the beamwaist where the  position of the beamwaist is defined by the focusing 

focal length of the design-to frequency.   

It is at this point in the lens design that two lens sizes will be presented.  One size, 

the smaller, will be optimized for the near-field scanning function of the BANTAM - it 

will be useful in measuring S-parameters as well.  The other size, the larger, will be 

optimized for S-parameters - it will likely not be useful for near-field scanning since its 

elongated electrical lengths (lens thicknesses, focal lengths, etc.) will elongate the 

component layout in long axis and prevent a meaningful scan area.  For the final design 

of both lens sizes, the beam radius at the lens aperture plane can be seen in Figure 60.  
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Figure 60: Beam Radii at Aperture Planes of 2-D FBS Lenses 

 

Further, for target placement relative to the beamwaist,   

z = 7.701" 

for the large lens and 

z = 3.999" 

for the small lens, each using the design-to frequency of 2.574 GHz.  By placing the 

target in this position for all frequencies in the 2-18 GHz band, the amplitude taper at the 

lens aperture (for both lenses) and at the target surface takes on the trend shown in Figure 

61. 

 For the smaller lens, lensr  (the lens tip-to-tip radius) is limited by the 

forward/reverse scanning motion of the top plate over the bottom plate.  The top plate 

must be wide enough (front-to-back) to scan over a meaningful area without disrupting 

the waveguide's physical structure or the beam within the waveguide.  This is illustrated 

in the top and bottom frame of Figure 62. 
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Figure 61: Amplitude Taper at Lens Aperture and Target Surface 

 

 

Figure 62: Top Plate Scan Area for Sizing Small Lens 
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In order to keep the contents (antennas and lenses, particularly, but target 

generally) of the PPWG covered by the top plate, the width of the top plate must be twice 

the width of the desired scan area.  However, the maximum width of the top plate is 

constrained by the width of the BANTAM chamber, or more appropriately, the half-

width of the bottom plate (22.5" at the aluminum, Bondo, and PVC joint).  Due to 

symmetry, the half-width of the bottom plate is equivalent to one-and-a-half times the 

maximum width of the desired scan area.  This means that 

22.5"max  scan width = 15"
1.5

  

    If the width of the maximum meaningful scan area was defined from tip-to-tip 

of the small lens, then 

7.5"lensr   

As this maximum radius relates to the top plate, the tips of the small lens will 

contact the tangent (aluminum, Bondo, and PVC joint) of the front and back rolled edges 

at the extreme positions in the forward and reverse scans.  For the large lens, lensr  was 

designed such that in a scan (though it wasn't designed explicitly for scanning) the lens 

tips would be exposed somewhat at these extremes. 

For each lens, lensr  is related to the collimating lens focal length, the thickness of 

the collimating lens, the focusing lens focal length and the thickness of the focusing lens.  

This relationship is 
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where 

if  an optimization input for the collimating focal length 

it   thickness of collimating lens 

n = index of refraction of Rexolite 

and  
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where  

0,  ,  z w   are given according to the design-to frequency 

and where 

0t   thickness of focusing lens 

  In this trade space, the available electrical path length between monopoles and 

the available scan space in the BANTAM length provide additional constraints.  The top 

plate must be long enough to scan over the entire length of the area between the lenses 

without hitting the lenses with the scanning probe or otherwise disrupting the waveguide 

structure.  This can be seen in the side frames of Figure 62.  This means that the length of 

the top plate must be twice the combined distances of the scan length and the remaining 

length necessary to maintain the waveguide, i.e. the length that still provides coverage of 

the monopole.  However, the maximum length of the top plate is constrained by the 

length of the BANTAM chamber, or more appropriately, the half-length of the bottom 
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plate (34.5" at the aluminum, Bondo, and PVC joint).  Due to asymmetry, the half-length 

of the bottom plate is equivalent to one-and-a-half times the maximum length of the 

desired scan area plus the length required to maintain the waveguide structure.  This 

means that 

1.5 34.5"ScanLength ExtraWaveGuideLength    

and 

 2( )top plateLength ExtraWaveguideLength ScanLength   

 

The ExtraWaveguideLengthcan be interpreted as 

0arg i iMonopoleM in f t t    

and the ScanLength can be interpreted as  

02* f  (the space between the lenses) 

 

Then, 

0 0

1.5
arg 1.5 2 34.5"i i

ScanLength ExtraWaveGuideLength
MonopoleM in f t t f
 

       
 

and 

  0 02 arg 2*top plate i iLength MonopoleM in f t t f      

 

Each of these length variables ( 0, 0,  ,  ,  ,  ,  arglens i ir f t t f MonoM in ) were put into a 

spreadsheet to optimize each for the given length constraints.  For both lens sizes, the 

collimating focal length was used as an input to the optimization program.  The 
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optimization program was Microsoft Excel's Goal Seek.  The value for lensr , and thus, the 

remaining length variables were based on the optimum relationship between lensr  and the 

collimating focal length, i.e. the collimating #f , as shown by 

 #
2

i

lens

ff
r




 (1.23) 

One optimization solution was discovered when the # 0.25f  , or when lensr  was 

twice the length of the collimating focal length.  The results of the optimization allowed 

the curvature profile of each lens, collimating and focusing halves respectively, to be 

determined by 
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where the optimum lengths are, for the small and large lenses respectively, 

if  2.600" and 4.107" 

it   3.306" and 5.222" 

lensr  = 5.200" and 8.214" 

0t   2.243" and 3.924" 

0f   7.246" and 9.387" 

and 

argMonoM in  = 4.614" (roughly one wavelength of 2.574 GHz). 
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 top plateLength = 54.5" 

 top plateWidth = 30" 

 

 The optimization spreadsheet for each lens is shown in the appendix of this 

document.  The optimization program for each of these spreadsheets was designed to 

2.574 GHz.  The expected values for each parameter for the even frequencies from 2-18 

GHz are tabulated alongside 2.574 GHz.  The entries highlighted in red are inputs to the 

program.  Simulation of the lenses will be presented with the final system architecture.  

 

Specifications 

As described above, the lenses will be 2" tall cut from a Rexolite slab having an 

index of refraction of 1.594.  There will be two small lenses and two large lenses cut 

from the slab.  The collimating profile of the small lens will be defined by 
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and the focusing profile will be defined by 
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The collimating profile of the large lens will be defined by 
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and the focusing profile will be defined by 

 

 
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The weight of a small lens is approximately 2.5 pounds and the weight of a large 

lens is approximately 6 pounds.  The approximate coefficient of static friction of a 

finished lens on the aluminum sheet is 0.5 based on the equation:  

 1.32
2.5s

n

f
F

    (1.26) 

where f  was the laterally applied force that initiated lens movement along the aluminum 

surface.  The coefficient of dynamic friction was not determined.  Given the friction 

coefficient and scanning tests that showed the top plate was capable of dragging the 

lenses across the bottom plate, the lenses will be held in place on the bottom plate by 

double-sided conductive tape 0.003" thick. 
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Fabrication 

Each lens was rough cut from the Rexolite slab using a high-powered water jet.  

The cutting was performed at the AFIT Model and Fabrication Shop.  Following the 

rough cut, the lenses were precision machined to tolerances as low as 0.0018"  on each 

profile face and each flat face.  Figure 63 shows one of the large lenses immediately after 

machining. 

 

 

Figure 63: Large Lens Prior to Polishing 
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Each face of each lens had to be polished.  It was never determined to what 

degree polishing must be achieved, but enough polishing was accomplished to remove all 

machining marks and bring the faces to fullest transparency.   

The profile faces were polished much longer than the flat faces.  Polishing 

occurred by taping a sheet of 1,000-grit sandpaper to a precision flat plate and 

simultaneously pulling and rolling the lens over the sandpaper.  Progress was indicated 

by the diminishing brightness of the machining marks as viewed through one of the flat 

faces.  This is shown in Figure 64. 

 

 

Figure 64: Bright Machine Marks in Profile Surface of Lens 
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Use of the 1,000-grit sandpaper lasted for approximately 800 strokes or until the 

bright machining marks were removed.  Approximately 200 strokes on 1,500-grit 

sandpaper reduced the surface roughness further.  The backside of a piece of sandpaper 

was then used to apply Turtle Wax and then Meguiar's Polishing Compound to the profile 

faces.  This is shown in Figure 65.  A final pair of lenses, after polishing for 

approximately 8 hours, is shown resting on the bottom plate of the PPWG in Figure 66.    

 

 

Figure 65: Polishing Lens With Compound 
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Figure 66: Small Lenses on Bottom Plate 

 

Mode-Matching Components 

Theory and Simulation 

Mode-matching components have been referred to throughout this document as a 

component for mitigating the higher-order mode effects (undesirable phase variation 

along the propagation and vertical directions) caused by the height of the lenses.  These 

components will not be addressed by mathematical mode-matching techniques, but will 

rather be designed and simulated in CST based off of intuition alone. 

The over-moding in the PPWG is due to the fact that all frequencies above the 

first-order cutoff (2.951 GHz) are excited directly into the 2" PPWG spacing.  In the 

design of the mode-matching component, all these frequencies will be excited directly 

into a PPWG of a much smaller spacing (0.166", or equivalent to a quarter-wavelength of 

18 GHz) allowing only the fundamental mode for 2-18 GHz to propagate.  Then, the 

geometry of the small PPWG will be transitioned as smoothly as practical to the 
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geometry of the 2" PPWG.  This transition, if accomplished smoothly enough, could 

prevent the excitation and propagation of the higher-order modes from the monopole to a 

large degree.  However, this spacing still supports higher-order modes and they may in 

fact be excited by introducing a target into the space.  Overall, the exact degree of higher-

order mode suppression would have to be determined mathematically.   

To verify the effect of the mode-matching component, CST simulations of a 

PPWG containing the component will be reviewed and compared qualitatively to the 

over-moded circular-plate PPWG of Figure 23 operating at 18GHz.  The CST model for 

one of these components is shown in Figure 67.  The component will be referred to as a 

mode-matching mesa due to its resemblance to a flat-topped pyramid. 

 

 

Figure 67: Small Mode-Matching Mesa 
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In the CST model, a coaxial line is fed through the center of the 10" long bottom 

mesa.  The coaxial adapter and the internal dielectric are joined flush to the flat-top of the 

bottom mesa with the inner conductor (monopole) rising 0.166" to the flat-top surface of 

the top mesa.  The width of the mesa's base will be constrained by the required distance 

between the monopole and the adjacent lens.  Since the distance between the monopole 

and the lens is the collimating focal length, the mesa's base will be twice that length.  For 

each lens size, there will be an associated mesa size.  Figure 68 and Figure 69 shows the 

qualitative effect of the small mesa and the large mesa on the mode structure within the 

PPWG.  The only noticeable difference between the two sizes is the patch of interference 

(likely caused by diffraction from the mesa's long edges) shortly outside of the small 

mesa.  The large mesa develops the same interference patch, but at a longer distance.  

The monopole's cylindrical wavefronts are maintained in both arrangements. 

Figure 70 and Figure 71 show the forward-directed magnitude and phase 

variations for 18 GHz along various evaluation lines extending from the small mesa.  

Figure 72 and Figure 73 are overlays of the large mesa data on the small mesa data.  

Asterisks in the legend indicate the newest (large mesa) information. 

The primary characteristic of these figures is how cleanly the magnitude and 

phase varies in the propagation direction.  This is in complete contrast to Figure 28 and 

Figure 29 for the over-moded circular-plate PPWG.  Another noticeable characteristic is 

the peak of the magnitude plots.  In Figure 28, the peak of the magnitude plot is at 400 

V/m.  With either of the mesas installed, the peak of the magnitude plot is near 1,600 

V/m.  This suggests that energy that would have been distributed among several higher-

order modes is now distributed among much fewer higher-order modes.  
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Figure 68: Small Mesa Effects on Overmoding 

 

 

Figure 69: Large Mesa Effects on Overmoding 
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Figure 70: Mag. Variation Along Evaluation Lines for Small Mesa at 18 GHz 

 

 

Figure 71: Phase Variation Along Evaluation Lines for Small Mesa at 18 GHz 
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Figure 72: Mag. Variation Along Evaluation Lines for Large Mesa at 18 GHz 

 

 

Figure 73: Phase Variation Along Evaluation Lines for Large Mesa at 18 GHz 
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The phase plots suggest that the phase variation in the vertical direction is brought 

under much tighter control.  The vertical phase variation of Figure 29 varies as widely as 

360  from bottom plate to top plate.  In Figure 73, the vertical phase variation seems to 

be approximately 30  from bottom plate to top plate except in the area of the interference 

patches.  It could even be suggested that with the mode-matching mesas, the phase 

variations of 18 GHz are cleaner than the first-order phase variations of 4 GHz (Figure 

27).  This would suggest that the mode-matching mesas are capable of correcting the six-

higher-order mode structure to below first-order levels. 

 

Specification 

Utilizing the small and large mode-matching mesas is the quickest way to 

effectively address the over-moding of the 2" PPWG.  As indicated, the base width of 

each mesa should be determined by the collimating focal length of the respective lens.  

The height of each mesa should be such that a PPWG of less than 0.328" spacing could 

be formed between them.  In the simulations, the spacing was arbitrarily set at 0.166", or 

the equivalent of one-quarter wavelength at 18 GHz.  This made the height of each mesa 

0.917".  Of course, this design is bound to a single spacing and monopole operating over 

2-18 GHz, rather than, ideally, several mesa designs of various spacing and various 

monopole heights operating over frequency octaves. 

The width of the mesa's flat top should be wide enough such that the vertical 

magnitude and phase variation in the small PPWG at 18 GHz has time to converge to a 

tight band of values as does the 2" PPWG operating at 2 GHz (Figure 24 and Figure 25).  
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For the mesa simulation, the flat top was 0.866" across to accommodate the diameter of a 

coaxial adapter and the equivalent of a half-wavelength of 18 GHz on either side. 

The length of the mesa should be the longest practical length usable by the 

BANTAM PPWG.  The exact length will coincide with the width of the bare-metal area 

on the bottom plate.  This bare-metal area will accept a mesa 32" long. 

Fabrication 

Due to time constraints, the mode-matching mesas were not fabricated for this 

thesis.  It is recommended that final designing and fabricating be an immediate future 

action. 

 

Targets 

Theory and Simulation 

Upon assembly of the BANTAM 2-D FBS, several targets were evaluated.  The 

target set consisted of an aluminum target, an acrylic target, and a metamaterial D-ring 

target.  The aluminum target was expected to behave analogously to the calibration short 

used in the GTRI FBS.  The acrylic target and the D-ring target served as an unknown 

target.  However, each target is not completely unknown as the S-parameters of the D-

ring target have been measured by the GTRI FBS in the past and measurements of acrylic 

targets are well documented.  For measurement by the GTRI FBS, the D-ring target was a 

4x4 array (8" x 8" panel) of D-rings.  For measurement by the BANTAM 2-D FBS, the 

D-ring target was a 1x16 array (2" x 32" strip) of D-rings.   
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Each target was simulated in the full system architecture in CST.  The appropriate 

S-parameters and field distributions will be compared to the physical measurements in 

the results of Chapter 4. 

   

Specification 

The aluminum, acrylic, and D-ring targets are each 32" long by 2" wide.  The 

aluminum is 0.1915" thick, the acrylic is 0.1975" thick, and the D-ring target is 0.0345" 

thick.  As shown in Figure 74, the D-rings are 1" in diameter and their centers are spaced 

2" apart.  The trace width is 0.04" (1 mm) and the trace thickness is 0.0014" (0.035 mm).  

The vertical gap is 0.157" (4 mm) and the horizontal gap is 0.079" (2 mm). 

 

Fabrication 

The aluminum and acrylic was cut to specification at the AFIT Model & 

Fabrication Shop.  The GTRI D-ring target was cut into strips in the microwave 

laboratory and taped end-to-end.   

Installing each of the targets in the BANTAM PPWG for measurement was an 

uncertain process due to a yet-to-be-designed target mounting fixture.  For simplicity, in 

both simulation and measurement, the targets were placed approximately half-way 

between the lenses (focusing focal point) rather than at the recommended target position 

relative to the beamwaist.  There is general uncertainty in the side-to-side position, the 

forward-reverse position, the degree of rotation on the bottom plate, the degree of tilt, the 

degree of bowing, and the degree of placement repeatability for each target.  The targets 

are shown in Figure 74.       
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Figure 74: Targets for BANTAM 2-D FBS 

 

BANTAM Reinforcements 

Theory and Simulation 

The final component for the BANTAM 2-D FBS is the reinforcement kit used to 

fasten the short axis rail to the BANTAM chamber.  As discussed previously, the 

reinforcements will prevent the top plate from overloading the short axis as the top plate 

scans to its extreme forward and reverse positions. 

 

Specification 

The reinforcement kit consists of two horizontal 80/20 rails that span the length of 

the chamber and fasten to the wall studs.  The reinforcement rails are positioned slightly 

above the short axis rail.  An assembly of 80/20 resembling a hanger is fastened to each 
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end of the short axis rail.  The hook of each hanger fastens over a horizontal rail and is 

free to move side-to-side via linear bearings. 

 

Fabrication 

The reinforcement kit was designed in collaboration with a product specialist at 

Voelker Controls.  The pre-fabricated pieces were assembled directly into the BANTAM 

chamber.  These reinforcements are shown in Figure 75. 

 

 

Figure 75: Reinforcements on Short Axis Rail 
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Assembly & Testing 

Upon fabrication, the system components were brought together into the final 

system architecture.  Each plate was assembled with an 80/20 frame, an aluminum sheet, 

PVC rolled edges, fiberglass filler and conductive paint.  The bottom plate was installed 

on the scissor lift and the top plate was installed on the short axis rail alongside the 

reinforcement kit.  Prior to use, the system had to be precisely tuned and calibrated.  

These procedures are discussed below.  The general use procedures for the BANTAM 2-

D FBS follow the original BANTAM use procedures detailed in the appendices of [5]. 

 

Mechanical Tuning 

Immediately upon installation, each plate had to be leveled and centered.  The top 

plate was centered automatically by its position on the linear translation rails.  The top 

plate was leveled by inserting aluminum shims into the area of vertical play given by 

each of the four vertical linear bearings. 

The bottom plate was roughly centered under the top plate by pushing or pulling 

the scissor lift into position.  Precise centering was accomplished by moving the scissor 

lift fractions of an inch with a crowbar.  Centering was verified by two methods: using 

the plumb indicator in a hand level and using a plumb line.  The plumb line verified the 

centering when the top plate was in its home position.  The plumb indicator of the hand 

level verified the centering when the top plate was in an extreme scan position (the two 

rolled edges should line up on the plumb line).  These procedures are illustrated in Figure 

76.  The bottom plate was leveled by adjusting the leveling legs of the scissor lift. 
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Figure 76: Centering Bottom Plate of PPWG 

 

For the first scan test, the small lenses were placed on the bottom plate and the 

bottom plate was lifted to the top plate.  The lenses connected with the top plate and 

actually lifted the top plate slightly - this was intended to make a true 2" PPWG.  During 

scanning, at the extreme long axis positions, the top plate tended to pivot over the edge of 

the nearer lens and lift off the surface of the farther lens.  At the extreme short axis 

positions, the top plate tended to pivot over the nearest lens tips and lift off of both lens 

surfaces.  During the pivoting, the weight of the top plate was transferred through the 

lens(es) to the bottom plate and to the lift.  In reaction to the pivoting, the bottom plate 

tended to lean with the top plate, re-establishing (to some degree) a parallel plate 

structure, but at the expense of strain in the scissor lift joints.  This effect was mitigated 
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by reducing the height the lenses lifted the top plate and by introducing a tripod 

underneath the bottom plate at both ends.  This tripod arrangement is only required when 

operating the scanning function.  The tripods must be removed for any lowering of the 

bottom plate.  The tripod arrangement is shown in Figure 77. 

 

Figure 77: Tripod for Stabilizing Bottom Plate 
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Also during scanning, as the top plate moved over the lenses, the top plate would 

drag the lenses.  This problem was eliminated by applying double-sided conductive tape 

to the bottoms of the lenses.  With the tape applied, the dynamic friction between the top 

plate and the lenses resulted in a jerking motion during scanning.  This effect was 

mitigated by reducing the scan velocity and by applying a Teflon lubricant to the bare 

aluminum of the top plate and to the top surface of the lenses. 

The monopoles were tuned to an acceptable length by conducting a trial scan and 

iteratively trimming them as the top plate made physical contact.  As previously shown in 

Figure 30, the plates are not exactly flat, so one portion of the plate may pass over the 

monopole while another portion drags over the monopole.  The three monopoles were 

trimmed to an average height of 1.916".  Since the monopole rod was somewhat flexible, 

the monopole had to be straightened as well. 

The lenses were positioned on the bottom plate with a custom-made lens 

positioning tool.  The tool was pinned to the bottom plate using the two monopole coaxial 

adaptors on either end of the plate (short focal point and long focal point together).  The 

lens was placed into the profile of the tool, with double-sided tape already applied, and 

the tool was removed.  For the small lens, the tool is a single piece.  For the large lens, 

the tool is in two pieces.  This procedure is illustrated in Figure 78 for positioning the 

large lens. 
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Figure 78: Lens Placement Tool 

 

Positioning the targets was the least precise operation of the system tuning.  To be 

precise, this procedure requires the design and fabrication of a target fixture.  In general, 

the front face of each target was assumed to be placed at the focusing focal length of the 

left lens.  Due to varying thicknesses among the targets, the rear faces were assumed to 

be forward of the focusing focal length towards the right lens.  The targets were 

positioned and aligned by sight and straightened with the assistance of two identical, flat-

laying, surplus targets.  With the three pieces positioned together on the bottom plate, the 

bottom plate was raised to the top plate until the target was slightly compressed.  The two 

surplus targets were then removed.  This procedure is illustrated in Figure 79. 
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Figure 79: Positioning Targets in the PPWG 

 

Basic Calibration 

The extent of calibrating the BANTAM 2-D FBS for this thesis involved only a 

two-port network calibration.  The two-port calibration would correct for the systematic 

errors up to the point of the coaxial adaptors. 
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Calibration has to be performed for three different two-port scenarios: 1) S-

parameter measurements via left monopole and right monopole; 2) near-field scans via 

top probe with excitation by left monopole; 3) near-field scans via top probe with 

excitation by right monopole.  The two-port network calibration is performed by 

measuring calibration standards at the extreme ends of each port's cabling (this includes 

the coaxial elbows).  The standards include a short, an open, a broadband load, and a 

thru.  Measuring the thru for the top probe and left monopole is shown in Figure 80. 

 

 

Figure 80: Measuring THRU for Two-Port Network Calibration 
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IV.  Results and Analysis 

Chapter Overview 

This chapter presents the results of raw measurements made by the newly built 

BANTAM 2-D FBS and compares them to the results of raw measurements made by 

simulating the system in CST.  The approach to analyzing these results is such that basic 

measurement phenomena can be highlighted, though not thoroughly and rigorously 

accounted for as would be necessary for a quality system assessment.  The amount of 

simulation, measurement and analysis required to draw solid conclusions about the actual 

performance of the BANTAM 2-D FBS is assumed to be quite lengthy, so a rigorous 

characterization of the system will have to be postponed until a later date.  The 

introductory test matrix, shown in Table 5, is the extent of the tests performed for this 

thesis, and it is only a small portion of the measurements required.  The measurement 

data provided in this chapter should be of sufficient quality to render a derivation of 

permittivity and permeability for the acrylic target, but such derivation will not be 

performed here. 
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Table 5: BANTAM 2-D FBS Test Matrix 

 

 

In CST, the full system architecture was simulated to the best practical 

representation.  All conductive surfaces (except for the traces of the metamaterial D-

rings) were modeled as perfect electrical conductors.  The system accuracy was set to -40 

dB.  Port symmetry and geometrical symmetry were used whenever possible. 

The rolled edges were not included in the simulations due to the massive mesh 

they imposed on CST.  For example, with one-fold geometrical symmetry (only 

applicable along the long axis), the mesh size was reduced by 50% to approximately two-

billion mesh cells for 12.6 GHz.  Above 12.6 GHz, CST failed to generate a mesh.  The 

timeliest simulation of the empty rolled-edged PPWG took five hours for 0-4 GHz, but 

these narrow results were simply too inadequate to be useful. 
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Simulating with no rolled edges from 0-18 GHz presented a different problem 

where field data simply did not exist in the farthest reaches of the model geometry.  The 

issue was discussed with the CST specialists at Sonnet Software, but it was never 

resolved.  It was rumored that perhaps the model was too electrically large, i.e. the 

longest dimension, being greater than 60 wavelengths at 18 GHz, triggered an internal 

error.  Reducing the frequency to 10 GHz brought the model to less than 60 wavelengths 

and allowed field values everywhere within the model geometry, but it was never 

confirmed that 10 GHz was the true upper limit of the model.   

The final set of simulations did not have rolled edges, they were run from 0-10 

GHz rather than 0-18 GHz, and only excitation of the left monopole was considered for 

comparison with the physical system.  The left-side-only simulations followed left-side-

only measurements (as shown in the test matrix) mainly due to the time constraints of re-

calibrating and re-measuring from the right side of the physical system.  The time 

constraint of the physical system was in the 14 hours required to accomplish a single scan 

at a meaningful spatial resolution. 

 

Empty PPWG 

The simulation model for the empty PPWG is shown in Figure 81.  The 

magnitude and phase distributions throughout the waveguide, as excited by the left 

monopole, can be arbitrarily visualized in Figure 82. 
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Figure 81: Empty PPWG Model 

 

 

Figure 82: Empty PPWG with Magnitude and Phase Distributions 
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Near-Field Scans (Test Point 1) 

Near-field scans were conducted over the center of the bottom plate in an area of 

14.25" x 14.25" with a spatial resolution of 0.25" (3,364 points).  The frequency 

resolution was 20 MHz from 2-18 GHz (801 points).   

Figure 83, Figure 84, and Figure 85 show the measured and simulated scans with 

the left monopole at the short focal length for 2 GHz, 6 GHz and 10 GHz respectively.  

Figure 86 shows the measured scan for 18 GHz.  The nature of the measured patterns are 

due to the physical integration of the x- y- and z-components of the electric fields over 

the probe's length.  For true comparison, the simulated fields should be integrated over 

the 2" gap.  However, for simplicity, a single planar cut, corresponding to the tip of the 

probe, using only the y-component of the electric fields, was taken from the simulated 

data and used for a qualitative comparison. 

For the 2 GHz fields, the main difference is in the magnitude plot.  The difference 

is assumed to be due to the lack of integrating all components of the simulated fields.  In 

the phase, the ripple in the simulation is assumed to be due to the lack of rolled edges.  

Qualitatively, the measured and simulated scans are in agreement.  They each show the 

magnitude plot weakening as waves propagate from the left side and down the long axis.  

Also, in the phase, they each show a cylindrical wave, with a wavelength approximately 

6", propagating from the same phase center to the left of the scan area. 

For the 6 GHz fields, the main difference is also in the magnitude plot.  The 

difference is assumed to be due to the lack of integrating all components of the simulated 

fields, but it is also assumed that the difference highlights the presence of the higher-

order modes in this particular planar cut.  The higher-order modes are indicated by the 
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periodic nulls in the simulated scan.  Had the integration occurred, it is assumed that the 

modes would have been considered collectively.  In the phase, the ripple of the 2 GHz 

simulation has been nearly eliminated.  Qualitatively, the measured and simulated scans 

are in agreement.  They each show the magnitude plot weakening as waves propagate 

from the left side and down the long axis.  Also, in the phase, they each show a 

cylindrical wave, with a wavelength approximately 2", propagating from the same phase 

center to the left of the scan area. 
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Figure 83: Measured vs. Simulated Near-Field Scans at 2 GHz 
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Figure 84: Measured vs. Simulated Near-Field Scans at 6 GHz 

 

For the 10 GHz fields, the main difference is again in the magnitude plot.  The 

difference is again assumed to be due to the lack of integrating all components of the 

simulated fields and due to the presence of higher-order modes in this particular planar 

cut.  In the phase, the distortion common to both measurement and simulation is assumed 

to be due to the spatial sampling resolution.  The resolution of each plot is 0.25" which is 

approximately one-quarter wavelength for 10 GHz.  Qualitatively, the measured and 

simulated scans are in agreement.  They each show the magnitude plot weakening as 

waves propagate from the left side and down the long axis.  Also, in the phase, they each 
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show a cylindrical wave, with a wavelength approximately 1", propagating from nearly 

the same phase center to the left of the scan area. 
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Figure 85: Measured vs. Simulated Near-Field Scans at 10 GHz 

 

For the 18 GHz fields, there was no simulation to make comparisons with.  

Qualitatively, the behavior shown in the magnitude plot agrees with the previous plots for 

lower frequencies.  The magnitude is weakening along the propagation direction and the 

nulls are caused by interference of all the modes.  In the phase, the distortion is more 

apparent since the spatial sampling resolution is approaching the Nyquist limit for 

aliasing.  With finer sampling, the phase plot should indicate the presence of cylindrical 
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wavefronts with a wavelength approximately 0.6", propagating from the phase center to 

the left of the scan area. 
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Figure 86: Measured Near-Field Scans at 18 GHz 

 

S-Parameters (Test Points 2-5) 

S-parameters were measured from the left monopole to the top probe and from the 

left monopole to the right monopole.  Each set of S-parameters was measured with the 

monopoles at the short focal lengths and then at the long focal lengths.  The frequency 

resolution was 20 MHz from 2-18 GHz (801 points). 

Figure 87 through Figure 94 show these measurements for magnitude and phase.  

Figure 95 through Figure 98 compares the measurements to simulations.  A basic 

percent-error plot is shown in Figure 99 through Figure 102 for these comparisons.  The 

percent-error plots follow the traditional  
 

 % 100 Theoretical MeasuredError
Theoretical


  (1.27) 
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where the theoretical solution comes from CST, but this error analysis will be of limited 

validity since there are no rolled edges in the simulation. 

 Qualitatively, for these left-to-top magnitude plots, there is general agreement 

between S11 and S22 for the monopole at both the short and long focal lengths.  In each 

plot, S11 (top probe) reveals a higher-frequency harmonic at frequencies above 10 GHz 

for the short focal length and above 12 GHz for the long focal length whereas S22 (left 

monopole) does not.  Also, at the nulls, S22 tends to be deeper than S11 and S22 exhibits 

a shift to lower frequencies beyond 10 GHz, relative to S11.  Finally, S11 exhibits a noise 

pattern around 5 GHz whereas S22 does not. 

Generally speaking, each reflection response contains six peaks corresponding to 

the six cut-off frequencies of the PPWG (approximately every 2.95 GHz) and five nulls 

corresponding to frequency increments of approximately 3.08 GHz.  These null 

increments are assumed to be due to the height of the monopole (average height was 

1.916") which corresponds to a half-wavelength of 3.08 GHz.   

The higher-frequency harmonic and the 5 GHz noise pattern in the top probe may 

be due to poor connections along the cabling.  Physically, it was difficult to access the 

cabling for the top probe, so it is possible that connections were not fully tightened.  

Tightening, calibration and measurement should be re-accomplished to verify this as a 

source of error.  
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Figure 87: Measured Left-to-Top S-Parameters (Mag.) (short focal) 
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Figure 88: Measured Left-to-Top S-Parameters (Phase) (short focal) 
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Figure 89: Measured Left-to-Top S-Parameters (Mag.) (long focal) 
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Figure 90: Measured Left-to-Top S-Parameters (Phase) (long focal) 
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The depth and shift of the S22 nulls relative to the S11 nulls are assumed to be 

due to the position of the left monopole relative to the position of the top probe.  The top 

probe was centered within the PPWG whereas the monopole was off-center at the short 

focal length, then at the long focal length.  The deeper nulls in S22 are assumed to be due 

to more destructive interference caused by diffraction at the rolled edges.  Based on 

proximity to the rolled edges alone, S11, buried deeper in the PPWG, would experience 

less destructive interference.  The shift of the S22 nulls (consistently about -0.2 GHz after 

10 GHz) can be most likely attributed to the difference in exact length of the left 

monopole relative to the exact length of the top probe.  For example, a height increase of 

the left monopole of 0.02" would result in a shift of the nulls by -0.16 GHz.  However, 

attributing this shift to antenna height cannot be verified for certain unless the frequency 

resolution of the measurements is adjusted below 20 MHz.  It has not been determined 

why the shift occurs after 10 GHz. 

Qualitatively, for these left-to-top magnitude plots, there is general agreement 

between S12 and S21 for the monopole at both short and long focal lengths.  In each plot, 

S12 (signal received in top probe from left monopole) reveals a higher-frequency 

harmonic at all frequencies whereas S21 does not.  Both S12 and S21 exhibit a similar 

noise pattern around 5 GHz.  Generally speaking, each transmission response should be 

in very close agreement due to reciprocity along the transmission path. 

All sets of left-to-top phase plots are in general agreement and they each reveal 

the same issues found in the magnitude plots where the nulls of the magnitude plots 

correspond to either a swing or a discontinuity in the trend of the phase plots.  For both of 

these test points, S22 (left) tends to occur about 15 degrees later in phase than S11 (top) 
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after about 6 GHz.  Why this delay occurs has not yet been determined, but it can be 

assumed that the reflection path of the left monopole is slightly longer than the reflection 

path of the top probe. 
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Figure 91: Measured Left-to-Right S-Parameters (Mag.) (short focal) 

 

Qualitatively, for these left-to-right magnitude plots, there is general agreement 

between S11 (left) and S22 (right) for the monopoles at both short and long focal lengths.  

At the nulls, S11 tends to be deeper than S22 for the short focal length (except for the 

null near 14 GHz) and S22 tends to be deeper than S11 for the long focal length.  There is 

no general shifting of these S-parameters relative to each other as previously discussed.  

Finally, the noise pattern and higher-frequency harmonics exhibited by the left-to-top 

reflection responses are not present.  The noise and harmonics seem to be characteristic 

of the top probe only.   
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Figure 92: Measured Left-to-Right S-Parameters (Phase) (short focal) 
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Figure 93: Measured Left-to-Right S-Parameters (Mag.) (long focal) 
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Figure 94: Measured Left-to-Right S-Parameters (Phase) (long focal) 

 

The depth of the S11 nulls relative to the depth of the S22 nulls are again assumed 

to be due to the position of the left monopole relative to the position of the right 

monopole.  Each monopole was in the mirror-image position of the other, so ideally, S11 

and S22 should be identical.  The exact depth and position of the nulls in each are 

assumed to be due to the combined effects of the exact features of the monopole, the 

aluminum surface, the painted surface, the rolled surface, the surrounding chamber, etc. 

as seen by the left or right monopole at the short or long focal position. 

Qualitatively, for these left-to-right magnitude plots, there is general agreement 

between S12 and S21 for the monopoles at both short and long focal lengths.  Again, 

generally speaking, each transmission response should be in very close agreement due to 

reciprocity along the transmission path. 
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All sets of left-to-right phase plots are in general agreement and they each reveal 

the same issues found in the magnitude plots.  Again, the nulls of the magnitude plots 

correspond to either a swing or a discontinuity in the trend of the phase plots.  For the 

short focal length, S11 (left) tends to occur about 15 degrees later in phase than S22 

(right), just as S22 (left) was delayed relative to S11 (top) in the left-to-top measurement.  

However, in this case, the delay is apparent as low as 4 GHz rather than 6 GHz.  For the 

long focal length, the only relative phase delays are near the swings, whereas in the left-

to-top measurement, S22 (left) was delayed relative to S11 (top) throughout the plot after 

6 GHz.  Why these delays occur has not yet been determined, but it can be assumed that 

the reflection path of the left monopole is slightly longer than the reflection path of the 

right monopole when they are both at the short focal length.  When they are both at the 

long focal length, it can be assumed that the two reflection paths are closer to the same 

length. 

In comparing measured S-parameters to simulated S-parameters, only 0-10 GHz 

can be reviewed.  Qualitatively, there is general agreement between each measured and 

simulated S11 and each measured and simulated S22.  The main difference is that in the 

peaks of the reflection responses, the measurements seem to shift to higher frequencies 

relative to the simulations.  The same shift is apparent in the nulls as well.  Also, the 

magnitudes of the peaks of the simulation are noticeably decreasing whereas those in the 

measurements are decreasing much more gradually. 
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Figure 95: Measured vs. Simulated Left-to-Right Reflection (short focal) 
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Figure 96: Measured vs. Simulated Left-to-Right Transmission (short focal) 
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Figure 97: Measured vs. Simulated Left-to-Right Reflection (long focal) 
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Figure 98: Measured vs. Simulated Left-to-Right Transmission (long focal) 
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For each cut-off frequency of the PPWG, a tag was placed in each plot to measure 

the position of the peaks relative to the cut-off frequency.  Generally speaking, the peaks 

of the simulations are always fixed relative to the cut-off frequencies, so it is apparent 

that the peaks of the measurements are shifting away from the theoretical cut-off 

frequencies.  The degree of each shift can be used to make assumptions about the spacing 

between the PPWG plates.  For example, for a 2" PPWG, the third cutoff frequency is 

8.852 GHz, but if the corresponding peak of the measured S11 has shifted by 

approximately 0.2 GHz, it can be said that the spacing between the plates at some 

point(s) is not exactly 2" but 1.956".  The same procedure can be followed for all cut-off 

frequencies to determine the variation in the plate spacing as seen by the monopole at the 

left or right side and at the short or long focal point.       

The shifting in the nulls can be assumed to be caused by the varying heights of the 

monopoles as previously discussed.  However, in these measurements, both the shifting 

peaks and shifting nulls should be re-evaluated with a frequency sampling that is finer 

than 20 MHz.  It is unknown whether frequency shifting is a general combination of 

monopole heights and PPWG spacing or if it is due to strictly one parameter or the other. 

The degree of decreasing magnitudes in the simulations relative to the 

measurements is assumed to be due to the lack of rolled edges in the simulation.  With 

more interference due to stronger diffraction effects, it can be assumed that magnitudes in 

the simulation will decrease more quickly than magnitudes in the measurement.  It has 

not been determined why the fourth, fifth and sixth peak of the measurements are 

flattened. 
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Qualitatively, there is less general agreement between each measured and 

simulated S12 and S21 than there was for the reflection responses.  The main difference 

for each focal length is that the simulated transmission response has more peaks and nulls 

than the measured, but each follows the same trend.  It is assumed that the lack of rolled 

edges in the simulation caused this effect.    

In these basic percent-error plots, each measurement was evaluated with respect 

to each simulation up to 10 GHz.  The percent-error for the reflection responses follow 

the same near-linear trend with error increasing from around 2 GHz (about 5%) to 

repeated maximums (about 50%-60%) at the positions of the magnitude nulls.  The 

percent-error plots for the transmission responses follow the same general trend with the 

highest error at the positions of the nulls.  As stated previously, these percent-error plots 

are of limited validity since the simulation did not have rolled edges.    
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Figure 99: Left-to-Right Reflection Error (short focal) 
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Figure 100: Left-to-Right Transmission Error (short focal) 
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Figure 101: Left-to-Right Reflection Error (long focal) 
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Figure 102: Left-to-Right Transmission Error (long focal) 

 

To conclude the basic analysis for the empty PPWG, the highlighted measurement 

phenomena were 1) attenuated cylindrical wavefronts of the appropriate wavelength 

crossing over the scan area from a common phase center; 2) visibility of higher-order 

mode effects (nulls) throughout the scan area; 3) effects of spatial under-sampling; 4) 

general agreement between S11 and S22 measurements; 5) general agreement between 

S12 and S21 measurements; 6) general agreement between measurements and 

simulations despite an incomplete simulation model; 7) higher-frequency harmonics and 

noise presumably due to the top probe; 8) relative depth of nulls in each reflection 

response; 9) consistency in position or relative shift of nulls in each reflection response; 

10) peaks of each reflection response shifted from the cut-off frequencies; 11) nulls of 

each reflection response at frequency increments related to the monopole height; 12) 
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effects of frequency under-sampling; 13) phase delays between ports in reflection 

responses.   

It was assumed throughout the analysis that some physical component or some 

combination of components in the empty PPWG was accountable for each phenomenon.  

However, this assumed accountability is not a thorough enough accounting to be 

conclusive about the performance of the system altogether.  The assumptions carry only 

so far as to create a baseline of phenomena that can be expected when performing 

measurements with the lenses and targets.  That stated, the aforementioned phenomena 

will be excluded from the observations and analyses of the remaining tests and new 

phenomena specific to the lenses and targets will be highlighted.  

 

Small Lenses in PPWG 

The simulation model for the PPWG with small lenses is shown in Figure 103.  

The magnitude and phase distributions throughout the waveguide, as excited by the left 

monopole, can be arbitrarily visualized in Figure 104. 

 

Near-Field Scans (Test Points 6-8) 

The near-field scans were conducted over the center of the bottom plate, between 

the lenses, in an area of 14.25" x 14.25" with a spatial resolution of 0.25" (3,364 points).  

The frequency resolution was 20 MHz from 2-18 GHz (801 points).   

Figure 105, Figure 106, and Figure 107 shows the measured and simulated scans 

for 2 GHz, 6 GHz and 10 GHz respectively.  Figure 108 shows the measured scan for 18 

GHz.  Again, the nature of these measured patterns is due to the integration of the x- y- 



 

142 

 

and z-components of the electric fields over the probe's length.  For true comparison, the 

simulated fields should be integrated over the 2" gap.  However, for simplicity, a single 

planar cut, corresponding to the tip of the probe, using only the y-component of the 

electric fields, was taken from the simulated data and used for a qualitative comparison.  

 

 

Figure 103: PPWG Model with Small Lenses 

 

 

Figure 104: PPWG with Small Lenses with Magnitude and Phase Distributions 
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Figure 105: Measured vs. Simulated Near-Field Scans at 2 GHz 

 

For the 2 GHz fields, there is not much difference between either the measured or 

simulated magnitude and phase plots.  Qualitatively, the measured and simulated scans 

are in agreement except for an apparent 90 degree shift in phase.  The reason for this shift 

went undetermined.  The differences in magnitude are assumed to be due to the lack of 

integrating all components of the simulated fields.  In the magnitude plots, the general 

shape of the beam is consistent having a beam radius of approximately 2.6" at an offset of 

approximately 4" from the geometric focus.  The normalized taper over the minimum 

target radius of 3.5" at this position in the beam is approximately -15 dB.  The dark lobes 

in the beam are assumed to be caused by a standing wave between the lenses.  In the 
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phase plots, the general shape of the wavefronts are consistent with inverted cylindrical 

wavefronts converging to, then diverging from planar wavefronts at the beamwaist.  The 

excess ripple in the simulated phase plot is still assumed to be due to the lack of rolled 

edges in the simulation.   
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Figure 106: Measured vs. Simulated Near-Field Scans at 6 GHz 

 

For the 6 GHz fields, there is not much difference between either the measured or 

simulated magnitude and phase plots.  Qualitatively, the measured and simulated scans 

are in excellent agreement except for an apparent 90 degree shift in phase.  The 

differences are assumed to be due to the lack of integrating all components of the 

simulated fields, but it is also assumed that the difference is in part due to the presence of 
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higher-order modes however unapparent.  In the magnitude plots, the general shape of the 

beam is consistent having a beam radius of approximately 1" - 1.5" at an offset of 

approximately 4" from the geometric focus.  The normalized taper over the minimum 

target radius of 3.5" at this position in the beam is approximately -30 dB.  The dark lobes 

in the beam are assumed to be caused by a standing wave between the lenses.  In the 

phase plots, the general shape of the wavefronts are consistent with inverted cylindrical 

wavefronts converging to, then diverging from planar wavefronts at the beamwaist. 
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Figure 107: Measured vs. Simulated Near-Field Scans at 10 GHz 

 

For the 10 GHz fields, there is not much difference between either the measured 

or simulated magnitude and phase plots.  Qualitatively, the measured and simulated scans 
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are in agreement.  Due to spatial sampling distortion, it is not apparent if there is a 90 

degree phase shift in these plots as there was previously.  Overall, the differences are 

assumed to be due to the lack of integrating all components of the simulated fields and 

due to the presence of higher-order modes.  In the magnitude plots, the general shape of 

the beam is consistent having a beam radius of approximately 1" at an offset of 

approximately 6" from the geometric focus.  The normalized taper over the minimum 

target radius of 3.5" at this position in the beam is approximately -40 dB.  In the phase 

plots, the general shape of the wavefronts are consistent, but distortion makes it difficult 

to visualize.  
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Figure 108: Measured Near-Field Scans at 18 GHz 

 

For the 18 GHz fields, there was no simulation to make comparisons with.  

Qualitatively, the behavior shown in the magnitude plot agrees with the previous plots for 

lower frequencies.  The general shape of the beam is consistent having a beam radius of 

approximately 0.5" - 1" at an offset of approximately 6.5" from the geometric focus.  The 

normalized taper over the minimum target radius of 3.5" at this position in the beam is 
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approximately -40 dB.  In the phase plots, the distortion is more apparent than in previous 

plots since the spatial sampling resolution is approaching the Nyquist limit for aliasing.  

With finer sampling, the phase plot should indicate the appropriate phase patterns for 18 

GHz.   

 

Figure 109 shows the measured difference between performing a scan with an air 

gap between the lenses and the top plate (approximately 0.0625") and performing a scan 

without an air gap.  This is shown for 2 GHz, 6 GHz, 10 GHz and 18 GHz respectively.  

This air-gap scan was performed to determine if there were any electrical vs. mechanical 

trade-offs in the scanning function.  At its worst, the mechanical aspects of the scanning 

function involved the top plate heavily dragging itself over the lenses.  If a trade-off were 

necessary, it would be the mechanical preservation of the lenses at the expense of overall 

electrical performance.   

In each of these plots, the color axis ranges from the minimum difference to the 

maximum difference created by the air gap.  It is apparent that operating the scanning 

function with an 0.0625" air gap above the lenses produces greater variation in both 

magnitude and phase as the frequency rises.  The magnitude profile for 2 GHz is hardly 

altered except in the areas near the face of the receiving lens and the phase profile 

contains few, sharp unexplainable spikes.  The magnitude and phase profiles for 6 GHz is 

more apparently changed with variations throughout as high as +/- 20 dB and +/- 200deg.  

The changes in the magnitude and phase profiles for 10 GHz and 18 GHz are more 

apparent still with variations throughout as high as +/- 40 dB and +/- 200deg.   
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Figure 109: Difference Plot of Scan with Air Gap vs. No Air Gap at 2, 6, 10, 18 GHz 
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All of these variations are assumed to be caused by higher-frequency diffraction 

from off the upper edges of the lenses and by the new mode structure caused by 

introducing the air gap.  Due to the extent of these variations and due to the degree of 

lens wear exhibited thus far, it does not seem necessary that the scan should be performed 

with an air gap. 

The final scanning test point is a measurement-only first-look at the BANTAM 2-

D FBS's near-field scanning capabilities for a metamaterial.  The measurement was 

simulated in CST, but due to an untimely CST license expiration, the simulated results 

were not available for comparison.   

As described early on in this document, true near-field scanning of a metamaterial 

will explore regions of the metamaterial at distances up to one wavelength away from its 

surface.  For 2-18 GHz, this means scanning up to 0.656" - 5.9" from the surface.  For the 

metameterial D-rings, the scan was limited to 0.2" from the incident surface (the side 

with copper traces) in an area of 6" x 0.2" with a 0.02" spatial resolution (3,311 points).  

Favorably, this scan was performed deep into the near-field region, but it should be noted 

that the scan was limited in both dimensions due to the time required to collect a 

meaningful number of data points.  The spatial resolution was chosen to be half the 

minimum D-ring dimension, or half the trace width of 0.04".  Equivalent measurements 

were not taken for the opposite D-ring surface, i.e. the transmission side. 

The D-ring sample was measured at the position of the geometric focus of the left 

lens, or, with the front face halfway between the lenses.  As will be reviewed in S-

parameter measurements, the D-rings exhibit a sharp resonance at 2 GHz, so this was the 

frequency chosen for the scan.  As shown in Figure 110, in response to the beam, the D-
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rings seem to re-radiate energy back into the beam with the given pattern.  In the 

magnitude plot, each three-lobed structure represents the spatial presence of a 2" wide D-

ring.  In the phase plot, the D-rings have created sharply contrasting phase regions 

distributed orthogonally to the phase regions of the beam.   
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Figure 110: D-Ring Metamaterial Model and First-Look Scan 

   

S-Parameters (Test Points 9-13) 

S-parameters were measured from the left monopole to the top probe (a single 

measurement) and from the left monopole to the right monopole for each target.  Each set 
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of S-parameters was measured with the monopole at the short focal length.  The 

frequency resolution was 20 MHz from 2-18 GHz (801 points).   

Figure 111 and Figure 112 shows these measurements for the left-to-top 

magnitude and phase.  Figure 113 and Figure 114 shows these measurements for the left-

to-right THRU magnitude and phase.  Figure 115 and Figure 116 compares the THRU 

measurements to simulations.  A basic percent-error plot for THRU is shown in Figure 

117 and Figure 118 for these comparisons. 

Qualitatively, for these left-to-top magnitude plots, there is general agreement 

between S11 and S22.  Compared to the baseline of the empty PPWG, the only difference 

made by the presence of the lenses is that the deep null at 14 GHz has been reduced.  

There are no indicators as to why the 14 GHz null was affected.   

There is also general agreement between S12 and S21.  When compared to the 

empty PPWG, the transmission responses with the lenses are not only unique but 5 dB 

higher in magnitude.  The magnitude increase is assumed to be due to the focusing action 

of the lenses.   

The left-to-top phase plots are in general agreement and as compared to those of 

the empty PPWG, there is no discernable change aside from the softened null at 14 GHz. 
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Figure 111: Measured Left-to-Top S-Parameters (Mag.) 
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Figure 112: Measured Left-to-Top S-Parameters (Phase) 
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Qualitatively, for the left-to-right magnitude plots, there is general agreement 

between S11 and S22.  Compared to the baseline of the empty PPWG, the main 

difference is in the depth of the nulls.  The presence of the small lenses seems to have 

softened the effects of prior interference, but it is unknown how this has occurred. 

There is also general agreement between S12 and S21.  When compared to the 

empty PPWG, the transmission responses with the lenses are not only unique but 10 dB 

higher in magnitude.  The magnitude increase is assumed to be due to the focusing action 

of the lenses.   

 The left-to-right phase plots are in general agreement and as compared to those of 

the empty PPWG, there is no discernable change aside from the softened nulls 

throughout, but especially at 14 GHz. 
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Figure 113: Measured Left-to-Right S-Parameters (THRU) (Mag.) 
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Figure 114: Measured Left-to-Right S-Parameters (THRU) (Phase) 

 

In comparing measured S-parameters to simulated S-parameters, only 0-10 GHz 

can be reviewed.  Qualitatively, there is general agreement between the measured and 

simulated S11 and S22.  As was the case for the empty PPWG, the main difference with 

the lenses is still that the peaks and nulls of the reflection responses are shifted to higher 

frequencies relative to the simulations.  It is not immediately discernable if there is a 

difference in the simulated reflection responses with or without the lenses.  

There is very close agreement between the measured and simulated S12 and S21 

with the small lenses.  The only real difference is that the measured and simulated 

responses diverge from 9-10 GHz.  The reason for this is unknown.  The very close 

agreement between the measured and simulated transmission responses with the lenses is 

in sharp contrast to the less general agreement between the measured and simulated 
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transmission responses of the empty PPWG.  It was assumed previously that the lack of 

rolled edges in the empty PPWG simulation led to less agreement in those transmission 

responses.  Based on the very close agreement just observed with the lenses, it is assumed 

that the focusing action of the lenses has made the diffraction effects of the empty PPWG 

simulation negligible. 
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Figure 115: Measured vs. Simulated Left-to-Right Reflection (THRU) 
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Figure 116: Measured vs. Simulated Left-to-Right Transmission (THRU) 

 

The percent-error for the reflection responses follow the previous near-linear 

trends with error increasing from around 2 GHz (about 5%) to repeated maximums 

(about 50%-60%) at the positions of the magnitude nulls.  The percent-error plots for the 

transmission responses follow the same general trend with the error peaks loosely 

corresponding to the positions of the nulls.  The greatest transmission error is where the 

measured and simulated signals diverge from 9-10 GHz.  As compared to the empty 

PPWG, the reflection response errors are similar, but with the lenses, there appears to be 

more point-to-point fluctuation in the error.  As compared to the empty PPWG, the 

transmission response errors are also similar, but with the lenses, there appears to be less 

error overall as the measured and simulated responses are more closely aligned. 
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Figure 117: Left-to-Right Reflection Error (THRU) 
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Figure 118: Left-to-Right Transmission Error (THRU) 
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For the SHORT measurement, Figure 119 and Figure 120 show the S-parameter 

magnitude and phase.  Figure 121 and Figure 122 compares the measurements to 

simulations.  A basic percent-error plot is shown in Figure 123 and Figure 124 for these 

comparisons. 

Qualitatively, for these left-to-right magnitude plots, there is general agreement 

between S11 and S22.  The nulls have deepened relative to the THRU measurement and a 

higher-frequency harmonic has been introduced throughout each response.  

There is general agreement between S12 and S21 as well.  Relative to the THRU 

measurement, the initial magnitude for the SHORT measurement is down 20 dB and 

there is a higher-frequency harmonic. 

In the phase plots, the SHORT reflection responses exhibit sharpened 

discontinuities at the magnitude nulls and one sharp discontinuity at 14 GHz. 
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Figure 119: Measured Left-to-Right S-Parameters (SHORT) (Mag.) 
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Figure 120: Measured Left-to-Right S-Parameters (SHORT) (Phase) 

   

There is general agreement between the measured and simulated S11 and S22 for 

the SHORT measurement. 

There is little agreement between the measured and simulated S12 and S21 for the 

SHORT measurement.  The measured response is consistently 30 dB higher than the 

simulated response and the forms of each response are not similar.  It is unknown why 

this has occurred. 

The percent-error plots for the SHORT reflection responses follow the same near-

linear trends as before except for the higher-frequency harmonics and the occasional 

spike.  The percent-error plots for the transmission responses do not follow any of the 

trends presented thus far. 
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Figure 121: Measured vs. Simulated Left-to-Right Reflection (SHORT) 
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Figure 122: Measured vs. Simulated Left-to-Right Transmission (SHORT) 

 



 

161 

 

2 3 4 5 6 7 8 9 10
0

50

100

Frequency (GHz)

%
-E

rr
o
r

 

 
S11 Error

2 3 4 5 6 7 8 9 10
0

50

100

Frequency (GHz)

%
-E

rr
o
r

 

 
S22 Error

 

Figure 123: Left-to-Right Reflection Error (SHORT) 
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Figure 124: Left-to-Right Transmission Error (SHORT) 
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  For the acrylic measurement, Figure 125 and Figure 126 show the S-parameter 

magnitude and phase.  Figure 127 and Figure 128 compares the measurements to 

simulations.  A basic percent-error plot is shown in Figure 129 and Figure 130 for these 

comparisons.  In the CST simulations, the permittivity of acrylic was set 3.6 by default. 

Qualitatively, for these left-to-right magnitude plots, there is general agreement 

between S11 and S22.  The main difference between the acrylic and the THRU 

measurement is that the peaks of the acrylic measurement are higher, and that the higher-

frequency nulls have deepened.   

There is general agreement between S12 and S21 for acrylic.  Relative to the 

THRU measurement, the initial magnitude for the acrylic measurement has not changed.   

In the phase plots, the acrylic reflection responses behave similarly to the THRU 

reflection responses aside from the discontinuity at 14 GHz. 
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Figure 125: Measured Left-to-Right S-Parameters (Acrylic) (Mag.) 
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Figure 126: Measured Left-to-Right S-Parameters (Acrylic) (Phase) 
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Figure 127: Measured vs. Simulated Left-to-Right Reflection (Acrylic) 
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Figure 128: Measured vs. Simulated Left-to-Right Transmission (Acrylic) 

 

There is general agreement between the measured and simulated S11 and S22 for 

the acrylic measurement.  There is also general agreement between the measured and 

simulated S12 and S21.  For S12 and S21, the main difference is in the nulls that occur 

near 7.5 GHz and 8.5 GHz.  The difference is assumed to be related to either the CST 

permittivity value of 3.6 as compared to the actual, unknown permittivity of the acrylic 

target, or the lack of precision in the construction and placement of the target. 

These percent-error plots for the acrylic reflection responses follow the same 

near-linear trend as seen in most of the measurement and simulation comparisons.  The 

percent-error plots for the transmission responses could be generally described as 

following the trends for the THRU measurement but without the large error at 9-10 GHz. 
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Figure 129: Left-to-Right Reflection Error (Acrylic) 
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Figure 130: Left-to-Right Transmission Error (Acrylic) 
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For the D-ring measurement, Figure 131 and Figure 132 shows the S-parameter 

magnitude and phase.  Figure 133 and Figure 134 compares the measurements to 

simulation.  A basic percent-error plot is shown in Figure 135 and Figure 136 for these 

comparisons. 

Qualitatively, for these left-to-right magnitude plots, there is general agreement 

between S11 and S22.  The main difference between the D-Ring and the THRU 

measurement is that the higher-frequency nulls have deepened.  

There is general agreement between S12 and S21 for the D-Rings.  Relative to the 

THRU measurement, the initial magnitude for the D-ring measurement has dropped by 

nearly 20 dB, but has resumed to THRU magnitude levels after a narrow resonance band. 

In the phase plots, the D-ring reflection responses behave similarly to the THRU 

reflection responses, varying only in sharpness at the positions of the magnitude nulls. 
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Figure 131: Measured Left-to-Right S-Parameters (D-Ring) (Mag.) 
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Figure 132: Measured Left-to-Right S-Parameters (D-Ring) (Phase) 
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Figure 133: Measured vs. Simulated Left-to-Right Reflection (D-Ring) 
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Figure 134: Measured vs. Simulated Left-to-Right Transmission (D-Ring) 

 

There is general agreement between the measured and simulated S11 and S22 for 

the D-ring measurement.  There is also general agreement between the measured and 

simulated S12 and S21.  For S12 and S21, the main difference is in the nulls that occur 

near 7.5 GHz and 8.5 GHz, just as in the acrylic measurement.  The cause of this 

difference is unknown. 

These percent-error plots for the D-ring reflection responses follow the same 

near-linear trend as seen in most of the measurement and simulation comparisons.  The 

percent-error plots for the transmission responses could be generally described as 

following the trends for the THRU and acrylic measurements. 
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Figure 135: Left-to-Right Reflection Error (D-Ring) 
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Figure 136: Left-to-Right Transmission Error (D-Ring) 
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Large Lenses in PPWG 

The simulation model for the PPWG with large lenses is shown in Figure 137.  

The magnitude and phase distributions throughout the waveguide, as excited by the left 

monopole, can be arbitrarily visualized in Figure 138. 

 

Figure 137: PPWG Model with Large Lenses 

 

Figure 138: PPWG with Large Lenses with Magnitude and Phase Distributions 
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Near-Field Scans 

There are no near-field scans with the large lenses. 

 

S-Parameters (Test Points 14-17) 

S-parameters were measured from the left monopole to the right monopole (each 

at the long focal length) for the THRU configuration and for each target.     

For the THRU configuration, Figure 139 and Figure 140 show the magnitude and 

phase measurements.  Figure 141 and Figure 142 compares the measurements to 

simulations.  A basic percent-error plot is shown in Figure 143 and Figure 144 for these 

comparisons. 
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Figure 139: Measured Left-to-Right S-Parameters (THRU) (Mag.) 
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Figure 140: Measured Left-to-Right S-Parameters (THRU) (Phase) 

 

Qualitatively, for these left-to-right magnitude plots, there is general agreement 

between S11 and S22.  Compared to the baseline of the empty PPWG, the main 

difference is in the depth of the nulls.  The presence of the large lenses seems to have 

softened the effects of prior interference, but it is unknown how this has occurred. 

There is also general agreement between S12 and S21.  When compared to the 

empty PPWG, the transmission responses with the lenses are not only unique but 10 dB 

higher in magnitude.  The magnitude increase is assumed to be due to the focusing action 

of the lenses.   

The left-to-right phase plots are in general agreement and as compared to those of 

the empty PPWG, there is no discernable change aside from the softened nulls 

throughout, especially at 14 GHz. 
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Figure 141: Measured vs. Simulated Left-to-Right Reflection (THRU) 
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Figure 142: Measured vs. Simulated Left-to-Right Transmission (THRU) 
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In comparing measured S-parameters to simulated S-parameters, only 0-10 GHz 

can be reviewed.  Qualitatively, there is general agreement between the measured and 

simulated S11 and S22.  As was the case for the empty PPWG, the main difference with 

the lenses is still that the peaks and nulls of the reflection responses are shifted to higher 

frequencies relative to the simulations.  It is not immediately discernable if there is a 

difference in the simulated reflection responses with or without the lenses.   

There is very close agreement between the measured and simulated S12 and S21 

with the large lenses.  The very close agreement between the measured and simulated 

transmission responses with the large lenses is in sharp contrast to the less general 

agreement between the measured and simulated transmission responses of the empty 

PPWG.  It was assumed previously that the lack of rolled edges in the empty PPWG 

simulation led to less agreement in those transmission responses.  Based on the very close 

agreement just observed with the large lenses, it is assumed that the focusing action of the 

lenses has made the diffraction effects of the empty PPWG simulation negligible. 

In these basic percent-error plots, the percent-error for the reflection responses 

follow the previous near-linear trends with error increasing from around 2 GHz (about 

5%) to repeated maximums (about 50%-60%) at the positions of the magnitude nulls.  

The percent-error plots for the transmission responses follow the same general trend with 

the error peaks loosely corresponding to the positions of the nulls.  As compared to the 

empty PPWG, the reflection response errors are similar, but with the lenses, there appears 

to be more point-to-point fluctuation in the error.  As compared to the empty PPWG, the 

transmission response errors are also similar, but with the lenses, there appears to be less 

error overall as the measured and simulated responses are more closely aligned. 
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Figure 143: Left-to-Right Reflection Error (THRU) 
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Figure 144: Left-to-Right Transmission Error (THRU) 
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For the SHORT measurement, Figure 145 and Figure 146 show the S-parameter 

magnitude and phase.  Due to the untimely expiration of the CST license, these 

measurements could not be compared to simulations. 

Qualitatively, for these left-to-right magnitude plots, there is very close agreement 

between S11 and S22.  The nulls have deepened relative to the THRU measurement and a 

higher-frequency harmonic has been introduced throughout each response.  

There is general agreement between S12 and S21 as well.  Relative to the THRU 

measurement, the initial magnitude for the SHORT measurement is down 25 dB and 

there is a higher-frequency harmonic.   

In the phase plots, the SHORT reflection responses exhibit sharpened 

discontinuities at the positions of the magnitude nulls and one very sharp discontinuity at 

14 GHz. 
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Figure 145: Measured Left-to-Right S-Parameters (SHORT) (Mag.) 
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Figure 146: Measured Left-to-Right S-Parameters (SHORT) (Phase) 

 

For the acrylic measurement, Figure 147 and Figure 148 show the S-parameter 

magnitude and phase.  Due to the untimely expiration of the CST license, these 

measurements could not be compared to simulations either.   

Qualitatively, for these left-to-right magnitude plots, there is general agreement 

between S11 and S22.  The main difference between the acrylic and the THRU 

measurement is that the peaks of the acrylic measurement are higher, and that the higher-

frequency nulls have deepened.  

There is general agreement between S12 and S21 for acrylic.  Relative to the 

THRU measurement, the initial magnitude for the acrylic measurement has not changed.   

In the phase plots, the acrylic reflection responses behave similarly to the THRU 

reflection responses aside from the lack of S11 discontinuities between 16-18 GHz. 
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Figure 147: Measured Left-to-Right S-Parameters (Acrylic) (Mag.) 
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Figure 148: Measured Left-to-Right S-Parameters (Acrylic) (Phase) 
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For the D-ring measurement, Figure 149 and Figure 150 show the S-parameter 

magnitude and phase.  Due to the untimely expiration of the CST license, these 

measurements could not be compared to simulations. 

Qualitatively, for these left-to-right magnitude plots, there is general agreement 

between S11 and S22.  The main difference between the D-Ring and the THRU 

measurement is that the higher-frequency nulls have deepened, especially at 14 GHz.  

There is general agreement between S12 and S21 for the D-Rings.  Relative to the 

THRU measurement, the initial magnitude for the D-ring measurement has dropped by 

nearly 20 dB, but has resumed to THRU magnitude levels after a narrow resonance band.  

Relative to the measurements using the small lenses, the large lens D-ring transmission 

response contains additional nulls at 4.5 GHz, 7.5 GHz and 9 GHz. 

In the phase plots, the D-ring reflection responses behave similarly to the THRU 

reflection responses, varying only in sharpness at the positions of the magnitude nulls. 

To conclude the basic analysis for the lenses in the PPWG, the highlighted 

measurement phenomena were 1) standing-wave beam established between the small 

lenses; 2) inverted cylindrical wavefronts converging to, then diverging from planar 

wavefronts at the beamwaist of the small lenses; 3) definable beam radius and normalized 

taper relative to the beamwaist of the small lenses; 4) magnitude and phase variations 

with an air gap above the small lenses; 5) distributed fields in the near-field region of a 

metamaterial; 6) effects on S-parameter magnitudes with lenses present; 7) softening 

effects on magnitude nulls with lenses present; 8) general agreement between S11 and 

S22 and between S12 and S21 for all lens and target configurations; 9) general agreement 

between all measurements and simulations (except for the exception of the SHORT).  
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Figure 149: Measured Left-to-Right S-Parameters (D-Ring) (Mag.) 
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Figure 150: Measured Left-to-Right S-Parameters (D-Ring) (Phase) 
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V.  Conclusions and Recommendations 

Conclusions 

Conclusions from Measurement Results and Analysis 

The initial results and analysis presented throughout Chapter 4 have revealed that 

the BANTAM 2-D FBS is capable of yielding consistent measurements for both near-

field scans and S-parameters, using both small lenses and large lenses, for a small 

selection of targets.  The immediate intent of the analysis was to compare the 

performance of the newly-built system to an equivalent simulated system, and across 

these results, note the degree of agreement between the measurements and simulations.  

As it was pointed out in Chapter 4, the measurements were always (aside from one 

isolated case) in general agreement, if not very close agreement, with the simulations.   

Logically, the next step beyond this analysis would be to apply these results to the 

derivation of the constituent parameters for the acrylic target.  This next step has not been 

performed for this thesis, but all the necessary tools have been provided.  The THRU, 

SHORT and acrylic S-parameters may be used to derive permittivity and permeability for 

acrylic for both the measured and simulated systems using either the small or the large 

lenses. 

Likewise, the next logical step after deriving constituent parameters for a 

traditional radar-frequency material would be deriving [bulk] constituent parameters for a 

radar-frequency metamaterial (D-rings).  Again, this step is not performed, but the 
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necessary tools are made available.  Pairing the derived constituent parameters with the 

information found in the appropriate near-field scans should allow the basics of 

metamaterial taxonomy to begin.        

 

Conclusions on Technical and Philosophical Significance 

This thesis concludes with the understanding that use of the BANTAM 2-D FBS 

is far from being an accepted material measurement technique.  However, in hybridizing 

designs from three other accepted techniques, the BANTAM 2-D FBS has a considerable 

technical significance.  The primary significance is that it physically combines near-field 

measurement functions and focused-beam S-parameter measurement functions into a 

single apparatus.  In secondary significance, the system operates two styles of focused-

beams which can be used for targets of appreciable size over 2-18 GHz.  Having been 

successful in developing this apparatus, this thesis should also be successful in the stated 

goal of furthering the technical development of radar-frequency metamaterials.  It is 

anticipated that a patent will follow. 

Based on the technical success, and in justifying the importance of systematic 

measurement and characterization of metamaterials, this thesis should also be successful 

in achieving the stated goal of shaping metamaterial definitions through a reliable and 

repeatable method of taxonomy. 
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Recommendations for Action and Research 

Component Recommendations 

Monopole (Action) 

The monopole rods should be monitored for bending or replaced with a stiffer 

material.  The current rods are soft and flexible and are prone to bending when inserting 

them into the coaxial adaptor.  The coaxial adaptors should also be monitored or replaced 

due to their soft dielectric.  At times of inserting or removing the monopole rods, the 

dielectric of the coaxial adaptor was noticed to be gouged enough to allow the collar of 

the inner conductor to spread open.  The spreading results in a monopole that leans or a 

top probe that falls out. 

The monopoles should be re-cut to a standard length of 1.9”.  They were 

previously tuned by iterative trimming to allow passage of the top plate over them, but 

the final height was not standardized throughout.   

 

Monopole (Research) 

The original monopole height optimization was performed considering far-field 

radiation of a monopole on a single ground plane.  The optimization should be performed 

again to determine if there is a different optimum monopole height when introducing the 

top plate.  Also, the optimum monopole heights per frequency octave should be sought 

out to determine if it would be practical to stage measurements over frequency octaves 

rather than the full 2-18 GHZ.  If possible, radiation patterns should be used to estimate 

the relative strength of excitation for each of the PPWG modes. 
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Top Probe (Action) 

The cabling to the top probe should be inspected to see if it is loose at any 

connecting point.  There is one small length of cable attached to the coaxial adaptor in the 

top plate, but that small cable is joined to another long cable.  It is assumed that the long 

cable runs through the conduits of the translation rails and directly to the network 

analyzer.  It should be verified that this is the case.  If this is not the case, any additional 

connecting points will have to be checked for tightness.  Once the proper tightness is 

achieved in all the connecting points, the two-port network calibration must be run again 

before using the top probe for any measurements. 

 

Top Probe (Research) 

The design of the top plate allows for an open architecture with respect to 

installing various types of probes.  In anticipation of a more-permanent probe, the design 

of the top plate, the linear translation system, and the cabling system must be reviewed to 

determine the degree of installation compatibility.  Also, as was discussed in Chapter 1, 

any permanent probe should be characterized for its ability to take near-field 

measurements.  Characterization should also include corrective measures for probe-target 

interactions. 

 

Aluminum Sheets (Action) 

Prior to each use, the aluminum sheets should be swept clean and wiped with 

alcohol.  Routine cleaning will keep the surfaces free from small absorber debris and 



 

185 

 

conductive tape residue.  It is recommended that the sheets be stripped bare of all 

components prior to cleaning.  The painted surfaces should only be swept, but not 

cleaned with alcohol. 

 

Aluminum Sheets (Research) 

Fabrication techniques that result in precision sheet flatness should be researched.  

Also, fabrication techniques that warp sheet flatness should be researched and avoided.  

This recommendation is primarily directed at future PPWG designs. 

 

Rolled Edges (Action) 

The rolled edges, especially the front, should be continually monitored for 

scratching.  Though very durable, the paint may become roughened or scratched by tools, 

watches, belts, targets, lenses, etc.  The underside of the top plate near the tangents of the 

rolled edges should be monitored on both the front and back side for scratches made by 

the lenses or targets. 

 

Rolled Edges (Research) 

The rolled edges should be further characterized in CST simulations by evaluating 

the magnitude and phase distributions along a variety of evaluation lines.  These lines 

would include not only straight lines in the propagation direction, but diagonal lines 

leading through specific tangent points on the rolled edge and circular lines leading 

around the rolled edge.  This characterization could be performed on a small, square 

PPWG as presented in this document, or, time and simulation capabilities permitting, on 
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the actual size of the BANTAM PPWG.  The advantage of using the size of the actual 

PPWG would be the ability to characterize the rolled edges at the furthest reaches of the 

scan.    

 

Plate Frames (Action) 

Rubber safety caps should be installed on the ends of all the short legs of the 

80/20 plate frames.  The sharp aluminum edges are a nuisance at best and a hazard at 

worst to a person’s head when trying to maneuver tools and cables below the bottom 

plate.  The sharp edges are also hazardous to a person’s arm when trying to maneuver 

tools and cable above the top plate. 

 

Plate Frames (Research) 

At certain points along each rolled edge, the PVC pipes are fastened to the legs of 

the plate frames.  The legs extend approximately 3” beyond the fastening point and may 

provide a reflection surface for waves traveling around the pipe.  Experiments should be 

conducted to see how significantly reflections from these legs affect measurements.  

Measurements should be taken with the legs obscured by absorber and with the legs bare.  

The same experiment should be used to determine the effects of the large cavities formed 

by the rolled edges.  The cavities are the areas immediately above the top plate and 

immediately below the bottom plate where the plate frames are fastened to the short axis 

and the scissor lift respectively.    
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Fiberglass Filler (Action) 

The perimeter of the plates where the fiberglass filler was applied should be 

monitored for cracks.  The likeliest cracks would form in the light-weight filler in the 

mitered corners.  Cracks may form if the plates are put under enough twisting stress.  

Twisting stress can be avoided by sensibly operating the lift and translation axes and by 

not leaning on or otherwise unevenly loading the plates with weight.  Cracks can also be 

avoided by not dropping objects onto the plates.  

 

Paint (Action) 

The paint should be monitored for roughened surfaces, scratches and blackened, 

yellowed or whitened areas.  Blackened areas indicate that the metal in the paint has 

begun to oxidize.  Blackened areas already exist on the painted PVC surfaces due to the 

handling of unpainted PVC pipe with bare hands – skin oils were absorbed into the PVC 

and could not be cleaned out.  Blackened areas that are enlarging indicate that the top 

coat has become compromised and needs to be touched up.  Blackened areas degrade the 

appearance of the PPWG but they should not adversely affect its performance. 

Yellowed areas indicate that the paint has been removed from a region of 

aluminum.  The yellowing is due to the exposure of the zinc-chromate primer.  The 

primer is non-conductive and if it is exposed, it should be touched up.  Whitened areas 

indicate that paint has been removed from a region of PVC.    



 

188 

 

 

Paint (Research) 

Experiments should be conducted with the paint to determine a repeatable 

application process that achieves a consistent thickness and sheet resistance per coat.  The 

process should be used to characterize the paint and verify its specified performance.  

 

Scissor Lift (Action) 

In general, the scissor lift should be maintained and used in accordance with the 

product manual.  However, the RF cabling for the bottom plate is fed through the scissor 

lift so it should be monitored for consistent clearance, especially if the cabling has been 

moved.  The scissor lift should not be moved from its position on the BANTAM floor.   

The lift is capable of rising and lowering beyond what is apparent in the chamber.  

It is recommended that the lift be operated under constant observation and not allowed to 

travel to its design limits.  The design limits are well below the tips of the floor absorber 

and above the lowest point of the top plate.  It is also recommended that the foot pedal is 

operated by hand and stowed well removed from feet when idle.  

 

Scissor Lift (Research) 

Research should be conducted to determine if two lifts would be better suited for 

the PPWG than one.  A second lift, positioned perpendicularly to the first, should help 

stabilize the PPWG and prevent rocking or swaying as the scanning function is 

performed.  The advantages of a second lift should be weighed against the disadvantages 

of installing it and synchronizing it with the first lift. 
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Lenses (Action) 

The lenses should be stored in a dedicated case surrounded by protective padding.  

The lenses are somewhat soft and can be scratched easily by rings, watches, belts and 

tools.  Should significant scratches develop, the lenses should be re-polished.  The lenses 

should be taped to the aluminum for every measurement to prevent inadvertent 

movement.  Fresh tape should be applied every time the lenses are removed.  The lenses 

may require some prying to remove them from the aluminum.  The double-sided 

conductive tape can be removed from the lenses with warm water and a strong twisting 

action of a washcloth.      

 

Lenses (Research) 

The lens design spreadsheet should be used to look for other optimal lens designs.  

These designs should consider using thinner lenses and lenses made of a different 

material.  One practical example would combine both parameters by designing a lens 

from 0.25” acrylic.  Thin acrylic panels are readily available at Lowe’s and acrylic has an 

index of refraction near that of Rexolite.  The main advantage of designing a thin acrylic 

lens is that the PPWG can be brought to 0.25” spacing, eliminating all higher-order 

modes over 2-18 GHz.  A secondary advantage is that the thin acrylic lens could be 

fabricated directly in the microwave laboratory rather than at the AFIT Model & 

Fabrication Shop. 
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It is recommended further that the beam profiles of the original lenses should be 

verified and published from CST simulations.  Due to the untimely CST license 

expiration towards the end of this thesis, the simulated lens data could not be retrieved. 

 

Mode-Matching Mesas and Cones (Research) 

The concept of a mode-matching component should be fully researched for both a 

mesa and a cone structure.  The cone structure should offer more to the preservation of 

cylindrical wavefronts as radiated from a monopole than the mesa, but the cone offers 

more challenges in fabrication.  The research should include fabrication techniques as 

well as designs for frequency octave structures rather than designs for one broadband 

structure. 

 

Targets (Action) 

A precise, positionable target fixture is required almost immediately for 

successful material measurements.  This fixture must be designed and built for targets 

32” long, 2” tall and having a variety of thicknesses. 

 

System Recommendations 

Derive Constituent Parameters (Action) 

A program for deriving the constituent parameters of the acrylic target should be 

developed based on the S-parameter measurements provided. 



 

191 

 

 

Calibration (Action) 

Appropriate techniques for gating and windowing the signals of the BANTAM 2-

D FBS should be developed.  An isolation standard for the BANTAM PPWG should be 

fabricated and calibration using the standard should be performed similar to the GTRI 

system.  

  

Right-Side Characterization (Action) 

The right side of the BANTAM 2-D FBS system should be characterized as the 

left side has been.  Measurements should be taken using the right side and compared to 

those taken using the left side. 

 

Resolution (Research) 

Spatial and frequency resolution should be optimized with the time to run a scan. 

 

Transient Domain Characterization (Research) 

The BANTAM 2-D FBS should be viewed in the transient domain and 

characterized as appropriate. 

 

Hardware limit switches (Action) 

The horizontal limit switches should be repositioned to the front of the chamber 

for easy access.  Generally, the limits should be +/- 7.125” on both the long and short 
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axes.  A vertical limit switch and a mechanical stop should be installed above the top 

plate to prevent it from inadvertently rising too far. 

 

Simulations (Research) 

Research should be conducted to determine how to properly simulate the 

BANTAM 2-D FBS in its full configuration over its full frequency band.  This will 

require consultation with CST specialists at Sonnet Software. 

A program for integrating the x- , y- and z- electric field components from CST 

simulations should be developed in order to make proper comparisons with measured 

data. 

Simulations should be performed for the system with a small air gap introduced 

between the lenses and the top plate. 

The lenses should be simulated with the appropriate mode-matching structure and 

the beam profiles should be compared to those without the mode-matching structure. 

Field distributions in the near-field region of the metamaterial D-rings should be 

extracted from CST and compared to the measured data. 

 

Documentation (Action) 

The documents, specification sheets, drawings, etc. from the development of the 

BANTAM 2-D FBS should be compiled into a formal manual. 
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Camera System (Research) 

A camera system should be considered for viewing the scan progress.  An 

overhead camera within the chamber would be useful for monitoring the placement of 

lenses and targets.   

 

Return to Original BANTAM (Research) 

The procedures necessary to temporarily return the BANTAM 2-D FBS to the 

original BANTAM configuration for near-field antenna measurements should be 

researched.   

Software Module (Research) 

A software module similar to ALPINE should be developed in order to more 

easily process the BANTAM 2-D FBS measurement data. 
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$-Parameters and Near-Field Scan 

Frequency (GHz) 
Wavelength (in.) 

Parameters 

Propagat ion Constant (rad/in.) kO 
Focusing Factor (> n thresh, >• 10 obi) kOWO 
Desired BeamWaist Radius (in.) wO 
Desired Taper at Target Edge (dB) Tt 

Desired Target Radius (in.)(>= indicated value) rt 

Desired Taper at Lens Edge (dB) TL 

Lens Radius (in.) (<• 7.5 in.) rL 
Desired 1/e Radius at Lens Edge (in.) wL 
Refractive Index 

Collimating lens 
Focal Length (in.) (position of monopole) 
Thickness (in.) 

Focusing lens 
Focal Length (in.) 
Thickness (in.) 

Target Placement (in.) 
MonoMargin (A at minimum focus) 

Scan Length 

Waveguide Length 
Bottom Plate Length Constraint (in.) 

Length of bottom plate (in.) 
Width of bottom plate (in.) 

Length of top plate (i n.) 
Width of top plate (in.) (<•30) 

fi 
t i 

to 
to 

z 
Mm 

Lbp 
Wbp 

Ltp 

Wtp 

--4.588 

1.369 -2.294 

69.000 
45.000 

54.508 
30.000 

2.000 
5.906 

1.064 
2.769 

2.603 
-15.538 

3.481 

4.000 6.000 
2.953 1.969 

2.128 3.192 
3.916 4.796 

1.840 1.503 
-31.076 -46.614 

3.481 3.481 

8.000 
1.476 

4.256 
5.538 

1.301 
-62.152 

3.481 

3.306 

7.246 
2.243 

3.999 
4.614 

14.492 

12.762 
34.500 

10.000 12.000 14.000 16.000 
1.181 0.984 0.844 0.738 

5.320 6.384 7.448 8.512 
6.192 6.783 7.326 7.832 

1.164 1.063 0.984 0.920 
-77.690 -93.228 -108.766 -124.304 

3.481 3.481 3.481 3.481 



 

195 

 

 

Figure 152: Large Lens Optimization Sheet 
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