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Abstract 

Many firms generate revenue by successfully operating machines such as welding robots, 

rental cars, aircraft, hotel rooms, amusement park attractions, etc.  It is critical that these 

revenue-generating machines be operational according to the firm’s target or requirement; thus, 

assuring sustained revenue generation for the firm.  Machines can and do fail, and in many cases, 

restoring the downed machine requires spare part(s), which are typically managed by the supply 

chain.  The scope of this research is on the supply chain management of the very sparse, 

intermittently-demanded spare parts.  These parts are especially difficult to manage because they 

have little to no lead time demand; thus, modeling via a Poisson process is not viable.  The first 

area of our research develops two new frameworks to improve the supply chain manager’s stock 

policy on these parts.  The stock polices are tested via case studies on the A-10C attack aircraft 

and B1 bomber fleets.  Results show the AF could save $10M/year on the A10 and improve 

support to the B1 without increasing inventory.  The second area of our research develops a 

framework to integrate the supply chain processes that generate these service parts.  With the 

integrated framework, we establish two new forward-looking metrics.  We show examples how 

these forward-looking metrics can advance the supply chain manager’s desire to know what 

proactive decisions to make to improve his/her supply chain for the good of the firm.   
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1 

ADVANCING COST-EFFECTIVE READINESS BY IMPROVING THE SUPPLY 

CHAIN MANAGEMENT OF SPARSE, INTERMITTENTLY-DEMANDED 

PARTS 

I. Introduction 

1.1 Background – A Firm’s Objective 

In general terms, the objective of most firms is to generate a profit.  One step 

deeper, many firms generate revenue by successfully operating ‘machines’ (i.e. welding 

robots, rental cars, aircraft, hotel rooms, amusement park attractions, etc.) that produce 

goods/enable services that the firm sells to the consumer.  From here on, the word 

machine(s), without quotes, will be used in general terms, to describe these types of 

revenue generating streams. 

1.2 Firm’s Management of Revenue Generating Machines 

Revenue generating machines can/do break or become unserviceable, and during 

these times, the firm may lose all or part of the revenue generating stream.  Often, the 

firm establishes targets to assure a given percent of the revenue generating machines are 

serviceable [1].  A Markov chain from reliability [2] or queueing [3] theory may be used 

to model the (state) number, n, of downed machines from a finite population, M; where λ 

is the failure rate and μ is the repair rate, as shown in Figure 1.    
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Figure 1: Markov Chain of Finite Population 

 

In most cases, restoring the downed machine requires maintenance actions and 

often requires a spare part(s).  For the Markov chain model shown in Figure 1, the overall 

repair rate μ is defined as 1/t where t is the total time to restore the machine to serviceable 

condition.  The total time to restore often contains sub-segments of time; that is t=∑ti.  

For example, one sub-segment might be for maintenance’s actual service time, say t1, and 

one might be for awaiting spare parts, say t2  (if a spare part is immediately available, t2 = 

0).. The scope of this research is on the management of the spare parts as related to the 

down time of the revenue generating machine(s).   

1.2.1 Supply Chain Management of the Spare Parts   

Post initial procurement, management responsibility of spare parts generally 

belongs to the firm’s supply chain, which is not simply purchasing or logistics or 

warehouse management; rather, it is all of these things.  Supply chain management is the 

integration of all things logistics from customers to suppliers [4].  Formally, supply chain 

management is defined as “the process of planning, implementing and controlling the 

efficient, cost-effective flow and storage of raw materials, in-process inventory, finished 

goods and related information from point-of-origin to point-of-consumption for the 

purpose of conforming to customer requirements” [5].  Managing spare parts requires the 

0 1 MM-12

Mλ (M-1)λ λ(M-2)λ 2λ

. . .

μ μ μμ μ
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supply chain manager to develop stock policies.  Stock policy is typically defined as the 

firm’s answers to basic inventory questions such as [6] [7] [8]: 

When do we begin stocking an item? 

How much do we stock?  

Where do we stock? 

The answers to these basic inventory questions result in business rules that provide the 

supply chain manager’s resources with a set of rules for defining engagement.       

1.2.2 Stock Policy on Intermittently-Demanded Items 

Many parts belonging to revenue generating machines have very low failure rates 

[9] [10] [7] [11].  This implies that these types of parts will have very little historical 

demand signals; thus, hard to forecast.  These types of parts are typically described as 

intermittently-demanded items.  Over the years, several authors have defined intermittent 

demand differently, but a good, usable definition from Boylan [8] is: “As a guideline, at 

least 20% of the time periods should have zero demand for you to count the demand 

pattern as intermittent”.   

1.3 Problem Description, Common Themes and Gaps 

There are many ways to improve the uptime of revenue generating machines, and 

this research focuses on the awaiting spare parts portion.  While themes for the 

implications of, and management of, spare parts are expanded in chapter two, they are 

generalized here.  This research investigates frameworks to help the supply chain 

improve its management of the sparse, intermittently-demanded items, because doing so 

advances the cost-effective readiness of the revenue-generating machine(s). 
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1.3.1 Common Themes 

Reliability theory covers many areas, but relative to this research, it contains 

availability-based topics.  “Availability measures the combined effect of both the failure 

and the repair process... [2]” As such, it recognizes and includes the contribution of spare 

parts toward the uptime of the revenue generating machine(s).  In this context, reliability 

desires to understand, to the extent possible, the failure characteristics of the components 

to assist the firm with spare part inventory management and overall maintenance policies.   

Prognostic Health Management (PHM) desires to link the real-world ‘stress’ 

environment of the machine’s component with the component’s designed ‘strength’.  The 

goal/benefit of PHM is to monitor, in real or near-real time, the component’s health and 

prompt maintenance when action is needed, including the potential need of a spare part 

[12].  Many revenue generating machines have both cheap, consumable items and 

expensive, often reparable, items.  The current niche value of PHM lies with improved 

management of the very expensive components that have attributes that can be 

quantifiably measured; thus, PHM methods are useful, but limited.      

The term intermittent demand goes hand in hand with nearly all research one 

might pursue in the service parts arena (i.e. revenue generating machines).  Croston’s 

seminal paper on intermittent demand [13] shows that typical SES (Simple Exponential 

Smoothing) leads to positive bias on intermittent items and creates a new method that 

utilizes two distributions to capture lead time demand: (1) mean time between demands 

and (2) demand quantity.  Croston’s method provides a robust framework that can be 

simultaneously used on both fast-moving and intermittently-demanded items.  Increasing 
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the forecast accuracy of intermittent demand continues to be heavily researched [14] [8] 

[15] [16] [17].   

The use of multi-echelon and Readiness-Based Sparing (RBS) models and 

research of multi-echelon and RBS modeling continues [1] [18] [19].  Many firms have a 

multi-echelon infrastructure and/or supply chain, by which the spare parts could be 

stocked at retail (i.e. close proximity to the revenue generating machine) and delivered in 

time t1 and/or wholesale (i.e. a centralized warehouse) and delivered in time t1 + t2.  

Figure 2 shows a typical, two-level, multi-echelon construct.   

 
Figure 2: Two-Level Multi-Echelon System 

  

Research on Reverse Logistics (RL), also under the label of Closed Loop Supply 

Chain (CLSC), appears to be increasing [20] [20] [21]over the last decade.  This research 

area is very important for the revenue generating machine(s) that contain components that 

can be returned/refurbished, because the time to repair (and repair costs) are likely 

different from the time to procure (and procurement costs). 

Central warehouse 

End user 1 End user n 

Echelon 1 
(“wholesale”) 
Requires t2 time to 

move parts to next echelon

Echelon 2
(“retail”) 
Requires t1 time to 

move parts to revenue

Generating machine
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Within the supply chain, demand and supply planning areas continue to be 

researched and at an increased level from 2001-2010 [5].  Demand and supply planning 

areas contribute to operational availability of the revenue generating machines by 

including forecasting, spare parts computations (i.e. inventory modeling), stock policies, 

and order fulfillment actions/management on those parts that belong to the revenue 

generating machine(s).  Also, a significant amount of research continues on various 

supply chain modeling.  However, given the complexity of the supply chain and the 

current modeling areas, Badole [5] and others [4] [22] [23] show that no single model 

captures all aspects of the wide range of supply chain processes.   

1.3.2 Existing Gaps 

Reviewing the above common themes through the lens of this research topic area 

highlights four Gaps (G), and does so with clear focus.   

(G1) Forecasting research on intermittent demand does not contain the extreme 

values.   While there is significant research on intermittent demand within 

Boylan’s [8] definition  (20% or more of the intervals without demand), 

there is little research when intermittent demand is further restricted to those 

parts which have no demand in 50% or more of the intervals.   

(G2) Forecasting research on intermittent demand is limited to lead time demand 

(G3) Readiness based sparing models, despite containing multi-echelons, 

typically exclude components that have a near zero lead time demand; often 

these are referred to as insurance items via the firm’s policy and use 

heuristics to determine spare parts levels.   
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(G4) No single model captures all aspects of the wide range of supply chain 

processes for the supply chain manager   

1.4 Problem Statements & Motivation 

Given the above four gaps, two problem statements naturally follow: 

(1) What framework(s) can be developed to optimize stock policy on sparse, 

intermittently-demanded items; items that had no stock on hand, due to no 

forecasted lead time demand - yet when needed/demanded caused a revenue 

generating machine to be down? 

(2) What forward-looking framework(s) can be developed to advance the supply 

chain manager’s desire to proactively know what actions to take on sparse, 

intermittently-demanded items, to prevent a revenue generating machine 

from going down due to lack of spare parts? 

Altay [9] shows that  “...down time costs typically run at 100 to 10,000 times the 

price of the spare parts or service.”  These are very large ratios.  The motivation of this 

dissertation is to advance cost-effective readiness by improving the supply chain 

management of sparse, intermittently-demand items. 

1.5 Research Contributions  

We address these problem statements and develop new methodologies; 

methodologies which link stock policy costs, for the sparse, intermittently-demanded 

items, to the associated operational benefits of the revenue generating machines.  

Additionally, given that status quo supply chain metrics aren’t sufficient, we 

create a new hybrid framework that integrates supply chain processes.  This integration 



8 

occurs within the context of readiness of the supply chain processes to generate parts for 

the revenue-generating machine.  As such, it gives the supply chain manager forward-

looking metrics in that it answer’s, how ready are my supply chain processes?  Inherent 

within this framework, is that it easily extends to enable cross-cutting analyses; thus, it 

provides a framework to assist the supply chain manager’s desire to advance the supply 

chain’s cost-effectiveness for the firm.    

1.5.1  Stock Policy on Sparse, Intermittently-Demanded, Inexpensive Items 

In most cases inexpensive items are consumable.  Consumable items, as the name 

implies, are not repaired upon failure because the cost to repair is not justifiable, relative 

to the cost of new procurement.  The down time cost on the revenue generating stream 

relative to the cost of the consumable item is extremely high.  Many times, these 

consumable items are not stocked anywhere in the network (as spares) because the 

forecasted lead time demand is zero.  Other times, the consumables are not stocked next 

to the revenue generating machine; rather, at a central warehouse.  The first contribution 

of this research (ref Chapter 3 for more details) develops a new approach, addressing 

gaps G1, G2 and G3, which improves the supply chain’s management of sparse, 

intermittently-demanded inexpensive items to advance cost-effective readiness.   

1.5.2 Stock Policy on Sparse, Intermittently-Demanded Expensive/Reparable 

Items 

Expensive items are often repaired upon failure because the cost to repair is 

justifiable, relative to the cost of new procurement.  The down time cost on the revenue 

generating stream relative to the cost of the expensive/reparable item is also high, 
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although lower than the previous ratio on inexpensive, consumable items.  Like 

consumables, many times expensive items are not stocked anywhere in the network (as 

spares) because the forecasted lead time demand is near zero.  The second contribution of 

this research (ref Chapter 4 for more details) develops a new approach, addressing gaps 

G1, G2 and G3, which improves the supply chain’s management of sparse, 

intermittently-demanded, expensive items to advance cost-effective readiness.   

1.5.3 Develop a Framework for Forward Looking Metrics for Supply Chain 

Manager 

When a spare part is needed, often the firm’s supply chain can acquire the item 

more than one way.  Stated another way, there are often multiple processes (i.e. paths) 

that the supply chain manager can invoke to generate parts and get them to the downed 

revenue-generating machine.  For example, the component may be stocked at a central 

warehouse and merely needs to be shipped to the location of the machine, or may be 

procured via multiple suppliers, or could be repaired from a previously failed part, or 

could be taken from another revenue-generating machine (i.e. cannibalized), etc.  We 

leverage the block diagram from reliability theory; let the columns in Figure 3 represent 

the sparse, intermittently-demanded components needed by the revenue generating 

machine and let the rows represent the processes (i.e. paths) that the supply chain 

manager can invoke to generate the parts for the revenue-generating machines.    
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Figure 3: Reliability Block Diagram Representation 

 

Recall from reliability theory, the block diagram indicates the system is a ‘go’ 

(operating or ready to operate) as long as each column has at least one component 

operational.  In the context of this research, the reliability block diagram is a very useful 

framework which graphically shows which supply chain processes are ready (and which 

ones are not ready) to generate the parts for the revenue-generating machines.  The third 

contribution of this research (ref chapter 5 for more details) develops a new approach, 

addressing gap G4, which establishes supply chain process integration into a framework 

that provides the supply chain manager with (1) a new, forward-looking metrics that link 

to the operations of the revenue-generating machines and (2) a methodology to advance 

his/her desire to make proactive decisions on supply chain processes to advance the 

firm’s cost-effective readiness.   

1.6 Dissertation Overview 
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contributions.  Chapter 2 contains an overview of the literature reviewed for this 

dissertation.  Additionally, in Chapter 2, we group the reviewed literature into over-

arching topics according to their support of our two problem statements (ref 1.4). 

Chapter 3 demonstrates how stock policy can be improved on sparse, 

intermittently-demanded, inexpensive (i.e. consumable) items by taking a different 

approach, relative to traditional methods.  Chapter 4, a natural progression of Chapter 3, 

continues by advancing the stock policy on the sparse, intermittently-demanded, 

expensive/reparable items. 

Chapter 5 develops a methodology to create forward looking metrics for the 

supply chain by integrating supply chain processes.  The framework (i.e. model) is 

extended and enables the supply chain manager to make proactive decisions on the 

supply chain processes that generate the sparse, intermittently-demanded items; thus, 

advancing the firm’s cost-effective readiness of the revenue generating machine(s).   
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II. Literature Review 

2.1 Literature Review Framework 

Chapter 2 provides an overview of relevant literature on the research topic.  

Chapters 3, 4, and 5 each contain additional, context-specific literature reviews.  The 

purpose of this chapter is to show the uniqueness of the research contributions from 

Chapter 1 in the context of the literature review.   

2.2 Overview of the Literature 

The vast majority of literature is from articles with topics from intermittent 

demand, inventory modeling, supply chain management, reliability and prognostics, 

availability, operations of systems, reverse logistics, and closed-loop supply chains.  

Additionally, there are several thesis/dissertations as well as specialized texts that are 

relevant to this research.   

2.2.1 Topic Relevant Text Books 

While several texts are cited throughout the dissertation for analyses uses, three 

key texts provide specifics.  The first is Dr. Sherbrooke’s Optimal Inventory Modeling 

[1]; the second is Dr. Jack Muckstadt’s Analysis and Algorithms for Service Parts Supply 

Chains [19]; the third is Altay & Litteral’s (editors) Service Parts Management – 

Demand Forecasting and Inventory Control [9].  These very specialized texts show the 

importance of spare parts via their impact on the revenue generating machine and offer 

methods that link stock policy to the operational availability of the revenue generating 

machine(s).  Related to this research, these three texts contain key assumptions and 

limitations; thus, also support the existence of the four gaps addressed in this research.   
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2.2.2 Thesis and Dissertations 

Eight thesis and dissertations are reviewed due to their relevance to this research.  

Kotkin and Kinskie use Readiness-Based Sparing methodology to advance the modeling 

of spare parts to operational goals of the revenue-generating machines.  Burnworth 

advances the modeling of lateral resupply, which is not addressed by prior readiness-

based research.  Eaves, Ghodrati, and Varghese all recognize the challenges of 

intermittent demand in the context of keeping the revenue-generating machines 

operational.  George studies an application that includes a fleet of bicycles using a closed 

queueing network.   These seven Theses and Dissertations link to gaps (G1), (G2), (G3), 

and (G4).  Additionally, Ryan’s Thesis progresses the desire of the supply chain manager 

to have a forward-looking framework to help with proactive decision support, which 

links to gap (G4).  The eight theses/dissertations are shown: 

Table 1: Thesis and Dissertations 

 

Year Title Author University

2013
Advancing Forward-Looking Metrics: A Linear Program Optimization and Robust Variable 

Selection for Change in Stock Levels as a Result of Recurring MICAP Parts
Ryan Masters - Air Force Institute of Tech.

2012
Stochastic Modeling and Decentralized Control Polocies for Large-scale Vehicle Sharing 

Systems via Closed Queueing Networks
George PhD - The Ohio State University

2009 Forecasting Intermittent Demand in Large Scale Inventory System Varghese PhD - University of Arkansas

2008 Simulated Multi-Echelon Readiness-Based Inventory Leveling With Lateral Resupply Burnworth Masters - Air Force Institute of Tech

2005 Reliability and Operating Environment Based Spare Parts Planning Ghodrati PhD - Luleå University of Tech

2002 Forecasting for the ordering and stockholding of consumable spare parts Eaves PhD - Lancaster University

1997 An Evaluation of the Budget and Readiness Impacts of Battlegroup Sparing Kinskie Naval Post Graduate School

1986 Operating policies for non-stationary two-echelon inventory systems for reparable items Kotkin University of Michigan
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2.2.3 Articles, Conference Proceedings and Other Publications 

Figure 4 contains many publications used to forward this research topic.      

 

Figure 4: Articles & Conference Proceedings 
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2009 Syntetos, et al. x x x x

2010 Miles

2011 Nikolopoulos, et al. x x x

2011 Rossetti & Unlu x x x

2003 Ghabbar & Friend x x x x x

1972 Croston x x x

1996 Johnston & Boylan x x x

1999 Bartezzaghi, et al. x x

2009 Varghese & Rossetti x x

2010 Heaton x

1998 Vincent & Tenney x

2013 Willemain x x x x x

2012 Lowas & Briggs x x

2005 Syntetos & Boylan x x

2003 Shaw, et al. x x

2011 Pishvaee, et al. x x x x

2000 Holmberg x

2012 Dersin x x

2003 Kobayashia, et al. x x

2012 San, et al. x x x

2003 Lendermann, et al. x

2013
Deputy Under Secretary: 

Logistics & Materiel Readiness
x x x x x x

2011 Monnin, et al. x

2009 Reymonet, et al

2011 Shi, et al x

2011 Shi, et al. x

2007 Tu, et al. x x

2004 Willemain, et al. x x x x

2012 Badole, et al. x x x x x

2006 Zeithaml, et al. x

2005 Campbell, et al. x x

2013 Willemain x

2007 Ketchen & Hult x x

2014 Fulk x x x x x x

2008 Abbas, et al.

2008 Cobb & Shenoy

2006 Boylan & Syntetos x x x x

2011 Cattani, et al. x x x x

2007 Bachman x x x x x x x x

2005 Boylan & Syntetos x x x x

2007 Klassen & Menor x x

1999 Cohen, et al. x x x x x x

2006 Willemain x x x x

2006 Hyndman x x x x

2006 Hoover x x x x
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2.3 Literature Linked to Problem Statement #1 

A lack of spare parts is one cause of revenue generating machine(s) being 

unserviceable.  Problem statement #1 (ref section 1.4) focuses on stock policy and 

management of sparse, intermittently-demanded items because of their impact on the 

revenue generating machines.  Relevant to problem statement #1, the literature covers 

three over-arching areas: forecasting demand, intermittent (and lumpy) demand, and the 

benefits of demand forecasting.  Additionally, because much of the research in chapter 4 

is to extend Bachman’s [24] work, which was limited to consumable parts, we 

characterize his methods and clarify how our research expands, by including reparable 

parts, which have additional management complexity.   

 

2.3.1 Forecasting Demand 

It is commonly shown and well understood that forecasting demand for service-

parts industries (i.e. parts belonging to revenue generating machines) is challenging [9] 

[8]; however, the need to do so is great.  Altay and Litteral [9] state in chapter 8, “As 

customers are more demanding with respect to after sales operations and service level 

agreements put challenging availability targets on equipment uptime, the provision and 

deployment of service parts becomes of focal interest for many original equipment 

manufacturers.”  In this context, when the firm forecasts demand, it does so because of 

the implications the spare parts are projected to have on the forecasted up-time of the 

revenue generating machines.   

Many firms use time series data as the baseline for forecasting; some adjust the 

forecast according to planned operational changes of the revenue generating machine(s).  
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In order to forecast demand, a firm must have policies to (1) define the length of the 

forecasting interval, (2) the forecasting method, and (3) the number of future time periods 

to forecast.   Literature on the length of the forecast interval, for these types of parts, is 

scarce.  The literature that does include forecast length typically limits the forecasting 

interval to the length of lead time (for the given part).   Additionally, much of the 

literature relevant to this research limits the number of forecasting time periods to the 

length of the lead time (for the given part); often referred to as Lead Time Demand (also 

sometimes called Pipeline) [1] [25].  

Given the importance of forecasting demand, it continues to be an area heavily 

researched, evidenced by the significant amount of reviewed literature that contained the 

topic of forecast accuracy (ref Figure 4).   

2.3.2 Intermittent (and Lumpy) Demand  

The term intermittent goes hand in hand with nearly all research one might pursue 

in the service parts arena.  Croston’s heavily cited work [13] in 1972 advanced the 

forecasting accuracy of intermittent demand by providing a single framework that could 

handle both intermittent demand and non-intermittent demand.  Fine-tuning the 

forecasting of intermittent demand continues by many including articles by Ghobbar and 

Friend [15], Boylan [8], and Varghese & Rossetti [26]; as well as dissertations by 

Syntetos, Eaves [27], and Varghese [11].     

Croston’s seminal paper [13] does not provide a verbal definition of intermittent 

demand, but it does contain a key example.  Using Croston’s and Boylan’s [8] examples 

and Boyland’s [8]  definition of intermittent demand, we show the three views of 
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intermittent demand expressed two ways: (1) the percentage of intervals with zero 

demand, and (2) average number of intervals between demands.  The 2D graphic in 

Figure 5 allows demand to be viewed as a continuum, from demand in every period (on 

the far lower-left) to no demands in any period (far upper-right).   

 
Figure 5: Continuum of Demand 

 

Hadley and Whitin [28] offer a common view on the difficulty of managing 

intermittent items, “It is especially difficult to obtain accurate values for the usage rate 

for very low demand spare parts (this includes a majority of the spare parts), items...”  As 

shown in Figure 4, intermittent demand continues to be heavily researched.  One key 

reason is because so many spare parts belonging to the revenue generating machines are 

defined as intermittent.  However, literature on the extreme values of intermittent demand 

(i.e. ≤ 1 demand over the forecasting interval) is very scarce.  This is the area of research 

undertaken, and the word sparse is inserted in front of intermittent to describe this 

specific area of research which further restricts intermittent demand to those parts where 

50% or more of the intervals contain zero demand. 
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2.3.3 Benefits of Demand Forecasting 

While much literature focuses on forecast accuracy, and understandably so, 

Johnston and Boylan [10] highlight that the goal isn’t necessarily to improve the forecast, 

rather to support the “stockist’s aim of providing good service to the customer”.  Fully 

recognizing the presence of uncertainty, Trevor Miles [29] challenges researchers to 

reflect on supply chain management expectations “...along with the belief among supply 

chain practitioners that, if we only had enough time and energy, we could describe every 

phenomenon precisely by a mathematical equation that fully captures causality and 

consequences.”   

Much of the literature shows that demand is forecasted to cover the lead time (i.e. 

lead time demand, pipe or pipeline) [27] [11] [25].  Inventory models use the lead time 

demand, along with other inputs, and compute the spare parts requirement according to 

the objective function of the specific inventory model.  Two common objective functions 

are fill rate optimization and expected backorder minimization [1] [18] [19].  It should be 

noted that minimizing expected backorders (ebos) within the inventory model may be for 

different purposes; two of which are to minimize customer wait time (𝑐𝑤𝑡 =

∑𝑒𝑏𝑜𝑠

∑𝑑𝑎𝑖𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 𝑟𝑎𝑡𝑒
 ) or maximize operational availability (𝐴𝑜 = 𝑒

−
𝑒𝑏𝑜𝑠

# 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 ) [1] of the 

revenue generating machines (i.e. fleet).  

2.3.4 Characterizing Bachman’s Work on Consumable Parts  

Given the difficulties of managing the very sparse, intermittently demanded parts, 

often heuristics are created and used to determine stock polices for the supply chain 

manager to utilize.  For the very sparse and sporadic intermittently-demanded parts, 



19 

Bachman suggests a heuristic called peak demand [24].  The process looks back upon 

previous time intervals, by part, and establishes the maximum demand amount.  The 

maximum demand is combined with a user-determined group multiplier, which is greater 

than or equal to zero, and the stock policy reorder point is determined by multiplying the 

maximum demand and the user-determined multiplier.   His work is limited to 

consumable parts, but case studies on several AF and Navy systems (i.e. machines) show 

significant improvement possibilities.  Chapter 4 expands Bachman’s work by adding 

reparable parts.  Reparable parts add significant complexity, including the need to 

establish a two-tiered stock policy, namely one for repair and one for procurement. 

2.4 Literature Linked to Problem Statement #2 

Recall problem statement #2; what forward-looking framework(s) can be developed to 

advance the supply chain manager’s desire to proactively know what actions to take on 

the sparse, intermittently-demanded items, to prevent a revenue generating machine from 

going down due to lack of spare parts?  Supply chain management contains many 

processes [4] as it bridges the firm’s entire span between supplier and customer and 

sometimes back again to the firm (for firms with reverse logistics/closed loop supply 

chains).   

2.4.1 Supply Chain Modeling: Integration and Performance Measures 

Badole, Jain, Rathmore & Nepal’s article “Research and Opportunities in Supply 

Chain Modeling: a Review” [5] surveyed 700 supply chain articles across 45 journals.  

They synthesized the 700 and selected 300 papers to review in greater detail.  Their 

exhaustive review identifies 10 key areas from five categories for future research.  Their 
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first four areas (shown below) are included in the framework of the third contribution of 

this research; thus, addressing Problem Statement #2. 

(1) Need for Integrated and Coordinated Supply Chain Modeling 

(2) Incorporation of Performance Measures 

(3) Implementation of Information Technology 

(4) Perishable Products Supply Chain 

Holmberg [30] also claims that current measures of supply chain performance are 

not effective because they lack a system perspective (i.e. for example, don’t trade 

resources between warehousing and transportation).  Additionally, he claims that there is 

a gap between many firms’ strategy and the actual measures they take/look at for 

management review decision support. 

Shaw, Meixell & Tuggle [31] recognize the lack of integrated supply chain 

processes.  They show, via an application from the automotive spare parts industry, that 

integrating knowledge management into the over-arching supply chain process leads to 

spare parts levels that meet better service levels and without wasting as much stock. 

Additionally, Lendermann et al. [32] also recognize the lack of integrated supply 

chain processes.  They show, via an application from the semiconductor industry, that 

simulation can be used effectively to integrate supply chain processes; thus, providing 

supply chain managers with a decision support tool. 

2.4.2 Reverse Logistics and/or Closed Loop Supply Chain 

Many firms have reverse logistics processes; reverse logistics processes can be as 

simple as returns management programs/policy or as complex as refurbishing non-
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serviceable assets to reusable/re-saleable condition.   Literature on reverse logistics and 

closed loop supply chains is increasing.  The common theme/reason for the increase is 

that firms are recognizing the importance of reverse logistics, from a long-term financial 

perspective.  Much of the literature contains the network design of the firm’s reverse 

logistics.  Another focus area in the literature is on capturing the value of the firm being 

able to receive the returned goods and refurbish for additional sales to the customer [33].  

Readiness Based Sparing (RBS) inventory modelers often refer to these items as 

reparables [19] [1] and account for return and refurbish time within the computation of 

expected lead time in order to combine with demand rates to create the lead time demand 

(i.e. pipeline).   

Specific to this research area, however, the literature is very scarce as shown by 

(1) the lack of reverse logistics articles that also contain intermittent demand and (2) the 

lack of supply chain management articles that contain intermittent demand and their 

contribution to revenue generating machine(s).   

2.5 Statement of Original Contribution 

This dissertation seeks to advance the two problem statements (ref 1.4) by 

addressing gaps (ref 1.3.2) in the literature.  

Chapter 3 will introduce a condition-based heuristic that can be used to create 

improved retail stock policies for the very sparse, inexpensive intermittently-demanded 

parts.  The benefits of the new retail stock policies are then evaluated via a case study on 

the A-10 fleet of aircraft.  Chapter 3 contains some redundancy, especially in the 

introduction, because it is written to be a stand-alone document.   
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Chapter 4 is a natural progression of Chapter 3.  Chapter 4 will introduce a peak-

demand framework that can be used to create improved wholesale stock policies for the 

very sparse, expensive/reparable intermittently-demanded parts.  The benefits of the new 

wholesale stock policies are then evaluated via a case study on the B-1 fleet of aircraft.  

Chapter 5 develops a framework to create forward looking metrics for the supply 

chain manager by integrating supply chain processes.  The framework (i.e. model) is 

extended to enable the supply chain manager to make proactive decisions on the supply 

chain processes that generate the sparse, intermittently-demanded items. 
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III. Condition-Based Stock Policy Heuristic for Very Sparse, Intermittently-

Demanded, Inexpensive Parts 

3.1 Introduction: A Firm’s Objective and Operating Revenue Generating Machines 

In general terms, the objective of most firms is to generate a profit.  One step 

deeper, many firms generate revenue by successfully operating ‘machines’ (i.e. welding 

robots, rental cars, aircraft, hotel rooms, amusement park attractions, etc.) that produce 

goods/enable services that the firm sells to the consumer.  From here on, the word 

machine(s), without quotes, will be used in general terms, to describe these types of 

revenue generating streams. 

Revenue generating machines can/do break or become unserviceable, and during 

these times, the firm may lose all or part of the revenue generating stream.  Often, the 

firm establishes operational targets, Ao, to assure a given percent of the revenue 

generating machines are serviceable.   

In most cases, restoring the downed machine requires maintenance action(s) and 

often requires spare part(s).  The average machine down time due to maintenance 

action(s) is often called Mean Time To Repair (MTTR).  The average machine down time 

due to awaiting spare parts is often called Mean Logistics Delay Time (MLDT) [2] [34].  

Combining MTTR and MLDT with Mean Time Between Failure (MTBF) leads to a 

commonly used equation for operational availability, Ao [2] [34] [35]  

  
𝐴𝑜 =

𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 +𝑀𝑇𝑇𝑅 +𝑀𝐿𝐷𝑇
 

                         (1) 
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The scope of this paper, which is focused on improving MLDT, is to advance the 

cost-effective management on a subset of the spare parts, the very sparse, intermittently-

demanded, inexpensive ones, by creating a framework to find improved stock policy.   

3.1.1 Firm’s Supply Chain Management of the Spare Parts   

After initial procurement, management responsibility of spare parts generally 

belongs to the firm’s supply chain.  The role of the supply chain manager is vast, but the 

focus of this research is on the cost-effectiveness of the supply chain manager’s stock 

policy.  Stock policy is needed to answer basic inventory questions such as [6] [7] [8]: 

When do we begin stocking an item? 

How much do we stock?  

Where do we stock? 

Answers to these basic inventory questions result in business rules that provide the 

supply chain manager’s resources with a set of rules that define engagement.  The stock 

policy typically is linked to the firm’s operational goals of the revenue generating 

machines [9] [18] [36] [37] [35] [19] [1] [38].   

3.1.2 SCM Stockage Policy on Intermittently-Demanded Items 

The term intermittent goes hand in hand with nearly all research one might pursue 

in the service parts arena.  Croston’s well-cited 1972 paper [13] does not provide a verbal 

definition for intermittent, but because it has had such an impact on the forecasting of 

intermittent demand, it is appropriate to revisit his example; of 180 total time intervals, 

29 (16%) had demand while 151 (84%) did not have demand; thus, the average number 
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of intervals between demands is approximately 6 (180 total intervals /29 intervals with 

demand). 

Over the years, several authors have defined intermittent demand; Boylan 

provides a good, usable definition for intermittent demand: “As a guideline, at least 20% 

of the time intervals should have zero demand for you to count the demand pattern as 

intermittent” [8].  The definition of intermittent demand can be expressed two ways; (1) ≥ 

20% of the intervals with no demand, and (2) the average number of intervals between 

demand ≥1.25.  Figure 6 shows a 2-demensional (2D) continuum of demand where the 

first definition of intermittent demand is shown via the vertical axis and the second via 

the horizontal.       

 
Figure 6: 2D Continuum of Demand; Data Point with No Demand 

 

Plotted in Figure 6 are four key points: (1) a demand continuum - lower left where 

demand exists in every interval to the upper right where no demand exists in any interval 

(of the forecasting interval); (2) Boylan’s definition of intermittent demand along with (3) 

Boylan’s example part and (4) Croston’s example part.  A star is shown in the upper, 
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right portion of Figure 6 to show the focus of this research, which is on the very sparse, 

intermittently-demanded items.  These are the items that, effectively, can’t be forecasted 

using time-series methodologies. 

3.1.3 Mutli-Echelon Network 

Many supply chains operate within a multi-echelon network construct [19] [39] 

[18].  Shown in Figure 7 is a multi-echelon network with two echelons.  Echelon 1 

represents a wholesale operation such as a centralized warehouse and echelon 2 

represents retail locations.  For our research, the retail locations are locations of the 

revenue-generating machines.       

 
Figure 7: Multi-Echelon Network Design with Two Echelons 

3.2 Problem Description 

Researchers recognize the importance of intermittently-demanded items and their 

impact to the revenue generating machine(s).  Croston’s work [13] advanced the 

forecasting accuracy of intermittent demand by providing a single framework that 

handles both intermittent demand and non-intermittent demand.  Syntetos and Boylan 

[17] addressed the positive bias that remained in Croston’s work.  Fine-tuning the 
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forecasting and forecasting accuracy of intermittent demand has been continued by many; 

Ghobbar and Friend [15], Boylan [8], Boylan & Syntetos [40] , Willemain [41], and 

Varghese & Rossetti [26]; dissertations by Syntetos, Eaves [27], and Varghese [11] to 

name a few.  

The intermittently-demanded parts of the revenue generating machine often 

include the full ranges of cost and much of reliability (i.e. MTBF), as shown on the 

horizontal and vertical axis in Figure 8.  Of interest to this study is the circle in Figure 8 

labeled as set P; these are the very sparse, intermittently-demanded, inexpensive items, 

the focus of this research.    

 
Figure 8: Makeup of Parts on a Revenue Generating Machine 

 

It is common to model many component failures, especially the intermittently-

demanded items, as Poisson Processes.  As shown in equation (2), λ is the component’s 

failure rate, i is the expected number of failures over a time interval, t, which is typically 
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set to the components lead time.  The inventory-modeling application of equation (2) is 

that it is typically used to establish the distribution of lead time demand [1].   

Equation (2) is not a ‘one size fits all’ [42] [11], but its use is very common for 

service parts.  Sometimes, especially for inexpensive, consumable parts, order sizes can 

vary [14] [8].  For the cases where order sizes are larger, a stochastic-based lot size may 

be added and distributions such as the negative binomial are used to compute lead time 

demand [25] in place of the Poisson.   

Bachman and Willemain go further and show that lead time demand, for a sub-set 

of the intermittently-demanded parts, doesn’t always fit the typically-used distributions 

(Poisson, negative binomial, etc.); therefore, they don’t explicitly estimate the standard 

parameter(s) for fitting lead time demand into one of the standard distributions.  

Willemain shows that bootstrapping methods [41] can be used to outperform Croston’s 

method and exponential smoothing.  Bachman’s method, called NextGen, is proprietary 

(patent pending), but an empirical test using Defense Logistics Agency (DLA) data 

produced good results.  Bachman and Willemain’s methods produce the part’s empirical 

distribution (using historical information from the part) for lead time demand, vice 

estimating a parameter(s) and fitting it to a standard distribution; both methods advance 

the intermittent-demand problem on a sub set of the intermittently-demanded items.       

3.2.1 Limitations of Computing Lead Time Demand  

For the very sparse, intermittently-demanded parts, which this research focuses 

on, λ is approximately zero; hence, the probability of demanding zero parts over the lead 

         𝑃𝑖(𝑡) =
𝑒−𝜆𝑡(𝜆𝑡)𝑖

𝑖!
                   

                                (2) 
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time is, effectively, one.  Many firms employ only demand-based stock policies and since 

lead time demand is determined to be zero, the SCM will not stock these items as spare 

parts.  The implication to the revenue generating machine is that too often, un-forecasted 

failures occur on these parts, and results in the machine being down/unserviceable 

somewhere between the supply chain’s expedited time and the components full lead time.  

Altay and Litteral [9] highlight the importance, “Customers are usually less concerned 

about spare part prices than about speed of delivery and availability of service know how, 

whether on sight or via telephone.  The reason is simple: down-time costs typically run at 

anywhere from 100 to 10,000 times the price of spare parts or service.” 

3.2.2 The Research Question 

The scope of this research is on the inexpensive (i.e. consumables), very sparse 

intermittently-demanded items which are represented by set P, the circle shown in Figure 

8.  The research question is: what framework can be developed to advance the cost-

effectiveness of stock policy on inexpensive, consumable items that have near-zero lead 

time demand– yet if/when demanded, will likely down the revenue generating machine? 

3.3 A New Approach: Designing a Condition-Based Stock Policy Heuristic 

We recognize the demand-based approach to stock policy, likely endorsed by the 

pure mathematicians, is to continue focusing on determining the true, underlying 𝜆 and 

use it within the inventory models, such that spares would naturally be computed by the 

inventory models.  As highlighted in section 3.2, this approach has major challenges that 

have spanned at least five decades.  Due to this persistent challenge, our approach is to 
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seek a condition-based stock policy heuristic for the very sparse intermittently-demanded, 

inexpensive items.     

3.3.1 Bayesian Beliefs Lead to Condition-Based Stock Policy 

We revisit the demand continuum and plot intermittent demand rates on a single 

notional item for four locations of the revenue generating machine, as shown in Figure 9.   

In this example, locations 1, 2, and 3 all have historical intermittent demand; that is, all 

three have positive estimates for λ and thus a computation of lead time demand > 0.  

Location 4 has no historical demand; that is, the estimate of λ is zero and thus the lead 

time demand = 0.   

 
Figure 9: Continuum View of Intermittent Demand at 4 Locations 

 

If location 4 is operating the same machine as locations 1, 2, and 3 (and the 

operational environments are similar), then it is intuitive that the underlying failure rate at 

location 4 may not be zero; rather, λ > 0.  Let λ
*
 be the critical failure rate that drives the 

inventory model to compute a spare part level greater than or equal to 1.  Let L be the set 

of locations with revenue-generating machines.  As depicted in Figure 9, the cardinality 
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of L is 4; that is, there are 4 locations of the revenue-generating machine.  The 

conditional-based belief leads to: 

𝑃(𝜆4 ≥ 𝜆
∗|𝜆1, 𝜆2,𝜆3 > 𝜆∗) ≥ 𝑃(𝜆4 ≥ 𝜆

∗|𝜆1 𝑜𝑟 𝜆2 𝑜𝑟 𝜆3 > 𝜆∗)                   (3) 

 

Equation (3) implies three beliefs.  The first is that λ4 ≠ 0, despite no historical 

demand; rather, λ4 > 0.  Secondly, equation (3) implies that λ4 may be greater than or 

equal to 𝜆∗.  Thirdly, the likelihood that λ4 ≥ 𝜆∗ increases as the number of other locations 

with historical demand increases.  Narratively, λ4 is more likely to be greater than 𝜆∗ 

when demand is seen at all three other locations than when demand is seen at only one 

other location.  Equation (3) is for a single part at four locations; we are motivated to 

generalize.  Given set L, let l be an individual location of the revenue-generating 

machine, 𝑙 ∈ L .  Let R be the number of locations with historical demand.  Let n be an 

arbitrary number (i.e. a design parameter between 0 and |L | -1).  Let x be a location of the 

revenue generating machine without historical demand on a given part.  This leads to a 

more general, conditional inequality.         

                𝑃(𝜆𝑥 ≥ 𝜆∗|𝑅 > 𝑛 + 1 ) ≥ 𝑃(𝜆𝑥 ≥ 𝜆∗|𝑅 > 𝑛 )   (4)                

We seek to validate the merit of equation (4).  Given the set P, let p be an 

individual part, 𝑝 ∈ P.  Let t be a given time.  A Stock Keeping Unit (SKU) is a 

part/location pairing [7].  Given the set of locations, L, then 𝑆𝐾𝑈𝑡 is a |P| x |L| matrix 

where: 

                𝑆𝐾𝑈𝑝,𝑙
𝑡

 = {
1, if location 𝑙 has historical demand for part 𝑝 𝑎𝑡 time 𝑡
0, otherwise                                                                                    

 }   (5) 
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Let 𝑅𝑝
𝑡  = ∑ 𝑆𝐾𝑈𝑝,𝑙

𝑡
𝐿 .  𝑅𝑝

𝑡  is a row-sum of the matrix; it states how many of the |L| 

locations have historical demand on part, p, at time, t.  The elements of matrix 𝑆𝐾𝑈𝑡  can 

be broken into two disjoint sets.  Let set 𝐒𝑡
′
 = { (p, l) | 𝑆𝐾𝑈𝑝,𝑙

𝑡  = 1 }.  This set contains all 

the SKUs from matrix 𝑆𝐾𝑈𝑡 that have historical demands on part, p, at time, t.  

Conversely, let set 𝐒𝑡
′′

 = { (p, l) | 𝑆𝐾𝑈𝑝,𝑙
𝑡  = 0 }.  This set contains all the SKUs from 

matrix 𝑆𝐾𝑈𝑡 that do not have historical demand on part, p, at time, t.  Therefore, 𝐒𝑡
′
∩  

𝐒𝑡
′′
=  ∅; each SKU in matrix 𝑆𝐾𝑈𝑡 either has historical demand or does not at time, t.   

The number of locations with demand, as defined by 𝑅𝑝
𝑡 , can be used to produce 

subsets of 𝐒𝑡
′
 and 𝐒𝑡

′′
.  Let n be some arbitrary value; then set 𝐒𝑛

𝑡′   = { (p, l) ∈ {𝐒𝑡
′
} | 𝑅𝑝

𝑡   

≥ n }.  This set contains all the SKUs for those parts that had a specified minimum 

number of locations with historical demand at time, t.   Conversely, let set 𝐒𝑛
𝑡′′= {(p, l) 

∈ {𝐒𝑡
′′
}|(p, .) ∈ {𝐒𝑛

𝑡′}}.  This set contains all the SKUs with no demand, given the parts 

had demand at a minimum number of other locations as recorded in 𝐒𝑛
𝑡′.  Similarly, 

𝐒𝑛
𝑡′ ∩ 𝐒𝑛

𝑡′′ =  ∅; for the two reduced sets, the remaining SKUs either have historical 

demand or do not. 

Given the above notation and sets, we can define a term Hit Raten as as: 

 

  𝐻𝑖𝑡 𝑅𝑎𝑡𝑒𝑛 = 
|𝐒𝑛
𝑡′′ ∩ 𝐒𝑛

𝑡+1′|

|𝐒𝑛
𝑡′′|

 

      (6) 

              

 

Hit Raten in this context is the percentage of predetermined, non-demanded SKUs 

that get demanded in the following time period.  Figure 10 provides a graphical 

representation of the notation leading up to and used in equation (6).  



33 

   

Figure 10: Graphical Representation of Equation (6) 

 

 

Equation (6) suggests a belief that the likelihood of demand (i.e. failure rate > 0), 

for SKUs without historical demand, is conditioned upon how many other locations do 

have demand (signals) on the same parts; this leads to the condition-based inequality: 

                                             𝐻𝑖𝑡 𝑅𝑎𝑡𝑒𝑛+1 ≥   𝐻𝑖𝑡 𝑅𝑎𝑡𝑒𝑛          (7) 

      

3.3.2 Empirical Test to Validate Bayesian Beliefs  

An empirical test, using 12 months of actual demand data, is used to test the 

validity of the proposed inequality in equation (7).  For this empirical test, the firm is the 

US Air Force; the revenue generating machine is the A10C aircraft; the number of 

intermittently-demanded parts, |P|, is 3,111; the number of locations of machines, |L|, is 

12 (i.e. A10C aircraft are at 12 locations); inexpensive parts are defined as costing $1450 

or less; parts coded with shelf life implications are excluded (not addressing spoilage); 

and, parts have been mission coded (i.e.  all parts in P have shut-down implications to the 

revenue generating machine).  The initial data set to build the matrix 𝑆𝐾𝑈𝑡 contains 

37,332 pairings (|P| = 3,111 x |L| = 12) and was provided when time, t was 2011.      
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Setting n = 1 and using t = 2011, sets 𝐒1
2011′  and 𝐒1

2011′′ are determined.  Actual 

demand data was also provided for the following year, that is t = 2012, and set 𝐒1
2012′  is 

determined.  Using equation (6), 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒1 = 10.7%.  Similarly, setting n = 2 and t = 

2011, sets 𝐒2
2011′  and 𝐒2

2011′′ are determined.  Updating with t = 2012; set 𝐒2
2012′  is also 

determined.  Using equation (6), 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒2 = 16.5%.  The empirical results of 

equation (6) are shown: 

                              𝐻𝑖𝑡 𝑅𝑎𝑡𝑒2 = 16.5% ≥ 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒1 = 10.7%   (8) 

 

The narrative result of equation (8) is that for all the parts that had demand at one 

or more locations (at a particular point in time), 10.7% of the SKUs that had no historical 

demand on those same parts had at least one demand during the next 12 months.  

Similarly, for all the parts that had demand at two or more locations (at a point in time), 

16.5% of the SKUs that had no historical demand on those same parts had at least one 

demand during the next 12 months.  The empirical data supports the Bayesian-belief as 

shown in equation (8) where n is 1 and 2.  Table 2shows the relationship between Hit 

Rate and n for all values of n and further supports the conditional-based beliefs proposed 

in equations (4) and (7) .   
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Table 2: Hit Rates for Values of n 

 

Recall 𝐒𝑛
𝑡′′are those SKUs with no historical demand at time, t; the extremities 

within the definition of intermittent demand (ref section 3.1.2).  As such, they are 

typically not stocked by demand-based stock policies.   However, equation (8) and Table 

2 show that data from donor locations captured in 𝐒𝑛
𝑡′ provides insights on the likelihood 

that future demand will occur on members of set 𝐒𝑛
𝑡′′; insights which grow as n increases.  

Thus, the number of users with historical demand, 𝑅𝑝
𝑡 , is included as a parameter (i.e. 

𝑅𝑝
𝑡 ≥ 𝑛) within the condition-based stock policy we seek. 

An extreme policy that stocks all the very sparse, intermittently-demanded parts at 

all locations is likely not cost effective for the firm because a significant amount of 

capital would be needed to procure the parts.  Conversely, an extreme policy to not stock 

any of the very sparse, intermittently-demanded parts at any location is likely not cost 

effective for the firm because of high losses of revenue from machine downtime 

(awaiting parts).  To evaluate at and between these two extremes, costs and benefits can 

be compared such that any stock policy for the very sparse, intermittently-demanded 

items can be evaluated for cost-effectiveness.    

n Hit Rate

1 10.7% 18,137    

2 16.5% 7,822      

3 22.9% 3,282      

4 28.9% 1,135      

5 40.2% 378          

6 49.5% 107          

7 50.0% 8               

8 100.0% 2               

≥ 9 na -           

53                   

4                      

2                      

-                  

1,934             

1,294             

750                 

328                 

152                 
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3.3.3 Costs & Benefits of a Stock Policy 

The total cost of an individual stock policy is typically comprised of sub-cost 

elements.  For our total cost, we use four sub-cost elements: procurement, holding, 

transportation, and lost revenue (i.e. machine is down for lack of part).  We recognize 

there are other sub-costs such as spoilage, disposal, salvage, etc., but they are assumed to 

be small, and not used in this research.   

Let 𝑃𝐶𝑝𝑙 be the procurement cost of part, p, from the supplier for location, l.  Let 

𝐻𝐶𝑝𝑙 be the holding cost, which is 15% of 𝑃𝐶𝑝𝑙 per year for this firm.  Let 𝑇𝐶𝑝𝑙 be the 

expedited transportation cost (to get a spare part to the downed machine), which is $350 

per transport action for this firm.  Finally, let 𝑅𝐶𝑝𝑙 be the lost revenue cost, incurred 

because the machine was down/unserviceable due to the lack of a part, which is an 

average of $6,238 per downing incident for this firm.  The total cost of any individual 

stock policy containing (|P| x |L|) SKUs is given by: 

 
𝐶𝑜𝑠𝑡 =∑ ∑ 𝑃𝐶𝑝𝑙 + 𝐻𝐶𝑝𝑙

|𝐋|

𝑙=1

|𝐏|

𝑝=1
+ 𝑇𝐶𝑝𝑙 + 𝑅𝐶𝑝𝑙      

           (9) 

 

Stock policy determines whether the SKU will be stocked or not.  Subsequently, 

for a given time interval, the SKU will either be demanded or not demanded.  Thus, there 

are four discrete cases as shown in Table 3. 

Table 3: Four Discrete Cases of Stocking/Demanding 

Case Description Stock Policy Cost 

1 SKU stocked; subsequent demand Cost = 𝑃𝐶𝑝𝑙 + 0.5 𝐻𝐶𝑝𝑙 +0 +0 

2 SKU stocked; no subsequent demand Cost = 𝑃𝐶𝑝𝑙 + 𝐻𝐶𝑝𝑙 +0 +0 

3 SKU not stocked; subsequent demand  Cost = 0 + 0 + 𝑇𝐶𝑝𝑙  + 𝑅𝐶𝑝𝑙  

4 SKU not stocked; no subsequent demand Cost = 0 + 0 + 0 + 0  
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For case 1, the policy would proactively stock the SKU; as such, there is a cost to 

procure the part, 𝑃𝐶𝑝𝑙; a cost to hold the part for an assumed 6 months (before demand 

occurs), 0.5𝐻𝐶𝑝𝑙 ; no expediting transportation costs, 𝑇𝐶𝑝𝑙, and no lost revenue cost, 

𝑅𝐶𝑝𝑙  (since the part was proactively stocked at the given location).  For case 2, the 

policy would proactively stock the SKU; as such, there is a cost to procure the part, 𝑃𝐶𝑝𝑙; 

a cost to hold the part for the entire year (no demand occurred), 𝐻𝐶𝑝𝑙 ; no expediting 

transportation costs, 𝑇𝐶𝑝𝑙 , and no lost revenue cost, 𝑅𝐶𝑝𝑙.  For case 3, the policy would 

not proactively stock the SKU; as such, there are no costs to procure, 𝑃𝐶𝑝𝑙 ,  or hold the 

part, 𝐻𝐶𝑝𝑙; because a demand occurs there are expediting transportation costs, 𝑇𝐶𝑝𝑙, and 

lost revenue cost, 𝑅𝐶𝑝𝑙.   For case 4, the policy would not proactively stock the SKU; as 

such, there are no costs to procure, 𝑃𝐶𝑝𝑙 ,  or hold the part, 𝐻𝐶𝑝𝑙; because a demand did 

not occur, there are no expediting transportation costs, 𝑇𝐶𝑝𝑙 , and no lost revenue cost, 

𝑅𝐶𝑝𝑙.       

3.3.4 Experiment to Generate Potential Condition-Based Stock Policies 

Given the importance of procurement costs, 𝑃𝐶𝑝𝑙,to equation (9), it is also 

included as a design factor to consider in the condition-based stock policy.  To keep the 

size of the experiment reasonable, procurement costs were discretized into 10 buckets 

{$10.00, $25.95, $53.96, $100.00, $172.21, $281.51, $442.34, $673.64, $1,000.00, & 

$1,453.04}.  The buckets are, by design, not uniform because sampling at smaller 

intervals, at the lower end of procurement costs, was desired.  An expression, 10√𝑗 , used 

to produce the ten values above by incrementing j from 1 to 10.  
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We fully enumerated a two factor experiment.  Given the factors have levels of 11 

and 10 respectively; the enumerated space contains 110 discrete stock policies.  The 

proposed condition-based stock policy is a two-parameter pairing, containing the 

minimum number of locations (with historical demand), 𝑅𝑝
𝑡 , and the maximum 

procurement cost, 𝑃𝐶𝑝𝑙. The first two and last two condition-based stock policies from 

this enumerated space, K, are shown along with a narrative in Figure 11.   

 

 

k = 1, Stock Policy (1, $10)                 ‘ Stock SKU if 𝑅𝑝
2011 ≥ n =1 & 𝑃𝐶𝑝𝑙  ≤ $10.00 

k = 2, Stock Policy (1, $25.95)             ‘ Stock SKU if 𝑅𝑝
2011 ≥ n=1 & 𝑃𝐶𝑝𝑙 ≤  $25.95 

   ... 

k = 109, Stock Policy (11, $1000)        ‘ Stock SKU if 𝑅𝑝
2011 ≥ n=11 & 𝑃𝐶𝑝𝑙 ≤ $1000 

k = 110, Stock Policy (11, $1453)       ‘ Stock SKU if 𝑅𝑝
2011 ≥ n=11 & 𝑃𝐶𝑝𝑙 ≤ $1,453 

Figure 11: |K| = 110 Stock Policies to Test 

 

3.4 Testing the New Condition-Based Stock Policies 

The focus is on set 𝐒1
2011′′, which contains 18,137 SKUs without demand in 2011.  

Of these 18,137 SKUs, 1,934 had at least one demand in 2012, that is  |𝐒1
2011′′ ∩ 𝐒1

2012′| 

= 1,934.  The demand-based policy is to not stock any of these parts at any location; as 

such, all 1,934 actual demands had implications to the revenue generating machine.  

Using equation (9), the demand-based stock policy cost the firm $12.9M.  With the 

demand-based stock policy cost determined, the 110 condition-based stock policies are 

tested; motivated by the desire to improve the cost-effectiveness of stock policy on these 

very sparse, intermittently demanded, inexpensive parts. 
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3.4.1 Pseudo Code to Test Potential New Stock Policies 

The following pseudo code describes the methodology used to test the 110 

potential new stock policies, including use of equation (9) to determine the cost and 

benefits of the potential condition-based stock policies.   

For n = 1 to |L|                                                 ‘ numerical value to compare to 𝑅𝑝
2011 

For j = 1 to 10               ‘ runs thru the range of cost buckets to test 

part cost  = 10√𝑗    ‘ numerical value to compare to 𝑃𝐶 

For ∀ 18,137 (p,l) (SKUs in 𝐒1
2011′′)  ‘ test policy on SKUs with no 2011 demand  

If 𝑃𝐶𝑝𝑙 ≤ part cost & 𝑅𝑝
2011 ≥ n        ‘ policy will stock these SKUs     

If (p,l) ∈ 𝐒2012
′
 then    ‘  subsequent demand in 2012 

Cost1 =  Cost1  + (𝑃𝐶𝑝𝑙+ 0.5𝐻𝐶𝑝𝑙)          ‘  case 1 

Else        ‘  no subsequent demand in 2012 

Cost2 =   Cost2 + (𝑃𝐶𝑝𝑙+ 𝐻𝐶𝑝𝑙)          ‘  case 2 

End If       

Else                                         ‘ policy will not stocks these SKUs     

If (p,l) ∈ 𝐒2012
′
 then    ‘  subsequent demand in 2012 

Cost3 =   Cost3 + (𝑇𝐶𝑝𝑙+ 𝑅𝐶𝑝𝑙)       ’ case 3 

Else        ‘  no subsequent demand in 2012 

Cost4 =   0           ‘   case 4 

End If       

End If 

Cost (n, j) = ∑ 𝐶𝑜𝑠𝑡𝑖
4
𝑖=1                               ‘ record stock policy (min Rp, max 𝑃𝐶𝑝𝑙) cost 

Next j 

Next n  

3.5 Initial Experimental Results 

As anticipated, as stock policies increase the number of SKU’s proactively 

stocked, procurement costs, 𝑃𝐶𝑝𝑙, and holding costs, 𝐻𝐶𝑝𝑙, go up while loss of revenue, 

𝑅𝐶, and expedited transportation costs, 𝑇𝐶𝑝𝑙go down.   This occurs when the number of 

locations 𝑅𝑝
𝑡  is small (≤ 2) and the procurement costs 𝑃𝐶𝑝𝑙 are high (≥ $1000).  The 

converse is also true; as the stock policies decrease the number of SKU’s proactively 
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stocked, procurement costs, 𝑃𝐶𝑝𝑙, and holding costs, 𝑃𝐶𝑝𝑙, go down, while loss of 

revenue, 𝑅𝐶𝑝𝑙, and expedited transportation costs, 𝑇𝐶𝑝𝑙 go up.  A contour plot, using 

common software, of the results is shown in Figure 12.  Each dot in the plot resents one 

of the 110 stock polices that were tested.   

 

                

          Figure 12: Contour Plot of Case Study Results 

 

As the number of locations, 𝑅𝑝
𝑡 , increases to four and above, it is observed that 

contours do not continue.  This region of the area is relatively flat because the costs of 

those stock policies remain about equal.  Looking at each decision provides insights, and 

highlights the fact that this problem instance is all about very sparse, intermittently-
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four+ locations.  In fact, none of the 3,111 parts had demand at 9 or more locations.  For 

this problem instance, any/all new condition-based stock policies where 𝑅𝑝
𝑡  ≥ 9, produce 

the same cost/benefits as the demand-based stock policy; the demand-based and 

condition-based stock policies, albeit for completely different reasons, simply don’t 

proactively stock SKUs in advance of demand.   

Recall the firm’s current policy is to stock none of these 18,137 SKUs, and the 

demand-based stock policy cost per equation (9) is $12.9M.  Following the contour lines 

in Figure 12 from right to left, each contour represents a change of $-1M.   With seven 

contours, the contour line farthest left represents costs of $5M; cutting the As Is demand-

based stock policy cost by $7.9M.  Table 4 lists the top 25 cost-effective condition-based 

stock polices, along with the As Is demand-based stock policy (Appendix A contains the 

results of all 110 tested condition-based stock policies). 

For this problem instance, it is very clear that a condition-based stock policy is 

much more cost-effective than the As Is demand-based stock policy, which does not 

stock any of the very sparse, intermittently-demanded items because λ ≈ 0; thus, no lead 

time demand.  Additionally, a condition-based stock policy that recognizes and uses 

smaller values of 𝑅𝑝
𝑡  proactively stocks more SKUs and leads to a more cost-effective 

policy than the As Is demand-based stock policy, especially when the condition-based 

stock policy includes the procurement cost, 𝑃𝐶𝑝𝑙.   
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Table 4: Cost/Benefits of As Is & Top 25 Condition-Based Polices (Rp
t , PCpl) 

 

3.6 Conclusions and Future Research 

Our framework to find a conditioned-based stock policy for the very sparse, 

intermittently-demanded, inexpensive parts demonstrates the possibility of a large 

dividend.  Ketchen and Hult remind us that best-value supply chains are agile and have a 

“strong ability to be proactive as well as responsive to changes.” [43].  Using a 
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generalized Bayesian approach, our framework provides a method to identify condition-

based policies that would proactively stock some SKUs because doing so advances the 

cost-effectiveness of the stock policy.  The SCM should procure many inexpensive items, 

in advance of demand, and forward stock them to reduce the down time of revenue-

generating machines. 

This study leveraged 12 months of actual demand data to capture costs and 

benefits.  It is desirable to expand from one year to two years of actual demand data to 

evaluate the stock policy, including an annual update to the SKUs that get stocked by the 

policy.  The costs in equation (9) can easily be expanded to include the second year.  

With the additional data, for example, the framework would capture the reduced 𝑅𝐶𝑝𝑙and 

𝑇𝐶𝑝𝑙 costs as a result of getting additional demand in the second year, as well as the 

additional 𝐻𝐶𝑝𝑙 for those that don’t.  Furthermore, equation, (9) could be expanded to 

contain cost elements for salvage and disposal.    

3.6.1 Update - Real World Implementation 

This paper shows significant merit in determining condition-based stock policy 

for a subset of parts on the revenue-generating machine; namely, the very sparse, 

intermittently-demanded, inexpensive items.  The merit exits because the Bayesian 

beliefs associated with equations (4) and (7) are shown to be valid with empirical data.   

The same Bayesian beliefs were accepted by AF leadership and the AF stood up a 

centralized management team in Fiscal Year 2012.  This team implemented a condition-

based stock policy called Proactive Demand Leveling [44], demonstrating the value of 

our framework to the operational world.   
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Our framework can be used to determine condition-based stock policies on the 

very sparse, intermittently-demanded, inexpensive parts; ultimately, achieving the SCM’s 

desire to improve the cost-effective readiness of the firm’s revenue-generating machines.      
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IV. Improved Stock Policy for Very Sparse, Intermittently-Demanded 

Reparable Items  

4.1 Motivation 

The motive behind chapters 3 and 4 is to advance the management of the very 

sparse, intermittently-demanded parts of the revenue-generating machine.  Chapter 3 

focuses on the inexpensive/consumable parts.   Chapter 4 shifts to the 

expensive/reparable parts which contain additional challenges:  

“Our interest is the support of systems, and it turns out that the availability of these 

is dominated by repairable items.  These repairable items tend to be expensive, and the 

demand at a base for any particular item tends to be low.  Another reason to pay special 

attention to repairable spares is that they tend to have longer lead times.  If we buy an 

insufficient quantity, it will take longer to rectify the error” – Sherbrooke [1] 

4.2 Introduction 

As hinted by Sherbrooke, the expensive parts require two additional ‘dimensions’ 

to manage, namely: (1) the repair policy is needed because unserviceable parts can often 

be repaired to serviceable condition and, (2) the high costs of these parts often shifts the 

network-based decision where to stock.  For clarity, a serviceable asset is a part that is 

operational and ready to be installed on the revenue-generating machine; an 

unserviceable asset is a failed part that has been removed from the revenue-generating 

machine and needs to be repaired before it can be used again.  As for the network, shown 

in Figure 13, the term multi-echelon [19] [39] [18] is typically used to describe the 

network where a wholesale supply node provides parts to retail demand node(s).     
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Figure 13: Focus of Chapters 3 & 4 Related to Multi-Echelon Network 

` 

Chapter 3 can be thought of as a retail problem instance because it’s attempting to 

push some of the  inexpensive, intermittently-demanded spare parts right next to the 

revenue-generating machines; thus, avoiding resupply time t2 from Figure 13.  Chapter 4 

is primarily a wholesale problem instance where the supply chain manager has the 

difficult decision: should they stock 0 spare parts, or 1, or more, just to be safe?  Also, 

given these items are reparable, should the supply chain manager repair any/all of the 

unserviceable part(s) and stock them as serviceable – OR – leave them unserviceable and 

repair only when needed by a revenue-generating machine? 

The intermittently-demanded, expensive parts in our research are parts that (1) are 

coded as being reparable and (2) have at least 50% of the time intervals with zero 

demand.  We note that our definition of intermittent demand further restricts Boylan’s 

definition [8].  The parts in our research are represented by the set P, shown in Figure 14.  

For notation clarity, let p be an individual part, 𝑝 ∈ P.  
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Figure 14: Set P, the Parts Included in this Research 

 

4.2.1 Stock Policy: Complexity of Reparable Parts 

Supply chain stock policy is typically defined by a three parameter notation [7] 

which defines the engagement rules for the supply chain manager’s resources.  A 

common, general policy is (s, Q, R), where: s defines the reorder point, Q defines the 

replenishment quantity (often Wilson’s EOQ), and R defines the review period.  When 

the review period is continuous, the R is often omitted and the notation contains only two 

parameters (s, Q).   

Using (7, 3, 30) as a repair-only example: every 30 days (i.e. R), serviceable on-

hand assets are reviewed and if 7 (i.e. s) or fewer exist, then an order is placed by the 

supply chain’s repair resources for a quantity of 3 (i.e. Q).  Two key additional questions 

arise. (1)  What if there are not enough unserviceable assets to repair?  (2) What if 

some/all of the unserviceable parts are beyond repair and must be condemned?  Answers 
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to these questions hint at the need to procure additional parts and highlights the natural 

interaction between repair and procurement stock policies.   

To differentiate between the procurement stock policy and the  repair stock 

policy, we use a superscript Pro for procure and Rep for repair.  Thus, the procurement 

stock policy is defined by (s
Pro

, Q
Pro

, R
Pro

) and the repair stock policy is defined by (s
Rep

, 

Q
Rep

, R
Rep

).  For both the repair and procure processes, it is the reorder point, s, that 

triggers the supply chain resources to take action, but there is a distinct difference 

between the two that must be clear.  For repair, only serviceable assets are counted and 

compared to s
Rep

; however, for the procurement process, all assets (serviceable and 

unserviceable) are counted and compared to s
Pro

. 

We show an example of this interaction over time, using an asset-based diagram 

of a notional part via Figure 15.  At time t4, some asset(s) are condemned because they 

are beyond repair; no procurement action is taken because the procurement reorder point, 

s
Pro

, is not yet breached.  Again, at time t9, some asset(s) are condemned because they are 

beyond repair; however, this time, the procurement reorder point is breached and the 

supply chain manager’s procurement resources engage to procure Q
Pro

 asset(s). 
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Figure 15: Notional Timeline of Changing Assets and Stock Policy Actions 

 

4.3 The Research Question 

The scope of this chapter is to create a framework that can improve stock policies 

for both procurement (s
Pro

, Q
Pro

, R
Pro

) and repair (s
Rep

, Q
Rep

, R
Rep

).  The research question 

is: what advancements can be made to stock policy on expensive/reparable items that 

have near-zero lead time demand– yet if/when demanded, will likely down the revenue 

generating machine for a substantial length of time? 

There are several approaches a supply chain manager could use to answer the 

research question and improve stock policies.  We propose one such approach in Section 

4.4 and follow up an actual case study in Section 4.5 that uses the proposed approach.  

Finally, we provide a summary and conclusion in Section 4.6. 

t1

t2

t3 t4
t5 t6

t7

t8

t10

t9
t11 t12

sPro

sRep

sPro + QPro

sRep + QRep

Serviceable Assets All Assets (serviceable & unserviceable)

time (t) event

1, 2, 3 part failure(s) - decrement serviceable assets, increment unserviceable assets

3 breach of repair reorderpoint, s   - invoke repair process (to get Q more serviceable assets)

part(s) repaired - decrement unserviceable assets, increment serviceable assets

parts(s) condemned - decrement total assets (sum of serviceable and unserviceable assets)

5 part failure(s) - decrement serviceable assets, increment unserviceable assets

6 part(s) repaired - decrement unserviceable assets, increment serviceable assets

7, 8 part failure(s) - decrement serviceable assets, increment unserviceable assets

8 breach of reorder point, s  - invoke repair process (to get Q  more serviceable assets)

part(s) repaired - decrement unserviceable assets, increment serviceable assets

parts(s) condemned - decrement total assets (sum of serviceable and unserviceable assets)

breach of procure reorder point, s  - invoke procure process (to get Q  more assets)

10, 11 part failure(s) - decrement serviceable assets, increment unserviceable assets

11 breach of repair reorder point, s - invoke repair process to get q more serviceable assets

part(s) repaired - decrement unserviceable assets, increment serviceable assets

part(s) procured - increment total assets
12

4

9
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4.4 The Approach to Address the Research Question 

The approach is to construct a framework to extend Bachman’s [24] work.  For 

consumable-only intermittently-demanded parts, Bachman’s method looks back upon 

previous time intervals and establishes the maximum demand, by part.  The maximum 

demand is combined with a user-determined multiplier, which is greater than or equal to 

0.  The reorder point, s, is then determined as 

 s = multiplier * maximum demand (10) 

Bachman shows in [24]  that using this method produces improved stock policy 

for the intermittently-demanded consumable parts managed by the Defense Logistics 

Agency.  We expand on Bachman’s work by adding reparable parts, which adds 

significant complexity. Shown in Figure 16 are demand and condemnation quantities, by 

part, plotted over a given time interval t, which is comprised of k intervals.  Let the 

maximum demand for each part, p, over k intervals be:  

 max dmd𝑝 = max {demand𝑝,1, demand𝑝,2, … , demand𝑝,𝑘}  (11) 

Similarly, let maximum condemnations be: 

 max cmd𝑝 = max {condemns𝑝,1, condemns𝑝,2, … , condemns𝑝,𝑘}  (12) 

The maximum demand and maximum condemnations will be used in the development of 

the procurement and repair stock policies we seek. 
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Figure 16: Demand and Condemnations on Two Example Parts 

 

4.4.1 Defining Procurement and Repair Stock Policies 

Let 𝑚𝑢𝑙𝑡𝑝
𝑅𝑒𝑝

 be a user-defined parameter defined by real numbers in the 

range [0, ∞).  Let the reorder point for the repair process, for a given part p, be defined 

as: 

 sp
Rep

= max dmd𝑝  ∗ 𝑚𝑢𝑙𝑡𝑝
𝑅𝑒𝑝

 (13) 

When this repair multiplier is zero, the repair reorder point is also zero which means the 

supply chain manager’s resources don’t take repair actions until there are no serviceable 

assets.  Suppose the multiplier is 3.5 and the maximum demand for a given part is 2, then 

(13) produces the repair reorder point of 7.  Given the common desire for a firm to 

minimize inventory, the assumption is that very expensive parts to repair will have 

smaller repair multipliers, relative to the parts that are cheaper to repair.   
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Similarly, Let 𝑚𝑢𝑙𝑡𝑝
𝑃𝑟𝑜 be a user-defined parameter defined by real numbers in 

the range [0,∞).  Let the reorder point for the procurement process, for a given part p, be 

defined as: 

 sp
Pro = (max dmd𝑝+max cmd𝑝)  ∗ 𝑚𝑢𝑙𝑡𝑝

𝑃𝑟𝑜 (14) 

When the procurement multiplier is zero, the procurement reorder point is also zero 

which means the supply chain manager’s resources don’t take actions to procure assets 

until no spare assets (serviceable and serviceable) exist.  Suppose the multiplier is 1.5, the 

maximum demand is 4, and the maximum condemnations are 2, then (14) produces the 

procurement reorder point of 9.  Similar to repair, the assumption is that the very 

expensive parts to procure will have smaller procurement multipliers, relative to the parts 

that are cheaper to procure. 

 Equations (13) and (14) show specific repair and procurement multipliers for a 

given part, p.  Having a specified repair and procurement multiplier for each part, p, 

could be computationally challenging when |P| is large, as is the case on many revenue-

generating machines [38] [45] [27].  For example, if |P| = 10,000 then 20,000 values must 

be determined for the procurement and repair multipliers.  On the other end of the 

spectrum, a single multiplier could be used for repair and procurement for all parts.  

Using this methodology requires the supply chain manager to determine how many 

multipliers, or groupings of parts, to use.  Bachman [24] suggests a good starting point is 

four to six groupings; with four groups, break points could be set at 25%, 50%, and 75%; 

with six groups, break points could be 5%, 25%, 50%, 75%, and 95%. 
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To complete the stock policies, let Qp
Pro and Qp

Rep
  be user-defined parameters 

defined by positive integers in the range [0,∞).    

4.4.2 Description of the Underlying Decision Variables 

Given the need to establish groups for repair and procurement, we partition the 

parts, p ϵ P, into n subsets according to repair cost and m subsets according to 

procurement cost.  The partitioning for repair places each part into a disjoint (repair) 

subset, that is: 𝑝𝑖⋂𝑝𝑘 = ∅ ∀𝑖 ≠ 𝑘  and ⋃ 𝐏𝑖
𝑛
𝑖=1 = 𝐏.  Similarly, partitioning for 

procurement places each part into a disjoint (procurement) subset, that is: 𝑝𝑖⋂𝑝𝑘 =

∅ ∀𝑖 ≠ 𝑘  and ⋃ 𝐏𝑗
𝑚
𝑗=1 = 𝐏.   

Given the partition, then n-1 decision variables are needed to identify the break 

points for the n repair groups.  Similarly, m-1 decision variables are needed to identify 

the break points for the m procurement groups.   

Additionally, n decision variables we call 𝑚𝑢𝑙𝑡𝑖
𝑅𝑒𝑝, 𝑖 = {1, … , 𝑛} are needed to 

determine repair multipliers.  Similarly, m decision variables we call 𝑚𝑢𝑙𝑡𝑗
𝑃𝑟𝑜, 𝑗 =

{1,… ,𝑚}  are required to determine procurement multipliers.  Using m and n in our 

group notation, the reorder points for out repair and procurement stock policies are 

defined as: 

sp
Rep

= max dmd𝑝  ∗ 𝑚𝑢𝑙𝑡𝑖
𝑅𝑒𝑝    ∀𝑝 ∈ 𝐏𝑖, 𝑖 = {1,… , 𝑛}  (15) 

sp
Pro = (max dmd𝑝 +max cmd𝑝)  ∗ 𝑚𝑢𝑙𝑡𝑗

𝑃𝑟𝑜 ∀𝑝 ∈ 𝐏𝑗, 𝑗 = {1, … ,𝑚}  (16) 

   

In total, as shown in Table 5, 3n+3m decision variables are required in order to 

determine the procurement and repair stock policies.  Since m and n can range from 1 to 
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|P|, the total number of decision variables can range from a minimum of 6 to a maximum 

of 6|P|.   

Table 5: Summary of the Decision Variables 

 

 

4.4.3 Multi-objective Functions 

The procurement and repair stock policies drive many objectives that have 

varying levels of importance to the supply chain manager, depending upon the given 

firm.  Four objectives, likely common to many supply chain managers, are: (1) minimize 

customer wait time, (2) minimize the dollars of inventory to carry, (3) minimize the 

dollars required to repair unserviceable assets, and (4) minimize the dollars required to 

procure assets.  Given four objectives, one could employ a multi-objective function [46]. 

 

         min 𝑦 = (𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥)) 

 s.t.  𝑥 ∈ 𝑋         

‘ multi-objective function 

‘ decision variables within space  

(17) 

 

Not that all of the decision variables are defined, we demonstrate one procedure 

for optimizing the supply chain mangers decisions based on these variables.  In Section 

4.5, we apply the approach via a case study.  A deterministic simulation is used to 

Decision Variable Description Count
Lookback time 1

Interval size 1

Price breaks (for n buckets of repair) n-1

Multipliers for repair n 

Quantity for repair n

Price breaks (for m buckets of procurement) m-1

Multipliers for procurement m 

Quantity for procurement m

totals 3n + 3m
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calculate the objectives of interest based on choices for the decision variables, then we 

apply a meta modeling approach to replace the simulation calculations with a less 

complex function that we then use optimize our objectives. 

4.5 Case Study: 1755 Parts on the B-1 

To test the proposed framework, we perform a case study on reparable parts 

belonging to the B-1 fleet of aircraft.  To establish the parts for set P, we used 20 

intervals defined by the 20 quarters of ‘look back’ data ranging from Oct 2004 – Oct 

2009.  We include only reparable parts that have sparse intermittent demand, defined by 

demand in 10 or fewer of the 20 quarterly intervals.  This segmentation resulted in 1,755 

parts in P.  We used the same 20 quarters of data to compute the maximum demand using 

(11) and maximum condemnations using (12) for each of the 1,755 parts.  Lastly, we 

pulled both repair times and procurement times for the 1,755 parts.   

4.5.1 Reducing and Establishing Decision Variables for our Case Study 

For our case study, we fix the values on some variables as appropriate for our 

problem instance.  This reduces the number of required decision variables from (3m +3n) 

to (m + n).   

The decision variable, t, is set to a ‘look back’ time of five years and the decision 

variable for number of intervals is set to 20 quarters.  We use uniform splitting (equal 

number of parts) and established six groupings for repair and six groupings for 

procurement; thus, m = n = 6.  Given the desire to have six repair groups with equal 

numbers of parts, the five (n-1) price breaks for repair are: {$425, $990, $2270, $5625, 

and $24700}.   Given the desire to have six procurement groups with equal numbers of 
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parts, the five (m-1) price breaks for procurement are: {$685, $1550, $4000, $11305, and 

$71675}.  

Given our case study is on the very sparse, intermittently-demanded items, and 

that the USAF employs a repair on demand policy and primarily only procures assets 

according to condemnations, we fix the values for all six 𝑄𝑅𝑒𝑝 and all six 𝑄𝑃𝑟𝑜 to one; 

that is: 𝑄m
Pro = 𝑄n

Rep
= 1.  We are then left with 12 decision variables: six decision 

variables for repair (𝑚𝑢𝑙𝑡1
𝑅𝑒𝑝

,… ,𝑚𝑢𝑙𝑡6
𝑅𝑒𝑝) and six decision variables for procurement 

(𝑚𝑢𝑙𝑡1
𝑃𝑟𝑜,… ,𝑚𝑢𝑙𝑡6

𝑃𝑟𝑜).  These decision variables are used in (15) and (16) to determine 

the reorder portion of the stock policies.   

4.5.2 Addressing a Four-Objective Problem: Scalarization Techniques 

While multiple criteria problems are challenging, there are multiple modeling 

techniques used to solve them [46].  One technique, scalarization, has two different 

methods that can be used: (1) the weighted-sum method, which aggregates the multiple 

objectives into a single objective to be optimized, and (2) the epsilon constraint method, 

which retains a single objective to optimize and utilizes the remaining objective(s) as 

constraints.    

An example of the weighted sum modeling method for our problem instance, 

could be a single (objective) function such as:  

          min 𝑦 =
4

7
𝐶𝑊𝑇 +

1

7
𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 +

1

7
𝑟𝑒𝑝𝑎𝑖𝑟𝑐𝑜𝑠𝑡 +

1

7
𝑝𝑟𝑜𝑐𝑢𝑟𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡)  (18) 

 

The weighted sum method can be effectively used when appropriate weights are known a 

priori.  This implies the decision maker or SME has knowledge of all the objectives and 
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‘pre-builds’ the trade-space into the singularized objective function, such that it can be 

optimized.  The weighted sum method becomes very difficult to use on problem instances 

that don’t lend themselves to a natural, a priori assignment of the weights.  For example, 

CWT may be critically important to one person or organization within the firm who 

interfaces with operators of the revenue-generating machines.  However, inventory is 

probably the most important objective to a person or organization within the firm who 

manages ‘excess’ inventory.  Therefore, one person or organization would put an 

extremely high weight on CWT while another would do the same on inventory.  The 

weighted sum method is a viable       

An application of the epsilon constraint modeling method, for our problem 

instance, could be: 

          

 

                                       min 𝑦1 = 𝐶𝑊𝑇                                                                      

                                                 s.t.  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 = 𝑦2 ≤ 𝜀2 

                                                   𝑅𝑒𝑝𝑎𝑖𝑟 𝐶𝑜𝑠𝑡 = 𝑦3 ≤ 𝜀3 

                                                   𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 = 𝑦4 ≤ 𝜀4 

 

(19) 

For our research, we use the epsilon constraint method because weightings for the 

relative values of the responses are not available.  Suppose a firm has a limit on how 

much inventory they want to carry.  This limit can be used for 𝜀2 in (19).  The same can 

be said for repair and procurement costs, 𝜀3 and 𝜀4.   Even if the firm does not have limits 

for the constraints, the epsilon constraints can be evaluated at multiple settings within 

practical, feasible ranges to show decision makers what types of trade-offs can be made 

between the objectives.      
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A natural consequence of the USAF’s ‘on demand’ repair operations and limited 

procurement, as demonstrated with procurement and repair quantities set to 1 (ref 4.5.1 

where 𝑄m
Pro = 𝑄n

Rep
= 1), is that any changes to the underlying, steady-state objectives 

for repair and procurement costs will likely be unchanged.  The repair and stock policies 

we seek to develop, will likely change the inventory and may drive a one-time change to 

procurement and repair activity and thus impact procurement and repair costs, but 

following the implementation of the new policies, procurement and repair activity will 

return to steady state by again operating in ‘on demand’ mode.  Thus, the objectives for 

procurement and repair costs are not of primary concern within our problem instance.  

The focus, then, remains on the objectives of customer wait time and dollars of inventory. 

Because our motive is to improve upon the current stock policy, we capture and 

record the current performance.  The baseline As Is policy results in $297.6M of 

inventory and produces a 23.03 day average customer wait time.  We can use these as 

constraints within the epsilon constraint modeling method.  The epsilon constraint 

modeling method requires a known function of the impact of the decision variables on the 

response.  A function is desirable because evaluating a function, or its derivative, at a 

number of values is typically easier than running experiments for each value [47].  

4.5.3     Metamodel Approach 

  The multi-objective function of (17) may become very large and extremely 

complex.  For our problem instance, 12 decision variables are combined with data from 

1,755 parts and computations must be made, over time, to determine the objectives for 

average dollars of inventory and customer wait time performance.  When many factors 
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exist and/or the system is rather complex, deterministic simulation models are a viable 

approach for the researcher/engineer to arrive at solutions [48].  Additionally, when 

designed experiments are applied to simulated systems, the data from the experimental 

design is used to build a metatmodel [48] [49] and the metamodel is used for 

optimization and building the response surface.     

To find procurement and repair policies that advance the cost-effectiveness of the 

supply chain, our case study focusses on the response surface and finding solutions that 

improve upon the baseline performance of CWT and inventory.  Solution points that are 

equal to or better than all objectives are called nondominated points [46].  We seek to 

find nondominated points of CWT and inventory.  For our problem instance, 

nondominated points would require no more than $297.6M of inventory and perform 

with a customer wait time of 23.06 days or better. 

To find advanced stock policies, we use designed experiments to estimate the 

relationship between CWT, inventory costs, and our decision variables.  Figure 17 shows 

the overview of our approach.  The first step is to establish bounds on the 12 decision 

variables.  The second step is to create the metamodel.  The third step is to evaluate the 

adequacy of the metamodel.  If the metamodel is not adequate, an improvement to the 

metamodel is desired, as shown via the feedback arrow in Figure 17.  We note that if the 

metamodel can’t be improved, other methods such as the steepest ascent/descent [48] can 

be used to determine optimal points.  Our fourth step is to use the metamodel to produce 

viable operating points; preferably, nondominated points.   
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Figure 17: Use of Metamodel in Research  

 

Step 1, Establish Bounds on Decision Variables:  Because the 12 decision 

variables could take on all positive real numbers, we recognize the utility in establishing 

bounds.  Several approaches could be used to limit the decision variables.  One common 

approach is to have them bounded by a subject matter expert.  For our problem instance, 

we establish bounds on the 12 multipliers using underlying limits specific to our problem 

instance.  The six repair multipliers will be bounded by determining the minimum 

multiplier that results in repairing all unserviceable assets.  The six procurement 

multipliers will be bounded by using the $297.6M inventory baseline.  For both the 

procurement and repair multipliers, we use the bisection method [50].  The bisection 

method works by finding values above and below a point of interest, and then converges 

by moving a user-defined step in each iteration until the solution is found. 

To find the bounds on the six repair multipliers, all are initially set to zero.  Then, 

one at a time, the individual multipliers are incremented until its value results in a 

maximum response of inventory.  This occurs when all unserviceable assets are repaired.    

For our problem instance, we begin with a step size of 10, then double each iteration until 

two iterations in a row produce the same response.  We then use the bisection method to 

find the minimum multiplier that still forces all unserviceable assets to be repaired.   
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Bounds on the six procurement multipliers are found similarly.  We begin with a 

step size of 10, then double (if under $297.6M) or cut in half (if under $297.6M) each 

iteration until the $297.6M is breached.  Given multipliers above and below the $297.6M 

point of interest, we use the bisection method and terminate when the two multipliers 

(that produce inventory just above and just below the $297.6M point of interest) are 

within 2% of each other.  The two applications of the bisection method produce bounds 

on the 12 decision variables as recorded in Table 6. 

Table 6: Limits on 12 Decision Variables 

Procurement Decision Variables Repair Decision Variables 

𝑚𝑢𝑙𝑡1
𝑃𝑟𝑜 = [0, 1262] 𝑚𝑢𝑙𝑡1

𝑅𝑒𝑝 = [0, 153] 

𝑚𝑢𝑙𝑡2
𝑃𝑟𝑜 = [0,113] 𝑚𝑢𝑙𝑡2

𝑅𝑒𝑝 = [0, 247] 

𝑚𝑢𝑙𝑡3
𝑃𝑟𝑜 = [0, 31] 𝑚𝑢𝑙𝑡3

𝑅𝑒𝑝 = [0, 107] 

𝑚𝑢𝑙𝑡4
𝑃𝑟𝑜 = [0, 12.8] 𝑚𝑢𝑙𝑡4

𝑅𝑒𝑝 = [0, 144] 

𝑚𝑢𝑙𝑡5
𝑃𝑟𝑜 = [0, 7.5] 𝑚𝑢𝑙𝑡5

𝑅𝑒𝑝 = [0, 149] 

𝑚𝑢𝑙𝑡6
𝑃𝑟𝑜 = [0, 1.77] 𝑚𝑢𝑙𝑡6

𝑅𝑒𝑝 = [0, 26] 

 

Step 2, Create Metamodel:  The purpose of the metamodel is to provide a set of 

equations (one per response) to show how the decision variables impact the response [48] 

[49].  For our problem, the metamodel will be used to generate an equation for CWT and 

an equation for inventory.  With these equations, we determine optimal settings of the 

decision variables. 

To create our metamodel, we utilize a sphere packing design.  A sphere packing 

design falls under a more generalized design called space filling.  Space filling designs 

are appropriate when deterministic simulation is modeling the underlying system [48].  
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Space filling designs spread the design points out nearly evenly throughout the region of 

experimentation.  “This is a desirable feature if the experimenter doesn’t know the form 

of the model that is required, and believes that interesting phenomena are likely to be 

found in different regions of the experimental space” [48].  The space filling design is 

appropriate for our problem instance; however, the supply chain manager should choose 

an experimental design that is appropriate for his/her environment.   

The sphere packing design requires high and low values for the decision variables 

and the number of runs.  Collectively, the high/low values and number of runs, determine 

the experimentation settings, or granularity of the decision variables to test.  We set the 

number of runs to 500.  The choice of number of runs is usually linked to cost and the 

supply chain manager should run as many points as affordability allows.  The low values 

for our decision variables are zero.  The high values for our decision variables are the 

upper bounds per Table 6.  We show results of the 500 runs in the scatter plot of Figure 

18.    

 

Figure 18: Scatter Plot of 500 Runs 
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The metamodel will be used capture the response and provide usable information 

at feasible regions of operation.  We build the initial metamodel to estimate 91 terms, 

comprised of: (1) intercept, (12) main effects, (66) two-way interactions, and (12) main 

effects squared.  A summary of the 91 terms is shown in Table 7.  

Table 7: Terms Considered for Metamodel 

Count Term Notation 

1  Intercept     b 

12  Main Effects     𝑚𝑢𝑙𝑡𝑖
𝑅𝑒𝑝 , 𝑖 = {1,… ,6}  &  𝑚𝑢𝑙𝑡𝑗

𝑃𝑟𝑜 , 𝑗 = {1,… ,6} 

36  2 Way Interactions     (𝑚𝑢𝑙𝑡𝑖
𝑅𝑒𝑝)(𝑚𝑢𝑙𝑡𝑗

𝑃𝑟𝑜) , 𝑖, 𝑗 = {1,… ,6} 

30  2 Way Interactions     (𝑚𝑢𝑙𝑡𝑗
𝑃𝑟𝑜)(𝑚𝑢𝑙𝑡𝑗+1

𝑃𝑟𝑜) , 𝑗 = {1, … ,5} 

    (𝑚𝑢𝑙𝑡𝑖
𝑅𝑒𝑝)(𝑚𝑢𝑙𝑡𝑖+1

𝑅𝑒𝑝) , 𝑖 = {1,… ,5} 

12  Square (Main Effects)     (𝑚𝑢𝑙𝑡𝑖
𝑅𝑒𝑝)2   , 𝑖 = {1,… ,6} 

    (𝑚𝑢𝑙𝑡𝑗
𝑃𝑟𝑜)2  , 𝑗 = {1,… ,6} 

 

 Our regression (of CWT and inventory) provides information on the 91 terms 

being considered for the metamodel (ref Appendix B), including the p values.  “The p 

value is the smallest level of significance that would lead to rejection of the null 

hypothesis Ho with the given data” [51].  Stated another way, the smaller the p value, the 

higher the confidence that the term is statistically significant.  A given problem instance 

dictates the threshold that gets placed on the p values and we use 0.1 as our threshold.    

For the 66 two-way interactions and 12 squared (main effects) terms, we remove 

50 terms that contain p values greater than 0.1 in both CWT and Inventory models.  The 

remaining 41 terms are used in our metamodel for CWT and inventory as shown in Table 

8. 
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Table 8: 41 Coefficients for Metamodel Terms; CWT (left) and $ Inventory (right) 

 

Coefficient Coefficient

Intercept 7.702 376.72

Pro1(0,1262) -0.01231 12.628

Pro2(0,113) -0.15678 12.845

Pro3(0,31) -2.76944 14.136

Pro4(0,12.8) -0.56819 14.252

Pro5(0,7.5) -1.10075 13.467

Pro6(0,1.77) -0.49287 12.646

Rep1(0,153) -0.08928 0.162

Rep2(0,247) -0.16399 1.145

Rep3(0,107) -1.00534 1.781

Rep4(0,144) -1.27835 2.258

Rep5(0,149) -1.53897 8.033

Rep6(0,26) -1.16490 6.724

Pro1*Rep5 0.07792 -0.301

Pro2*Rep2 0.14536 -0.101

Pro2*Rep3 0.14662 0.199

Pro2*Rep5 -0.14318 0.137

Pro2*Rep6 0.15837 -0.256

Pro3*Pro5 -0.10366 0.284

Pro3*Rep3 0.58556 0.333

Pro3*Rep4 0.35365 -0.001

Pro4*Rep1 -0.05202 0.320

Pro4*Rep4 0.07209 0.400

Pro4*Rep5 -0.03112 0.572

Pro5*Rep5 0.06243 0.275

Pro6*Rep1 -0.09822 0.341

Pro6*Rep6 -0.16322 0.215

Rep1*Rep4 -0.05952 0.365

Rep2*Rep3 -0.05598 -0.314

Rep2*Rep4 -0.20436 0.473

Rep5*Rep6 -0.18015 0.137

Pro2*Pro2 -0.04145 1.271

Pro3*Pro3 1.58451 3.319

Pro4*Pro4 -0.12637 3.031

Pro5*Pro5 -0.20897 5.887

Pro6*Pro6 0.14056 2.440

Rep2*Rep2 0.38795 -1.469

Rep3*Rep3 1.31858 -1.548

Rep4*Rep4 1.53335 -2.230

Rep5*Rep5 1.88805 -9.466

Rep6*Rep6 1.52435 -6.643

Metamodel: 41 terms 
CWT Inventory

Term
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The sphere packing experiment provides the estimated intercept and coefficients 

for the 41 terms in our metamodel as shown in Table 8.  With the intercepts and 

coefficients, our metamodel produces the two regression equations in (20) to estimate 

customer wait time (left side of Table 8) and dollars of inventory (right side of Table 8):   

     

 

CWT = 7.702 − .01231𝑚𝑢𝑙𝑡1
𝑃𝑟𝑜 , … , +1.52435(𝑚𝑢𝑙𝑡6

𝑅𝑒𝑝)2    

   $ inv(M) = 376.72 + 12.628𝑚𝑢𝑙𝑡1
𝑃𝑟𝑜 , … , −6.643(𝑚𝑢𝑙𝑡6

𝑅𝑒𝑝)2       

(20) 

 

 

 Step 3, Evaluate Adequacy of Metamodel [49]:     

We evaluate accuracy of the metamodel by comparing its predictions with actual 

values.  Figure 19 contains a scatter plot of the residuals and no abnormal patterns are 

observed.  The metamodel is unbiased: 56% of the CWT errors are positive while 45% of 

the inventory errors are positive.  Lastly, the errors are normally distributed with a mean 

near zero (0.06 for CWT and 0.03 for inventory).  Therefore, our metamodel can be used 

to find potential operating points.    

 
Figure 19: Scatter Plot of Residuals 

 

Step 4, Determine Nondominated Points:  To determine nondominated points, we 

adjust (20) to:   
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min y1 = CWT = 7.702 − .01231𝑚𝑢𝑙𝑡1
𝑃𝑟𝑜 , … , +1.52435(𝑚𝑢𝑙𝑡6

𝑅𝑒𝑝)2      

          s.t.  $ inv(M) = 376.72 + 12.628𝑚𝑢𝑙𝑡1
𝑃𝑟𝑜 , … , −6.643(𝑚𝑢𝑙𝑡6

𝑅𝑒𝑝)2 ≤ 𝑒2  

(21) 

 

 

We apply (21) six times, one per row of Table 9; each row represents a Pareto-

Optimal point [46] that may be a nondominated point.   For the six uses of (21), 𝑒2 is set 

according to the value in the [Epsilon Constraint] column; specifically to {275, 280, 285, 

290, 295, and 300}.   

Table 9: Simulations to Validate Metamodel 

 

 

Recall, the baseline contains CWT of 23.06 days with an inventory value of 

$297.6M.  Using design of experiment principles in our case study, we have determined 

four nondominated points.  This suggests that expanding Bachman’s work to the very 

sparse, intermittently-demanded expensive/reparable parts may provide significant 

dividends to the US-AF, and likely, other firms.   

4.6 Summary and Conclusion  

Our framework validated that much of the US-AF’s ‘repair on demand’ 

operations are cost-effective as demonstrated with many of the repair and procurement 

multipliers set to zero to achieve optimality.  However, there were cases, especially for 

groups three and four where the multipliers were greater than zero, which means 

Decision Variables Epsilon 
Constraint

Metamodel 
ResponsesProcurement Multipliers Repair Multipliers

Mult1 Mult2 Mult3 Mult4 Mult5 Mult6 Mult1 Mult2 Mult3 Mult4 Mult5 Mult6 $ Inv (M) $ Inv (M) CWT

0 0 0 0 0 0 153 0 36 0 0 0 275 275.0002 24.502

0 0 1.20 0 0 0 153 0 99 144 0 0 280 280.0001 19.828

0 0 7.74 0 0.244 0 153 0 80 109 0 0 285 285.0002 17.468

0 0 10.7 0 0.524 0 153 247 85 111 0 0 290 290.0000 15.859

0 0 13.4 0 0.881 0 153 239 81 109 0 1.60 295 294.9999 14.785

0 0 13.6 0 0.908 0 153 235 81 109 4.17 4.14 300 300.0001 13.799
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repairing and procuring some assets and having more serviceable spare parts on the shelf 

and ready, would be a better policy.   

Figure 20 shows the baseline As Is point and eight points from our framework.  

Six of the eight are nondominated points, that is, they are equal to or better than customer 

wait times and inventory, relative to the baseline.  It is likely that other nondominated 

points exist.  We show six nondominated points which is sufficient for the supply chain 

manger to effectively see the underlying trade space within the multi-objective problem. 

 
Figure 20: Optimal Solutions: Improving from Baseline 

 

The results, as shown in Figure 20, show that our framework to find an improved 

stock policy for the very sparse, intermittently-demanded, expensive/reparable parts can 

produce a large dividend.  Ketchen and Hult remind us that best-value supply chains are 

agile and have a “strong ability to be proactive as well as responsive to changes.” [43].  

Expanding on Bachman’s [24] work, which was limited to consumable parts, our 

framework provides a method to identify procurement and repair policies that reside on 
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the optimal, Pareto-efficient frontier and thus, advance the cost-effectiveness of the stock 

policy.   

Our case study focused on optimally determining 12 (m+n = 6+6) decision 

variables out of a total of (3m+3n) decision variables.  Using the 12 decision variables, 

we were able to find better solutions.  Future work could include expanding from 12 

decision variables.   

Specifically, we observe that the repair multipliers for groups three and four are 

larger, relative to the other groups.  This could mean that if groups three and four were 

further split (i.e. a total of 8 groups), a better solution may exist.  With eight groups for m 

and n, our problem would expand from 12 to 16 decision variables.   

Lastly, this case study focusses on 1,755 expensive/reparable, very sparse, 

intermittently-demanded parts on a single revenue generating machine.  Future work 

could also expand by adding parts from other revenue-generating machines to assure the 

B-1 results apply to other fleets; thus, establishing an enterprise value for the improved 

procurement and repair stock policies. 

4.6.1 Update - Real World Implementation Considerations 

This paper shows significant merit in expanding Bachman’s work to the 

expensive/reparable parts on the revenue-generating machine.  The underlying merit was 

accepted by AF leadership and we have been tasked to expand to all AF-managed 

expensive/reparable, very sparse, intermittently-demanded parts.  Our results will be 

combined with implementation costs (IT upgrades, changes to policies & procedures, 
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etc.) such that an enterprise cost analysis can be created and provided to AF leadership 

for implementation direction.   
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V. Advancing Forward Looking Metrics on the Very Sparse, Intermittently-

Demanded Items 

5.1 Introduction: SCM of Short Supply and Impact on Revenue-Generating 

Machine 

“Many organizations fall into the trap of simply reacting and expediting when shortages 

occur.” - Huber [52] 

Huber points out that many supply chain managers make common mistakes in 

service-parts management.  His above quote is in reference to the mistake, “Inability to 

Effectively Deal with Short Supply Situations” [52].  Supply Chain Managers will always 

find themselves in short supply of serviceable parts for a multitude of reasons  including: 

spikes in demand (caused by degraded parts reliability and/or changes to the operational 

environment); unforeseen quality issues; suppliers delivering orders late; or, as is the case 

of this research, a single demand on the non-stocked, very sparse, intermittently-

demanded item.  It is neither feasible nor optimal for a supply chain to stock all parts at 

all locations of the revenue-generating machines; managing the supply chain processes 

that generate parts, especially while in short-supply is critically important to the 

operational up-time of the revenue generating machines [18] [35] [39] [1] [19].   

5.1.1 SCM Value in Integrated Knowledge of SC Processes & Need for Metrics 

The Supply Chain Management Institute (SCMI) features eight key processes [4]: 

Customer Relationship Management, Supplier Relationship Management, Customer 

Service Management, Demand Management, Order Fulfillment, Manufacturing Flow 

Management, Product Development and Commercialization, and Returns Management.  
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Given these eight processes, SCMI’s framework keys on the need to successfully manage 

them and the complex networks associated with them in order for the firm to be 

successful.  Lambert states [4], “In this emerging competitive environment, the ultimate 

success of the business will depend on management’s ability to integrate the companies 

intricate network of business relationships.”    

Badole’s [5] comprehensive survey of 700 supply chain modeling papers 

identified two gaps with relevance to this research.  First, “While there is an abundance 

of SC management literature, it is realized that research at the inter-organizational level is 

less prevalent...the objective of SCM is to integrate all the firms in the value chain...”  

Second, “Performance measures and metrics are essential for effectively managing 

logistics operations...Performance measures provide the information necessary for 

decision-making and actions.  However, it is observed that the recent literature 

encompasses only traditional performance measures such as cost, quality, efficiency, and 

responsiveness.  Few researchers have proposed new performance measures and metrics 

that reflect the changes in markets and enterprise environments...”     

5.1.2 Multiple Processes to Generate Parts for Revenue-Generating Machine 

Many supply chains have multiple methods, or processes, to generate the short-

supply part for the downed revenue generating machine.  For example, the supply chain 

manager may have more than one supplier to procure the part, or may be able to 

manufacture the part, or may have some ability to re-manufacture (i.e. repair/refurbish) 

the part, or may have some engineering-disposition process to continue using the part in a 
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degraded capacity (perhaps limiting the revenue-generation capability of the machine), 

etc. 

These discrete supply chain processes are generally well known, perhaps a little 

deeper within the supply chain manager’s organization, and understood to follow 

standard processing times.  Stated another way, knowledge exists that describes these 

standard processing times via probability distributions such as: process X1 follows a 

normal distribution defined by N(μ, σ) ; process X2 follows a lognormal distribution 

defined by ln(μ, σ) ; ... ; process Xn follows the exponential distribution defined by λ.  

While empirical data likely exists to sufficiently describe these supply chain standard 

processing times, distributions may also be effectively elicited and used [53].  With the 

processes defined by a distribution, then each process has an expected Standard 

Processing Time (SPT) for a given part.  In order for the supply chain manager to make 

effective decisions for the firm, the or she must have integrated knowledge of their 

processes, including the probability distributions that describe the processes and the 

current likelihood that the processes are immediately postured to begin generating the 

part(s), if invoked by the supply chain manager.  

5.2 The Research Question 

The optimal stock policy will not stock all the very sparse, intermittently-

demanded parts at all locations of the revenue-generating machine.  For those not stocked 

by policy, a primary concern is the expected backorder time needed to resolve a short 

supply situation.  Backorder time is critical because it represents a portion of the total 

down time of the firm’s revenue-generating machine(s) [35] [2].  Given that the supply 
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chain manager owns the processes by which parts are generated for the revenue-

generating machine; the two-part research question is: (1) are the supply chain processes 

currently ready (i.e. operational) to generate part(s) and, (2) what is the expected time for 

the processes to generate the part(s).  To answer these questions, we develop a forward-

looking, integrated framework to advance the supply chain manager’s desire to know 

what proactive actions to take on the processes that generate these very sparse, 

intermittently demanded items.  Doing so will improve the firm’s cost-effective readiness 

of the revenue-generating machines. 

5.3 A Proposed Framework 

Given the desire to integrate supply chain processes, we develop a framework that 

can include all the relevant supply chain processes and all the relevant, very sparse, 

intermittently-demanded items; items that upon being in short supply, would down the 

revenue generating machine for a significant amount of time.   

5.3.1 Reliability Block Diagram 

If we replace the word processes with the word paths, and the word parts with 

components, we can use block diagrams from reliability theory [2].  Let P be the set of 

the very sparse, intermittently-demanded, expensive/reparable parts on the revenue-

generating machine and let p be an individual part, 𝑝 ∈ P.  Let J be the set of supply 

chain processes that generate the parts in set P and let j be an individual process, 𝑗 ∈ J.  

As shown in Figure 21, we construct the reliability block diagram where the columns 

represent the very sparse, intermittently-demanded parts and the rows represent the 

supply chain processes that generate parts for the revenue-generating machine.  Within 
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the standard reliability diagram, each rp j block would have a numerical value between 0 

and 1; that is, it indicates the expected reliability of component p,j expressed as a 

probability of being operationally ready.  

Our application of the reliability block diagram to the very sparse intermittently-

demanded problem is that each rp, j quantifies the confidence, or likelihood, that process j 

is currently postured to generate part p within a user-defined desired process time, should 

the process be invoked by the supply chain manager.  In this context, when rp, j = 1, the 

supply chain manager has full confidence that he/she could immediately invoke process j 

to generate part p for the revenue generating machine within the desired process time.  

Conversely, when rp,j = 0, the supply chain manager would not be able to invoke process 

j to generate part p for the revenue generating machine.  This model enables a process-

centric view (of the supply chain processes) by looking across each row j as well as a 

parts-centric view by looking down each column p. 

 
Figure 21: Reliability Block Diagram as an Integrated Framework 
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Given the rp,j values in a given column, let Rp be the overall reliability of the j 

supply processes to generate the specific part, p.  In this context, Rp quantifies the net 

effective reliability of the combined processes for the supply chain manager.  There are 

multiple ways to define Rp.  We show two ways and include the concept of operations 

that would dictate which definition is appropriate for use.   

Many firms operate where a single process is invoked to generate the part for the 

revenue-generating machine.  Of the processes to choose from, the supply chain manager 

desires to invoke the ‘best’, or most reliable process.  Thus, for the firms that use this 

concept of operations, Rp can be defined as: 

 𝑅𝑝 = 𝑚𝑎𝑥 { 𝑟𝑝,1,  𝑟𝑝,2,  … , 𝑟𝑝,𝑗}         (22) 

 

For the firms that have a concept of operations to invoke two or more processes 

simultaneously to generate the part, we use parallel configurations from reliability theory 

[2].  In order to use this definition for Rp the processes must be sufficiently independent.  

The parallel configuration contains redundancy, which increases the reliability of the 

system.  For the firms that would invoke k of the j supply chain processes simultaneously, 

Rp can be defined as: 

 
𝑅𝑝 = 1 −∏ (1 − 𝑟𝑝,𝑗)

𝑘

𝑗=1
 

(23) 

 

The supply chain manager would use either (22) or (23) to define 𝑅𝑝 according to 

their concept of operation.  𝑅𝑝 provides an aggregated, systems-view confidence, for 

each part p that the supply chain is readily postured to generate the part for the revenue-

generating machine within the desired process time.  The 𝑅𝑝 reliability values provide the 
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supply chain manager with valuable insights for the parts-centric view.  See 5.4.3 for 

specifics on how these reliabilities/confidences can be used for management insight.  

The supply chain manager is also concerned with the expected amount of time 

needed, collectively by the j processes, to generate part p for the revenue-generating 

machine.  The reliability block diagram does not easily allow us to model this time-based 

insight; thus, we also develop a framework for the supply chain manager to capture the 

expected processing time for each of the parts p.  A bipartite graph provides this utility 

and we show how 𝑟𝑝,𝑗 reliability scores can be generated and become the common link 

between the reliability block diagram and bipartite graph. 

5.3.2 A Hybrid Framework: Relating a Bipartite Graph to a Reliability Block 

Diagram 

A common objective function of the transportation problem is to minimize the 

total transportation costs to move a required amount of entities from the network’s supply 

nodes to its demand nodes.  The transportation model often utilizes a bipartite graph 

construct.  Bipartite graphs possess two special properties that general graphs do not.  In 

order for a graph to be bipartite: (1) all X nodes (vertices) must be partitioned into one of 

two subsets, say X1
 and X 2

; (2) no arcs (edges) can join nodes within a given subset.  

Because arcs can only join nodes from set X 1
 to nodes in set X 2

 in bipartite constructs, 

they can be readily used to model the transportation of entities from (supply) nodes in X 1
 

to (demand) nodes in X 2
.   

For our problem instance, let the first subset of nodes be 𝐉𝑝.  This subset contains 

all the supply chain processes from the reliability block diagram for a given part p.  Let 
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the second subset be L and let l be an individual location of the revenue-generating 

machine, 𝑙 ∈ L.  Let 𝑃𝑃𝑇𝑝,𝑗 represent the pre-processing time needed by the supply chain 

resources, before process j can begin generating part p.  Let 𝐷𝑃𝑇𝑝 be a user-defined time 

that quantifies the supply chain managers desired process time to generate part p for the 

revenue-generating machine.  Let 𝑆𝑃𝑇𝑝,𝑗 represent the expected standard processing time 

needed by the supply chain resources for process j to generate part p.  Let 𝑡𝑝,𝑗,𝑙 =

𝑃𝑃𝑇𝑝,𝑗 + 𝑆𝑃𝑇𝑝,𝑗 be the total expected processing time, which starts when the supply 

chain manager decides to invoke process j and stops when the revenue-generating 

machine at location l receives part p.  For our problem example, cost is time.  As shown 

in Figure 22, arcs labeled as 𝑡𝑝,𝑗,𝑙 connect the (supply) nodes of set 𝐉𝑝 with (demand) 

nodes in set L; thus, a bipartite construct of the transportation problem.   

 
Figure 22: Hybrid Model: Bipartite Graph Related to Reliability Block Diagram  

 

We seek to find the supply process, for each part p, that can resupply the revenue-

generating machine with the cheapest cost.  A standard formulation of the minimum unit-

flow cost for part p is [54]:   

Process 2

Process j

Process 1
= 

Location 2

Location l

Location 1

= 

= 
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 min 𝑧𝑝 = ∑ ∑ 𝑡𝑝,𝑗,𝑙𝑥𝑝,𝑗,𝑙𝑙∈𝐿𝑗∈𝐽𝑝  

     s.t.  ∑ 𝑠𝑝,𝑗𝑗∈𝐽𝑝 = 𝑑𝑙,𝑝∀𝑙 ∈ 𝐿    

          𝑥𝑝,𝑗,𝑙 ≥ 0 ∀ 𝑥𝑝,𝑗,𝑙             

‘Minimize flow costs                                        

‘Balanced flow of supply, s, & demand, d         

‘Non negativity 

 

(24) 

 

In general, all the supply chain processes can generate parts for all locations of the 

revenue-generating machines.  Without a loss of generality, we assume only one unit of 

flow is demanded/needed across the processes and for a single location of the revenue-

generating machine.  Our assumptions are founded in the fact that our problem instance is 

on the very sparse, intermittently-demanded items.  The likelihood of needing multiple 

parts from multiple supply chain processes for multiple locations of the revenue-

generating machine, during a short time interval, is assumed to be zero.  Incorporating 

these assumptions into our problem, our objective function can be simplified and revised 

with adjusted notation as: 

 min 𝑧𝑝 = min { 𝑡𝑝,1, 𝑡𝑝,2, … , 𝑡𝑝,𝑗}         

 

(25) 

The assumptions, valid for our problem instance, greatly simplify the objective 

function.  However, it is worth noting that the Operational run-time, O(...) for (24) 

features algorithms that solve the minimum cost flow problem, a generalized version of 

the bipartite construct, within polynomial time [55].  Thus, even very large subsets of 𝐉𝑝 

and L, with large cardinality can be solved efficiently with polynomial time algorithms. 

Our hybrid design relates the bipartite graph to the reliability block diagram.  

When the supply chain manager has full confidence that a given process, following a 

distribution defined by the standard processing time, is sufficiently ready to generate a 
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part in an amount of time less than or equal to the desired processing time, then the 

process reliability score is 1.  However, if the supply chain manager’s organization has 

current knowledge that suggests a process is not ready to generate part within the desired 

processing time, then the process reliability score is less than 1.  Sometimes, a delay 

exists before a supply chain process can begin.  These pre-processing delays have 

implications to the reliability scores.  Effectively, the pre-processing time shifts the 

standard processing time to the right; thus, as pre-processing time increases, the 

reliability score decreases.  Let the reliability score 𝑟𝑝,𝑗 be defined by:  

      𝑟𝑝,𝑗 = 𝑃(𝑡 <  𝐷𝑃𝑇𝑝 − 𝑃𝑃𝑇𝑝,𝑗|𝑆𝑃𝑇𝑝,𝑗 )             (26) 

 

A graphical representation of (26) is shown in Figure 23 using three examples.  

The top row for each example shows the probability that process j will generate part p, 

within the desired processing time when there are no pre-processing delays.  The bottom 

row highlights the impact that pre-processing delays have on reducing the reliability 

scores.  Example A shows the case where the desired processing time falls on the right 

tail of a given process’ standard distribution time; example B the median.  Example C 

shows the impact when the pre-processing delay is very large (i.e. Big M notation [56]) 

meaning the process can’t start for the foreseeable future, resulting in a reliability score 

of zero. 
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Figure 23: Representation of Reliability Scores of eq (26) 

 

We now show an example of how this integrated framework can be used to 

advance the supply chain manager’s desire to proactively know what actions to consider 

taking to improve the firm’s cost-effective readiness of the revenue-generating machines. 

5.4 Notional Example Using the new Framework 

Without a loss of generality, we limit the example to five parts and four SCM 

processes.  Granted, every firm does not have the same supply chain processes, nor does 

our framework require all the same processes.  The framework needs data for: (1) desired 

processing times, by part, (2) standard processing times, by part and process, and (3) pre-

processing delay times, by part and process.  These data elements can come from 

multiple sources ranging from empirical data to elicitation from subject matter experts 

[53].   

The first supply chain process in our notional example is lateral resupply which 

contains the logistics of moving a serviceable part from one location in the firm’s 
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network to the location of a downed revenue-generating machine.  The second process is 

primary procurement and contains the logistics of purchasing the part from the primary 

source of supply.  The third process, also procurement, contains the same as the above, 

but from a secondary source of supply.  The fourth process is in-house repair and 

contains the logistics of re-manufacturing an unserviceable asset back to serviceable 

status.   

5.4.1 Data Requirements for the Hybrid Model 

As stated in 5.4, every firm does not have/need the same data to describe the 

supply chain processes, nor does our framework require it.  For our example, we use 

information from SMEs and show how it can be used to generate the rp,j scores.  Our 

intent is that our notional examples are generalized sufficiently such that the concepts can 

be utilized for any firm that has supply chain processes that generate parts for the 

revenue-generating machine.  For our example, the firm’s desired processing time is no 

more than 120 days, for all parts; that is, 𝐷𝑃𝑇𝑝 ≤ 120 ∀𝑝.   Additionally, Table 10 

contains notional firm data covering the five parts and four processes used in our 

example. 
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Table 10: Notional Firm Data from SMEs for 5-Parts and 4-SCM Processes 

 

 

In order to determine the pre-processing time delays for the lateral resupply 

process, key condition-based information must be known and utilized.  Specifically: (1) 

are serviceable part(s) available and (2) if so, where are they, within the firm’s network?  

We use a piece-wise function to establish the values of  𝑃𝑃𝑇𝑝,1 for the lateral resupply 

process, extracted from the firm’s data in Table 10.   

If an asset exists at a location within the US, then the infrastructure is in place to 

transport the asset without delay.  If the asset exists outside the US, then a one-day delay 

is added to account for the reduced infrastructure to pick and pack the asset, as well as 

reduced pickup and delivery schedules.  When asset don’t exist, they can’t be laterally 

resupplied.  The Big M is used to assure the given process can’t be invoked to fill the 

demand. 

 
𝑃𝑃𝑇𝑝,1 = {

  0, If On Hand Assets = Y, Location = US            
1, If On Hand Assets = Y, Location = non US  
 𝑀, If On Hand Assets = N                                         

}              
(27) 

 

 

1 2 3 4 5

On Hand Assets N N Y Y N
Location (US or non US) US non US

Procurement source known Y Y Y N Y
Contract in place Y N N N Y

Procurement source known N N Y Y N
Contract in place Y N

Unserviceable assets exists to repair Y Y Y N Y

Available Capacity Y N N Y Y
Piece parts available N N Y Y Y

Current SME Data for Sparse, Intermittently-Demanded Parts

Primary 

Procurement

Secondary 

Procurement

Repair 

Parts
Description SCM Process 

Lateral 

Resupply 
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For demonstration purposes, the supply chain manager’s organization provides 

notional data that shows the standard processing time for lateral resupply follows a 

normal distribution N(7.2, 2.1).  We use (26) and (27) and summarize the impact of PPT 

in Table 11, culminating into two key process indicators (KPIs) for the supply chain 

manager, shown in bold font; (1) 𝑡𝑝,1 values which are used on the arcs of the bipartite 

graph and (2) 𝑟𝑝,1 reliability scores which are used in the reliability block diagram.  

Table 11: 𝑡𝑝,𝑗 and 𝑟𝑝,𝑗 Scores for the Lateral Resupply Process (i.e. j=1) 

 

  

For the procurement processes (primary, j=2; secondary, j=3), the two key pieces 

of information are: (1) is there a procurement source and (2) is a contract currently in 

place?   We use a piece-wise function to establish the values of  𝑃𝑃𝑇𝑝,2 and 𝑃𝑃𝑇𝑝,3 for 

the primary and secondary procurement processes, extracted from the firm’s data in 

Table 10. 

If a procurement source exists and a contract is already in place, then the part can 

be requisitioned without delay.  However, if a contract is not in place, then 30 days is 

used to account for the pre-processing delay that is incurred before the part can be 

requisitioned.  Additionally, 60 days are used to account for the supply chain manager 

identifying a procurement source; thus, 90 days are used to account for the pre-processing 

1 2 3 4 5

PPT p,1 M M 0 1 M

E(SPT p,1 ) 7.2 7.2 7.2 7.2 7.2

  t p,1 M M 7.2 8.2 M

DPT p,1 120 120 120 120 120  

r p,1 0.000 0.000 1.000 1.000 0.000

Lateral Resupply Process                        

SPT p,1  follows N (7.2, 2.1) ∀ p

Part p 
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delay when a procurement source and contract are both needed before the part can be 

requisitioned.  

 
𝑃𝑃𝑇𝑝,2 = 𝑃𝑃𝑇𝑝,3 = {

0,         if Procurement Source = Y, Contract in Place = Y
30, if Procurement Source = Y, Contract in Place = N 
90, if Procurement Source = N                                           

}   (28) 

 

 

The supply chain manager’s organization provides notional empirical data for the 

standard processing times for procurement.  The primary procurement process follows 

the normal distribution with parameters N(150, 40) and secondary procurement has 

parameters  N(180, 60).  We use (26)and (28) and summarize the impact of PPT on 

processes 2 and 3 in Table 12, culminating into two key process indicators (KPIs) for the 

supply chain manager, shown in bold font; (1) 𝑡𝑝,2 and 𝑡𝑝,3 values which are used on the 

arcs of the bipartite graph and (2) 𝑟𝑝,2 and 𝑟𝑝,3 reliability scores which are used in the 

reliability block diagram  

Table 12: 𝑡𝑝,𝑗 and 𝑟𝑝,𝑗 Scores for Procurement Processes (i.e. j=2, 3) 

 
 

1 2 3 4 5

PPT p,2 0 30 30 90 0

E(SPT p,2 ) 150 150 150 150 150

  t p,2 150 180 180 240 150

DPT p,2 120 120 120 120 120

r p,2 0.227 0.067 0.067 0.001 0.227

1 2 3 4 5

PPT p,3 90 90 0 30 90

E(SPT p,3 ) 180 180 180 180 180

  t p,3 270 270 180 210 270

DPT p,3 120 120 120 120 120

r p,3 0.006 0.006 0.159 0.067 0.006

Primary Procurement Process                                      

SPTp,2 follows N (150, 40) ∀ p

Part p 

Secondary Procurement Process                                      

SPTp,3 follows N (180, 60) ∀ p

Part p 
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For the repair process, we use a three-tier data stream.  Specifically: (1) does the 

repair facility currently have unserviceable asset(s) that can be repaired, (2) does the 

repair facility currently have sufficient capacity, and (3) does the repair facility currently 

have the piece-parts (i.e. sub-assemblies and components) available for the repair?  The 

piece-wise function for the repair process is given in (29). 

If an asset exists (to be repaired), maintenance has current capacity, and piece-

parts are available, then the unserviceable part can be repaired without delay.  If an asset 

exists (to be repaired), piece-parts are available, but maintenance does not currently have 

capacity, then 10 days are used to account for the pre-processing delay that is incurred 

before maintenance can begin repairing the part.  If an asset exists (to be repaired), 

maintenance has current capacity, but piece-parts are not available, then 45 days are used 

to account for the pre-processing delay that is incurred before maintenance can begin 

repairing the part.  If an asset exists (to be repaired), but maintenance does not currently 

have capacity, and the piece-parts are not available, then 50 days are used to account for 

the pre-processing delay that is incurred before maintenance can begin repairing the part.  

Lastly, when assets don’t exist (to be repaired), the Big M is used to assure the given 

repair process can’t be invoked to fill the demand.    

 

𝑃𝑃𝑇𝑝,4 =

{
 
 

 
 
0,                  if Assets = Y, Capacity = Y, Piece Parts = Y     
10,                  if Assets = Y, Capacity = N, Piece Parts = Y      
45,                  if Assets = Y, Capacity = Y, Piece Parts = N    
50,                  if Assets = Y, Capacity = N, Piece Parts = N    
  M,                  if Assets = N                                                               

  
}
 
 

 
 

           

 

(29) 

 

The supply chain manager’s organization provides notional empirical data that 

shows the standard processing time for the repair process follows a lognormal 

distribution ln N(4.26, 0.46).  We use (26) and (29) summarize the impact of PPT on 



86 

process 4 in Table 13, culminating into two key process indicators (KPIs) for the supply 

chain manager, shown in bold font; (1) 𝑡𝑝,4 values which are used on the arcs of the 

bipartite graph and (2) 𝑟𝑝,4 reliability scores which are used in the reliability block 

diagram.  

Table 13: 𝑡𝑝,4 and 𝑟𝑝,4 Scores for In-House Repair Process 

 

 

5.4.2 Solving the Hybrid Model 

With (26), we compute all rp,j  scores and summarize the results in Figure 24.  

With (23), we compute the 𝑅𝑝 values for the five parts: 𝑅1 = .654, 𝑅2 = .527, 𝑅3 = 1, 

𝑅4 = 1, and 𝑅5 = .903.  To explain these numbers to a supply chain manager we use part 

1 as an example.  If part 1 is immediately needed and the supply chain manager invokes 

all the processes at his/her disposal in an effort to generate part 1, there is a 65.4% chance 

that the supply chain could deliver part 1 to the operators of the revenue-generating 

machine(s) within the desired processing time of 120 days; reference section 0 for more 

details on supply chain management’s use of this information.  

1 2 3 4 5

PPT p,4 45 50 10 M 0

E(SPT p,4 ) 80 80 80 80 80

  t p,4 125 130 90 M 80

DPT p,4 120 120 120 120 120

r p,4 0.550 0.490 0.831 0.000 0.874

In House Repair Process                                        

SPTp,4 follows ln(4.26, 0.46) ∀ p

Part p 
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Figure 24: rp,j Scores for Notional Example 

 

 

We compute all tp,j  values, the expected resupply times using the supply chain 

manager’s data for standard processing times and pre-processing delay times.  Figure 25 

shows the four tp,j  values within the bipartite graph construct, for part 1.  By quick 

inspection, we see the fastest resupply process is repair, requiring 125 days.   

 
Figure 25: Bipartite Graph of Part 1 

 

 With (25), we compute the objective function for each of the five parts: min 

𝑧1 = 125, min 𝑧2 = 130, min 𝑧3 = 7.2, min 𝑧4 = 8.2, and min 𝑧5 = 80 and summarize 

the results in Table 14.  
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Table 14: All tp,j & min zp Times for all 5 Parts 

 

 

   

The five solutions are shown in the bottom row of Table 14.  The implications to 

the revenue-generating machine is that when a demand does eventually occur on these 

parts, our solution provides the likely down time of the revenue-generating machine, in 

days, caused by the lack of spare parts.  For example, if a demand occurred today on part 

3, the supply chain manager expects to need 7.2 days to resupply the part to the downed 

revenue-generating machine.  Similarly, the supply chain manager expects to need 130 

days to resupply part 2.   

Management Insights from the Hybrid Model 

“In most major corporations, functional managers are rewarded for behavior that is not 

customer friendly or shareholder friendly.  This is because the metrics used focus on 

functional performance…not on customer value or shareholder value.” – Lambert [4] 

Many supply chain managers use fill rate as their key, customer-facing metric [4] 

[52].  Fill rate, typically defined by the count of filled orders divided by the count of total 

orders, can fall short in two areas: (1) it’s a historic measure, and (2) it’s not ideal for 

operators of the revenue-generating machines.   

processes p  = 1 p  = 2 p  = 3 p  = 4 p  = 4

j  = 1 M M 7.2 8.2 M

j  = 2 150 180 180 240 150

j  = 3 270 270 180 210 270

j  = 4 125 130 90 M 80

min z p 125 130 7.2 8.2 80

parts
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Because fill rate is defined by data from events that have occurred in the past, it 

can be described as a rear-looking metric.  Rear-looking metrics dominate Firm’s metrics 

portfolios because they are easy to compute (by definition, data already exists) and 

generally, are easy to understand.  Rear-looking metrics may be plotted via time series 

data and forecasting can be utilized.  With the forecast, the manager will add his/her 

intuition to make business decisions for the firm.  Firms, however, desire to have 

forward-looking metrics [57] [58]; frameworks that deliver forward-looking metrics 

enable the firm’s analytical capability to advance from descriptive (limited to quantifying 

what happened) to predictive (business insights into what will likely happen).     

Fill rate also falls short because it does not directly measure, and may not even 

correlate very well to, the revenue-generating machine’s uptime, which is likely the most 

important metric to the end customer.  For example, if a supply chain has a fill rate of 

90%, is that good performance for the firm?  The operator of the revenue-generating 

machine(s) would likely say that it depends on the time duration required to satisfy the 

last 10%; stated another way, the supply chain’s management of backorder time while in 

short supply. 

Our hybrid framework utilizes current supply chain information and provides the 

supply chain manager with two forward-looking metrics: (1) SCM Reliability (using 𝑅𝑝 

from the reliability block diagram), and (2) SCM Expected Resupply Time (using 

min 𝑧𝑝 from the bipartite graph).  Additionally, with our hybrid framework, the supply 

chain manager has the ability to perform ‘what if’ analyses that enable his/her desire to 

make proactive decisions on his/her processes to advance the over-arching cost-

effectiveness for the firm. 
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5.4.3 SCM Reliability: A new Forward-Looking Metric Using Rp  

Recall from 5.3.1 that 𝑅𝑝 provides the supply chain manager with an aggregated, 

systems-view confidence, for each part p that the SC is postured and ready to generate the 

part for the revenue-generating machine within the desired processing time.  The supply 

chain’s readiness is fully described by the distribution of all |P| values of 𝑅𝑝.  Generally, 

parameters of an underlying distribution are determined and the parameter of primary 

interest is used as a single-value metric.  The most frequently used is the arithmetic mean.  

Because we would not assume that the underlying distribution of 𝑅𝑝 is uni-modal or 

symmetrical, the geometric mean ( √𝑅1𝑅2𝑅3…𝑅𝑖
|𝐏|

 ) , 𝑖 = {1,… , 𝑝}) , median, or simple 

minimums/maximums, are also viable options for the SCM to define the SCM 

Reliability metric.  If all values for 𝑅𝑖 are equal, the arithmetic and geometric means are 

equal.  With varying values of 𝑅𝑖, the geometric mean is less than the arithmetic mean.  

This distinction is very valuable and useful, especially when low values of 𝑅𝑖 may be 

critical to the operations of the revenue-generating machines; a single 𝑅𝑖 value of zero 

reduces the geometric mean to zero.  For our example problem with five parts, the 

arithmetic mean is .817, the geometric mean is .792, and the median is .903.  The supply 

chain manager should define the SCM Reliability metric as appropriate for the firm.   

To continue with our example, we use the median, so our SCM Reliability metric 

has a value of .903 (90.3%), using a desired processing time of 120 days.  The desired 

processing time, which could be firm directed, should be an agreed-upon expectation 

between the supply chain manager and the operator of the machine(s).  Establishing an 

agreed-upon desired processing time implies successful integration of five key 
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management areas from the Supply Chain Management Institute [4]; specifically, 

Customer Relationship Management, Customer Service Management, Demand 

Management, Order Fulfillment, and Manufacturing Flow Management.  Our framework 

can also be used to show the relationship between the new forward-looking metric, SCM 

Reliability, and potential values for the desired processing time, as shown in Figure 26.   

 
Figure 26: Relationship between Supply Chain Reliability and DPT  

 

The relationship can be used to help or the supply chain manager and operator of 

the revenue-generating machines establish an agreed-upon target for desired processing 

time; thus, helps promote a common understanding across the firm of supply chain 

expectations.     

5.4.4 SCM Expected Resupply: A new Forward-Looking Metric Using min zp   

By design, our SCM Reliability metric, from the reliability block diagram, 

requires a desired processing time.  In the event a desired processing time can’t be easily 

determined, we are motivated to provide another new, forward-looking metric; one that is 

independent of the desired processing time.  
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Recall from 5.3.1 that the min 𝑧𝑝 from the bipartite graph provides the supply 

chain manager with the minimum resupply time (i.e. fastest process), for each part p.  

Just as with our SCM Reliability metric, the arithmetic mean, geometric mean, median, 

minimum/maximum are also viable options for the SCM to define the SCM Expected 

Resupply metric.  For our example problem with five parts, the arithmetic mean is 70.1, 

the geometric mean is 37.8, and the median is 80.  The supply chain manager should 

define the SCM Expected Resupply metric as appropriate for the firm.  However, we 

note that caution should be used if considering the geometric mean.  For example, if a 

single part has an extremely fast resupply time (i.e. min zp approaching zero), the 

geometric mean will return a small metric and may be overly optimistic.  We also note 

that if all parts are not equal, a weighting method can be used to fine-tune both the 

arithmetic and geometric means.   

To continue with our example, we use the arithmetic mean, so our SCM 

Expected Resupply metric has a value of 70.1.  The SCM Expected Resupply metric 

provides the supply chain manager with a forward-looking view of how fast (measured in 

days) the supply chain processes can resupply the part(s), if invoked.  Stated another way, 

the SCM Expected Resupply metric provides an estimate of resolving “tomorrow’s 

short-supply scenarios.”   The supply chain manager would record the SCM Expected 

Resupply metric on a recurring basis and compare to the previous value(s) and/or a 

targeted value.   

Next we show how our framework is used to advance the supply chain manager’s 

desire to know what proactive actions to take on the processes that generate these very 
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sparse, intermittently demanded items.  Doing so would improve the firm’s cost-effective 

readiness of the revenue-generating machines. 

5.4.5 Quantifying Process Improvement with Two New SCM Metrics  

Recall, the SCM Reliability metric for our example is 90.1%.  Suppose the 

targeted SCM Reliability is 91%; where/how does the SCM look for areas to improve, 

such that the 91% target can be achieved?  Similarly, suppose the SCM Expected 

Resupply metric decreased by a large amount relative to the last time interval; 

where/how does the supply chain manager look for areas to improve, such that the metric 

will return to the baseline?  There are multiple ways our framework can be used; we offer 

two examples: (1) for the SCM Reliability metric, which ties to the firm having a desired 

processing time, and (2) the SCM Expected Resupply metric, which is independent of 

desired processing time.  In both cases, our framework enables the supply chain manager 

to perform process-integrated analyses, via the standard processing times and current 

constraints via pre-processing delays.     

We show two examples where the supply chain manager would evaluate process 

improvement initiatives using (26).  Recall the standard processing time for in-house 

repair is ln N(4.26, 0.46) and when combined with the 120-day desired processing time, 

produces reliability-block diagram values of:  𝑟1,4 = .55, 𝑟2,4 = .49, 𝑟3,4 = .83, 𝑟4,4 =

0, 𝑟5,4 = .87.    Suppose the supply chain manager, seeking an improvement to in-house 

repair, is given an external quote that will improve the in-house repair process by ~two 

days.  Is this supply chain process improvement good for the firm?  Will the customer, 

operator of the revenue-generating machines, see an improvement in supply 
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performance?  To answer, we run the new standard processing times, for in-house repair, 

thru our reliability framework of (26) and return: 𝑟1,4 = .58, 𝑟2,4 = .52, 𝑟3,4 = .85, 𝑟4,4 =

0, 𝑟5,4 = .89. As a result of implementing the process improvement initiative, the new 

SCM Reliability metric would increase from 90.3% to 91.5%..   

We also use (25) to run the new standard processing times thru our bipartite graph 

construct and return new expected resupply times: min 𝑧1 = 123, min 𝑧2 = 128, min 

𝑧3 = 7.2, min 𝑧4 = 8.2, and min 𝑧5 = 78.  The net effect is that the new SCM Expected 

Resupply metric would improve from 70.1 days to a faster time of 68.9 days.   

The examples show how the hybrid framework can be used to evaluate the impact 

of a process improvement initiative, which would reduce the standard processing times 

associated with the in-house repair process.  A similar approach can be used for any 

process, or combinations of processes, as well as quantifying the impact of eliminating 

the constraints that are intrinsically part of delays behind the pre-processing times. 

Given implementation costs for supply chain process improvement initiatives, 

they can be combined with our integrated framework; thus, enabling the supply chain 

manager to make proactive decisions on the processes that generate these very sparse, 

intermittently demanded items, to advance the firm’s cost-effective readiness of the 

revenue-generating machines. 

5.5 Conclusion and Future Research  

We generate reliability scores for all pairings of (1) service parts on the revenue-

generating machine(s) and (2) the processes that generate those parts.  With the reliability 
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scores, we create a hybrid model that relates a bipartite graph with a reliability block 

diagram.   

The reliability block model is used to provide the supply chain manager with 

insights that quantify how ready his/her supply chain processes are to generate parts for 

the revenue-generating machine.  With the reliability block diagram, we use two ways to 

define Rp, the net effect of the supply chain processes to generate each of the service 

parts.  The first way, equation (22), is to use the maximum reliability of the processes to 

quantify the net impact of all processes for the given part.  The second way, equation 

(23), is to use the parallel configuration and model k of the supply chain processes.  This 

method assumes that the k processes, for the given part, are sufficiently independent.   

For the supply chain’s that use this concept of operations, a natural follow-on 

would be to incorporate costs of the supply chain processes such that a reliability-cost 

curve could be created.  To highlight this research area, suppose 𝑟𝑝,4 = .875, 𝑟𝑝,2 =

.500, 𝑟𝑝,3 = .375, 𝑟5,1 = 0.100 and assume the costs are: $75 for process 4 (repair), $150 

for process 2 (primary procurement), $155 for process 3 (secondary procurement), and 

$25 for process 1 (lateral resupply).  Using these costs and equation (23) to compute 

reliability Rp for the parallel configuration, we have for part p: 
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Figure 27: Reliability Rp vs Total Costs to simultaneously invoke k SC Processes 

 

This framework can assist the supply chain manager decide which supply chain 

processes should be included; that is to help define the k processes that should be invoked 

simultaneously for the cost-effective readiness of the revenue-generating machine(s).  

Additionally, other areas of reliability theory, such as applying a hazard function, might 

be useful in the modeling of supply chain processes being ready to generate the service 

part(s) for the revenue-generating machine(s).  

The bipartite graph construct is used to provide the supply chain manager with 

insights to quantify future short supply durations.  The new hybrid framework advances 

supply chain modeling development in at least four areas (1) current supply chain 

posture, from a parts-centric view, (2) current supply chain posture, from a process-

centric view, (3) capability to evaluate trade space of supply chain processes and process 

improvement initiatives, and (4) two new, forward-looking performance metrics, 

providing the supply chain manager with insights into supply chain’s reliability and 

expected time in short supply; both important to the operator of the revenue-generating 

machine(s).   
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Using the hybrid framework, we show an example, using five parts and four 

processes.  While the example is very small, algorithms exist that solve our model 

(transportation problem using a bipartite construct) within polynomial time.  As such, 

scaling to actual problems with thousands of parts and dozens of processes is feasible.   

Ketchen and Hult remind us that best-value supply chains are agile and have a 

“strong ability to be proactive as well as responsive to changes.” [43].  Additionally, 

Klassen [22] highlights that when supply chain managers evaluate processes trade space, 

they should not lose sight of the customer and associated supply chain lead times.  Our 

proposed framework addressed both of these key points.   

We developed a forward-looking, integrated framework, designed to advance the 

supply chain manager’s desire to know what proactive actions to take on the processes 

that generate these very sparse, intermittently demanded items.  Additionally, we have 

created two, new forward-looking metrics that are customer-focused.  This framework 

can be used by the supply chain manager to improve the firm’s cost-effective readiness of 

the revenue-generating machines. 
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VI. Summary and Conclusions 

This dissertation has made several original contributions to the field of operations 

research.  The contributions fall in the domain of supply chain management.  The author 

believes these contributions can be immediately adopted and implemented by the supply 

chain manager whose responsibility for the firm is to generate sparse, intermittently-

demanded parts to assure the revenue-generating machine(s) are sufficiently operational 

for the firm or customer of the firm. 

  In chapter 3, we develop a condition-based stock policy of value to the supply 

chain manager by determining which inexpensive parts should be stocked at retail 

locations (i.e. close to the revenue-generating machines).  The underlying principle is that 

a location of the revenue-generating machine, that has no historical demand, can benefit 

by using the positive demand signals from other locations of the revenue-generating 

machine, and thus determining a spare parts level in advance of the demand.   

We perform experiments to determine various condition-based stock policies and 

test them in a case study that included over 3,000 parts on 12 locations of a revenue-

generating machine within the USAF.  Our research finds condition-based stock policies 

that are shown to be more cost-effective than the baseline As Is with the best being at half 

the cost.   

The same Bayesian beliefs of our research were accepted by AF leadership and 

the AF stood up a centralized management team in Fiscal Year 2012.  This team 

implemented a condition-based stock policy called Proactive Demand Leveling (PDL) 

[44], demonstrating the value of our framework to the operational world.     
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In chapter 4, we investigated expansions to Bachman’s [24] work that had been 

limited to the inexpensive, consumable item population.  The largest expansion, in the 

context of this research, is accounting for parts that get repaired, rather than condemned, 

when they fail and are removed from the revenue-generating machine.   

We formulate this research as a multi-objective problem and apply operations-

research techniques from design of experiments and response surface methods.  We 

determine the Pareto-efficient frontier (i.e. trade space) between the two top-tiered 

objectives: dollars of inventory to carry and customer wait time.   

We perform a case study of 1,755 expensive/reparable parts on the B-1 fleet of 

aircraft in the USAF.   The research within our case study finds procurement and repair 

polices that are more optimal than the As Is policies. 

Given the stock policy improvements in Chapters 3 & 4, in Chapter 5 we design a 

hybrid framework that integrates supply chain processes.  The new framework models 

supply chain reliability using a block diagram and models resupply times using a bipartite 

graph construct.  The reliability block diagram provides the supply chain manager with a 

method to capture how ready his/her processes are to generate parts for the revenue-

generating machine.  The supply chain manager can look across the rows of the reliability 

block diagram and get insights into his/her processes and down the columns to get 

insights into how the processes coordinate/combine to generate the parts.  Each 

process/part combination has a reliability score and with the reliability scores, we model 

the supply chain’s resupply time, by part, using the utility of a bipartite graph.   

With the integrated reliability block diagram and bipartite graphs, we show how 

new, forward-looking metrics, with links to the operators of the revenue-generating 
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machines, are created and provide two examples.  Embedded within this hybrid 

framework is the enabling of cross-cutting analyses.  With the new framework, a supply 

chain manager can easily perform ‘what if’ analyses to see if/how process 

improvements/initiatives would impact the supply chain’s performance.  

The author believes these research areas cover the four gaps uncovered during the 

literature review.  As such, the research advances the body of operations research 

knowledge, under the domain of supply chain management.  Our research provides the 

supply chain manager with usable, analytics to help advance, for the firm, the cost-

effective readiness of the revenue-generating machines.    
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Appendix A: Results of Stock Policy 
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As Is 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 1 , 442 ) 15,872 1,634 2,265 300    2,450,180       183,764       105,000             1,898,400             4,637,344 

( 1 , 674 ) 16,766 1,742 1,371 192    3,174,349       238,076          67,200             1,214,976             4,694,601 

( 1 , 282 ) 14,824 1,507 3,313 427    1,857,529       139,315       149,450             2,702,056             4,848,350 

( 1 , 1000 ) 17,503 1,832 634 102    4,002,001       300,150          35,700                645,456             4,983,308 

( 1 , 1453 ) 18,137 1,934 0 0    5,216,033       391,203                   -                              -               5,607,236 

( 1 , 172 ) 13,638 1,308 4,499 626    1,355,708       101,678       219,100             3,961,328             5,637,814 

( 1 , 100 ) 12,361 1,139 5,776 795       926,899          69,517       278,250             5,030,760             6,305,426 

( 1 , 54 ) 11,403 1,037 6,734 897       738,374          55,378       313,950             5,676,216             6,783,918 

( 2 , 674 ) 7,237 1,173 10,900 761    1,749,350       131,201       266,350             4,815,608             6,962,509 

( 2 , 1000 ) 7,503 1,223 10,634 711    2,133,791       160,034       248,850             4,499,208             7,041,883 

( 2 , 442 ) 6,831 1,097 11,306 837    1,377,105       103,283       292,950             5,296,536             7,069,874 

( 2 , 1453 ) 7,822 1,294 10,315 640    2,755,781       206,684       224,000             4,049,920             7,236,385 

( 2 , 282 ) 6,384 1,016 11,753 918    1,061,572          79,618       321,300             5,809,104             7,271,594 

( 1 , 26 ) 9,909 894 8,228 1,040       550,666          41,300       364,000             6,581,120             7,537,086 

( 2 , 172 ) 5,796 869 12,341 1,065       740,536          55,540       372,750             6,739,320             7,908,147 

( 2 , 100 ) 5,231 759 12,906 1,175       532,260          39,919       411,250             7,435,400             8,418,829 

( 1 , 10 ) 7,719 741 10,418 1,193       427,538          32,065       417,550             7,549,304             8,426,458 

( 2 , 54 ) 4,799 689 13,338 1,245       420,302          31,523       435,750             7,878,360             8,765,934 

( 2 , 26 ) 4,178 600 13,959 1,334       334,819          25,111       466,900             8,441,552             9,268,382 

( 3 , 1453 ) 3,282 750 14,855 1,184    1,272,987          95,474       414,400             7,492,352             9,275,214 

( 3 , 1000 ) 3,144 711 14,993 1,223    1,044,900          78,368       428,050             7,739,144             9,290,462 

( 3 , 674 ) 2,989 672 15,148 1,262       847,919          63,594       441,700             7,985,936             9,339,149 

( 3 , 442 ) 2,807 625 15,330 1,309       699,158          52,437       458,150             8,283,352             9,493,097 

( 3 , 282 ) 2,560 571 15,577 1,363       535,436          40,158       477,050             8,625,064             9,677,708 

( 2 , 10 ) 3,382 513 14,755 1,421       286,152          21,461       497,350             8,992,088             9,797,051 

( 3 , 172 ) 2,232 468 15,905 1,466       363,279          27,246       513,100             9,276,848          10,180,473 

( 3 , 100 ) 1,961 395 16,176 1,539       247,365          18,552       538,650             9,738,792          10,543,359 

( 3 , 54 ) 1,763 353 16,374 1,581       196,028          14,702       553,350          10,004,568          10,768,648 

( 3 , 26 ) 1,575 314 16,562 1,620       164,944          12,371       567,000          10,251,360          10,995,674 

( 4 , 1453 ) 1,135 328 17,002 1,606       426,251          31,969       562,100          10,162,768          11,183,088 

( 4 , 1000 ) 1,074 310 17,063 1,624       343,174          25,738       568,400          10,276,672          11,213,984 

( 4 , 674 ) 995 285 17,142 1,649       260,520          19,539       577,150          10,434,872          11,292,081 

( 3 , 10 ) 1,279 263 16,858 1,671       145,008          10,876       584,850          10,574,088          11,314,821 

( 4 , 442 ) 937 262 17,200 1,672       221,297          16,597       585,200          10,580,416          11,403,510 

( 4 , 282 ) 849 241 17,288 1,693       152,401          11,430       592,550          10,713,304          11,469,685 

( 4 , 172 ) 788 216 17,349 1,718       125,862            9,440       601,300          10,871,504          11,608,106 

( 4 , 100 ) 691 181 17,446 1,753          97,005            7,275       613,550          11,092,984          11,810,814 

( 4 , 54 ) 633 164 17,504 1,770          84,376            6,328       619,500          11,200,560          11,910,764 

( 4 , 26 ) 582 153 17,555 1,781          72,256            5,419       623,350          11,270,168          11,971,193 

( 5 , 1453 ) 378 152 17,759 1,782       165,044          12,378       623,700          11,276,496          12,077,618 

( 4 , 10 ) 496 134 17,641 1,800          66,172            4,963       630,000          11,390,400          12,091,535 

( 5 , 1000 ) 354 142 17,783 1,792       131,825            9,887       627,200          11,339,776          12,108,687 

( 5 , 674 ) 329 131 17,808 1,803       109,735            8,230       631,050          11,409,384          12,158,399 

( 5 , 442 ) 290 118 17,847 1,816          85,849            6,439       635,600          11,491,648          12,219,536 

( 5 , 282 ) 260 108 17,877 1,826          58,649            4,399       639,100          11,554,928          12,257,076 

( 5 , 172 ) 239 98 17,898 1,836          48,558            3,642       642,600          11,618,208          12,313,008 

( 5 , 100 ) 207 82 17,930 1,852          39,827            2,987       648,200          11,719,456          12,410,470 
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( 5 , 54 ) 190 73 17,947 1,861          36,448            2,734       651,350          11,776,408          12,466,940 

( 5 , 26 ) 178 67 17,959 1,867          32,903            2,468       653,450          11,814,376          12,503,196 

( 5 , 10 ) 150 61 17,987 1,873          31,413            2,356       655,550          11,852,344          12,541,663 

( 6 , 1453 ) 107 53 18,030 1,881          55,839            4,188       658,350          11,902,968          12,621,345 

( 6 , 1000 ) 101 49 18,036 1,885          45,286            3,396       659,750          11,928,280          12,636,712 

( 6 , 674 ) 97 46 18,040 1,888          42,329            3,175       660,800          11,947,264          12,653,568 

( 6 , 442 ) 83 39 18,054 1,895          32,160            2,412       663,250          11,991,560          12,689,382 

( 6 , 282 ) 75 36 18,062 1,898          25,245            1,893       664,300          12,010,544          12,701,982 

( 6 , 172 ) 65 31 18,072 1,903          20,591            1,544       666,050          12,042,184          12,730,370 

( 6 , 100 ) 60 29 18,077 1,905          19,366            1,452       666,750          12,054,840          12,742,409 

( 6 , 54 ) 59 28 18,078 1,906          19,184            1,439       667,100          12,061,168          12,748,890 

( 6 , 26 ) 58 27 18,079 1,907          19,075            1,431       667,450          12,067,496          12,755,452 

( 6 , 10 ) 51 25 18,086 1,909          18,603            1,395       668,150          12,080,152          12,768,301 

( 7 , 674 ) 8 4 18,129 1,930            4,668                350       675,500          12,213,040          12,893,559 

( 7 , 1000 ) 8 4 18,129 1,930            4,668                350       675,500          12,213,040          12,893,559 

( 7 , 1453 ) 8 4 18,129 1,930            4,668                350       675,500          12,213,040          12,893,559 

( 7 , 282 ) 7 3 18,130 1,931            4,205                315       675,850          12,219,368          12,899,739 

( 7 , 442 ) 7 3 18,130 1,931            4,205                315       675,850          12,219,368          12,899,739 

( 8 , 674 ) 2 2 18,135 1,932                673                  50       676,200          12,225,696          12,902,620 

( 8 , 1000 ) 2 2 18,135 1,932                673                  50       676,200          12,225,696          12,902,620 

( 8 , 1453 ) 2 2 18,135 1,932                673                  50       676,200          12,225,696          12,902,620 

( 7 , 10 ) 4 2 18,133 1,932            2,663                200       676,200          12,225,696          12,904,759 

( 7 , 26 ) 4 2 18,133 1,932            2,663                200       676,200          12,225,696          12,904,759 

( 7 , 54 ) 4 2 18,133 1,932            2,663                200       676,200          12,225,696          12,904,759 

( 7 , 100 ) 4 2 18,133 1,932            2,663                200       676,200          12,225,696          12,904,759 

( 7 , 172 ) 4 2 18,133 1,932            2,663                200       676,200          12,225,696          12,904,759 

( 8 , 10 ) 1 1 18,136 1,933                210                  16       676,550          12,232,024          12,908,800 

( 8 , 26 ) 1 1 18,136 1,933                210                  16       676,550          12,232,024          12,908,800 

( 8 , 54 ) 1 1 18,136 1,933                210                  16       676,550          12,232,024          12,908,800 

( 8 , 100 ) 1 1 18,136 1,933                210                  16       676,550          12,232,024          12,908,800 

( 8 , 172 ) 1 1 18,136 1,933                210                  16       676,550          12,232,024          12,908,800 

( 8 , 282 ) 1 1 18,136 1,933                210                  16       676,550          12,232,024          12,908,800 

( 8 , 442 ) 1 1 18,136 1,933                210                  16       676,550          12,232,024          12,908,800 

( 9 , 10 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 9 , 26 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 9 , 54 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 9 , 100 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 9 , 172 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 9 , 282 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 9 , 442 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 9 , 674 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 9 , 1000 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 9 , 1453 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 10 , 10 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 10 , 26 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 10 , 54 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 10 , 100 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 10 , 172 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 10 , 282 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 10 , 442 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 10 , 674 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 10 , 1000 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 10 , 1453 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 11 , 10 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 11 , 26 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 11 , 54 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 11 , 100 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 11 , 172 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 11 , 282 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 11 , 442 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 11 , 674 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 11 , 1000 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252 

( 11 , 1453 ) 0 0 18,137 1,934                   -                     -         676,900          12,238,352          12,915,252  
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Appendix B: 91 Terms Considered in Metamodel 

 

terms to remove when p < .1 additional terms to remove when reduced p < .05

Term Estimate Std Error t Ratio Prpb > |t| Estimate Std Error t Ratio Prpb > |t|

Intercept 7.600161 0.536355 14.17003 2.31E-37 376.8358 1.049577 359.0358 0

Pro1(0,1262) 0.002186 0.068261 0.032029 0.974465 12.61415 0.133578 94.43292 7.85E-280

Pro2(0,113) -0.15421 0.069008 -2.23472 0.025975 12.83183 0.135039 95.02295 6.86E-281

Pro3(0,31) -2.78116 0.067899 -40.9605 8.09E-147 14.16294 0.132869 106.5934 1.65E-300

Pro4(0,12.8) -0.56115 0.068488 -8.19335 3.29E-15 14.25167 0.134022 106.3382 4.26E-300

Pro5(0,7.5) -1.09184 0.068086 -16.0361 3.00E-45 13.46378 0.133237 101.0517 2.27E-291

Pro6(0,1.77) -0.50561 0.068391 -7.39296 8.18E-13 12.6518 0.133832 94.53459 5.15E-280

Rep1(0,153) -0.08331 0.069037 -1.20672 0.228238 0.155335 0.135096 1.149813 0.250893

Rep2(0,247) -0.16382 0.06817 -2.40307 0.016703 1.144045 0.1334 8.576045 2.05E-16

Rep3(0,107) -1.00708 0.068497 -14.7025 1.38E-39 1.788114 0.13404 13.34015 5.88E-34

Rep4(0,144) -1.26875 0.068842 -18.4298 1.18E-55 2.227391 0.134716 16.53399 2.15E-47

Rep5(0,149) -1.53813 0.069271 -22.2046 3.02E-72 8.036803 0.135554 59.2885 6.26E-203

Rep6(0,26) -1.17379 0.068237 -17.2016 2.75E-50 6.723568 0.133532 50.35179 2.08E-177

Pro1*Pro2 -0.00889 0.081167 -0.10956 0.912813 -0.0114 0.158833 -0.07175 0.942834

Pro1*Pro3 0.017001 0.079029 0.215122 0.82978 -0.01361 0.154649 -0.088 0.929919

Pro1*Pro4 0.052808 0.080014 0.65999 0.509632 0.12082 0.156576 0.771636 0.440775

Pro1*Pro5 0.019137 0.079809 0.239785 0.810617 -0.03237 0.156176 -0.20726 0.835913

Pro1*Pro6 0.029662 0.079739 0.371995 0.710089 -0.11634 0.156039 -0.7456 0.456338

Pro1*Rep1 -0.02232 0.080307 -0.2779 0.781229 -0.11317 0.157151 -0.72015 0.471845

Pro1*Rep2 -0.00809 0.079793 -0.10136 0.919316 0.036462 0.156146 0.233511 0.815482

Pro1*Rep3 0.036407 0.08046 0.452486 0.651159 -0.04525 0.15745 -0.28739 0.77396

Pro1*Rep4 0.01599 0.080599 0.19839 0.842838 0.077007 0.157723 0.488243 0.625639

Pro1*Rep5 0.073876 0.080892 0.913263 0.361642 -0.31103 0.158296 -1.96484 0.050109

Pro1*Rep6 0.061303 0.08163 0.750992 0.453089 0.026465 0.159738 0.16568 0.868491

Pro2*Pro3 0.050735 0.081035 0.626085 0.531608 0.018881 0.158576 0.119066 0.905281

Pro2*Pro4 0.002783 0.082077 0.033906 0.972968 -0.14568 0.160614 -0.90702 0.36493

Pro2*Pro5 -0.09913 0.081267 -1.21986 0.223221 0.10859 0.159028 0.682836 0.495097

Pro2*Pro6 -0.03031 0.08196 -0.36987 0.711668 0.129387 0.160385 0.806729 0.420291

Pro2*Rep1 0.085871 0.08145 1.054288 0.292374 -0.11532 0.159387 -0.72353 0.469769

Pro2*Rep2 0.147251 0.080042 1.839667 0.066542 -0.10231 0.156632 -0.65316 0.514019

Pro2*Rep3 0.133828 0.080831 1.655663 0.098557 0.23437 0.158175 1.481713 0.139187

Pro2*Rep4 0.07539 0.08096 0.931202 0.352299 -0.0185 0.158429 -0.11677 0.9071

Pro2*Rep5 -0.15576 0.080948 -1.92422 0.05502 0.121672 0.158405 0.768104 0.442869

Pro2*Rep6 0.160591 0.081957 1.959455 0.050738 -0.25899 0.160379 -1.61485 0.107114

Pro3*Pro4 0.035797 0.080079 0.44702 0.655097 -0.1662 0.156705 -1.06058 0.289505

Pro3*Pro5 -0.11431 0.078755 -1.45149 0.147409 0.322796 0.154114 2.094526 0.036828

Pro3*Pro6 0.064889 0.08024 0.808689 0.419164 0.176944 0.157019 1.126891 0.260449

Pro3*Rep1 -0.00604 0.07946 -0.07595 0.939495 -0.12482 0.155494 -0.80274 0.422593

Pro3*Rep2 0.127591 0.079076 1.613533 0.1074 -0.09894 0.154741 -0.63941 0.522915

Pro3*Rep3 0.571768 0.079859 7.159754 3.78E-12 0.344916 0.156273 2.207138 0.027859

Pro3*Rep4 0.345058 0.080133 4.306061 2.08E-05 -0.01243 0.15681 -0.0793 0.936835

Pro3*Rep5 -0.09045 0.081115 -1.11509 0.265465 -0.09694 0.158732 -0.61069 0.541744

Pro3*Rep6 -0.05139 0.080083 -0.64168 0.521443 0.041001 0.156712 0.261633 0.793736

Pro4*Pro5 0.006035 0.08004 0.075398 0.939935 0.080146 0.156628 0.511699 0.609138

Pro4*Pro6 0.001107 0.08153 0.013579 0.989173 -0.0326 0.159544 -0.20432 0.838208

Pro4*Rep1 -0.05303 0.080446 -0.65925 0.510104 0.325532 0.157422 2.067888 0.039279

Pro4*Rep2 0.036658 0.079072 0.463606 0.643177 0.051872 0.154734 0.335236 0.737619

Pro4*Rep3 0.047911 0.080846 0.592619 0.553764 -0.09112 0.158205 -0.57598 0.564944

Pro4*Rep4 0.059166 0.081714 0.724067 0.469439 0.408494 0.159903 2.554634 0.010991

Pro4*Rep5 -0.03911 0.081823 -0.47801 0.632901 0.574074 0.160116 3.58536 0.000377

Pro4*Rep6 0.108969 0.08063 1.351461 0.177295 -0.09695 0.157783 -0.61446 0.539251

Pro5*Pro6 0.090178 0.079798 1.130075 0.259107 -0.14496 0.156155 -0.92831 0.353797

Pro5*Rep1 0.069852 0.080399 0.868825 0.385453 0.010271 0.15733 0.065282 0.947981

Pro5*Rep2 0.067053 0.079272 0.845854 0.398129 -0.17936 0.155125 -1.15621 0.248269

Pro5*Rep3 -0.00892 0.080242 -0.11117 0.91154 0.073077 0.157024 0.465387 0.641902

Pro5*Rep4 -0.04721 0.080449 -0.58681 0.557652 0.130623 0.157429 0.829729 0.407176

Pro5*Rep5 0.06632 0.080068 0.828296 0.407986 0.266866 0.156683 1.703217 0.089287

Pro5*Rep6 -0.0673 0.080279 -0.83829 0.402356 -0.04422 0.157095 -0.28149 0.778475

Pro6*Rep1 -0.09541 0.08102 -1.17757 0.239652 0.322661 0.158545 2.035137 0.042481

Pro6*Rep2 0.053419 0.080209 0.665996 0.505789 -0.13639 0.156958 -0.86897 0.385375

Pro6*Rep3 -0.02475 0.081342 -0.30432 0.761038 0.062086 0.159175 0.390051 0.696702

Pro6*Rep4 0.06427 0.080615 0.797251 0.425768 -0.03343 0.157753 -0.21191 0.832285

Pro6*Rep5 0.06315 0.081498 0.774872 0.438863 0.093618 0.159481 0.587018 0.557516

Pro6*Rep6 -0.16888 0.0806 -2.09533 0.036756 0.222016 0.157724 1.407624 0.160002

Rep1*Rep2 -0.07173 0.080512 -0.89089 0.37351 -0.03583 0.157551 -0.22739 0.82023

Rep1*Rep3 -0.03487 0.080785 -0.43162 0.666244 -0.04694 0.158085 -0.2969 0.766695

Rep1*Rep4 -0.06193 0.080767 -0.76677 0.443663 0.388791 0.158051 2.459911 0.01431

Rep1*Rep5 -0.08812 0.080933 -1.08875 0.276906 -0.01309 0.158376 -0.08267 0.934154

Rep1*Rep6 0.033716 0.081375 0.414329 0.678851 -0.18779 0.15924 -1.17931 0.23896

Rep2*Rep3 -0.04845 0.079439 -0.60995 0.542232 -0.31553 0.155452 -2.02975 0.043028

Rep2*Rep4 -0.20294 0.080116 -2.5331 0.011679 0.481979 0.156776 3.074306 0.002251

Rep2*Rep5 0.029675 0.079481 0.37336 0.709074 0.053611 0.155533 0.344692 0.730503

Rep2*Rep6 0.025829 0.080636 0.320312 0.748896 -0.09188 0.157794 -0.58226 0.560715

Rep3*Rep4 -0.04113 0.080692 -0.50975 0.6105 0.04393 0.157904 0.278205 0.780996

Rep3*Rep5 -0.07605 0.080224 -0.94791 0.343734 0.064135 0.156988 0.408537 0.683093

Rep3*Rep6 0.007387 0.081559 0.090567 0.927881 0.113983 0.1596 0.714182 0.475522

Rep4*Rep5 -0.0413 0.08108 -0.50938 0.610764 0.043406 0.158663 0.273577 0.784548

Rep4*Rep6 -0.09205 0.080141 -1.14856 0.251408 0.040853 0.156826 0.260497 0.794612

Rep5*Rep6 -0.1654 0.081644 -2.02593 0.043421 0.122159 0.159767 0.76461 0.444945

Pro1*Pro1 -0.18402 0.176325 -1.04363 0.297273 0.409591 0.345045 1.187068 0.23589

Pro2*Pro2 -0.0058 0.169059 -0.0343 0.972652 1.223177 0.330827 3.697329 0.000248

Pro3*Pro3 1.584498 0.174002 9.106203 3.82E-18 3.291327 0.3405 9.666168 4.82E-20

Pro4*Pro4 -0.06518 0.167333 -0.38949 0.697114 2.986836 0.32745 9.121508 3.40E-18

Pro5*Pro5 -0.24223 0.169184 -1.43174 0.152982 5.916323 0.331071 17.87028 3.33E-53

Pro6*Pro6 0.170615 0.168491 1.012606 0.311847 2.380759 0.329716 7.220637 2.54E-12

Rep1*Rep1 0.174791 0.170648 1.024278 0.306309 -0.35367 0.333936 -1.05911 0.290177

Rep2*Rep2 0.356426 0.169641 2.101055 0.036248 -1.46151 0.331967 -4.40258 1.37E-05

Rep3*Rep3 1.3574 0.164626 8.245362 2.27E-15 -1.48961 0.322152 -4.62395 5.06E-06

Rep4*Rep4 1.556627 0.165152 9.425439 3.22E-19 -2.24745 0.323181 -6.95415 1.41E-11

Rep5*Rep5 1.901052 0.164544 11.55348 6.50E-27 -9.55247 0.321991 -29.6669 5.25E-104

Rep6*Rep6 1.541653 0.171443 8.992202 9.11E-18 -6.69348 0.335493 -19.9512 2.42E-62

All 91 Terms (main effects, two-way interactions, squared main effects)
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