
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-22-2012

Automated Aerial Refueling Position Estimation
Using a Scanning LiDAR
Joseph A. Curro II

Follow this and additional works at: https://scholar.afit.edu/etd

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Curro, Joseph A. II, "Automated Aerial Refueling Position Estimation Using a Scanning LiDAR" (2012). Theses and Dissertations. 1099.
https://scholar.afit.edu/etd/1099

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1099?utm_source=scholar.afit.edu%2Fetd%2F1099&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Automated Aerial Refueling Position Estimation

Using a Scanning LiDAR

THESIS

Joseph A. Curro II, Second Lieutenant, USAF

AFIT/GE/ENG/12-11

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the offi-
cial policy or position of the United States Air Force, Department of Defense, or the
United States Government.

This material is declared a work of the U.S. Government and is not subject to copy-
right protection in the United States.

AFIT/GE/ENG/12-11

Automated Aerial Refueling Position Estimation
Using a Scanning LiDAR

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Joseph A. Curro II, B.S.E.E.

Second Lieutenant, USAF

March 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/12-11

Automated Aerial Refueling Position Estimation
Using a Scanning LiDAR

Joseph A. Curro II, B.S.E.E.

Second Lieutenant, USAF

Approved:

Dr. John F. Raquet, (Chairman) date

Maj Kenneth A. Fisher PhD (Member) date

Dr. Gilbert L. Peterson, (Member) date

AFIT/GE/ENG/12-11

Abstract

This research examines the application of using a scanning Light Detection and

Ranging (LiDAR) to perform Automated Aerial Refueling(AAR). Current attempts

at AAR use Global Positioning System(GPS) and vision aided methods. This research

thrust examines a method using a LiDAR in order to complement these existing

methods. Specifically, this thesis presents two algorithms to determine the relative

position between the tanker and receiver aircraft. These two algorithms require a

model of the tanker aircraft and the relative attitude between the aircraft. The first

algorithm fits the measurements to the model of the aircraft using a modified Iterative

Closest Point (ICP) algorithm. This algorithm leverages the speed of a k-Dimensional

Tree (k-D Tree) to quickly determine closest points between measurements and the

tanker model. The second algorithm uses the model to predict LiDAR scans and

compare them to actual measurements while perturbing the estimated location of the

tanker. This algorithm requires a fast LiDAR simulator to quickly produce simulated

scans from many position the plane was perturbed to. Each algorithm was tested

with simulated LiDAR data before real data became available from test flights. Eight

test flights involving a KC-135 and a Learjet as the surrogate receiver were conducted.

The Learjet was outfitted with a sensor suite that included a LiDAR. Each aircraft

was also outfitted with extra sensors to determine a truth trajectory for each flight.

The data collected from this test flight was used to determine the accuracy of the two

algorithms with real LiDAR data. After correcting for modeling errors the accuracy

of each algorithm has a Mean Radial Spherical Error of about 40cm. This accuracy

is well within bounds to aid either the current GPS or vision methods of AAR.

iv

Acknowledgements

First and foremost, I owe a large debt of gratitude to everybody. Specifically I would

like to thank everyone at the ANT center and AFRL that made the test flights

possible. I especially want to thank Tom for manning the Trimble Total Station while

I held the flag board for the boresighting as well as listening to any rambling I might

have had about this thesis. I also want to thank Tim Penn for listening to my ideas

about the thesis and getting the LATEX template to work. I also want to acknowledge

all those people out there that work on free open source software such as Ogre, Mogre,

Notepad++, and all the other great free software because without software like that

many theses including my own would not be possible. Finally I want to thank by

thesis advisor Dr. John Raquet.

Joseph A. Curro II

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xv

List of Abbreviations . xvii

I. Introduction . 1
1.1 Problem Statement . 2
1.2 Overview . 3

II. Mathematical Background and Previous Research 4

2.1 Mathematical Notation 4
2.2 Reference Frames . 5
2.3 Coordinate Transformation 7
2.4 LiDAR . 9
2.5 LiDAR Simulation with Graphics Rendering 10

2.6 Iterative Closest Point 11
2.7 k-D Tree . 13
2.8 Reporting Errors . 14

III. Algorithms and Analysis . 16

3.1 Algorithm Assumptions 16

3.2 MBI Algorithm . 17

3.2.1 Build Data Structures 17
3.2.2 Find Closest Points on Model to Measurements 19
3.2.3 Determine Position with modified ICP 20
3.2.4 Determine if Threshold is Reached 21
3.2.5 Apply Sensor Position 22

3.3 PPD Algorithm . 22

3.3.1 Perturb Position 23
3.3.2 Predict Measurements 24
3.3.3 Compare Simulated and Actual Measurements . 26

3.3.4 Determine Best Position 27
3.4 LiDAR Boresight Technique 28

3.4.1 Overview . 29

vi

Page

3.4.2 Mathematics to Determine Boresight 30

3.4.3 Data Collect Procedure 34
3.4.4 Error Analysis 36

IV. Results . 39
4.1 Test Flight Description 39

4.1.1 Learjet Modification 39

4.1.2 KC-135 Modification 41
4.1.3 Ibeo LUX 8L 42
4.1.4 Lever Arms . 43
4.1.5 Test Flight Overview 44

4.2 Functional Analysis . 46

4.2.1 k-D Tree Analysis 46

4.2.2 LiDAR Simulator Analysis 47

4.3 Simulation Analysis . 49

4.3.1 MBI Parameters 50
4.3.2 MBI Convergence 51

4.3.3 MBI Characteristics 54
4.3.4 PPD Parameters 57
4.3.5 PPD Sensitivity 58

4.3.6 PPD Characteristics 61
4.4 Initial Position Estimates 62
4.5 Modeling Error Corrections 63

4.5.1 Tanker Model Error 65
4.5.2 LiDAR Boresight Correction 67

4.5.3 Error Comparison 67

4.5.4 LiDAR Filtering 69

4.6 Final Position Estimates 70
4.7 Simulate Other LiDAR Setup 75

4.7.1 Simulate Custom LiDAR 75
4.7.2 Simulated Attitude Estimates 77

4.8 Actual Attitude Estimates 80
4.8.1 PPD + MBI Algorithm 80

4.9 Summary . 83

V. Conclusion . 84
5.1 Conclusions . 84
5.2 Future Work . 85

5.2.1 Sensor Fusion 85
5.2.2 Algorithm Improvement 86

5.2.3 Speedup For Real Time Operation 86

vii

Page

5.2.4 LiDAR Setup 87

5.2.5 Controlled LiDAR 87

VI. Appendix A . 88

Bibliography . 92

Index . Index-1

Author Index . Index-1

viii

List of Figures
Figure Page

3.1. Flowchart showing the steps involved in MBI algorithm. 18

3.2. The black point represents the measurement point that the algo-

rithm is trying to find the nearest point on the mesh for. The red

point is returned from querying the k-D Tree as to the nearest

neighbor to the black point. 21

3.3. The triangles with the red point as a vertex are determined from

the triangle dictionary DCT shown as the cyan triangles. The

closest point on each of those triangles to the black point is de-

termined to be the yellow points with the green point being the

closest. The green point lies on an edge of the triangle thus more

searching is required. 22

3.4. Two new red points are determined as the other vertices of the

triangle that contained the previous green point. These new red

vertices are used to make a new list of cyan colored triangles.

Again the closest point from each of these triangles to the black

point is calculated. In this case the green point is not on an edge

so it is returned as the closest point on the mesh to the black

point. 23

3.5. Flowchart showing the steps involved in PPD algorithm. 24

3.6. Renders of the tanker with its color representing the range from

the virtual camera or in this case the virtual LiDAR. The min-

imum and maximum range of the LiDAR provide a scaling to

which colors can be applied. In this case the nose of the fuselage

is farther away and turning a green while the tail is closer and

turning a dark blue. 25

3.7. Pixel mask for each of the azimuth and elevation pairs. This

mask is for the Ibeo LUX 8L. The lines of constant elevation

curve as described in Section 3.4.1.3. 27

ix

Figure Page

3.8. Mask applied to rendered image returning beams. In this picture

each returned beam is represented by a red sphere. The pixels at

each of these locations provide the range through their color and

azimuth and elevation by their location in the image. Since a

mask was used, the pairing between azimuth-elevation pairs and

pixel coordinates can be used to quickly relate pixel coordinates

to an azimuth and elevation. 28

3.9. LiDAR boresight simulated scan showing beams for azimuth lines

from -50 to 50 degrees in 10 degree increments. The elevation

of all lines is 30 degrees to show the geometry principles but

normally would not be used for boresighting. Each red sphere

represents a scanned point from the LiDAR that struck the flag

board at a different range. The axis is the l−frame from which

the measurements were taken and has been included in all pic-

tures to provide clarity but would not be known until the end of

the boresight. 31

3.10. Each red line represents the best fit line to the points of that

beam. Next the best fit intersection of all the points is deter-

mined and used as the origin as shown by the black sphere at

the center of the axis. 32

3.11. The normalized slope vectors, shown as dark green arrows, are

used to determine the green set of points. These points trace out

the base of a cone created by all the slope lines. 33

3.12. The green slope points are fit to the blue plane which is the base

of the cone made by all the slope vectors. This blue plane has a

normal parallel to the blue axis arrow. Thus from this the blue

axis arrow has been determined. 34

3.13. The red axis arrow is determined by rotating all the slope vectors

about the blue axis by the azimuth they represent creating the

dark red arrow. This axis is in the correct direction as the red

axis arrow however it must be orthogonal to the blue axis arrow.

Thus a series of cross products are used to determine the green

axis arrow and then the final red axis arrow. 35

x

Figure Page

3.14. The flag board used to catch lines of equal elevation (green line)

and lines of equal azimuth (blue line). The intersection in the

red region is where the beams of the given elevation and azimuth

strikes the board. 36

3.15. Graphical utility used to position board. Each rectangle repre-

sents a beam from the LiDAR. The color of the rectangle repre-

sents what the beam strikes. In order to keep geometry consis-

tent, when an equivalent azimuth does not exist at other eleva-

tions, the azimuth must still be drawn but as a black rectangle.

White rectangles represents laser scans that miss the flag board.

Red rectangles represents laser scans that strike the flag board.

The following have been added to clarify the picture but are not

part of the utility. The green and blue lines represent the hori-

zontal and vertical lines to capture respectively. The gray circles

show the white rectangles that miss the board due to the notch

in the board. These are the beams that are lined up by the per-

son holding the board in order to assure the green and blue lines

intersect in the correct rectangle, and thus capture the correct

azimuth and elevation. 37

4.1. Nose cone of Learjet modified with panes of glass to allow sensors

to see through nose cone. 40

4.2. Sensor suite installed in the nose cone of the Learjet. Sensors

from left to right are Ibeo LUX 8L Laser Scanner(1), Proscillica

1660C Camera (2), NovAtel SPAN-SE Receiver (3) 41

4.3. Mounting plate in nose cone of Learjet. 42

4.4. Sensor suite fully mounted in the nose cone of Learjet. 43

4.5. Predicted scan area on the tanker from the LiDAR. The left wing,

engine pods, and fuselage are struck by LiDAR scans as shown

by the blue spheres. 44

4.6. KC-135 with markers installed on the body of the aircraft. Mark-

ers have been circled with yellow. Picture taken in flight by

Proscillica camera. 45

4.7. Scan pattern of the Ibeo LUX 8L. View is seen as if standing

behind LiDAR. 46

xi

Figure Page

4.8. MBI Algorithm percentage of starting error reduced for flight

1 pass 1 using final parameters. Figure used to determine if

algorithm is tracking positions to reduce initial error. Axis in

l−frame. 51

4.9. MBI error using simulated LiDAR measurements and Last Esti-

mated Pose mode. Top plot shows the error length between the

best estimated position and the truth position for the simulated

data set. The bottom plot shows the error in each direction as

seen through the LiDAR. Axis in l−frame. 53

4.10. Convergence simulation run with a 10m box. The x,y,z axes

correspond to the red, green, and blue arrows respectively in the

btanker−frame. Each line represents a trail of the position as

it moved towards its convergence point. The color of the line

represents how many iterations have been completed to reach

that position. Lines with few iterations and thus far from their

convergence point are colored purple and gradually move towards

red as they complete more iterations. Thus all the purple lines

have completed few iterations while the blue lines are closer to

finishing. Red/Orange lines are not visible because when they

are close to converging the incremental movement is very small

and the small lines are difficult to see. 54

4.11. Convergence simulation run with a 50m box. The x,y,z axes

correspond to the red, green, and blue arrows respectively in the

btanker−frame. For Description of lines see Figure 4.10. Local

Minimums have been circled in black. The global minimum is

the circle on the coordinate axes. 55

4.12. Left Plot: Convergence points for the 10m box test. This is an

overhead view through the virtual camera frame looking down

with -z as forward direction and x as right direction. All points

converge to less than one cm of true center (0,0,0).

Right Plot: Convergence points for the 50m box test. This is an

overhead view looking down with -z as forward direction and x

as right direction. Many points converged to true center (0,0,0)

while many others can be as far as 20m off. Local minimums

cause convergence to incorrect locations. 56

xii

Figure Page

4.13. Correlation between ρpx and the position error. As 3D position

error increases ρpx decreasing thus allowing large position error

to be detected. The red line is a linear fit trend-line. 57

4.14. PPD error with simulated LiDAR measurements for flight 1 pass

1, axis in l−frame. 60

4.15. SRRE determined from varying the position of the tanker in each

axis in the breceiver−frame. 61

4.16. SRRE determined by varying the position of the tanker in the x

and y axis of the breceiver−frame. 62

4.17. Left Figure: SRRE varying the position of the tanker in the y

and z axis of the breceiver−frame.
Right Figure: SRRE varying the position of the tanker in the z

and x axis of the breceiver−frame.
Each figure shows sensitivity to changes in the z axis, but com-

paratively less sensitivity to changes in the x and y axis. 63

4.18. PPD algorithm showing the correlation between SRRE and po-

sition error of simulated run of flight 1 pass 1. 65

4.19. KC-135 with outline overlay of model plane overlayed on pic-

ture taken by Proscillica camera. Left side shows plane without

wing correction. Right side shows overlay after wing deflection

correction has been applied to the tanker model. 66

4.20. Comparison of different modeling error corrections applied. Poses

with under 100 measurements or predicted measurements were

not used in the comparison and were removed. 68

4.21. LiDAR scan with sun causing measurement errors. Measure-

ments represented by spheres with the color showing the pulse

width of the beam as reported by the Ibeo LUX 8L. Beams that

strike the tanker are green in color while the beams created by

the sun are blue and purple. Measurements created by the sun

are also more sparse at farther ranges compared to the tanker

measurements. Axis represents the l−frame with the x, y, z cor-

responding to the red, green, and blue arrows. 70

4.22. Flowchart showing steps used to filter LiDAR scans. 71

xiii

Figure Page

4.23. LiDAR scan with sun causing measurement errors with filter ap-

plied. Green spheres are measurements kept by the filter while

the red spheres are rejected by the filter. Some points on the

plane are marked as red but overall filter removes mainly mea-

surements caused by the sun. 72

4.24. Custom LiDAR scan on the tanker. Blue spheres are measure-

ment points returned by the Simulated LiDAR. The scan points

are mostly flat but the sides of the engine pods provide vertical

visibility. 78

xiv

List of Tables
Table Page

4.1. k-D Tree Error With Far Child Error Statistics 47

4.2. k-D Tree Error Without Far Child Error Statistics 47

4.3. Time Taken For Each Closest Point Method 48

4.4. k-D Tree Speedup Comparison 48

4.5. LiDAR Simulator Range Error 49

4.6. Time Taken for each LiDAR Simulator 49

4.7. LiDAR Simulator Speedup Comparison 49

4.8. MBI Simulation Parameters . 51

4.9. MBI Algorithm Flight 1 Pass 1 Simulated 52

4.10. PPD Parameters . 58

4.11. PPD Parameters No Depth . 59

4.12. PPD Method Error Statistics Flight 1 Pass 1 Simulated 59

4.13. MBI Algorithm Error Statistics Flight 1 Pass 1 Actual Data . . 64

4.14. PPD Algorithm Error Statistics Flight 1 Pass 1 Actual Data . 64

4.15. Modeling Error Correction Comparison 68

4.16. Filter Values . 71

4.17. MBI Algorithm Error Statistics Flight 1 Pass 1 Actual Data with

Model Corrections . 73

4.18. MBI Algorithm Error Statistics Flight 2 Pass 1 Actual Data with

Model Corrections . 73

4.19. PPD Algorithm Error Statistics Flight 1 Pass 1 Actual Data with

Model Corrections . 74

4.20. PPD Algorithm Error Statistics Flight 2 Pass 1 Actual Data with

Model Corrections . 74

4.21. MBI Algorithm RRE Comparison Flight 1 Pass 1 74

4.22. PPD Algorithm RRE Comparison Flight 1 Pass 1 74

xv

Table Page

4.23. Relative Position Truth Data 1-σ Flight 1 Pass 1 75

4.24. MBI Algorithm Error Statistics Flight 1 Pass 1 Custom LiDAR 77

4.25. PPD Algorithm Error Statistics Flight 1 Pass 1 Custom LiDAR 77

4.26. MBI Algorithm Error Statistics Flight 1 Pass 1 Custom LiDAR

with Determine Attitude . 79

4.27. MBI Algorithm Error Statistics Simulated Flight 1 Pass 1 Flight

Test LiDAR with Determine Attitude 79

4.28. MBI Algorithm Error Statistics Flight 1 Pass 1 Flight Test Li-

DAR with Determine Attitude 81

4.29. MBI Algorithm Error Statistics Flight 1 Pass 1 Flight Test Li-

DAR with Determine Attitude at 10Hz sampling 81

4.30. MBI Algorithm Euler Angle Error Reduction 81

4.31. PPD + MBI Algorithm Error Statistics for Flight 1 Pass 1 . . 82

4.32. PPD + MBI Euler Angle Error Reduction 83

A.1. Receiver Sensor Lever Arms 88

A.2. Final Sensor Orientations . 89

A.3. Tanker Sensor Lever Arms . 89

A.4. Final Sensor Orientations . 89

A.5. Test Flights 1-4 Description . 90

A.6. Test Flights 5-8 Description . 91

xvi

List of Abbreviations
Abbreviation Page

LiDAR Light Detection and Ranging 1

AAR Autonomous Aerial Refueling 1

UAV Unmanned Aerial Vehicle 1

USAF United States Air Force 1

UCAV Unmanned Combat Aerial Vehicle 1

GPS Global Positioning System 1

INS Inertial Navigation System 2

ICP Iterative Closest Point . 3

DCM Direction Cosine Matrix 4

ECEF Earth-Centered Earth-Fixed 5

GPS Global Positioning System 5

NED North, East and Down . 5

TriDAR Triangulation + LiDAR 9

GPU Graphical Processor Unit 10

ICP Iterative Closest Point . 11

k-D k-Dimensional . 13

RMS Root Mean Square . 14

MRSE Mean Radial Spherical Error 14

MBI Model Based ICP . 16

PPD Position Perturbations Difference 16

IMU Inertial Measurement Unit 16

RRE RMS measurement Range Error 27

SRRE Scaled RMS measurement Range Error 27

MRAD Milli Radian . 38

AFRL Air Force Research Laboratories 39

xvii

Abbreviation Page

EGI Embedded GPS Inertial Navigation Systems 40

LEP Last Estimated Pose . 50

LTP Last Truth Pose . 50

xviii

Automated Aerial Refueling Position Estimation

Using a Scanning LiDAR

I. Introduction

T
his thesis focuses on using a scanning Light Detection and Ranging (LiDAR) to

determine a relative position solution for two aircraft performing aerial refueling.

The relative position solution enables the two aircraft to control themselves in order

to maintain a relative position to allow Autonomous Aerial Refueling (AAR). This

effort is motivated by the introduction of Unmanned Aerial Vehicles (UAVs) into the

United States Air Force (USAF) that require the capability for aerial refueling.

The future UAVs will be built for the purpose of combat and not reconnaissance,

such as the current generation of UAVs that includes the RQ-4 Global Hawk and MQ-

9 Reaper [5] [4]. This new generation of Unmanned Combat Aerial Vehicles (UCAVs)

such as the Navy X-47B Pegasus, are being designed with AAR as a capability of

the final version [26]. These planes require AAR as a tactic for mission success.

Current manned combat vehicles all use aerial refueling as a utility to extend range,

payload, and loiter time. The USAF is moving forward with UCAVs as a part of the

future of warfighting [18]. The new UCAVs will be sought as replacements to the

current combat aircraft, but in order for this replacement UCAVs must take on all

the responsibilities of manned combat aircraft including aerial refueling [17].

Current solutions to the AAR problem use the Global Positioning System (GPS)

[11] and predictive rendering vision for relative position [31]. The predictive rendering

vision solution uses virtual reality image estimates of the tanker, based on a model,

to compare to actual camera images [31]. This method has limitations in accuracy

but is robust to electronic interference. The GPS solution, while very accurate, can

have problems with satellite acquisition when the tanker aircraft blocks the view of

the sky for the receiver aircraft [15]. Also GPS signals are very low power that are

1

subject to electronic interference. AFRL is specifically looking into different sensors

to use an alternative to situations when GPS is unavailable [30]. One such sensor is

a LiDAR.

LiDAR has typically been used in navigation to determine the surrounding envi-

ronment [23]. The LiDAR provides information about the unpredictable environment,

such as object tracking and plane detection [25], to aid in navigation. Typical flight

navigation however, is in a predictable environment without many other objects in

close proximity. This is enforced by standards that require flights to be deconflicted

before takeoff. This allows navigation without a high accuracy position estimate. In

these cases, a LiDAR can be used to navigate by scanning the ground [28]. A notable

exception to these cases is the aerial refueling situation where the environment will

contain at least one other plane in close proximity. A LiDAR sensor now can be use-

ful for flight navigation to determine the location of the other plane. This navigation

attempt is very different from previous environmental navigation techniques, because

the environment is much more predictable since the other plane can be known before-

hand. This allows the LiDAR to search specifically for one object instead of searching

for any number of unknown objects. Because of this assumption, navigation with a

LiDAR in flight has many advantages over normal LiDAR navigation, and can achieve

a more accurate position solution.

1.1 Problem Statement

This thesis focuses on using the LiDAR to determine an accurate relative posi-

tion solution between a receiver aircraft and a tanker for which a model is available.

The attitude of each aircraft is provided by high quality Inertial Navigation Systems

(INS). The aircraft are assumed to start in close proximity within range of the Li-

DAR with an accurate estimate of the initial relative position. This thesis analyzes

two different algorithms to determine relative position. One method attempts to fit

the LiDAR measurement to a known model of the tanker aircraft, while the second

2

predicts the measurements and searches for a position where the prediction closely

resembles the real measurements.

1.2 Overview

This thesis will be organized as follows. Chapter II will introduce the mathe-

matical notation used in this thesis and include the relevant coordinate frames and

the conversions between them. This chapter will also provide a brief background

on LiDAR and graphics rendering. Also included is an overview of the necessary

algorithms and techniques required by the overall relative position algorithms.

Chapter III details the two algorithms used to determine the relative position

solution with a LiDAR, and a method to boresight the LiDAR. Each algorithm is de-

scribed mathematically and the major techniques used in each algorithm are detailed

and explained. The first algorithm explains the modifications to the Iterative Closest

Point (ICP) algorithm in order to use the model of the aircraft. The second algo-

rithm details the LiDAR simulator that is used to compute predicted measurements

from the LiDAR using the aircraft model. Finally the mathematics and procedure to

boresight the LiDAR are presented. An error analysis of the boresight procedure is

also be explained and compared to an actual boresight completed for this thesis.

Chapter IV analyzes the algorithms and their characteristics. The parameters

used in each algorithm are detailed. The characteristics of each algorithm are dis-

cussed including their strengths and weaknesses. The test flights conducted to record

data used in the analysis are described, and in the results from test flights are com-

puted using each algorithm in order to evaluate performance and possible places for

error and methods to mitigate the error. A final position solution accuracy is shown

given the test flight data.

Finally Chapter V concludes the thesis with an overview of the results of both

the algorithms used for the relative position solution. This section also suggests areas

for future work on how to improve both algorithms in terms of accuracy and integrity.

3

II. Mathematical Background and Previous Research

T
his chapter describes the mathematical background and notation required to

develop the algorithms in Chapter III. First a standard mathematical notation

is developed to use throughout the document. Next the necessary reference frames

are introduced and described in detail. Next a brief overview of LiDAR and graphical

rendering is presented. Finally an overview of the necessary algorithms and techniques

required by the overall relative position algorithms are discussed.

2.1 Mathematical Notation

The following mathematical notation is used:

Scalars: Scalars are represented by a lowercase or uppercase letter in italics (e.g.

a,B)

Vectors: Vectors are represented by a lowercase boldface letter (e.g., a). A vector

in a specific reference frame is denoted as aB, where vector a is in the B-frame.

The transpose of a vector is represented by a vector with a superscript T (e.g.,

xT). Unless a vector has a transpose, it is assumed to be vertical i.e. the number

of columns is one. A list of vectors is represented by a vector with an subscript

letter which represents the index of the element in the list (e.g., ax) where x is

the index of elements in a. The total number of elements in the list is denoted

as an uppercase N with a subscript of the list name (e.g., Na). To index a vector

the square brackets are used (e.g., a[0]) where the index starts a zero.

Matrices: Matrices are represented by a uppercase boldface letter (e.g., A). Matrices

consist of scalar values in two dimensions referenced as Aij, where i is the row

index and j is the column index. The identity matrix is denoted as I.

Direction Cosine Matrices: Direction Cosine Matrices (DCM) that convert from

the a−frame to the b−frame are denoted by Cb
a

Quaternion: Quaternions are denoted a vector where the first value of the vector is

the scalar quaternion value and the second through fourth is the vector value

4

for example q(w, x, y, z). Quaternions convert from a−frame to b−frame are

denoted by qb
a. The identity quaternion is denoted as qI = [1, 0, 0, 0]

2.2 Reference Frames

Navigation reference frames are important to express positions and orientation

with respect to different orientations and with reference to different objects. For this

document the following reference frames are defined:

Earth-Centered Earth-Fixed (e−frame): The Earth-Centered Earth-Fixed

(ECEF) frame is an orthonormal basis in three dimensions with origin at the

center of mass of the Earth. The ECEF frame is rigidly attached to the earth and

moves and rotates with the earth. The x axis points out toward the Greenwich

meridian, and the y axis points toward the 90 degree longitude line. This makes

the x−y plane lie in the equatorial plane of the Earth. The z axis points toward

the north pole. The ECEF frame is the frame the Global Positioning System

(GPS) returns location in.

Navigation Frame (n′−frame): The navigation frame is an orthonormal basis in

three dimensions, with origin located at a predetermined point on the vehicle.

The x, y, z axes of the navigation frame point North East Down NED respec-

tively.

Body Frame (b−frame): the body frame is an orthonormal basis in three dimen-

sions attached to a vehicle. The origin is located at a predetermined point on

the vehicle co-located with the navigation frame. The x, y, z axes of the body

frame point out the nose, right wing, and bottom of an aircraft respectively. To

denote different vehicles the name of the vehicle is added as a subscript to the

frame. For example the tanker body frame is denoted as btanker−frame.

Model Frame (m−frame): the model frame is an orthonormal basis in three di-

mensions attached to a virtual representation of a vehicle. The origin of the

model frame may not be in the same location as the body frame or navigation

5

frame of the vehicle it represents. The x, y, z axes of the model frame point in

the same directions as the body frame of that vehicle. As with the body frame,

to denote different vehicles the name of the vehicle is added as a subscript to

the frame. For example the tanker model frame is denoted as mtanker−frame.

LiDAR frame (l−frame): the LiDAR frame is an orthonormal frame in three di-

mensions attached to the sensor origin of the LiDAR. The sensor origin is the

point with zero range. The x, y, z axes point in the forward, left and up direc-

tions of the LiDAR respectively.

LiDAR measurement frame (l′−frame): the LiDAR measurement frame is a

spherical coordinate frame in range azimuth elevation (r, θ, φ). The LiDAR

measurement frame is the spherical representation of the LiDAR frame. Range

is the slope distance to the measured point. Azimuth is the angle the slope

line projected on the x, y plane makes with the x axis. Positive angles move

in a counterclockwise motion and negative angles move in a clockwise motion.

Elevation is the angle between the slope line and the line projected onto the x, y

plane. Positive elevation angles have a positive z values. For simplicity angles

greater than 180 will be treated as negative angles. Converting this frame to

the l-frame uses equation 2.1

[
x y z

]
=
[
r cos(φ) cos(θ) r cos(φ) sin(θ) r sin(φ)

]
(2.1)

Virtual Camera Frame: The virtual camera frame is an orthonormal frame used

for cameras in virtual reality. In this frame the camera looks in the negative z

axis with y axis as the up direction and x axis as the right direction.

World Coordinate Frame: The world coordinate frame is an orthonormal frame

used in virtual reality to place all objects contained in a scene. Objects in the

scene include the camera, lights, and physical objects.

Eye Coordinates Frame: The eye coordinate frame is an orthonormal frame based

on the world coordinate frame except the world coordinates frame is translated

6

and rotated so the world coordinates line up with the virtual camera frame from

which the scene is viewed from.

Pixel Coordinates: Pixel coordinates are a 2D frame used to describe the layout

of pixels on a computer screen. The upper left corner of the screen is the origin

with positive x axis moving from left to right across the screen and positive y

axis moving from top to the bottom of the screen.

2.3 Coordinate Transformation

Coordinate transformations describe the relationship between the orientation of

two different frames. A coordinate transform also converts a vector in one frame to

another frame. This document has three different methods to express a coordinate

transform, DCMs, Euler angles and quaternions.

DCMs consist of a 3x3 matrix of values. The values in the matrix relate to the

dot product of each unit vector in one frame, with each unit vector in the second frame

creating nine values [29]. The matrix allows for converting vectors in one frame to

another through multiplication. For example, vB = CB
AvA converts vector v from the

A−frame to the B−frame. Two DCMs can be combined to cut out the middle frame

for example CC
A = CC

BCB
A creates a conversion from the A−frame to the C−frame

using the conversion from the A−frame to the B−frame and the conversion from

the B−frame to the C−frame. Unlike Euler angles there is no singularity in DCMs.

Euler angles consist of three values that represent three different single axis ro-

tations applied one after the other. Euler angles are commonly used to transform the

body frame of an aircraft from the navigation frame as an angle in yaw(φ), pitch(θ),

roll(ψ). Euler angles have singularities at certain rotations, in this example a singu-

larity exists when the pitch angle is ±90 [29]. For navigation purposes the common

order of rotations from the n′−frame to the b−frame is yaw pitch then roll. To

7

convert the Euler angles of such an order to a DCM the following equation is used:

AZ =

1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 (2.2)

AY =

cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (2.3)

AX =

cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 (2.4)

Cb
n′ = AZAY AX (2.5)

Quaternions consist of four scalar values divided into one three dimensional

vector and one scalar. The scalar value is represented by a w while the vector compo-

nents are represented as (x, y, z). A simplistic way to imagine a quaternion rotation

is to think of it as a rotation vector where the quaternion vector value gives the axis

of rotation, and the quaternion scalar decides the degree of rotation. Quaternions

are often grouped as one vector with four values. The magnitude of a quaternion

vector must equal one for the quaternion to be normal ‖[w, x, y, z]‖ = 1 [16]. Quater-

nions that are not normal do not provide correct transformations between coordinate

frames. A quaternion can be converted to a DCM and then used to transform vec-

tors. The conversion to a DCM is shown in Equation 2.6. For notation purposes,

R(q) denotes the DCM of quaternion q. Quaternions can convert vectors from one

frame to another after conversion to a DCM [27]. Quaternions are used to simplify

8

mathematical operations and for storage simplicity.

R(qB
A) = CB

A =

w2 + x2 − y2 − z2 2(xy − wz) 2(xz + wy)

2(xy + wz) w2 − x2 + y2 − z2 2(yz − wx)

2(xz − wy) 2(yz + wx) w2 − x2 − y2 + z2

 (2.6)

Where the quaternion is qB
A = (w, x, y, z)

.

The coordinate transformation allows algorithms to operate in the most conve-

nient and intuitive frame possible. Vectors can be easily transformed to any frame

and the frames themselves can be transformed to any other frame.

2.4 LiDAR

LiDAR is a technology used to sense objects at a distance. Mirrors direct a

beam of light or laser toward a target. The sensor then detects the return of the

light or laser and determines the time of flight in order to calculate the distance to

the object [12]. The light or laser is pulsed in order to distinguish one beam from

another [19]. The rotation of the mirrors determine the azimuth and elevation of the

beam. A scanning LiDAR uses a rotating mirror to direct the beam in a pattern [13].

The pattern only depends on the methods used to steer the beam. The patterns

can be in a grid of lines or even make circular passes. Another fundamental type of

LiDAR uses commands from a user or control loop to drive the mirrors and direct

the beam at an arbitrary azimuth and elevation. For example, the Triangulation +

LiDAR (TriDAR) has six degrees of freedom to direct the beam in any direction [22].

Both types of LiDAR require returns off the scanned object in order to calculate the

distance to the object. The stronger the return the more accurate the range. This

makes scanning rough, coarse objects ideal while shiny, smooth objects may pose a

problem [3]. A mirror-like object will direct the beam away and not return the beam

to the sensor. This may cause a missed return or a false reading if the beam returns to

9

the sensor after striking another object, thus increasing the perceived range. Another

problem can be when the laser strikes the edge of an object. When sensing the edge

of an object, the scan can wrap around the object and create a false return [3]. A

LiDAR normally returns measurements in spherical coordinates (range, azimuth, and

elevation) which can be converted to a cartesian coordinate system for analysis.

2.5 LiDAR Simulation with Graphics Rendering

LiDAR simulation is necessary to perform early analysis of algorithms that

use LiDAR measurements [20]. Powell et al. [21] have shown LiDAR simulation

with commercial ray tracing software is possible while Peinecke et al. [20] have simu-

lated a LiDAR with graphics hardware acceleration. This background explores hard-

ware acceleration as the method of choice. With the modern Graphics Processing

Units (GPUs) or graphics cards, parallel floating point operations are possible using

a pipeline approach. The pipeline consists of sets of dedicated hardware that perform

the same operation in parallel. Newer graphics cards allow for custom programming

of steps in the pipeline. This allows users to take advantage of this parallel processing

for other uses besides normal rendering. The two common locations in the pipeline

where custom code can be written are the vertex and fragment shader. The vertex

shader carries out operations on a per vertex basis such as transforming vertexes to

different frames. The fragment shader operates on a per pixel basis and uses the

output of the vertex shader. Each pixel is derived from an object and contains the

color of the object, as well as range to the object. Also at this point in the pipeline

it is possible to transform the world coordinates of the scene into the eye coordinates

frame. This frame has a fixed rotation to the l−frame making conversion in the

pipeline possible. A simple fixed DMC can transform the eye coordinates frame to

the l−frame. Thus, the distance from the origin to the object is quickly computed.

This allows the actual color of the object to be replaced by a scaling based on dis-

tance. After the final rendering of the object, the location of the pixel will give the

azimuth and elevation, while the color will give the range. Thus, the final result can

10

be interpreted as a simulated LiDAR scan of the entire object over all azimuths and

elevations. This end result can be leveraged to quickly simulate either a scanning or

controlled LiDAR, depending on a mask applied to the picture [20].

2.6 Iterative Closest Point

The Iterative Closest Point (ICP) algorithm allows for the registration of one

point cloud to another [8]. ICP determines the optimal rotation and translation to

apply to a point cloud in order to minimize distance to the closest point in another

point cloud. The two clouds are denoted as the xi point cloud and the pi point cloud.

The set pi and xi must have equal size and each element in xi with index i corresponds

to pi with the same i index. The objective is to rotate and translate the pi to more

closely match xi. To accomplish this the algorithm must minimizes the equation 2.7.

f(q, t) =
1

Np

Np∑
i=1

‖xi −R(q)pi − t‖2 (2.7)

where q is the quaternion to apply as a DCM to point cloud pi, t is the translation

to apply to pi, and Np is the number of points in each set xi and pi. The algorithm

operates in iterations and each iteration brings set pi closer to set xi. One iteration

of the ICP algorithm first determines the mean of both sets by

µµµx =
1

Nx

Nx∑
i=1

xi and µµµp =
1

Np

Np∑
i=1

pi (2.8)

where µµµx and µµµp are the means of the point clouds xi and pi respectively. Next the

algorithm determines the covariance of the sets by

Σpx =
1

Np

Np∑
i=1

(
pi(xi)

T
)
− µµµxµµµp (2.9)

11

where Σpx is the covariance between point clouds xi and pi. Next a matrix Q is made

from Σpx. To simplify the notation an auxiliary matrix is created A = Σpx − ΣT
px.

Next an auxiliary vector is created δδδ = [A23A31A12]
T . Finally we use δδδ to make Q:

Q(Σpx) =

 trace(Σpx) δδδT

δδδ Σpx + ΣT
px − trace(Σpx)I

 (2.10)

where trace() is the trace of the matrix in parentheses. To obtain the optimal

rotation as a quaternion, the eigenvector qx corresponding to the largest eigenvalue

of the matrix Q is selected. The optimal translation is the difference between the

means of the sets corrected for the rotation as shown in Equation 2.11.

tx = µµµx −R(qx)µµµp (2.11)

The rotation and translation are then applied to the set pi. The new set pi is then

used to start a new iteration of the algorithm. Each time the number of points in the

set pi must be equal and correspond to the points in set xi. Correspondence can be

determined by different metrics such as the closest point in set pi to the point in set

xi, or by using metadata from each point such as color [14].

Iteration continues until a threshold is reached. Different thresholds can be used

to terminate the algorithm. The matrix Σpx relates how close of a fit each set is to

the other by covariance [8]. Converting Σpx into a cross correlation matrix Ppx and

tanking the trace, gives a single value ρpx to determine closeness of fit. Thresholds

of ρpx to indicate close fits are based on the underlying geometry of the sets and

can be used to determine when the sets are adequately registered. Alternatively,

the translation distance tx can be used to determine when the current amount of

correction is so small the new tx is not worth the time taken to calculate [33]. Again

the translation distance is dependent on the sets being registered. The simplest

threshold is to use a max number of iterations. The max iterations can be derived

empirically by observing when the sets are adequately registered for the specific cause,

12

or determined based on a time limit. The threshold can also be any combination

of these methods. Regardless of the threshold used, the ICP algorithm determines

rotations and translations to move point clouds so they are more closely registered.

The ICP algorithm is not prefect however. While convergence on a solution is

guaranteed, convergence on the correct solution is not [8]. If the registration between

the sets is initially far off, a local minimum could be reached where the sets are not

correctly registered, but an infinite number of iterations will not move closer to the

true solution. The shape of the sets can pose a problem for accurate registration. For

example, a spherical object is difficult to register correctly, because all rotations about

the correct center will appear similar. To solve this problem, at the final solution ρpx

can be examined to determine if it appears to be a local minimum. If ρpx exceeds

thresholds, the ICP algorithm must be started from different orientations in order to

find the correct registration. The threshold values for ρpx depend on the geometry of

the sets being registered.

2.7 k-D Tree

A k-Dimensional (k-D) tree is a data structure used to spatially store a finite

number of K dimensional variables. k-D trees are spatially sorted in order to perform

certain algorithms quickly, such as the nearest neighbor search [7]. In order to be

spatially sorted, a k-D tree starts with a set of variables with K dimensions. The

variables are sorted along the first dimension using some metric. Next, a dividing

point is chosen using some method such as the median. A node is made using the

variable closest to this dividing point. Next the set is divided into two new sets

corresponding to the variables above and below the dividing node. The new sets are

sorted using the next dimension. The dimension will wrap back to the first dimension

if no new dimension exists. This process is repeated until the number of variables in

a node falls below a maximum [6]. Now the variables are spatially sorted. To search

for a given node, the search would start at the root node and compare to the search

value. If greater it would move to the top child node, and conversely if less move

13

to the lower child node. By repeating this pattern the search value can be quickly

found. This method can be used to find an approximate nearest neighbor to a point

in three dimensional space. This is approximate because in some cases if the two

child nodes are very close the closer node in the current dimension may not contain

the true nearest neighbor. In such cases both the near child and the far child nodes

must be searched in order to determine a more accurate nearest neighbor. However

in some cases, the threshold used to determine when the children are too close may

fail and the true nearest neighbor missed. Despite this limitation this search method

is much quicker than a brute force method of examining every variable one by one.

Also with appropriate thresholds the incorrect nearest neighbors will be very close to

the true nearest neighbor [10].

2.8 Reporting Errors

Reporting error in a concise manner is vital to compare and understand the

algorithms presented in this paper. A brief explanation of the error terms used in this

thesis is provided.

RMS Error : Root Mean Square(RMS) error is a method to combine the mean and

standard deviation of an error into one value. In this case the mean represents a

bias from the true value. RMS error is useful for one dimensional values such as

a range or distance in one axis. RMS is calculated with the following equation

RMS =

√√√√√ Nx∑
i=1

x2i

Nx
where xi is a set of values that represent the error from a

true value, and Nx is number of values.

MRSE : Mean Radial Spherical Error (MRSE) is a method to combine the mean and

standard deviation of a position error from two sets of points into one value. This

is useful to represent a 3D position error which has three means, three standard

deviation, and three RMS values for each axis into one value to quickly compare

to other 3D position errors. MRSE is calculated with the following equation

14

MRSE =

√√√√√ Np∑
i=1

(
x2i + y2i + z2i

)
Np

where xi, yi, zi represent element i of the error

in each axis from two points in 3D space, and Np is number of points.

15

III. Algorithms and Analysis

T
his chapter outlines the concepts to determine relative position from the LiDAR

sensor measurements and how to boresight the LiDAR. The chapter is organized

as follows. First the relevant assumptions for both algorithms will be outlined. Next

the Model Based ICP (MBI) algorithm that uses the measurements converted into

cartesian space will be outlined. Next the Position Perturbations Difference (PPD)

algorithm that keeps the measurements in spherical coordinates will be outlined. Both

algorithms will be explained as a step by step process in order to use the last estimate

of position to determine the new position estimate. Finally a method to boresight

a LiDAR is presented. The method includes the mathematics and procedure used

to boresight the LiDAR. An error analysis of the boresight procedure will also be

explained and compared to an actual boresight completed for this thesis.

3.1 Algorithm Assumptions

Both algorithms use the same underlying assumptions in order to determine the

relative position of the air vehicles. The list of assumptions is as follows:

Inertial Measurement Units Both of the air vehicles contain accurate naviga-

tional grade Inertial Measurement Units (IMUs), that during the time of the

algorithms have an accurate measurement of the attitude of the air vehicles. The

relative orientation between the two aircraft is assumed to be the orientation

described by the IMUs.

Initial Position Estimate The initial estimate of the relative position is known

within a statistical accuracy.

Sensor Setup The LiDAR is positioned on the receiver facing the tanker aircraft

so that during refueling, the tanker is in the field of view of the LiDAR. The

position and orientation of the LiDAR with respect to the receiver aircraft is

known.

16

Measurement Timing The LiDAR scans are assumed to be taken in one time

epoch. All measurements from the LiDAR are assumed to be taken at the start

time of the scan. This assumption is accurate in low relative dynamic situations

such as AAR.

Tanker Model An accurate model of the tanker is available as a mesh object defined

by vertices and triangles. The origin of this model can be related to the actual

tanker in some orientation and position.

Relative Position The n′−frame orientation of each plane is nearly equal due to

the close proximity of the aircraft to each other.

3.2 MBI Algorithm

In this section the fundamental steps of the Model Based ICP (MBI) Algorithm

are stated and defined. The algorithm consists of the following steps shown in Figure

3.1:

1. Build Data Structures

2. Find Closest Points on Model to Measurements

3. Determine Position with Modified ICP

4. Determine if Threshold is Reached

5. Apply Sensor Position

3.2.1 Build Data Structures. First the tanker model data set is defined.

The model consists of two distinct sets. The first set vi consists of every vertex of

the model and can be thought of as a point cloud for the tanker model, where i is

the index of each vertex. Each vertex is represented as a set of three floating point

numbers for the x, y, z axes. The model also consists of a list of triangles ti to develop

the mesh for the model. Each triangle consists of three integer numbers that represent

the index i of a vertex in vi.

17

Figure 3.1: Flowchart showing the steps involved in MBI algorithm.

The second data structure is a k-D tree. The k-D tree (KDT) consists of the set

of vertices vi from the model. The closest vertex vk in the KDT from an arbitrary

point x is denoted as vk = KDT.NN(x), where NN stands for the Euclidean distance

nearest neighbor function. The third data structure is a key value pair dictionary,

referred to as DCT, that relates each vertex to the triangles that use the vertex. For

example, assume vertex vk is used in three triangles t1−3. Thus for the entry of vk it

would return all the vertices of the three triangles. In this example, there would be

nine three value vectors. To obtain the values we poll the DCT as such DCT [vk] = tvi

where i is the index of the vertices of the triangles. In this example the max value

of i is nine. Each successive three values consists of one triangle. Thus tv1−3 is the

three vertices of the first triangle t1.

18

3.2.2 Find Closest Points on Model to Measurements. The first step of the

MBI algorithm is to determine the closest point on the tanker model for each of the

measurements xl′
i . The KDT uses the nearest neighbor function to determine the

closest vertex in the model for each measurement. However the points stored in the

KDT are in the mtanker−frame. Since there are many vertices in the KDT it is faster

to transform the measurements from the l−frame to the mtanker−frame first then

query the KDT with the transformed points. Next the vertex returned from the KDT

is used as a starting point to determine the closest point on the triangle list of the

model.

3.2.2.1 Orientation. To determine the closest points to measurements

the measurements must be converted from the l′−frame to the m−frame of the

tanker. First the conversion from the l′−frame to the l−frame is calculated, as

described in Section 2.2, to obtain measurements xl
i. Next the attitude measurements

from the IMUs of each aircraft are combined into a relative DCM. To accomplish this,

the Euler angles for the tanker and receiver are used to generate Cbtanker

n′ and Cbreceiver
n′

respectively. The two DCMs are combined with Cbreceiver
l (obtained from extrinsic

calibration described in Section 3.4) and Cmtanker
btanker

(determined during model creation)

using 3.1

Cmtanker
l = Cmtanker

btanker
Cbtanker

n′ Cbreceiver
n′

T
Cbreceiver

l (3.1)

With this DCM each measurement from the l−frame can be converted to the

mtanker−frame as shown xmtanker
i = Cmtanker

l xl
i.

3.2.2.2 KDT and Triangle Searching. Next the KDT is used to re-

trieve the closest vertex of each point qmtanker
i = KDT.NN(xmtanker

i). However this

point is only the closest vertex to each measurement point as shown in Figure 3.2.

To improve accuracy the closest point on the mesh to the measurement must be cal-

culated. To acquire the closest point on the mesh, a search of the triangles near the

closest vertex is conducted. All the triangles that include the vertex returned from

19

the KDT are searched, because any of the triangles could contain the closest point

to the measurement point. The DCT is queried to return all the triangles that use

the point returned from the KDT as a vertex as shown in Figure 3.3. To determine

where on the triangle the closest point is to the measurement, the following function

is used [y, f] = ClosestPointTriangle(x,v1,v2,v3) [9] where x is the measurement

point, y is the point that lies on the triangle, and v1,v2,v3 are the three vertices of

a triangle returned from the DCT. The value f flags where the point y is located on

the triangle. This flag represents if the point is inside or on one of the edges of the

triangles denoted by a one and zero respectively. This function is iterated over all the

triangles that use the vertex returned from KDT.

[yk, fk] = ClosestPointTriangle(xi, t3k+1, t3k+2, t3k+3) (3.2)

where t = DCT [qi] and k is in the range of 0 − (Nt/3 − 1) where Nt is the number

of points in t. With this a list of the closest points on each triangle yk and their

locations on the triangle fk is created. Next the closest point to xi in yk is found with

the equation dk = ‖(xi−yk)‖. The closest point is denoted as yb. However if the flag

fb for the closest point yb is on the edge of the triangle, then it is possible a closer

point exists on a triangle not in the current list of triangles. If the closest point is on

the edge, the previous algorithm must start over with the other two vertices of the

triangle that contained the current closest point as shown in Figure 3.4. This gives

two more lists of yk. These new lists are added to the previous list and a new yb is

calculated. This process is repeated until yb does not lie on the edge of a triangle.

The end result is a set of points in the set pmtanker
i which contains the closest point to

the measurement point xmtanker
i after searching across triangles of the model mesh.

3.2.3 Determine Position with modified ICP. After the two point clouds

pmtanker
i and xmtanker

i are collected, the best registration is determined. First each

point cloud is converted from the mtanker−frame to the breceiver−frame so the result

will be relative position with respect to the receiver aircraft. Next, to align the two

20

Figure 3.2: The black point represents the measurement point that the algorithm
is trying to find the nearest point on the mesh for. The red point is returned from
querying the k-D Tree as to the nearest neighbor to the black point.

sets, a modified ICP algorithm is used. In typical ICP a best rotation and translation

is determined. However with the navigation grade IMUs, the best rotation is already

known. Thus, only the best translation is required from the algorithm. To accomplish

this Equation 2.9 and 2.10 are skipped and only Equations 2.8 and 2.11 are used, with

the assumption that R(qx) = I. This calculated translation is added to the overall

translation tmtanker
t . The overall translation is used to determine the final translation

from the original estimated position.

3.2.4 Determine if Threshold is Reached. The estimate of position incre-

mentally converges to one solution with each iteration of the algorithm. How many

iterations to calculate depends on the accuracy required, the shape of the tanker

model, and the measurements from the LiDAR. The algorithm in this thesis uses a

combination of two thresholds to determine the overall threshold. The first thresh-

old sets a maximum number of iterations derived empirically from a nominal data

set. The second threshold is the last incremental corrective distance, also derived

empirically from a nominal data set. The dual threshold allows for an upper limit

to constrain the iterations while allowing an early finish if the match is recognized

quickly.

21

Figure 3.3: The triangles with the red point as a vertex are determined from the
triangle dictionary DCT shown as the cyan triangles. The closest point on each of
those triangles to the black point is determined to be the yellow points with the green
point being the closest. The green point lies on an edge of the triangle thus more
searching is required.

3.2.5 Apply Sensor Position. After the threshold is reached, the algorithm

has obtained the final position estimate tmtanker
t . However the final position estimate

is in the mtanker−frame and must be converted the breceiver−frame before it can be

useful. For this equation 3.3 is used

tbreceiverf = Cbreceiver
mtanker

tmtanker
t + lbreceivero (3.3)

where lbreceivero is the translation between the origin of the l′−frame and the

breceiver−frame in the breceiver−frame.

3.3 PPD Algorithm

In this section the fundamental steps of the Positions Perturbations Difference

(PPD) algorithm are stated and defined. The algorithm consists of the following steps

as shown in Figure 3.5:

1. Perturb Position

2. Predict Measurements

22

Figure 3.4: Two new red points are determined as the other vertices of the triangle
that contained the previous green point. These new red vertices are used to make a
new list of cyan colored triangles. Again the closest point from each of these triangles
to the black point is calculated. In this case the green point is not on an edge so it is
returned as the closest point on the mesh to the black point.

3. Compare Predicted and Actual Measurements

4. Determine Best Position

This algorithm, unlike the MBI algorithm, is not constrained to a specific frame. This

allows the calculation to be estimated in the desired frame from the beginning thus

reducing coordinate transformations.

3.3.1 Perturb Position. The method to perturb the position can be based

on a number of different criteria depending on the situation, from gradient slopes to

random guesses. This thesis implements an algorithm that searches a box volume

with increasing precision to converge to a best position. There are four factors that

shape the search space–the box length b, divisions of the box d, the number of times

to shrink the box c, and how much to shrink the box s. From these factors a search

can be conducted. First a box of length b is centered at the starting point, usually

the last position estimate. The box is divided d times in each direction. For example,

in a division of 2 there are 3 segments in each axis making 2-d slices of 9 squares for

a total of 27 new boxes. Each box center is a possible candidate for the position of

the tanker and each has its comparison metric calculated. The position with the best

23

Figure 3.5: Flowchart showing the steps involved in PPD algorithm.

metric is determined as the center for a new box. This new box has length equal to

the length of the boxes that the original box was divided into so bn = s(b/(d + 1))

where bn is the new box length and b is the previous box length. The box is enlarged

by the factor of s to account for the optimal spot being outside this box but inside the

spots searched from other boxes. This new box is once again divided and searched.

This process repeats for c times. The position with the lowest metric at the end of

all the perturbations is declared the best position. This method has the advantage of

spanning a fixed number of perturbations thus forcing a time limit for each pose.

3.3.2 Predict Measurements. When the tanker is perturbed, the measure-

ments in that position are simulated. Many different methods can be used to simulate

measurements. This paper uses a predictive rendering approach to quickly simulate

range measurements from the tanker model. The tanker model is loaded into a graph-

ics engine capable of using custom programmed code in the graphics pipeline. The

24

fragment shader is overridden with custom code to output not the color of the model,

but rather a range color scheme. The function requires a maximum and minimum

distance to scale the color values to. This value is in the same units as the mea-

surements and a typical maximum value would be the maximum range of the LiDAR

and a typical minimum would be zero. The function then scales the distance to the

pixel being rendered using this color scale. The scale uses a rainbow scale with purple

as close and red for far to increase human readability. The function then outputs

this color scale instead of the usual object color. Thus the screen renders the tanker

model in a color range scale as shown in Figure 3.6. With the pixel coordinates of the

pixel, the camera location, and camera orientation, and camera projection matrices,

the azimuth and elevation to each pixel can be determined.

Figure 3.6: Renders of the tanker with its color representing the range from the
virtual camera or in this case the virtual LiDAR. The minimum and maximum range
of the LiDAR provide a scaling to which colors can be applied. In this case the nose
of the fuselage is farther away and turning a green while the tail is closer and turning
a dark blue.

25

To increase speed only the points with desired azimuths and elevations are

converted to a point cloud. This algorithm predefines the valid pixels based on the

azimuth and elevation range of the LiDAR that creates the LiDAR scan. This set of

elevations and azimuths is used to create a mask defining the pixels to be converted

into a point cloud as shown in Figure 3.7. To determine this mask first define a set of

valid azimuth elevation pairs vea where the first and second values are the elevation

and azimuth respectively, next a set of valid pixels vp can be derived using equation

3.4

fpdx =
N

2
P[0, 0] (3.4)

fpdy =
M

2
P[1, 1] (3.5)

vpi[1] = round

(
N

2
− tan (veai[2])fpdx

)
(3.6)

vpy = round

(
N

2
− tan (veai[2])fpdy

)
(3.7)

vpi[2] = round

M
2
− tan (veai[1])

√
fpdy

2 +

(
vpy −

N

2

)2
 (3.8)

where N is the number of pixels horizontally, M is the number of pixels vertically,

and P is the 4x4 projection matrix of the virtual camera. The pixels are in pixel

coordinates where the leftmost, rightmost, top, and bottom pixels have values of

0,N ,M , and 0 respectively. The valid pixel pairs are then used to pick off the correct

pixels in the rendered picture and pair them with the corresponding elevation and

azimuth as shown in Figure 3.8.

3.3.3 Compare Simulated and Actual Measurements. The simulated mea-

surements must be compared to the actual measurements to derive some metric of

how close the current position estimate is. This algorithm pairs measurements with

the exact same elevation and azimuth, since for the given prediction of scans it is

possible that no measurement exists for every elevation and azimuth. Measurements

26

Figure 3.7: Pixel mask for each of the azimuth and elevation pairs. This mask is
for the Ibeo LUX 8L. The lines of constant elevation curve as described in Section
3.4.1.3.

that are not paired are thrown out and not used in the metric. The RMS error be-

tween the ranges of paired measurements is computed. This thesis refers to this error

as RMS measurement Range Error (RRE). In order to reject predictions with few

matching measurements, but by chance very small RRE, the error eRRE is inflated by

the ratio of the number of paired measurements to the number of total measurements

from the LiDAR as shown eSRRE = eRRE
Nmeasured

Npaired
. This is called the Scaled RMS

measurement Range Error (SRRE). This method promotes minimizing RRE as well

as pairing measurements.

3.3.4 Determine Best Position. After the tanker has been perturbed to

many positions and the SRRE compared for those many positions, a best position

must be declared. This thesis chooses the position of the lowest SRRE. Other methods

that interpolate between measurements of the lowest SRRE could be used, however

27

Figure 3.8: Mask applied to rendered image returning beams. In this picture each
returned beam is represented by a red sphere. The pixels at each of these locations
provide the range through their color and azimuth and elevation by their location in
the image. Since a mask was used, the pairing between azimuth-elevation pairs and
pixel coordinates can be used to quickly relate pixel coordinates to an azimuth and
elevation.

this thesis chooses the simplest method to demonstrate the capability to track based

on prediction.

3.4 LiDAR Boresight Technique

This section outlines a method to boresight a LiDAR. This particular method

was developed in order to determine the position and orientation of the LiDAR

l−frame in an arbitrary frame without a camera or exact range measurements from

the LiDAR. First an overview of boresighting and other boresight methods are out-

lined. Next the mathematics and procedure to boresight the LiDAR are presented.

Finally an error analysis for the boresight method is discussed and compared to a

boresight completed for the test flights discussed in Section 4.1.

28

3.4.1 Overview. A boresight of a sensor determines the intrinsic sensor

frame relative to another extrinsic frame. For example to boresight a rifle the intrinsic

direction of fire is lined up with the extrinsic sight of the gun. To determine the

intrinsic sensor frame, the sensor data must be used. In the example of the rifle, the

direction of fire is determined by firing the gun and recording where the bullet strikes.

To boresight a LiDAR one must determine where the beams strike external objects.

This method records where beams strike a flag board. Unlike a rifle, a scanning

LiDAR has many beams which can be used to determine the boresight of the LiDAR.

This method determines where many beams strike a flag board in order to boresight

the LiDAR.

3.4.1.1 Previous Work. Previous work on boresighting a LiDAR has

focused on determining the relative orientation between a camera and LiDAR. Willis

et. all [32] used a camera and single line scanning LiDAR to achieve a relative

boresight between the camera and LiDAR. They used a zigzag wall pattern that

changed color at each elbow to relate color changes to range changes. Pandey et.

all [19] coordinated an omnidirectional camera and multilevel scanning LiDAR using

checkerboard patterns placed around the sensors. Once again a relative position

between the omnidirectional camera and LiDAR was the objective. This type of

boresight is not useful for the purpose of using a stand alone LiDAR to estimate

position, because neither the camera or LiDAR frame is the desired frame of reference

to use. The camera and LiDAR also must be able to observe the same objects in many

different orientations in order to determine an accurate relative orientation. Thus a

method that references the LiDAR orientation in an arbitrary frame is required to

relate the LiDAR to a more useful real world frame of reference. This method also

does not rely on precise range measurements from the LiDAR thus mitigating range

calibration error.

3.4.1.2 Problem. In order to transform the measurements from the

LiDAR into other reference frames, the sensor orientation and sensor origin are re-

29

quired. To obtain the origin and orientation, measurements from the LiDAR must be

used since diagrams or measurements of the sensor are imprecise and contain error

because each sensor is different. In this method, a surveying laser system is used to

precisely pinpoint surveyed points within millimeter accuracy. A graphical utility and

flag board outlined in the Section 3.4.3 are used to provide a target for the surveying

laser system. Only scan lines of low elevation are collected for reasons explained in

Section 3.4.2.

3.4.1.3 Scan Characteristics. The theory to boresight the LiDAR

involves describing where many beams strike know locations. First the pattern of the

beams must be understood. LiDAR beams that scan with constant azimuth will trace

a vertical line on a plane. Beams that scan with constant elevation however, will not

trace a straight horizontal line. Beams of constant elevation draw a parabola on a

plane. This occurs because a beam of constant elevation traces out a cone as it scans,

and a cone intersecting a plane creates a parabola. Thus, to characterize beams of

constant elevation, the elevation must be small or else the parabolic effect will curve

the line. In this boresight method parabolic lines cannot be used to determine the

boresight, thus only beams of low elevation will be used to determine the boresight.

3.4.2 Mathematics to Determine Boresight. First a point cloud of strike

points is obtained in a frame other than the l−frame as shown in Figure 3.9. This

point cloud consists of points where beams strike a flag board at varying ranges.

This point cloud is called the px where x is the element index of the point cloud.

The origin and orientation of the sensor are calculated using this point cloud. To

determine the origin, strike points of each beam are fit to a line. Points of the same

beam are denoted as bx where x is the element index of the point cloud. Each beam

is described by a point of intersection c and the slope s of the line. The equation for

the center is the average of the points of a beam.

30

Figure 3.9: LiDAR boresight simulated scan showing beams for azimuth lines from
-50 to 50 degrees in 10 degree increments. The elevation of all lines is 30 degrees to
show the geometry principles but normally would not be used for boresighting. Each
red sphere represents a scanned point from the LiDAR that struck the flag board at
a different range. The axis is the l−frame from which the measurements were taken
and has been included in all pictures to provide clarity but would not be known until
the end of the boresight.

c =
1

Nb

Nb∑
k=1

bk (3.9)

The equation for the slope takes multiple steps [2]. First determine the covariance of

the beam line data

Σ =

b1 − c

· · ·

bx − c

b1 − c

· · ·

bx − c

T

(3.10)

The slope is the eigenvector with the largest eigenvalue of the covariance matrix Σ.

The slopes are also normalized so the length of the vector is one in order to aid in a

later step. This process is repeated for each beam to determine a list of intersections

cx and a list of slopes sx, where x denotes the center and slope that belong to beam

31

bx. Next to determine the sensor origin o the best intersection of all the beams is

determined [24]. The best fit lines and sensor origin are shown in Figure 3.10.

Figure 3.10: Each red line represents the best fit line to the points of that beam.
Next the best fit intersection of all the points is determined and used as the origin as
shown by the black sphere at the center of the axis.

B =
Ns∑
k=1

(
I3 − sks

T
k

)
(3.11)

B2 =
Ns∑
k=1

(
I3 − sks

T
k

)
ck (3.12)

o = B−1B2 (3.13)

The next step is to determine the x, y, z axes for the l−frame of the LiDAR.

To determine the z axis denoted as z, the slopes of beams with equal elevation are

collected into a list sk. These slopes make a cone with the point of the cone at the

sensor origin. The base of the cone is a plane whose normal is in the same direction

as the z axis of the LiDAR. To determine the normal of this plane, the slopes are

32

treated as points on the base of the cone and fit to a plane as shown in Figure 3.11.

This is done with a linear regression of the plane equation 1 = ax + by + cz, where

x, y, z are points being fitted to the plane and a, b, c are the determined variables to

describe the plane.

Figure 3.11: The normalized slope vectors, shown as dark green arrows, are used to
determine the green set of points. These points trace out the base of a cone created
by all the slope lines.

C =
Ns∑
k=1

sks
T
k (3.14)

C2 =
Ns∑
k=1

sk (3.15)

z = C−1C2 (3.16)

The vector z is then inverted if it is the down direction as opposed to the up direction.

The best fit plane is shown in Figure 3.12. The next axis to determine is the x axis or

0 degree azimuth angle of the LiDAR. The slope of the 0 degree azimuth line can be

33

Figure 3.12: The green slope points are fit to the blue plane which is the base of
the cone made by all the slope vectors. This blue plane has a normal parallel to the
blue axis arrow. Thus from this the blue axis arrow has been determined.

used for this direction, but some LiDARs may not have a 0 degree azimuth. In this

case the slopes of lines can be rotated about the z axis by their know azimuth angle

to determine an x axis.

x = C0
k (z× sk) (3.17)

Where C0
k is an axis rotation about the z axis with an angle equal to the azimuth

angle of the slope line sk. While this vector points in the correct x axis, it is not

perpendicular to the z axis as shown in Figure 3.13. To correct this, first the y axis

is computed by the cross product between the z and x axis by y = z× x. Then the

x axis is recalculated with the cross product x = y × z. Now the boresight of the

LiDAR is known relative to the frame the point clouds were collected in.

3.4.3 Data Collect Procedure. In order to perform this mathematical cal-

culation, points where beams strike must be determined. The method of this thesis

34

Figure 3.13: The red axis arrow is determined by rotating all the slope vectors
about the blue axis by the azimuth they represent creating the dark red arrow. This
axis is in the correct direction as the red axis arrow however it must be orthogonal to
the blue axis arrow. Thus a series of cross products are used to determine the green
axis arrow and then the final red axis arrow.

uses a flag board to determine a beam strike point, and then a surveying laser to

give an accurate location for the strike point of the beam. The flag board is shaped

so the board can be lined up with a horizontal scan line and then translated over to

the desired vertical scan line. The flag board is ”L” shaped, thus the horizontal scan

line must have a low elevation so that the scan projected onto the board is almost

straight. Lines of higher elevation will start to curve and make it impossible to line

up with the square ”L” shape. A notch in the flag board is used to line up the board

with lines of constant elevation. The flag board is positioned so half of the desired

horizontal elevation line runs across the notch in the board as shown by the green line

in Figure 3.14. This is confirmed to be the notch of the board, and not the edge of

the whole board, by examining the lines of elevation below the desired elevation. The

line below the desired line must hit the entire board and extend beyond the desired

line otherwise the desired line did not hit the notch. This same process is repeated

35

for the vertical line while keeping the horizontal line lined up with the notch. When

both lines are lined up with the notches, the intersection of both lines is inside the

red box of the board as shown in Figure 3.14.

Figure 3.14: The flag board used to catch lines of equal elevation (green line) and
lines of equal azimuth (blue line). The intersection in the red region is where the
beams of the given elevation and azimuth strikes the board.

The center of the red box is then scanned with the surveying laser to collect a

point where the beam strikes. In order to position the flag board, the distance of the

scans must be know in real time with a graphical utility. The graphical utility allows

a person to quickly line up the board with the desired horizontal and vertical lines.

After the position of the board is confirmed with the graphical utility, another person

on the surveying laser can scan the red square on the flag board and record the strike

location.

3.4.4 Error Analysis. The error of such an approach is dependent on the

size of the notch in the flag board and the flag board distance from the LiDAR. If

it is assumed the flag board is positioned correctly and the strike point is in the red

box the maximum angular error can be calculated. Let r be the distance to the strike

point on the board, h be the height of the notch, and w be the width of the flag

board. If the surveying laser is perfect and surveys the exact center of the red box,

36

Figure 3.15: Graphical utility used to position board. Each rectangle represents a
beam from the LiDAR. The color of the rectangle represents what the beam strikes. In
order to keep geometry consistent, when an equivalent azimuth does not exist at other
elevations, the azimuth must still be drawn but as a black rectangle. White rectangles
represents laser scans that miss the flag board. Red rectangles represents laser scans
that strike the flag board. The following have been added to clarify the picture but
are not part of the utility. The green and blue lines represent the horizontal and
vertical lines to capture respectively. The gray circles show the white rectangles that
miss the board due to the notch in the board. These are the beams that are lined up
by the person holding the board in order to assure the green and blue lines intersect
in the correct rectangle, and thus capture the correct azimuth and elevation.

the approximate max angular error is eyaw = epitch = tan−1(h/(2r)). In this equation

h/2 is the max error that will still allow the strike point to have hit the board. When

determining the accuracy of measured points this is replaced by the average residual

distance dmean from fitting the points to a line. This error applies only to the yaw

and pitch of the LiDAR and assumes no error in roll. Any error in roll will decrease

the error in yaw and pitch or else the conditions for the strike point to be in the red

box would not be met. To determine the max roll error, it is assume that there is no

37

error in either yaw or pitch to produce equation eroll = tan−1(h/w). Thus for a given

flag board, a minimum distance to survey, the angular error can be bounded.

In a test of this method, six beams were used to record at least four strike points

for each beam. The board was positioned by hand and the survey was performed using

optics in the surveying laser. The notch size was h = 2.56cm with a board width of

w = 300cm and a minimum distance of rmin = 400cm. The mean of the distance

from the strike point to the best fit line for all the points was dmean = 1.33cm. This

average is greater than half the notch size but this is expected as other errors arise in

human error such as holding the flag board in place and surveying the exact center

of the red box. If the average error is used, and minimum strike distance is known,

it is possible to calculate the mean yaw or pitch error with equation eyaw = epitch =

tan−1(dmean/rmin) = 0.1905 degrees or 3.3 MRAD. If it is assumed all the error

is contained in the roll, the worst possible roll error is eroll = tan−1(h/w) = 0.4889

degrees or 8.5331 MRAD. Thus it is possible to accurately boresight a scanning LiDAR

using a flag board and surveying laser.

38

IV. Results

T
his chapter analyzes the results from simulations and actual test flight data using

both the MBI and PPD algorithms. The test flights are described in detail to

frame the nature of the results derived from the test flights. Simulated results were

created to describe expected results with the flight configuration. The simulation

results include analysis of properties of the algorithms such as convergence areas and

modifying input parameters. The test flight data was used to generate estimated

relative position and compared to the true relative position of the two aircraft.

4.1 Test Flight Description

A series of test flights were conducted by the Air Force Research Laboratories

(AFRL) at Forbes Air Field near Topeka Kansas. The flights included a Boeing

KC-135 Stratotanker as the tanker aircraft and a Calspan Learjet as the substitute

for an actual receiver aircraft. A total of eight test flights were conducted to collect

measurement data. The LiDAR was not the only sensor being tested during the test

flights, thus some test flights received no useable LiDAR data. When useable LiDAR

data was received, the tanker and receiver flew racetrack patterns typical of actual

refueling procedures.

4.1.1 Learjet Modification. The Learjet was modified for the test in order

to evaluate the selected sensors and provide a truth system of measurements for post

analysis of the test flights. The nose cone of the Learjet was modified to allow the

sensor suite to see outside the nose cone as shown in Figure 4.1. The sensors included

in the sensor suite were an Ibeo LUX 8L Laser Scanner, a Proscillica 1660C camera,

and a NovAtel SPAN-SE Receiver as shown in Figure 4.2. The sensor suite was

installed on a mounting plate in the nose cone of the Learjet as shown in Figures 4.3

and 4.4. This mounting plate allowed the relative orientation of the sensors to be

calculated in a laboratory before the actual flight test. The nominal orientation for

the Ibeo LUX was a pitch of 12 degrees and a roll of 16 degrees, while the Proscillica

camera was pitched 30 degrees. This aimed the LiDAR at the left wing as shown in

39

Figure 4.5 while the Proscillica was aimed at the center of the fuselage as shown in

Figure 4.6. The sensor suite was connected to a laptop on-board the Learjet in order

to collect and monitor data. This monitoring ensured the sensors were operating

correctly and proper data was being recorded. If problems were observed, steps to

fix the errors could be taken, such as rebooting a sensor or modifying sensor settings

via the laptop. The Learjet was also outfitted with an array of GPS antennas, GPS

receivers, and IMUs. In total, there were three operational GPS antennas mounted

to the top of the Learjet. Each GPS antenna was connected to an LN-251 Embedded

GPS Inertial Navigation Systems (EGI) and to a NovAtel OEM4 GPS receiver. The

Novatel receivers acted as a truth position system for the position estimates from

the EGI system. The truth as referred to by this thesis is the position solution from

the Novatel GPS receivers and only the attitude data from the EGIs. A recording

system separate from the sensor system recorded the raw data of the EGI and Novatel

receiver. The truth then includes a location in ECEF coordinates and attitude in the

form of yaw pitch and roll Euler angles from the n′−frame. The Learjet was also

equipped with a communication system to transfer data to the tanker aircraft.

Figure 4.1: Nose cone of Learjet modified with panes of glass to allow sensors to
see through nose cone.

40

Figure 4.2: Sensor suite installed in the nose cone of the Learjet. Sensors from left
to right are Ibeo LUX 8L Laser Scanner(1), Proscillica 1660C Camera (2), NovAtel
SPAN-SE Receiver (3)

4.1.2 KC-135 Modification. The KC-135 tanker was modified for the test

in order to obtain truth measurements for the test flights. The KC-135 has only one

GPS antenna connected to two LN-251 EGIs and two NovAtel OEM4 GPS receivers

to serve as truth for the test flights. The KC-135 was outfitted with a recording

system to record the measurements from the on-board EGI and Novatel receiver.

The truth from the tanker refers to the attitude data from the EGIs and the position

from the Novatel receiver. The tanker was also fitted with a communication system

to transfer data to the Learjet and ground station during flight. The data to the

ground station allowed realtime monitoring of the test flight and conditions of the

tanker. The tanker acted as a relay for communications from the Learjet and was the

only aircraft to communicate with the ground station. The tanker was also outfitted

with optical markers as shown in Figure 4.6. The markers allowed different vision

algorithms to be applied to the images taken by the camera. The markers also served

as known locations on the tanker to scan with a commercial laser surveying system.

41

Figure 4.3: Mounting plate in nose cone of Learjet.

4.1.3 Ibeo LUX 8L. This section presents a brief overview of the character-

istics of the Ibeo LUX 8L scanning LiDAR. The LiDAR has eight levels of elevation

that are scanned four levels at a time, the top four then the bottom four. Each eleva-

tion is 0.8 degrees apart, splitting the 0 degree mark for elevations starting at 0.4 and

-0.4. The azimuth scans are not evenly spread out. The positive four elevation lines

are divided into the top two and bottom two elevations lines. The top two elevation

lines stretch from 33.5 to -59.5 degrees in increments of 0.5 degrees, and the bottom

two elevations reach from 49 to -50 in increments of 0.5 degrees. This is repeated on

four elevation layers on the bottom scan. Figure 4.7 shows the scan pattern. The

LiDAR quantizes measurements into bins of 0.04m. The measurements have a stan-

dard deviation of 0.1m as stated in the manual [13]. The scan frequency is 50Hz per

four line scan giving a full eight line scan a frequency of 25Hz. The Ibeo LUX 8L can

also return multiple ranges per elevation and azimuth as echoes. Echoes occur usu-

ally when the beams hit transparent objects such as glass or raindrops. Each range

return also has an associated pulse width that describes the width of the pulse when

it struck an object. These characteristics were used when simulating data from the

LiDAR simulator.

42

Figure 4.4: Sensor suite fully mounted in the nose cone of Learjet.

4.1.4 Lever Arms. The tanker and receiver were equipped with many sen-

sors, each with their own relative reference frames. In order to analyze the data from

these sensors, the lever arms and orientations between the sensors must be determined

with respect to a common reference frame. It is also necessary to relate these lever

arms to the same frame. This thesis relates all the sensors to the frames of the aircraft

they were installed on, i.e., the breceiver−frame and btanker−frame. The sensors in

the tanker include the GPS antenna and EGIs. The position of the EGIs is not im-

portant since only the inertial measurements were recorded, however the orientation

is important. In this case, the orientation of the EGIs is exactly in line with the

btanker−frame. The GPS antenna position was available by referencing the diagram

of the aircraft.

The Learjet lever arms were much more difficult to obtain since custom sensors

were installed. The location and orientation of the custom sensors had to be done on a

case by case basis, whereas the pre-installed sensors could be referenced to a diagram

of the aircraft. The GPS antenna locations were obtained from a aircraft diagram in

the same manner as the tanker antennas. The EGIs and sensor suite were custom

installations on the Learjet, and orientations and position had to be determined during

43

Figure 4.5: Predicted scan area on the tanker from the LiDAR. The left wing,
engine pods, and fuselage are struck by LiDAR scans as shown by the blue spheres.

the flight test. The EGI calibration and boresight was completed by professionals

working with the test flights. To obtain the orientation of the sensor suite a Trimble

S3 surveying system was used. The position and orientation of the Proscillica camera

in the Trimble S3 frame was determined using a standard camera calibration [1]. To

determine orientation and position of the Ibeo LUX 8L, the procedure in Section

3.4 was used. The Trimble Surveying system was related to the breceiver−frame by

surveying points on the aircraft outlined in the aircraft diagram. The IMU in the

sensor suite was calibrated and boresighted using the same method as the EGIs.

Thus a table of lever arms and orientations was created, which can be found in the

Appendix in Tables A.2-A.3.

4.1.5 Test Flight Overview. In total, eight test flights were conducted. Of

the eight test flights, only five collected useable LiDAR data. Flight three encountered

sensor issues that created incorrectly time tagged data, and thus the data was not

useable. During flight four, the sun was in the eyes of the pilots, which caused them to

deviate from the aerial refueling pattern, causing the LiDAR returns to miss the wing

in many scans. Flight five encountered adverse weather conditions that prevented

simulating refueling, thus no LiDAR data was collected. Flight six operated outside

the approved area for the LiDAR, resulting in nearly no useable LiDAR data. Of

44

Figure 4.6: KC-135 with markers installed on the body of the aircraft. Markers
have been circled with yellow. Picture taken in flight by Proscillica camera.

the remaining flights, flights one and four collected one pass each of useable LiDAR

data. Flights two, seven, and eight collected five passes each of useable LiDAR data.

Each pass lasted on average 7 minutes and consisted of an approach from pre-contact

position, a hold of contact position, and a back off to pre-contact position. Flights

two and eight were collected on sunny days, and during the flight the sun came across

the field of the view of the LiDAR. When the LiDAR pointed directly at the sun,

erroneous measurements were recorded. The measurements varied the range where

the LiDAR was looking at the sun, thus creating a cone of spurious measurements.

When the sun came all the way across the LiDAR almost at a 90 degree angle another

type of erroneous measurements were recorded. In this case the glare from the sun

causes spurious measurements across the range of view of the LiDAR. For a complete

list of the test flights refer to Tables A.5 and A.6 in the Appendix. After the test flights

were completed, simulation and analysis was completed to determine the accuracy of

the position estimate algorithms.

45

−60−40−200204060
−3

−2

−1

0

1

2

3

Azimuth (degrees)

E
le

va
tio

n
(d

eg
re

es
)

Elevation and Azimuths Scanned by Ibeo LUX

Figure 4.7: Scan pattern of the Ibeo LUX 8L. View is seen as if standing behind
LiDAR.

4.2 Functional Analysis

Before the algorithms could be used for position estimates, the performance

of the major components of each algorithm was verified. The k-D Tree method to

determine closest points on the plane model to measurements had to be verified to

return results close to the true closest points. The true points were determined by an

exhaustive brute force search of all triangles on the mesh. The LiDAR simulator was

analyzed to determine the error between the simulated measurements and measure-

ments created through brute force ray tracing, where ray tracing is considered the

true measurement. The speedup from using these two methods over the brute force

methods is required to accomplish the algorithms within hours instead of weeks.

4.2.1 k-D Tree Analysis. The k-D tree method to determine closest points

was analyzed in two modes. One mode allowed branching into both child nodes if

the separation distance was too small, and the other mode ignored the far child node

and only went with the near child node, no matter the separation distance. The first

method that uses both nodes is more accurate, but the time to complete the search is

dependent on the search value. The speed of the second method is independent of the

46

Table 4.1: Normal k-D Tree with far child error statistics. Axis in breceiver−frame.

Parameter Mean 1-σ RMS

x axis 0.0023 cm 0.1144 cm 0.1144 cm

y axis 0.0030 cm 0.2882 cm 0.2883 cm

z axis 0.0126 cm 0.2723 cm 0.2726 cm

MRSE 0.4129 cm

Table 4.2: k-D Tree Without Far Child Error Statistics. Axis in breceiver−frame.

Parameter Mean 1-σ RMS

x axis 0.0312 cm 6.6887 cm 6.6887 cm

y axis 0.0265 cm 3.4902 cm 3.4902 cm

z axis 0.0177 cm 2.5246 cm 2.5247 cm

MRSE 7.9558 cm

search value but increases the error to the true closest point. Both methods searched

across triangles in order to find the closest point on the mesh of triangles as described

in Section 3.2.2.2. These results were compared to a brute force method that searched

every triangle in order to determine the closest point on the plane model. One flight

pass consisting of 275 different poses was used to compare the different methods. The

normal k-D tree with far child method has error statistics for each axis as well as the

MRSE as shown in Table 4.1 and the time taken for each method shown in Table 4.3.

The k-D tree without far child method commits more error as shown in Table 4.2.

However by allowing more error the algorithm speed increase of about three times

compared to the standard method as shown in Table 4.4. The normal k-D tree, while

slower than the no far child, is still three orders of magnitude faster compared to the

brute force method. This thesis takes a mix of speed and error and uses the normal

k-D tree with far child as the standard k-D tree nearest neighbor search method.

4.2.2 LiDAR Simulator Analysis. The LiDAR simulator was tested for

accuracy and speed compared to the brute force method of iterating over every triangle

47

Table 4.3: Time taken for each closest method.

k-D Tree Mean 1-σ RMS

k-D Tree Normal 17.581ms 4.768ms 18.214ms

k-D Tree with Far Child 5.138ms 1.613ms 5.385ms

Brute Force 16969.399ms 4003.207ms 17433.528ms

Table 4.4: k-D Tree speedup compared to the brute force method.

k-D Tree Mean 1-σ RMS

k-D Tree Normal Speedup 976.816 66.133 979.044

k-D Tree with Far Child Speedup 3349.180 255.525 3358.878

on the plane model to check for hits from the desired rays. The ray shooting method

is considered to generate the true measurements in order to determine the accuracy of

the LiDAR simulator. A base pose was chosen to evaluate the differences between the

LiDAR Simulator and the ray shooting method. The LiDAR simulator at a resolution

of 1680x1050 had statistics as shown in Table 4.5 and the time taken shown in Table

4.6. The simulator was also tested at a lower resolution to see the effect on range

error. Resolution changes the error because each pixel represents a certain elevation

and azimuth. If the pixel is not exactly the desired elevation and azimuth, error is

induced from the rounding of the elevation and azimuth. Increasing the resolution

reduces the roundoff error and produces more accurate results. To prove the error

is resolution dependent the same run was performed with a resolution of 1360x768.

The errors increased as shown in Table 4.5 and time reduced as shown in Table 4.6.

Thus to improve accuracy the resolution must be increased. However increasing the

resolution will require more processing and slow the simulator. The LiDAR simulator

at 1680x1050 was slower than the LiDAR simulator at 1360x768 as shown in Table

4.7. As seen with the k-D tree there is a tradeoff between speed and accuracy. This

thesis uses a mix of speed and error and uses the LiDAR simulator at a resolution of

1680x1050.

48

Table 4.5: Error between LiDAR Simulator and Ray Tracer ranges using a base
pass

Resolution Mean 1-σ RMS

1680x1050 -0.148cm 5.774cm 5.776cm

1360x768 -0.499cm 11.083cm 11.094cm

Table 4.6: Time taken for each LiDAR simulator

LiDAR Simulator Mean 1-σ RMS

1680x1050 26.681ms 2.558ms 26.803ms

1360x768 17.740ms 2.206ms 17.876ms

Brute Force 58349.322ms 78.003ms 58349.374ms

4.3 Simulation Analysis

With the functional components of each algorithm verified, the parameters of

each algorithm were determined. Simulated data based on the flight test trajectories

was created from the LiDAR simulator and used to generate relative positions using

the MBI and PPD algorithms. The test flight recorded relative position and attitudes

were used but not the LiDAR data. The LiDAR data was simulated as described in

Section 3.3.2, with the characteristics of the Ibeo LUX 8L described in Section 4.1.3,

and the lever arms setup of the test flight. The positions were also down sampled

to one position every second. This simulation also serves as a baseline performance

for the relative position estimation. Other simulations to determine the convergence

region of the MBI algorithm and determine the sensitivity of the PPD algorithm were

also conducted. MBI is heavily dependent on the initial guess and can converge to

local minimums if the guess is too far from the truth. This simulation determines how

Table 4.7: LiDAR Simulator speedup compared against the brute force method

Resolution Mean 1-σ RMS

1680x1050 2196.605 109.812 2199.338

1360x768 3309.028 175.458 3313.659

49

far the initial solution can vary before the solution converges to a local minimum. The

PPD sensitivity determined how accurately the SRRE can predict the true relative

position. The tanker was perturbed about a nominal position to determine how

sensitive the SRRE is to small changes in position.

4.3.1 MBI Parameters. The two parameters to determine for the MBI algo-

rithm, as described in Section 3.2.4, were the move threshold and the max iterations

. The algorithm was run using two different modes in order to determine these pa-

rameters. The first is the Last Estimated Pose (LEP) mode, where the initial guess

is the best estimate from the previous time step. The other is the Last Truth Pose

(LTP) mode, where the initial guess is the truth position in the last time step. By

estimating the parameters in the LTP the algorithm should be more stable and less

likely to diverge. The LTP results are expected to be better than the LEP method.

The LEP method is used to make sure the algorithm converges over time, because it

is the method the algorithm will use to determine its actual best position. Param-

eters were chosen and run using the LTP method to lower the MRSE of the entire

run. After the MRSE dropped below 0.5m the LTP method was used to assure the

algorithm could still track the position. This aspect is very important because, due

to the low dynamics of AAR, the error statistics can appear reasonable even when

the algorithm is not tracking the position.

In order to determine if tracking occurred figures such as Figure 4.8 were used.

This figure shows from the starting point of the position how much of the error

was eliminated. Values below the 100% line reduced the starting error and moved

towards the true position. If the values average below 100% then tracking is occurring.

To demonstrate how error statistics can appear low while tracking is not occurring

consider this test case. At one time instant the algorithm moves away from the

true current position but by chance moves very close to the next position. At the

next time instant the error is very low so even when the algorithm moves away from

the true position the error is remains low. By only examining the error, instances

50

Table 4.8: Table showing the parameters used for the MBI algorithm during simu-
lation.

Parameter Value

Move Threshold 3.048E-06 (m)

Max Iterations 3000

such as these are not visible. It requires examination of the error reduced from the

starting position. Thus by trial and error using the LTP then LEP methods while

observing not only position error statistics, but percentage error reduced statistics as

well, the final parameters in Table 4.8 were determined. These parameters were used

to examine the actual flight data. The error statistics for a simulated run of flight 1

pass 1 are shown in Table 4.9 and Figure 4.9.

0 50 100 150 200 250 300 350
0

100

200

300

400
Percentage Position Magnitude Error Reduced

Pose

P
er

ce
nt

ag
e

R
ed

uc
ed

0 50 100 150 200 250 300
0

100

200

300

400

Pose

P
er

ce
nt

ag
e

R
ed

uc
ed

Percentage Position Error Reduced in Each Axis of Sensor

x
y
z

Figure 4.8: MBI Algorithm percentage of starting error reduced for flight 1 pass 1
using final parameters. Figure used to determine if algorithm is tracking positions to
reduce initial error. Axis in l−frame.

4.3.2 MBI Convergence. The initial position estimate is important for

convergence of the MBI algorithm and this section explores how accurate the initial

position estimate must be for convergence to the global minimum to be assured. This

51

Table 4.9: MBI Algorithm using final parameters and simulated LiDAR measure-
ments from Flight 1 Pass 1. Axis in breceiver−frame.

Parameter Mean 1-σ RMS

x axis -1.603 cm 3.856 cm 4.171 cm

y axis 0.251 cm 0.998 cm 1.027 cm

z axis 0.157 cm 0.355 cm 0.388 cm

MRSE 4.313 cm

LiDAR Data Simulated Flight 1 Pass 1

LiDAR Setup Flight Test LiDAR Setup

is not to be confused with the question of how does the relative position or LiDAR

setup effect the ability to converge to the global minimum. In this test, the relative

position of the aircraft is set to the ideal contact position with no relative attitude

difference. The LiDAR configuration is the same from the test flight in terms of

orientation and scan pattern. The simulator from the PPD algorithm was used to

simulate the LiDAR scans. The MBI algorithm was started at positions in a box

pattern, with the truth position at the center of the box to determine at what regions

the algorithm converges to local minimums. The first box has a side length of ten

meters and was divided into 100 one meter boxes. Viewing the path the estimated

position moves during the simulation leads to insight on which directions have high

visibility.

It quickly became apparent that the algorithm can determine the vertical axis

position of the btanker−frame in a few iterations as shown in Figure 4.10. Next the

left-right axis was narrowed down as the lines slowly merged into the center. The

forward back direction was the last to be narrowed down. This is consistent with the

error observed in simulation from Table 4.9 where the forward-back axis had the most

variance. Despite the visibility issues in the forward-back, axis all of the positions

within the ten meter box eventually converged to within millimeters of the correct

original location in the center of the box as shown in Figure 4.12. Next a 50 meter

box broken into 100 five meter boxes was used. In this case local minimums were

52

50 100 150 200 250 300

0.02

0.04

0.06

0.08

0.1

0.12

0.14
MBI Method Position Error Magnitude

Pose
Le

ng
th

 (
m

)

50 100 150 200 250 300

−0.1

−0.05

0

0.05

Pose

Le
ng

th
 (

m
)

MBI Method Position Error in Each Axis of Sensor Frame

x
y
z

Figure 4.9: MBI error using simulated LiDAR measurements and Last Estimated
Pose mode. Top plot shows the error length between the best estimated position and
the truth position for the simulated data set. The bottom plot shows the error in
each direction as seen through the LiDAR. Axis in l−frame.

observed as shown in Figure 4.11 and 4.12 . The minimums converge closely to the

same vertical level but differ in the left-right and forward-backward axes. However,

when the algorithm does converge on a local minimum, there are methods to determine

the converged position is not the global minimum.

One such method is to evaluate ρpx which is described in Section 2.6. Figure 4.13

shows the correlation between ρpx and the position error. When the position error is

large, ρpx drops from the value of those points with low position error. The value of

ρpx at the global minimum can be determined empirically in simulation by starting

the algorithm at the true center and observing the final ρpx value. This value can be

compared to the values obtained from the algorithm when the starting position is not

known in order to determine if the algorithm converged at a local or global minimum.

Thus, even if the initial position estimate is poor, it can be determined if a local

minimum was reached and if so, a more expansive search space can be used to find

the true global minimum. While testing the convergence unexpected characteristics

of the algorithm were discovered, and these will be described in the next section.

53

Figure 4.10: Convergence simulation run with a 10m box. The x,y,z axes correspond
to the red, green, and blue arrows respectively in the btanker−frame. Each line
represents a trail of the position as it moved towards its convergence point. The
color of the line represents how many iterations have been completed to reach that
position. Lines with few iterations and thus far from their convergence point are
colored purple and gradually move towards red as they complete more iterations. Thus
all the purple lines have completed few iterations while the blue lines are closer to
finishing. Red/Orange lines are not visible because when they are close to converging
the incremental movement is very small and the small lines are difficult to see.

4.3.3 MBI Characteristics. One characteristic of the MBI algorithm is the

speed for each iteration. The closer the initial guess is to the truth, the faster the

iteration was completed. The positions where the position did not converge on the

global minimum took much more time compared to the ones that did converge on the

global minimum. This time characteristic was also observed over the course of testing

when gross measurement errors were accidentally introduced. Analysis showed nearly

all of the computation time is used to determine the closest point to each measurement

point, specifically querying the k-D tree. This is attributed to using the far child

approach in the k-D tree. As shown in Section 4.2.1, using the far child approach

54

Figure 4.11: Convergence simulation run with a 50m box. The x,y,z axes correspond
to the red, green, and blue arrows respectively in the btanker−frame. For Description
of lines see Figure 4.10. Local Minimums have been circled in black. The global
minimum is the circle on the coordinate axes.

is slower compared to the no far child approach but the speed is worsened in poor

matches. This characteristic makes the MBI algorithm very slow at narrowing down

a poor initial estimate but very quick at taking a close estimate and narrowing down

the error.

Another characteristic is the problem of cyclical iterations. This occurs when

the algorithm determines the next best position to be the last best position. The new

best position will again point to the same position it did before, thus creating a loop.

This looping is why a max number of iterations was introduced as a necessary stopping

condition, because the move threshold will not decrease in this loop. The looping can

move between an variable number of positions before returning to a previous position

and the exact spot of each position cannot be guaranteed. Thus, any method to

determine the looping must be quick and robust to handle looping for any number of

positions. The problem of how to break the loop is also not trivial, since it is likely the

55

Figure 4.12: Left Plot: Convergence points for the 10m box test. This is an overhead
view through the virtual camera frame looking down with -z as forward direction and
x as right direction. All points converge to less than one cm of true center (0,0,0).
Right Plot: Convergence points for the 50m box test. This is an overhead view looking
down with -z as forward direction and x as right direction. Many points converged
to true center (0,0,0) while many others can be as far as 20m off. Local minimums
cause convergence to incorrect locations.

algorithm could slip back into the loop. One such method would be to use simulated

annealing. Even large perturbations are still likely converge on the correct position

since the MBI algorithm has a large area of convergence.

One characteristic observed in simulation is the accuracy in each direction. The

final position estimate for the simulation of flight 1 pass 1 had much more variance in

the forward-back axis compared to the other axes as shown in Table 4.9. This is most

likely due to the shape of the scanned area of the tanker. The LiDAR was aimed at

the left side of the tanker and thus receives returns from the left wing, engine pods

and a small part of the fuselage. With this setup, the two faces of the left wing and

engine pod sides are visible in measurements from the LiDAR. Faces perpendicular

to a given axis are the best objects to obtain visibility in that direction, but will give

almost no information in the other two directions. Thus, from this setup the left

wing gives information to the vertical direction of the btanker−frame and the engine

pod sides give information on the side direction. The forward-back axis, however,

56

0 5 10 15 20 25
2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3D Position Length Error (m)

ρ px

ρpx Compared to 3D Position Length Error

Figure 4.13: Correlation between ρpx and the position error. As 3D position error
increases ρpx decreasing thus allowing large position error to be detected. The red
line is a linear fit trend-line.

is the worst since there is no face perpendicular to that direction. This is expected

from an aircraft as faces perpendicular to the direction of flight would induce drag

for the aircraft, thus those types of faces are avoided. This type of error statistics in

each direction is seen again in the PPD simulation. From this it can be determined

the error is not specific to the method but the LiDAR setup. After the parameters

were determined for the MBI method, the parameters for the PPD method were

determined, as described in the next section.

4.3.4 PPD Parameters. The four parameters determined for the PPD algo-

rithm were the box length, divisions, depth and shrink factor as described in Section

3.2.4. The LEP and LTP modes, combined with information from the position er-

ror and percentage error reduced figures were once again used in order to narrow

down the thresholds in terms of reducing starting error as well as convergence. There

were two main ideas when developing these parameters. The first idea uses depth to

quickly shrink the final quantization error. The final quantization error is the distance

between positions at the final depth. This idea searches at many depths while the

57

Table 4.10: Final parameters used for the PPD algorithm. This set uses depth as
the vehicle to search a large volume.

Parameter Value Derived Parameter Value

Box Length 2 (m) Final Quantization 3.276 mm

Divisions 3 Positions Per Depth 65

Depth 7 Total Positions 455

Shrink Factor 1.6

number of divisions is small. This creates a small final quantization error at the last

depth but still covers a large search area at the early depths. The second idea uses

many divisions with a little depth. To achieve a similar quantization error, without

changing the box length, the number of search positions will exponentially increase.

For example, the parameters in Table 4.10 are the final parameters used, and Table

4.11 is a set of test parameters with the same final quantization and box length but

only one depth. The second set of parameters has six orders of magnitude more posi-

tions to search, and thus takes much longer to complete. However, the second set of

parameters is a more complete search of the box volume and mitigates parts of local

minimum problem that will be described later in Section 4.3.6. This thesis uses the

first set of parameters to obtain position estimates quickly with minimal final quanti-

zation error. In the simulation, the local minimum problem was not observed enough

to switch to the second set of parameters. These parameters were used in simulation

of flight 1 pass 1 to obtain the error statistics in Table 4.12 as shown in Figure 4.14.

To determine the accuracy of searching, a sensitivity analysis was performed on the

PPD method of perturbing.

4.3.5 PPD Sensitivity. In order to determine the expected errors of the

PPD algorithm a sensitivity analysis was performed to determine how sensitive the

RRE is to minor changes in position. The tanker model was given a position and

orientation typical of the refueling envelope and then perturbed from that position

to determine sensitivity. First, the tanker position was shifted in one axis at a time

58

Table 4.11: Sample set of parameters for the PPD algorithm. This set uses divisions
as the vehicle to search a large volume. Since there is only one depth, the Shrink Factor
is not applicable. This set was not used in final analysis due to the large number of
positions to search.

Parameter Value Derived Parameter Value

Box Length 2 (m) Final Quantization 3.278 mm

Divisions 975 Positions Per Depth 929714177

Depth 1 Total Positions 929714177

Shrink Factor N/A

Table 4.12: PPD Method error statistics for a simulated run of flight 1 pass 1. Axis
in breceiver−frame.

Parameter Mean 1-σ RMS

x axis 0.082 cm 12.349 cm 12.331 cm

y axis 0.066 cm 1.371 cm 1.370 cm

z axis -0.036 cm 0.631 cm 0.631 cm

MRSE 12.423 cm

LiDAR Data Simulated Flight 1 Pass 1

LiDAR Setup Flight Test LiDAR Setup

59

50 100 150 200 250 300

0.2

0.4

0.6

0.8

PPD Method Position Error Magnitude

Pose
P

os
iti

on
 E

rr
or

 M
ag

ni
tu

de
(m

)

50 100 150 200 250 300

−0.5

0

0.5

Pose

P
os

iti
on

 E
rr

or
(m

)
PPD Method Position Error in Each Axis of Sensor Frame

x
y
z

Figure 4.14: PPD error with simulated LiDAR measurements for flight 1 pass 1,
axis in l−frame.

and the SRRE was recorded as shown in Figure 4.15. The SRRE creates a valley at

the center and slopes up as it moves away from the center. The slope is a result of

the measurements slowly losing pairs and increasing in RMS error. The SRRE slopes

most quickly in the z axis due to missing left wing measurements as the tanker moves

up or down. The x and y axes have a smaller change in SRRE, because measurements

still pair as the x and y axes are varied but the RMS error becomes slowly worse. The

position was also varied in two axes at once as shown in Figure 4.16 and 4.17. The

lack of visibility in the x and y axes is also apparent in Figure 4.16 where the surface

is mostly flat except for the one corner. Slicing in y and z or the z and x planes as

shown in Figure 4.17 reveals that the z axis has much more visibility as it creates a

valley in both plots. The visibility is best in the z axis because of the large wing.

The y axis only has a small section of the engine pods to provide visibility, while the

x axis has no such face to provide visibility. This same characteristic was observed

in the MBI algorithm in Section 4.3.2 where the vertical axis was the first to narrow

down. This means the visibility issue is independent of the method used, but stems

from the scan area and LiDAR setup.

60

Figure 4.15: SRRE determined from varying the position of the tanker in each axis
in the breceiver−frame.

4.3.6 PPD Characteristics. Unlike the MBI Algorithm, the total runtime of

the PPD algorithm can be directly determined before the simulation is started. Also

each search position at a set depth can be done in parallel to further increase speed.

This makes the PPD algorithm ideal for a time constrained problem.

A similarity with the MBI Algorithm is the local minimum problem but for

different reasons. There are three different ways for the PPD Algorithm to converge

on a local minimum instead of the global minimum. The first is if the global minimum

is not within the search volume defined by the box length. This problem occurs if

the dynamics are too great and the true position moves more than a box length away

from the initial position. This can be solved by increasing the box length to a suitable

size for the specific dynamics situation. The PPD method may also not converge on

the global minimum even if it is within the box length.

The second way the PPD algorithm can arrive at a local minimum is if during

one of the depth searches the position with the smallest SRRE does not lead to the

global SRRE minimum. For example, suppose after searching the first depth there

are two points with low SRRE compared to the rest of the search points but the two

61

−4
−2

0
2

4

−4
−2

0
2

4

0

2

4

6

8

10

X Axis(m)

RMS Measurement Range Error Varying X and Y Axis

Y Axis(m)

S
ca

le
d

R
M

S
 M

ea
su

re
m

en
t R

an
ge

 E
rr

or
(m

)

Figure 4.16: SRRE determined by varying the position of the tanker in the x and
y axis of the breceiver−frame.

search points are far apart from each other. There can be only one global SRRE

minimum, and the search spaces for these two points is mutually exclusive. Thus, if

the point with lower SRRE at this depth does not contain the global SRRE minimum,

the algorithm will not find the global minimum.

Another problem with finding the true position is that it relies on SRRE as a

metric to determine the position with smallest position distance error. This method

will only find the true position if that is also the position with the smallest SRRE.

Figure 4.18 shows a correlation between the position distance error and the SRRE

from a simulated run of flight 1 pass 1. Thus, if the true position is not the position

with the smallest SRRE, the algorithm will finish on a position that is not the true

position.

4.4 Initial Position Estimates

After the simulated LiDAR data position estimates were used to determine the

parameters of the two algorithms the simulated LiDAR measurements was replaced

by the actual LiDAR measurements from the test flight. Again, the truth position

62

−4

−2

0

2

4

−4−2024

0

5

10

15

20
RMS Measurement Range Error Varying Y and Z Axis

Z Axis(m)
Y Axis(m)

S
ca

le
d

R
M

S
 M

ea
su

re
m

en
t R

an
ge

 E
rr

or
(m

)

−4−2024

−4

−2

0

2

4

0

5

10

15

20

RMS Measurement Range Error Varying Z and X Axis

Z Axis(m)
X Axis(m)

S
ca

le
d

R
M

S
 M

ea
su

re
m

en
t R

an
ge

 E
rr

or
(m

)

Figure 4.17: Left Figure: SRRE varying the position of the tanker in the y and z
axis of the breceiver−frame.
Right Figure: SRRE varying the position of the tanker in the z and x axis of the
breceiver−frame.
Each figure shows sensitivity to changes in the z axis, but comparatively less sensitivity
to changes in the x and y axis.

and LiDAR scans were sampled at one position/scan for every second. The algorithms

were tested in order to prove the reliability of the parameters selected from analysis

and determine the current accuracy of the algorithms with real data. Flight 1 pass 1

was selected as the first data set to analyze. Using the standard parameters in Table

4.8 and the LEP as the starting point, the position error in Table 4.13 was obtained.

Next the PPD algorithm was used to create position estimates for flight 1 pass 1.

Using the standard parameters in Table 4.10 and the LEP as the starting point, the

position error results in Table 4.14 were obtained. In both of the algorithms the

MRSE error is at least six times worse than the simulation results shown in Tables

4.9 and 4.12. In order to diminish this discrepancy between the simulation and actual

measurements possible sources of error were identified and mitigated.

4.5 Modeling Error Corrections

Many different possible sources of error were identified as possible causes for

the discrepancy between simulated and actual measurements position error. The first

source of error was the tanker model accuracy in flight. The second error source was

63

Table 4.13: MBI Algorithm error statistics for flight 1 pass 1 with actual LiDAR
data. Axis are in the breceiver−frame.

Parameter Mean 1-σ RMS

x axis -21.800 cm 25.177 cm 33.275 cm

y axis -4.954 cm 3.766 cm 6.219 cm

z axis -53.341 cm 4.588 cm 53.537 cm

MRSE 63.342 cm

LiDAR Data Actual Flight 1 Pass 1

LiDAR Setup Flight Test LiDAR Setup

Table 4.14: PPD Algorithm error statistics for flight 1 pass 1 with actual LiDAR
data. Axis are in the breceiver−frame.

Parameter Mean 1-σ RMS

x axis -10.879 cm 35.690 cm 37.260 cm

y axis -4.826 cm 7.275 cm 8.721 cm

z axis -55.692 cm 7.179 cm 56.151 cm

MRSE 67.951 cm

LiDAR Data Actual Flight 1 Pass 1

LiDAR Setup Flight Test LiDAR Setup

64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Scaled RMS Measurement Range Error Compared to Position Error Magnitude

Position Error Magnitude(m)

S
ca

le
d

R
M

S
 M

ea
su

re
m

en
t R

an
ge

 E
rr

or
(m

)

Figure 4.18: PPD algorithm showing the correlation between SRRE and position
error of simulated run of flight 1 pass 1.

the LiDAR boresight error. This is the error induced by incorrectly boresighting the

LiDAR to the aircraft body frame. Another source of error is bad measurements from

the LiDAR due to the sun as described in Section 4.1.5. These were the sources of

errors selected to reduce in order to give a more accurate estimate of the position of

the tanker aircraft.

4.5.1 Tanker Model Error. The first error observed is the deflection of

the tanker wings in flight. As planes fly the wings deflect upwards under load. This

deflection is dependent on the amount of fuel in the wings and the amount of lift being

provided from each wing. This deflection was not captured in the current model of

the tanker. The current model was created with a laser scanning system that scanned

the tanker on the ground. In order to correct this error, the model of the tanker was

modified to account for the wing deflection in flight.

During the test flight the tanker had approximately the same amount of fuel on

board and in the refueling position each wing provided the same amount of lift. From

these assumptions a static adjustment was applied equally to both wings. In order

to determine this deflection, the pictures taken from the Proscillica camera in flight

65

were overlayed on images rendered using the tanker model with the model located at

the true position. It immediately became clear that the wings did flex upward during

the flight. A correction was applied to the wings in order to flex them upward. In

the btanker−frame, the z axis of each wing was decreased(shifted upward) according

to the y distance from the center of the plane. The wing was only deflected if it was

a certain y distance from the center of the plane. In order to not accidentally deflect

the tail a maximum distance in the x axis was added as well. The equation to deflect

the wing is as follows:

znew = zold − wl(y − dn)we (4.1)

where y is the distance in the y axis from the center of the aircraft, dn is the minimum

y axis distance from the center of the plane before the correction is applied, we and wl

are the wing deflection exponent and linear values respectively that were determined

through trial and error by comparing the overlay of pictures from the camera compared

to the predicted rendered image as shown in Figure 4.19. Thus the wing deflection in

flight was corrected.

Figure 4.19: KC-135 with outline overlay of model plane overlayed on picture taken
by Proscillica camera. Left side shows plane without wing correction. Right side shows
overlay after wing deflection correction has been applied to the tanker model.

66

4.5.2 LiDAR Boresight Correction. The boresight of the LiDAR with re-

spect to the aircraft body frame is not a perfect process. Including the errors from

the actual method described in Section 3.4.4, there is also error in the what is consid-

ered the actual aircraft body frame. For example, the method described in Section

3.4 boresights the LiDAR with respect to a frame that can be measured. That frame

then must be referenced to the plane body frame. The method to determine the plane

body frame also contains errors. Thus, with these two errors added together there

can be significant error introduced in the boresight of the LiDAR, because even small

errors in boresight angles lead to large distance errors on the scanned target.

In order to fine tune the boresight, the actual LiDAR measurements were com-

pared to the tanker model at the true relative position. The corrections to apply are

an additional yaw, pitch, and roll applied as Euler angles to the orientation of the Li-

DAR. At first, the error was corrected manually by modifying the Euler angles of the

LiDAR to better fit the measurements from the LiDAR to the tanker model. Next,

a simulation was set up to compute SRRE at different combination of Euler angles.

The different combinations of Euler angles were determined by incrementing each one

by 0.05 degrees within a window of ±2 degrees from the manually determined Euler

angles. To make sure the combination with the smallest SRRE was not specific to

only one pose, the SRRE was determined for two poses. The SRRE from each was

normalized from 0 to 1 by the smallest and largest SRRE of that pose and then added

together to obtain a metric with a minimum of zero and max of two. The Euler an-

gles that minimized this metric were chosen as the final Euler angle correction. In

order to determine if the LiDAR boresight corrections and tanker model correction

were applicable for all the flights and passes, a comparison of the corrected errors was

completed.

4.5.3 Error Comparison. To determine the amount of error reduced for

each modeling error correction, four different passes with all the combinations of

corrections were performed on flight 1 pass 1. In order to reject poses where the

67

Table 4.15: Comparison of different modeling error corrections. Statistics are for
the RRE of flight 1 pass 1 at the true position.

Parameter Mean 1-σ RMS

No Correction 74.943 cm 6.038 cm 75.184 cm

Tanker Model Correction 61.674 cm 5.566 cm 61.924 cm

LiDAR Boresight Correction 56.050 cm 5.822 cm 56.350 cm

All Corrections 40.329 cm 7.706 cm 41.055 cm

measurements were not reliable, only poses with at least 100 measurements and 100

predicted measurements were used in the comparison of the model error corrections.

A comparison of the RRE of all modeling error corrections is shown in Figure 4.20

with statistics in Table 4.15. The tanker model correction always reduced the RRE

for this run compared to no corrections. The boresight correction also almost always

reduced the RRE compared to no corrections. When both corrections are applied at

the same time, the RRE was again almost always reduced for this run when compared

to the no corrections case.

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pose Number

R
R

E
 (

m
)

RRE Comparison for Different Modeling Error Corrections

No correction
LiDAR Boresight correction
Tanker Model Correction
All Correction

Figure 4.20: Comparison of different modeling error corrections applied. Poses with
under 100 measurements or predicted measurements were not used in the comparison
and were removed.

68

4.5.4 LiDAR Filtering. As described in Section 4.1.5, the sun corrupted

the LiDAR measurements. In order to filter these measurements characteristics of

the incorrect measurements were examined. One characteristic to examine was the

pulse width reported by the Ibeo LUX 8L. The pulse width for beams created by the

sun were usually smaller than the pulse width of beams from the tanker as shown in

Figure 4.21. Also when the range of measurements created by the sun was past the

tanker they generally grew much more sparse compared to the tanker points. Sun

measurements close to the LiDAR however had about the same sparsity as the tanker

measurements. However a minimum range for the tanker can be declared as the

aircraft maintained a certain separation so as not to collide. Another characteristic

is of the measurements from the tanker. Since the same section of the tanker was

scanned in each pass, the variance of the tanker measurement point cloud was very

predictable. The Ibeo LUX 8L can also return multiple beams for each azimuth and

elevation, but only one echo hits the tanker, so any other echoes must be filtered.

Using these characteristics a filter was created to remove the sun measurement errors

as shown in Figure 4.22.

The minimums used by the filter are shown in Table 4.16. Any beam with

characteristics under any of these values is removed. In terms of the echo all echoes

after the two closest are rejected. Next any beams that still have echoes are examined

and the one that has the lower range is rejected. This removes the echoes that

were created by the nose cone glass and keeps only echoes that struck the tanker.

Next if the variance in the x axis of the l−frame is above the max value then the

radius neighbor filter is applied to remove sparse measurements. The radius neighbor

filter examines each measurement and counts the neighbors within a radius. If the

number of neighbors does not meet a minimum, that point is rejected. The points

are removed at the end of the filter so the order of determining neighbors will not

effect the outcome. This filter is applied to each scan in order to remove incorrect

measurements created by the sun. An example of the filter applied to a sun-corrupted

scan is shown in Figure 4.23. The filter does remove some measurements from the

69

tanker, but in general it removes measurements created by the sun or nose cone glass.

With these corrections applied, the pose estimates were once again determined with

the two methods.

Figure 4.21: LiDAR scan with sun causing measurement errors. Measurements
represented by spheres with the color showing the pulse width of the beam as reported
by the Ibeo LUX 8L. Beams that strike the tanker are green in color while the beams
created by the sun are blue and purple. Measurements created by the sun are also
more sparse at farther ranges compared to the tanker measurements. Axis represents
the l−frame with the x, y, z corresponding to the red, green, and blue arrows.

4.6 Final Position Estimates

With the corrections of the tanker model and boresight applied, the MBI and

PPD algorithms were once again used to generate a relative position estimate for

flight 1 pass 1. With the corrections applied, the MRSE of both algorithms decreased

compared to the original position estimates as shown in Tables 4.17 and 4.19. The

decrease in MRSE was attributed mostly to a decrease in the mean because the

corrections applied removed a bias from the position estimates. Also to test the

filtering capabilities position estimates for flight 2 pass 1 for both algorithms were

70

Figure 4.22: Flowchart showing steps used to filter LiDAR scans.

Table 4.16: Parameters used by the filter to remove measurement errors created by
the sun.

Minimum Parameters Value Neighbor Filter Parameter Value

Minimum Range 17 m Maximum Variance 550 m2

Minimum Pulse Width 0.65 m Neighbor Radius 2 m

Minimum Echo 2 Neighbors Required 3

also computed as shown in Tables 4.18 and 4.20. While the modeling corrections did

reduce the MRSE of both algorithms compared to the no modeling corrections case,

the MRSE of the simulated LiDAR position estimates was still about three times lower

in the case of the PPD algorithm and ten times lower in the MBI algorithm. With all

the identified modeling errors corrected, other reasons for the discrepancy could not be

found. Instead, an analysis to determine if this position estimate error was as low as

the current setup and collected measurements would allow. To start this analysis, the

RRE was observed for three different positions for all of the times a position estimate

was computed. The first position was the starting point of the position estimate which

was the last estimated position. The second position was the final position estimate

computed by the algorithm. The third position was the true position given by the

truth data. The RRE of these three positions was compared for the computed position

estimate of both algorithms as shown in Tables 4.21 and 4.22. In both algorithms the

RRE was on average lower for the final estimated position compared to true position.

Since this metric is used in the PPD algorithm to determine the final estimate, the

71

Figure 4.23: LiDAR scan with sun causing measurement errors with filter applied.
Green spheres are measurements kept by the filter while the red spheres are rejected
by the filter. Some points on the plane are marked as red but overall filter removes
mainly measurements caused by the sun.

PPD algorithm cannot arrive at the true position with this metric. The MBI method,

while not using the metric, was still able to consistently arrive at positions with lower

RRE than the true position. This indicates that these algorithms have used all the

available information from these measurements and any further MRSE reduction must

be accomplished by correcting lever arms and orientations at the preflight stage.

The lever arms and orientations are crucial in determining the MRSE of the

algorithms. This is because the algorithms in essence can only determine the po-

sition of the tanker in the l−frame. That position is then transformed into the

breceiver−frame with the lever arms and orientations so it can be compared to the

truth data. It is possible the algorithms are accurately determining the position in

the l−frame, but the transformation to the breceiver−frame is incorrect. While the

LiDAR boresight was adjusted post-flight as outlined in Section 4.5.2, no method to

correct the other orientations is available, since the flight test has been completed and

all equipment disassembled. It would be useful to obtain statistics on the lever arms

72

Table 4.17: MBI Algorithm error statistics for flight 1 pass 1 with actual LiDAR
data and all model corrections. Axis are in the breceiver−frame.

Parameter Mean 1-σ RMS

x axis -17.365 cm 27.883 cm 32.813 cm

y axis -4.463 cm 3.482 cm 5.658 cm

z axis -4.590 cm 5.058 cm 6.825 cm

MRSE 33.989 cm

LiDAR Data Actual Flight 1 Pass 1

LiDAR Setup Test Flight Setup with All Model Corrections

Table 4.18: MBI Algorithm error statistics for flight 2 pass 1 with actual LiDAR
data and all model corrections. Axis are in the breceiver−frame.

Parameter Mean 1-σ RMS

x axis -25.123 cm 33.062 cm 41.486 cm

y axis -0.449 cm 4.605 cm 4.620 cm

z axis -6.681 cm 6.405 cm 9.248 cm

MRSE 42.755 cm

LiDAR Data Actual Flight 2 Pass 1

LiDAR Setup Flight Test LiDAR Setup w/Model Corrections

and orientations in order to determine statistics on the error they could contribute,

but such measurements are not available because many lever arms and orientations

were measured by hand with rulers and compasses. However, the relative positions

used as truth have an associated 1-σ value shown in Table 4.23 which were well below

the magnitude of the errors observed in the final positions estimates from both algo-

rithms. Despite the relative position statistics, to correct or bound the lever arm and

orientations errors, new methods to measure the lever arms and orientations must be

applied at the preflight stage. Another possibility to explain these errors is that they

are inherent in the specific LiDAR setup used in the test flight. A different LiDAR

setup may aid to reduce the MRSE by increasing visibility or providing visibility

in different axes. The next section simulated a different LiDAR setup in order to

evaluate this hypothesis.

73

Table 4.19: PPD Algorithm error statistics for flight 1 pass 1 with actual LiDAR
data and all model corrections. Axis are in the breceiver−frame.

Parameter Mean 1-σ RMS

x axis -8.246 cm 35.401 cm 36.297 cm

y axis -2.913 cm 6.864 cm 7.447 cm

z axis -7.686 cm 4.869 cm 9.095 cm

MRSE 38.153 cm

LiDAR Data Actual Flight 1 Pass 1

LiDAR Setup Flight Test LiDAR Setup w/Model Corrections

Table 4.20: PPD Algorithm error statistics for flight 2 pass 1 with actual LiDAR
data and all model corrections. Axis are in the breceiver−frame.

Parameter Mean 1-σ RMS

x axis -11.435 cm 33.649 cm 35.492 cm

y axis 0.546 cm 8.752 cm 8.756 cm

z axis -8.112 cm 7.059 cm 10.747 cm

MRSE 38.103 cm

LiDAR Data Actual Flight 2 Pass 1

LiDAR Setup Test Flight Setup w/Model Corrections

Table 4.21: MBI Algorithm RRE comparison at different positions for flight 1 pass
1.

Parameter Mean 1-σ RMS

RRE Initial Position 57.350 cm 23.736 cm 62.055 cm

RRE Final Position 37.616 cm 11.277 cm 39.265 cm

RRE True Position 41.710 cm 8.687 cm 42.602 cm

Table 4.22: PPD Algorithm RRE comparison at different positions for flight 1 pass
1.

Parameter Mean 1-σ RMS

RRE Initial Position 57.287 cm 23.459 cm 61.891 cm

RRE Final Position 28.591 cm 9.491 cm 30.120 cm

RRE True Position 41.710 cm 8.687 cm 42.602 cm

74

Table 4.23: Relative position truth data 1-σ statistics for flight 1 pass 1. Statistics
are only for positions where receiver and tanker were simulating refueling. Axis are
in the e−frame.

Parameter Mean 1-σ RMS

x axis 1-σ 2.028 cm 0.133 cm 2.032 cm

y axis 1-σ 4.112 cm 0.455 cm 4.137 cm

z axis 1-σ 3.302 cm 0.015 cm 3.302 cm

MRSE 5.670 cm

4.7 Simulate Other LiDAR Setup

This section determines if error in the previous simulated LiDAR position es-

timates can be reduced by changing the scan pattern and orientation of the LiDAR

(referred to as the LiDAR setup). Specifically, the field of view of the LiDAR will

be increased to observe more of the tanker, and the LiDAR will be directed to the

view the tanker fuselage instead of focusing on the wing. This modification will be

simulated using the same method as the previous estimates using simulated LiDAR

measurement in Section 4.3. This analysis assumes reduction of the simulated posi-

tion estimate from one setup to another will translate to real world error reduction if

another test flight were to be conducted with the new setup.

4.7.1 Simulate Custom LiDAR. To simulate a new LiDAR (called ”Custom

LiDAR”), the scan pattern as well as the placement of the LiDAR was changed. In

analysis of the test flights, the wings were often missed entirely, and quite often only

engine pods appeared in the measurements. In fact, only engine pods were scanned

for nearly all of flight 4. Custom LiDAR was oriented to aim at the fuselage of the

tanker. The fuselage is a much larger part of the plane and is more predictable,

because roll does not rotate the fuselage in the same way the wings will rotate out of

view. To view the fuselage, the LiDAR was pitched 30 degrees upward and rolled 90

to the side. The elevation range of the LiDAR was also increased to scan the wings

of the plane. This gives a scan that views much more area of the plane compared to

75

the Ibeo LUX 8L LiDAR. This increased scan area produces may more scan points to

determine an accurate position. The final scan area scanned elevations from -19 to 20

degrees in increments of one degree, with azimuths of -22 to 22 degrees in increments

of one degree. Custom LiDAR had the same range and standard deviation as the Ibeo

LUX 8L. With the Custom LiDAR setup position estimates were generated with the

MBI and PPD algorithms.

4.7.1.1 Custom LiDAR Position Estimates. The Custom LiDAR was

used to create a simulated set of measurements for flight 1 pass 1. The simulated

set was corrupted to the same standard deviation as the Ibeo LUX 8L and used as

measurements to determine position estimates for the MBI and PPD algorithms. The

MBI position estimate MRSE, show in Table 4.24, is smaller than the MRSE from

the simulated measurements in the flight test LiDAR setup shown in Table 4.9. The

more important difference is what axis the error is from. While both setups had most

of the MRSE in the x axis, the Custom LiDAR setup had less y axis RMS error. The

RMS error in the z axis however became worse. The PPD algorithm position estimate

shown in Table 4.25 show similar results compared to the simulated measurements

with the flight test LiDAR setup shown in Table 4.12. Thus, the new setup decreased

the MRSE and it supports the idea that the LiDAR setup can change the RMS error

in each axis and thus the visibility. This can be used to design a LiDAR setup for a

particular situation. For example the x and z axis may be very important to prevent

planes from colliding, thus error in that channel may be prioritized over error in other

channels. However, the Custom LiDAR increases the RMS error in the z axis. This

was unexpected as the Custom LiDAR was aimed at the fuselage to give a large

surface perpendicular to the z axis to increase visibility in the z axis as shown in

Figure 4.24. This increase in error can be attributed to the new orientation of the

LiDAR. When the LiDAR was pitched upward some of the range variance was moved

from the x axis to the z axis. Since the simulation corrupts the range measurements,

this led to a worse estimate in the z axis which was now more in line with the range

76

Table 4.24: MBI Algorithm error statistics for flight 1 pass 1 using the Custom
LiDAR setup. Axis are in the breceiver−frame.

Parameter Mean 1-σ RMS

x axis -2.136 cm 1.812 cm 2.800 cm

y axis -0.083 cm 0.424 cm 0.432 cm

z axis -0.920 cm 0.352 cm 0.985 cm

MRSE 2.999 cm

LiDAR Data Simulated Flight 1 Pass 1

LiDAR Setup Custom LiDAR Setup

Table 4.25: PPD Algorithm error statistics for flight 1 pass 1 using the Custom
LiDAR setup. Axis are in the breceiver−frame

Parameter Mean 1-σ RMS

x axis 0.638 cm 10.595 cm 10.598 cm

y axis -0.003 cm 0.782 cm 0.780 cm

z axis 0.005 cm 0.710 cm 0.709 cm

MRSE 10.650 cm

LiDAR Data Simulated Flight 1 Pass 1

LiDAR Setup Custom LiDAR Setup

axis of the LiDAR. However, this type of scan should provide improved visibility in

the orientation of the tanker compared to the flight test LiDAR setup.

4.7.2 Simulated Attitude Estimates. The Custom LiDAR and flight test

LiDAR setup were both used to compute attitude as well as position to determine

if the Custom LiDAR provides improved attitude visibility. Previously this thesis

made the assumption that attitude was provided by the EGIs and the LiDAR was

only providing a position estimate. However, the MBI algorithm has an ability to

determine attitude, because it was derived from ICP algorithm which can determine

rotations to fit point clouds together. Thus, a modification was made to the MBI

algorithm where the rotation determined from the ICP part of the algorithm was

included in the position estimate to make it a pose estimate. This modification

was applied in Section 3.2.3 where all steps of the ICP algorithm were completed.

77

Figure 4.24: Custom LiDAR scan on the tanker. Blue spheres are measurement
points returned by the Simulated LiDAR. The scan points are mostly flat but the
sides of the engine pods provide vertical visibility.

The Custom LiDAR setup was used to determine pose estimates for flight 1 pass 1

including attitude as shown in Table 4.26. The Custom LiDAR setup was compared

to error statistics with the Flight Test LiDAR setup with the same MBI Algorithm

modification to determine attitude as shown in Table 4.27. The Custom LiDAR setup

maintains a lower MRSE and lower RMS error in each Euler angle compared to the

flight test LiDAR setup. In fact, the MRSE of the Custom LiDAR while determining

attitude is lower than the MRSE of the Custom LiDAR when it had attitude from the

EGIs. Thus, the Custom LiDAR setup provides a pose estimate with lower MRSE and

lower RMS error in Euler angles compared to the flight test LiDAR setup. However

the flight test LiDAR still maintained a MRSE within centimeters of the simulations

that used attitude from the EGIs, thus more analysis was performed to attempt to

replicate the results with actual flight test measurements, as described in the next

section.

78

Table 4.26: MBI Algorithm error statistics for flight 1 pass 1 using the Custom
LiDAR setup and determining the attitude of the tanker. Axis in breciever−frame.

Parameter Mean 1-σ RMS

x axis 0.170 cm 2.211 cm 2.207 cm

y axis -0.086 cm 1.316 cm 1.312 cm

z axis -0.266 cm 0.861 cm 0.897 cm

MRSE 2.720 cm

Yaw -0.030 MRAD 0.496 MRAD 0.494 MRAD

Pitch 0.224 MRAD 0.432 MRAD 0.484 MRAD

Roll -0.011 MRAD 0.574 MRAD 0.572 MRAD

LiDAR Data Simulated Flight 1 Pass 1

LiDAR Setup Custom LiDAR Setup

Table 4.27: MBI Algorithm error statistics for simulated flight 1 pass 1 using
the Flight Test LiDAR setup and determining the attitude of the tanker. Axis in
breciever−frame.

Parameter Mean 1-σ RMS

x axis 1.737 cm 4.339 cm 4.654 cm

y axis -3.438 cm 3.023 cm 4.568 cm

z axis -1.000 cm 1.537 cm 1.827 cm

MRSE 6.772 cm

Yaw -2.378 MRAD 2.054 MRAD 3.135 MRAD

Pitch 0.758 MRAD 1.174 MRAD 1.393 MRAD

Roll 0.231 MRAD 1.006 MRAD 1.028 MRAD

LiDAR Data Simulated Flight 1 Pass 1

LiDAR Setup Flight Test LiDAR Setup w/Model Corrections

79

4.8 Actual Attitude Estimates

Since simulation results showed promise of determining attitude of the tanker

actual data was used to determine pose estimates for flight 1 pass 1. The modified MBI

algorithm when estimating pose for flight 1 pass 1 shown in Table 4.28, had a MRSE

10 times worse compared to the position estimates from the normal MBI algorithms

shown in Table 4.17. In order to decrease the MRSE the sampling frequency of pose

estimates was increased from one position/scan per second to ten positons/scans per

second. This was done to give the algorithm a starting point closer to the true position,

since less time had elapsed between estimates. This would not make any difference

in previous position estimation algorithms, because the convergence analysis done in

Section 4.3.2 revealed that starting position would not effect the solution within 5m

of the true solution. However, the modified MBI algorithm now determines attitude

and thus that analysis does not apply to this modified MBI algorithm. MBI algorithm

MRSE was decreased by sevenfold as shown in Table 4.29 when the sampling frequency

was increased to 10Hz. This shows that the modified MBI algorithm is converging on

local minimums, and more accurate initial positions will mitigate the local minimum

convergence. However, the modified MBI algorithm is far from tracking the Euler

angles. An analysis of the ratio of Euler angle error reduced shown in Table 4.30

shows that the algorithms on average cannot provide a better estimate of attitude,

rather, it only keeps the attitude close enough to not totally diverge. A new method

to determine initial position had to be determined in order to provide better Euler

angle estimates.

4.8.1 PPD + MBI Algorithm. In order to reduce the initial error for the

modified MBI algorithm, and provide a better estimate of attitude, the PPD + MBI

algorithm was created. The PPD + MBI algorithm uses the PPD algorithm with the

last attitude estimate to provide a position estimate for the modified MBI algorithm.

With this improved position estimate, the modified MBI algorithm then determines

the pose of the tanker. Since the PPD part of the algorithm provides a better initial

80

Table 4.28: MBI Algorithm error statistics for flight 1 pass 1 using the Flight Test
LiDAR setup and determining the attitude of the tanker. Axis in breciever−frame.

Parameter Mean 1-σ RMS

x axis -309.307 cm 149.732 cm 343.316 cm

y axis 87.553 cm 63.152 cm 107.767 cm

z axis -247.303 cm 45.163 cm 251.353 cm

MRSE 438.928 cm

Yaw 10.286 MRAD 17.877 MRAD 20.548 MRAD

Pitch 209.080 MRAD 11.809 MRAD 209.410 MRAD

Roll 122.467 MRAD 27.026 MRAD 125.385 MRAD

LiDAR Data Actual Flight 1 Pass 1

LiDAR Setup Flight Test LiDAR Setup w/Model Corrections

Table 4.29: MBI Algorithm error statistics for flight 1 pass 1 and determining the
attitude of the tanker. Position estimates were produced at 10Hz instead of the usual
1Hz. Axis in breceiver−frame.

Parameter Mean 1-σ RMS

x axis 28.535 cm 21.017 cm 35.435 cm

y axis -44.911 cm 18.982 cm 48.755 cm

z axis 24.048 cm 18.204 cm 30.157 cm

MRSE 67.395 cm

Yaw -17.025 MRAD 8.530 MRAD 19.041 MRAD

Pitch -22.141 MRAD 11.737 MRAD 25.057 MRAD

Roll -24.003 MRAD 9.919 MRAD 25.970 MRAD

LiDAR Data Actual Flight 1 Pass 1

LiDAR Setup Flight Test LiDAR Setup w/Model Corrections

Table 4.30: MBI Algorithm Euler angle error reduction for pose estimates in Table
4.29. Values below 1 decreased error while values above 1 increased error e.g. 2 means
error was doubled from initial estimate.

Parameter Mean 1-σ RMS

Yaw 1.251 5.117 5.265

Pitch 1.068 0.601 1.226

Roll 1.060 0.450 1.151

81

Table 4.31: PPD + MBI Algorithm error statistics for flight 1 pass 1. Axis in
breceiver−frame.

Parameter Mean 1-σ RMS

x axis 11.267 cm 22.003 cm 24.679 cm

y axis -37.315 cm 19.740 cm 42.196 cm

z axis 12.365 cm 15.557 cm 19.847 cm

MRSE 52.758 cm

Yaw -13.992 MRAD 10.192 MRAD 17.298 MRAD

Pitch -15.705 MRAD 10.426 MRAD 18.839 MRAD

Roll -21.575 MRAD 9.747 MRAD 23.666 MRAD

LiDAR Data Actual Flight 1 Pass 1

LiDAR Setup Flight Test LiDAR Setup w/Model Corrections

position for the modified MBI, the sampling frequency of positions/scans was reduced

back to the original 1Hz. Thus, the PPD + MBI provided estimates faster since

the sampling frequency was 10 times slower. The PPD + MBI algorithm was used

to calculate pose estimates for flight 1 pass 1 as shown in Table 4.31 with lower

MRSE compared to the MRSE of the modified MBI with 10Hz sampling. The bigger

difference between the PPD + MBI and the modified MBI at 10Hz is the improved

attitude accuracy. The Euler Angles for pitch and roll had lower RMS error compared

to the MBI Algorithm sampled at 10Hz. However, the algorithm did not reduce the

error of the initial Euler angles estimate as much as the modified MBI at 10Hz as

shown in Tables 4.32 and 4.30. In conclusion even the PPD + MBI cannot track the

attitude Euler angles with the flight test LiDAR setup. However, if real data was

obtained from using the Custom LiDAR setup and pose estimates determined with

PPD + MBI, the Euler Angles tracking would more accurate as the Custom LiDAR

setup had less RMS error in Euler angles compared to the Flight Test LiDAR setup

as described in the previous section.

82

Table 4.32: PPD + MBI Algorithm Euler angle error reduction for pose estimates
in Table 4.31

Parameter Mean 1-σ RMS

Yaw 2.321 6.481 6.871

Pitch 2.477 12.406 12.626

Roll 2.871 10.131 10.510

4.9 Summary

In summary the actual measurements created a position estimate with larger

MRSE compared to the simulated measurements. However, this appears to be the best

estimate possible using the actual measurements, since both algorithms had similar

error, and both algorithms drove the RRE below the error of the true position. The

position estimates obtained a MRSE of about 40cm after all modeling corrections

were applied. The field of view and orientation of the LiDAR can be modified to

lower the over all MRSE or the RMS error in a desired axis.

83

V. Conclusion

T
his thesis presents two methods for relative position estimation during aerial

refueling using a scanning LiDAR. In this chapter, conclusions regarding the

research and analysis are discussed. Also areas for future research and analysis are

discussed.

5.1 Conclusions

The position estimates using the two algorithms demonstrated using a scanning

LiDAR approach to determine relative position during aerial refueling is possible.

The MBI algorithm can accurately fit a model of the tanker aircraft to measurements

from the LiDAR. While convergence of the MBI algorithm is not guaranteed, it was

demonstrated for one pose that with an initialization inside a 10 meter box, the

solution always converged on the true solution. The PPD algorithm can quickly

search for a position that matches the measurements from the LiDAR to determine

an accurate relative position. A LiDAR simulator is used to generate estimated

measurements in order to calculate the SRRE between the estimated measurements

and actual measurements.

Relative position estimates using simulated data had 4.3cm MRSE for the MBI

algorithm and 12.4cm MRSE for the PPD algorithm. Relative position estimates

using actual data had 33.9cm MRSE for the MBI algorithm and 39.1cm MRSE for

the PPD algorithm after modeling corrections were applied. RMS error in the forward-

back axis of the btanker−frame is larger compared to other axes while using the flight

test LiDAR setup. Position estimates using simulated data with the Custom LiDAR

setup decreased the RMS error in the forward-back axis but increased the vertical

axis RMS error compared to the position estimates using simulated data with the

flight test LiDAR setup. Also, The MRSE for the Custom LiDAR setup was lowered

to 2.99cm MRSE compared to the 4.3cm MRSE of the flight test LiDAR setup. This

shows the LiDAR setup can shift RMS error from one axis to another or reduce the

MRSE altogether.

84

Attitude and position estimates were simulated using a modified MBI algorithm

with the Custom LiDAR setup and showed Euler angle RMS errors under 1MRAD

and MRSE of 2.7cm. The flight test LiDAR calculated attitude and position estimates

with the simulated data using the modified MBI algorithm as well, and achieved Euler

angle RMS errors of about 3MRAD with a MRSE of 6.7cm. Attitude and position

estimates on actual flight test data were poor and had an MRSE of 4.3m. The PPD

+ MBI algorithm however, obtained a MRSE of 52.7cm and Euler angle RMS errors

under 25MRAD when attitude and position estimates were calculated from actual

flight test data. This shows that position estimates can be calculated even if the

attitude is not provided by the IMUs.

Based on the results, either algorithm has an accuracy of about 40cm MRSE for

real flight test data after applying modeling corrections. The final errors are a result

not from the algorithms, but rather from the lever arms and orientation calculations.

With more precise lever arms and orientations the MRSE can be further reduced to

achieve more accurate position estimates. Attitude and position estimates can be

achieved with the PPD + MBI algorithm and result in MRSE of about 52cm with

Euler angle RMS errors under 25MRAD.

5.2 Future Work

This section outlines areas of future work for further research. Since the problem

of automated aerial refueling using scanning LiDAR is a new field, there are many

different areas of research for future analysis.

5.2.1 Sensor Fusion. In this thesis the LiDAR was the only sensor used to

determine the relative position with help from the IMUs for attitude. Using the MBI

method, an attitude can be generated without the IMUs, and then compared to the

IMU attitude with a Kalman filter. This can be useful if the accuracy of the IMUs

is questionable, or if integrating the sensors is not desirable. Another sensor to use

for position estimates is a camera. The camera and LiDAR could be combined to

85

determine the position and attitude of the tanker. The LiDAR aids the camera well

because a camera cannot determine range accurately while a LiDAR gives range as a

raw measurement.

5.2.2 Algorithm Improvement. The algorithms introduced in this thesis had

flaws that could be corrected. The MBI algorithm has a problem of looping between

position estimates. These loops can degrade both position estimates and speed. The

modes of the looping are not restricted to a set number of positions, and the exact

locations cannot be guaranteed, thus some kind of looping detector is required to

search for looping in a variable number of positions. Also the question of how to

break the loop is not trivial. A new initial position or large random perturbation

could return to loop once again.

The PPD algorithm has the problem of relying on SRRE to correlate to position

error. A better metric that correlates more closely to position error could be used to

determine the best position. Also, more comprehensive methods of searching such as

gradient slopes could be used to find the position of the lowest SRRE more quickly.

Also, the parameters put forth in this thesis are not optimal. They were determined

empirically using simulated flight data, and they performed reasonably well with the

actual flight data. If the position error and time constraints are known, optimized

parameters can be calculated to meet these specifications.

5.2.3 Speedup For Real Time Operation. The current implementation of

each algorithm cannot be done in real time. The position estimates were all gener-

ated post flight and the time to generate each position estimate was longer than the

sampled time interval. On average, the MBI algorithm and PPD showed about the

same time performance of about 12 seconds per position estimate. The PPD algo-

rithm can be parallelized and the speed is determined by the parameters which makes

it easier to speed up. However the MBI algorithm must be done sequentially, and the

time taken to converge to a solution is dependent on the fit of the measurements to

the model.

86

5.2.4 LiDAR Setup. This thesis argues that these algorithms were limited

by the LiDAR setup used in the test flight. Since the simulated position estimates were

much different compared to the position estimates with actual data, an analysis of

how different setups change the error cannot be done in simulation until the simulated

position estimates match position estimates with actual data. The current LiDAR

simulator does not mimic a real LiDAR perfectly thus error will be introduced when

the LiDAR simulator does not accurately simulate a real LiDAR scan. Ultimately, to

verify a new LiDAR setup a new test flight or mock test flight must be conducted to

assure the simulation results.

5.2.5 Controlled LiDAR. While this thesis used a scanning LiDAR, a more

sophisticated LiDAR capable of being controlled could be used. A controlled LiDAR

can be used to retrieve the most useful information from the tanker while ignoring

measurements that repeat the same information. The reduction in measurements

would speed up position estimates and provide only the most useful information. The

controlled LiDAR can also be used to search for specific points on the tanker such

as installed markers that reflect laser beams directly back to the sender. A LiDAR

can distinguish these returns from other returns and be used to track the markers.

If measurements can be directly related to points on a model, the accuracy of the

position will greatly improve since registration is much easier.

87

VI. Appendix A

T
his appendix lists a tables useful for further analysis of specific topics. The first

table lists the final lever arms used for simulations. The second table includes

all the test flights and passes to show properties about each pass including length and

the useability of the LiDAR measurements.

Table A.1: Lever arms for sensors in the receiver. All lever arms in the
breciever−frame.

Sensor Lever Arm (x,y,z) Units

GPS Antenna 1 (-263.8,2.9,-61.7) in.

GPS Antenna 2 (-291.6,2.5,-61.7) in.

GPS Antenna 3 (-361.1,2.5,-61.7) in.

GPS Antenna 4 (-436,5.5,-61.7) in.

EGI 1 (-314.2,-15.6,-19.8) in.

EGI 2 (-307.1,-17.3,-19.8) in.

EGI 3 (-298.5,-15.6,-19.8) in.

Sensor Suite IMU (-116.3,0,-9.65) in.

Camera (-2.737,-0.088,-0.389) m

LiDAR (-2.637,-0.054,-0.226) m

88

Table A.2: Final sensor orientations for the sensors in the receiver aircraft. The
quaternion rotation is with respect to the breceiver−frame.

Sensor Quaternion (w,x,y,z)

Sensor Suite IMU (1,0,0,0)

Camera (0.3663031,0.6149861,0.6031746,0.3518449)

LiDAR (0.1255817,-0.9864451,0.01746362,0.1041674)

EGI 1 (1,0,0,0)

EGI 2 (1,0,0,0)

EGI 3 (1,0,0,0)

Table A.3: Lever arms for sensors in the tanker. All lever arms in the
btanker−frame.

Sensor Lever Arm (x,y,z) Units

GPS Antenna 1 (-390.0, -4.5, -302.0) in.

EGI 1 (Not Listed) in.

EGI 2 (Not Listed) in.

Tanker Model Origin (-130.0, 0.0, -302.0) in.

Table A.4: Final sensor orientations for the sensors in the tanker aircraft. The
quaternion rotation is with respect to the btanker−frame.

Sensor Quaternion (w,x,y,z)

EGI 1 (1,0,0,0)

EGI 2 (1,0,0,0)

Tanker Model (1,0,0,0)

89

Table A.5: Description of test flights 1-4 and LiDAR data status.

Pass Time (s) Description LiDAR Data

Flight 1

Pass 1 399 Typical pass OK

Pass 2 59 Pass too short and plane too far
away

Unusable

Pass 3 61 Pass too short and plane too far
away

Unusable

Pass 4 75 Pass too short and plane too far
away

Unusable

Pass 5 62 Pass too short and plane too far
away

Unusable

Flight 2

Pass 1 448 Sun in view caused measurement
errors

Filtering Required

Pass 2 748 Sun in view caused measurement
errors

Filtering Required

Pass 3 428 Sun in view caused measurement
errors

Filtering Required

Pass 4 432 Sun in view off to the right
side thus no issues expected from
measurement errors

OK

Pass 5 544 Sun in view caused measurement
errors

Filtering Required

Flight 3

All Passes 0 Sensor time tag malfunction Unusable

Flight 4

Pass 1 616 Plane flew higher than usual
resulting in measurements of
mostly engine pods

Questionable

90

Table A.6: Description of test flights 5-8 and LiDAR data status.

Pass Time (s) Description LiDAR Data

Flight 5

All Passes 0 Flight test focused on other ob-
jectives

No data

Flight 6

All Passes 0 Flight operated outside area
cleared for LiDAR use

No data

Flight 7

Pass 1 320 Typical pass OK

Pass 2 176 Sun in view caused measurement
errors

Filtering Required

Pass 3 219 Sun in view, minimal measure-
ment errors

OK

Pass 4 321 Sun in view, minimal measure-
ment errors

OK

Pass 5 358 Sun in view caused measurement
errors

Filtering Required

Flight 8

Pass 1 332 Typical pass OK

Pass 2 633 Typical pass OK

Pass 3 319 Sun in view caused measurement
errors

Filtering Required

Pass 4 327 Typical pass OK

Pass 5 625 Sun in view caused measurement
errors

Filtering Required

91

Bibliography

1. “Camera Calibration Toolbox for Matlab”. Online, July 2010. URL
http://www.vision.caltech.edu/bouguetj/calib doc/.

2. “Fitting a line in 3D”. Online, February 2010. URL
http://stackoverflow.com/questions/2298390/fitting-a-line-in-3d.

3. Adams, M.D. “Lidar design, use, and calibration concepts for correct environ-
mental detection”. Robotics and Automation, IEEE Transactions on, 16(6):753
–761, dec 2000. ISSN 1042-296X.

4. Air Combat Command, Public Affairs Office. “MQ-9 Reaper”.
The Official Web Site of the U.S. Air Force, January 2012. URL
http://www.af.mil/information/factsheets/factsheet.asp?id=6405.

5. Air Combat Command, Public Affairs Office. “RQ-4 Global Hawk”.
The Official Web Site of the U.S. Air Force, January 2012. URL
http://www.af.mil/information/factsheets/factsheet.asp?id=13225.

6. Bentley, Jon Louis. “Multidimensional Binary Search Trees Used for Associative
Searching”. Department of Computer Science, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27514, 1980.

7. Bentley, Jon Louis. “Multidimensional Divide-and-Conquer”. Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213, 1980.

8. Besl, P.J. and H.D. McKay. “A method for registration of 3-D shapes”. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 14(2):239 –256, feb
1992. ISSN 0162-8828.

9. Eberly, David. “Distance Between Point and Triangle in 3D”. March 2008.

10. Greenspan, M. and M. Yurick. “Approximate k-d tree search for efficient ICP”.
3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Fourth Inter-
national Conference on, 442 – 448. oct. 2003.

11. Hinchman, Jacob and Daniel Schreiter. “Automated Aerial Refueling”. Presen-
tation to Aerial Refueling Systems Advisory Group (ARSAG), April 2007.

12. Huang, Lili and M. Barth. “A novel multi-planar LIDAR and computer vision
calibration procedure using 2D patterns for automated navigation”. Intelligent
Vehicles Symposium, 2009 IEEE, 117 –122. june 2009. ISSN 1931-0587.

13. Ibeo Automotive Systems GmbH, Merkurring 60-62 D - 22143 Hamburg. Oper-
ating Manual ibeo LUX 2010 Laserscanner, 2010 edition edition, 2010.

14. Joung, Ji Hoon, Kwang Ho An, Jung Won Kang, Myung Jin Chung, and Wonpil
Yu. “3D environment reconstruction using modified color ICP algorithm by fusion

92

of a camera and a 3D laser range finder”. Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on, 3082 –3088. oct. 2009.

15. Khanafseh, Samer A. and Boris Pervan. “Automous Airborne Refuelng of Un-
manned Air Vehicles Using the Global Positioning System”. Journal of Aircraft,
44(5):1670–1682, September-October 2007.

16. Khoder, W., B. Fassinut-Mombot, and M. Benjelloun. “Quaternion Unscented
Kalman Filtering for integrated Inertial Navigation and GPS”. Information Fu-
sion, 2008 11th International Conference on, 1 –8. 30 2008-july 3 2008.

17. Lewis, William K. UCAV - The Next Generation Air-Speriority
Fighter. Master’s thesis, School of Advanced Airpower Stud-
ies, Air Universith Maxwell AFB Alabama, June 2002. URL
http://www.au.af.mil/au/awc/awcgate/saas/lewis.pdf.

18. Orton, Megan. “Air Force Remains Committed to Unmanned Aircraft Sys-
tems”. The Official Web Site of the U.S. Air Force, January 2009. URL
http://www.af.mil/news/story.asp?id=123131324.

19. Pandey, G., J. McBride, S. Savarese, and R. Eustice. “Extrinsic Calibration of
a 3D Laser Scanner and an Omnidirectional Camera”. Ford Motor Company
Research and Innovation Center, Dearborn, MI 48124 USA, 2010.

20. Peinecke, N., T. Lueken, and B.R. Korn. “Lidar simulation using graphics hard-
ware acceleration”. Digital Avionics Systems Conference, 2008. DASC 2008.
IEEE/AIAA 27th, 4.D.4–1 –4.D.4–8. oct. 2008.

21. Powell, G., R. Martin, D. Marshall, and K. Markham. “Simulation of FLIR
and LADAR data using graphics animation software”. Computer Graphics and
Applications, 2000. Proceedings. The Eighth Pacific Conference on, 126 –134.
2000.

22. Ruel, S., T. Luu, M. Anctil, and S. Gagnon. “Target Localization from 3D data
for On-Orbit Autonomous Rendezvous x00026; Docking”. Aerospace Conference,
2008 IEEE, 1 –11. march 2008. ISSN 1095-323X.

23. Schneider, S., M. Himmelsbach, T. Luettel, and H.-J. Wuensche. “Fusing vision
and LIDAR - Synchronization, correction and occlusion reasoning”. Intelligent
Vehicles Symposium (IV), 2010 IEEE, 388 –393. june 2010. ISSN 1931-0587.

24. Slabaugh, Greg, Ron Schafer, and Mark Livingston. “Optimal Ray Intersection
For Computing 3D Points From N-View Correspondences”. October 2001.

25. Soloviev, A. and M.U. de Haag. “Three-Dimensional Navigation with Scanning
Ladars: Concept amp; Initial Verification”. Aerospace and Electronic Systems,
IEEE Transactions on, 46(1):14 –31, jan. 2010. ISSN 0018-9251.

26. Staff, Defense Systems. “Navy to outfit an X-47B prototype
with refueling gear”. Defense Systems, November 2011. URL

93

http://defensesystems.com/articles/2011/11/07/

agg-navy-x47b-refueling-capability.aspx?admgarea=DS.

27. Titterton, D. and J. Weston. Strapdown Inertial Navigation Technology. IET
RADAR, SONAR, NAVIGATION AND AVIONICS. The Institution of Electrical
Engineers, Michael Faraday House Six Hills way, Stevenage Herts, SG1 2AY,
United Kingdom, 2nd edition edition, 2004.

28. Toth, C., D.A. Grejner-Brzezinska, and Young-Jin Lee. “Terrain-based naviga-
tion: Trajectory recovery from LiDAR data”. Position, Location and Navigation
Symposium, 2008 IEEE/ION, 760 –765. may 2008.

29. Veth, Michael J. Fusion of Imaging and Inertial Sensors for Navigation. Ph.D.
thesis, Air Force Institute of Technology, 2950 Hobson Way WPAFB OH, 45433,
September 2006.

30. Warwick, Graham. “AFRL Advances Autonomous Aerial Refueling”. Aviation
Week, June 2008.

31. Weaver, Adam D. Using Predictive Rendering as a Vision-Aided Technique for
Autonomous Aerial Refueling. Master’s thesis, Air Force Institute of Technology,
2950 Hobson Way WPAFB OH, 45433), month=March, year=2009,.

32. Willis, A.R., M.J. Zapata, and J.M. Conrad. “A linear method for calibrating
LIDAR-and-camera systems”. Modeling, Analysis Simulation of Computer and
Telecommunication Systems, 2009. MASCOTS ’09. IEEE International Sympo-
sium on, 1 –3. sept. 2009. ISSN 1526-7539.

33. Zinsser, T., J. Schmidt, and H. Niemann. “A refined ICP algorithm for robust 3-
D correspondence estimation”. Image Processing, 2003. ICIP 2003. Proceedings.
2003 International Conference on, volume 2, II – 695–8 vol.3. sept. 2003. ISSN
1522-4880.

94

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2012 Master’s Thesis Sept 2010 — Mar 2012

Automated Aerial Refueling Position Estimation
Using a Scanning LiDAR

DACA99–99–C–9999

11G235

Curro II, Joseph A., 2d Lt USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GE/ENG/12-11

Air Force Research Laboratory (Jacob Hinchman)
2130 8th Street
Wright-Patterson AFB, OH 45433
(937) 785-8291; Jacob.Hinchman@wpafb.af.mil

AFRL

Approval for public release; distribution is unlimited.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

This research examines the application of using a scanning Light Detection and Ranging(LiDAR) to perform Automated
Aerial Refueling(AAR). Specifically this thesis presents two algorithms to determine the relative position between the
tanker and receiver aircraft. These two algorithms require a model of the tanker aircraft and the relative attitude
between the aircraft. The first algorithm fits the measurements to the model of the aircraft using a modified Iterative
Closest Point (ICP) algorithm. The second algorithm uses the model to predict LiDAR scans and compare them to
actual measurements while perturbing the estimated location of the tanker. Each algorithm was tested with simulated
LiDAR data before real data became available from test flights. The data collected from this test flight was used to
determine the accuracy of the two algorithms with real LiDAR data. After correcting for modeling errors the accuracy of
each algorithm is about a Mean Radial Spherical Error of 40cm.

LiDAR, Iterative Closest Point, Automated Aerial Refueling, Relative Position Estimation

U U U UU 114

Dr. John Raquet

(937) 785–3636, ext 4580; John.Raquet@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-22-2012

	Automated Aerial Refueling Position Estimation Using a Scanning LiDAR
	Joseph A. Curro II
	Recommended Citation

	tmp.1519762534.pdf.pJXpe

