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Abstract 

This research developed kernel level rootkits for Android mobile devices 

designed to avoid traditional detection methods. The rootkits use system call hooking to 

insert new handler functions that remove the presence of infection data. The effectiveness 

of the rootkit is measured with respect to its stealth against detection methods and 

behavior performance benchmarks. Detection method testing confirms that while 

detectable with proven tools, system call hooking detection is not built-in or currently 

available in the Google Play Android App Store. Performance behavior benchmarking 

showed that the new handler function inserted by the system call hooking affects the 

average completion time of the targeted system calls. However, this delay’s magnitude 

may not be noticeable by average users. 

The covert Android rootkits implemented target the emulator available from the 

Android Open Source Project (AOSP) and the Samsung Galaxy Nexus running Android 

4.0. The rootkits are compiled against both Linux kernel 2.6 and 3.0, respectively. This 

research shows the Android’s Linux kernel is vulnerable to system call hooking and 

additional measures should be implemented before handling sensitive data with Android. 
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COVERT ANDROID ROOTKIT DETECTION:  EVALUATING LINUX KERNEL LEVEL ROOTKITS 

ON THE ANDROID OPERATING SYSTEM 

I.  Introduction 

1.1 Research Domain 

Smartphones are mobile phones that offer more advanced features and computing 

power than traditional cellular phones. Beyond simply making calls, a Smartphone can 

carry multiple connections from cellular networks, wireless Bluetooth, the Internet (via 

Wi-Fi), USB and other peripherals. With these new connections, smartphone users can 

access email, social networks, and banking all from their mobile device. Information 

security, then, becomes an immediate concern with sensitive data being handled on 

potentially unsecure devices. 

The Google Android operating system [Goo12] is currently the most widely used 

platform for Smartphones and is on about a quarter of Tablet PC devices. The Android 

operating system is a mobile device operating system for Smartphones and Tablet PCs 

designed by Google and the Open Handset Alliance. The Android operating system stack 

runs on top of the Linux kernel, typically, on a 32-bit mobile device ARM processor. 

Since Android is built on top of the Linux kernel, it inherits the same vulnerabilities and 

the possibility of exploitation by malware, backdoors, and rootkits to gain control of the 

system or induce denial-of-service (DoS) attacks. A rootkit is a set of programs and code 

that allows a permanent or consistent, undetectable presence on an operating system.  
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With the Android’s widespread adoption, research in attacks may spark interest in 

developing preventive security measures for Android. This research is particularly 

interested with developing kernel level rootkits that remain undetected by currently 

available detection methods on the Android operating system.  

1.2 Problem Statement 

Android dominance of the Smartphone market has made it an inevitable target of 

malicious attacks. Malware for Android typically targets sensitive information like GPS 

location, Short Message Service (SMS) billing, bank account credentials, premium phone 

calls, e-mails, and social network credentials. Understanding how malware remains 

undetected when it accesses to this information is advantageous to increased development 

in detection and operating system security measures. 

Kernel level rootkits run at the highest privilege by manipulating memory known 

as kernel space. Malware developers insert rootkits into operating system by exploiting 

software bugs. The Android operating system is no exception and old software 

vulnerability attacks become new when targeting its Linux kernel.  

1.3 Research Goals 

Kernel level rootkits that remain undetected persist longer and increase the 

capability of an attacker to exfiltrate data from the targeted device. Rootkit effectiveness, 

then, can be determined by the detectability of the rootkit. Modern rootkits divert the 

flow of execution at the kernel level to prevent infection detection. Understanding and 

evaluating these techniques can lead to more effective detection measures. The goal of 
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this research is to determine the effectiveness of various covert techniques implemented 

in kernel level rootkits on the Android operating system’s Linux kernel. The covert 

techniques are based on traditional implementations of system call hooking used to hide 

infection data. The rootkits are tested against available and proven detection techniques 

and benchmarked for behavior performance analysis to determine the rootkit’s 

effectiveness. 

1.4 Document Outline 

Chapter II introduces the Android operating system, conventional software 

exploits, and taxonomy of rootkits. Chapter III presents the methodology for evaluating 

the rootkits developed for this research. The rootkits are designed to evade the currently 

available detection methods. Chapter IV presents the design and implementation of the 

rootkits. The chapter also presents the results and analysis of the rootkits against 

detection methods and the delay induced by the covert techniques. Chapter V highlights 

the accomplishments of this research and proposes future research in both offensive and 

defensive techniques against the Android operating system.  
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II. Literature Review 

This chapter reviews kernel exploits and rootkit techniques that target the Linux 

kernel component of the Android operating system. The first section introduces the focus 

of this research, the Android operating system and its kernel. The second provides an 

overview of exploits that obtain initial access to the Linux kernel. The third section 

provides an overview of rootkits focusing on those whose objective is to remain 

undetectable and persistent. 

2.1 Introduction to Android 

The Android operating system is a mobile device operating system for 

smartphones and tablets designed by Google and the Open Handset Alliance. When 

released in October 2008, Google also publically released the source code as the Android 

Open Source Project (AOSP) under Apache’s open source license [Goo12]. This made 

the code readily available for analysis and compilation. Android runs primarily on the 

popular mobile device 32-bit processor, ARM. ARM is a RISC (Reduced Instruction Set 

Computer) architecture which means that it uses simpler instructions compared to x86 

processor’s CISC (Complicated Instruction Set Computer) architecture. However, the 

operating system concepts for a Linux kernel running on ARM are the same. Android is 

currently the best-selling smartphone platform worldwide. This widespread adoption has 

led to increased targeting by malware writers. 

2.1.1 The Android Software Stack 

The Android “software stack” includes an operating system, middleware, and key 

applications [God12]. The software stack is composed of five abstract layers shown in 
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Figure 2.1. From top to bottom the layers are Applications, Application Framework, 

Android Runtime, Native Libraries, and the Linux Kernel. This section describes the 

features from the top to the bottom layer. 

 

Figure 2.1 The Android Software Stack 

Android comes with a set of core applications that include an email client, Short 

Message Service (SMS) program, calendar, maps, browser, and contacts. Other 

applications can be downloaded from the Android Application Market or from a 

Universal Serial Bus (USB) connected computer to a mobile device running Android. 

Developers can take advantage of the Android Software Development Kit (SDK) and 

design applications for public release. Applications developed in the Android SDK are 

written in the Java programming language but can also be written in C/C++ using the 

Native Developer Kit (NDK). Even though the applications are designed in Java, they run 

in a Dalvik Virtual Machine (DVM) rather than the Java Virtual Machine (JVM) in PC 

environments. The Android application framework promotes efficiency and security with 
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its DVM application sandboxing and permission model interfaces that provide access to 

the lower layers.  

The Android application framework sits above the system libraries, core libraries, 

and DVM. Since Android is an open development platform, developers can build 

extremely rich and innovative applications. Through the application framework, 

developers can utilize device hardware, access location information, run background 

services, set alarms, add notifications to the status bar, and much more. The application 

architecture is also designed to simplify the reuse and replacement components of 

applications securely. All applications have access to a set of services and systems that 

includes a rich and extensible set of Views, Content Providers, a Resource Manager, a 

Notification Manager, and an Activity Manager. 

The Android Runtime layer is above the system libraries and kernel providing the 

DVM and core libraries. DVM is specifically designed for embedded environments such 

as mobile devices, tablet computers, and netbooks to support application portability and 

runtime consistency. With these features in mind, Dalvik supports multiple virtual 

machine processes (i.e., instances) per device and ensures runtime memory is used 

efficiently. Android runs every application in its own DVM instance. The virtual machine 

has a registered-based architecture that runs classes compiled by a Java language 

compiler. These classes are transformed into the optimized .dex (Dalvik Executable) file 

format to be more compact and memory efficient than Java class files. Java code can also 

be reused by converting Java .class and .jar files to .dex files at build time. The core 

libraries are written in Java and provide a substantial subset of the Java 5 SE packages as 

well as some Android-specific libraries. These libraries access the capabilities provided 
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by the hardware (storage, network access), operating system (utilities), and native 

libraries (data structures).  

The next layer in the Android software stack includes a collection of native 

libraries implemented in C/C++ used by various components. The capabilities derived 

from these libraries are available to developers through the Android application 

framework. These libraries include the System C library, media libraries, Surface 

Manager, LibWebCore, SGL, 3D libraries, FreeType, and SQLite.  

Lastly, the Linux kernel layer acts as an abstraction layer between the hardware 

and the rest of the software stack. The kernel handles system services such as security, 

memory management, process management, network stack, and driver model. The 

components of the Linux kernel include display driver, camera driver, flash memory 

drive, binder (ipc) driver, keypad driver, Wi-Fi driver, audio drivers, and power 

management. The Linux kernel supports programs written in the C programming 

language. Since Android is built on top of the Linux kernel, it inherits its vulnerabilities 

and the possibility of exploitation by malware, backdoors, and rootkits to gain control of 

the system or cause denial of service. 

2.1.2 Summary 

This section gives a brief overview of the Android operating system structure and 

features. The abstraction of the platform’s kernel from the end-user is both an advantage 

from a usability standpoint and a disadvantage from a security awareness standpoint 

[Pap10]. Executing code below the application framework layer discreetly can easily and 

completely subvert a user. If this execution is malicious, attackers can perform malicious 

activities such as exfiltrate sensitive or personal data without detection. Exploiting 
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software vulnerabilities allow attackers to install tools to perform malicious activity. The 

following section discusses these vulnerabilities and exploitation of Android’s Linux 

kernel. 

2.2 Software Exploitation in the Linux Kernel 

Vulnerabilities in software are often due to programming errors known as bugs. 

Bugs are defined as a malfunction in a program that makes the program produce incorrect 

results, behave in an undesired way, or simply crash [Per10]. Security issues arise from 

vulnerabilities that are exploited. Exploits that can be reused on similar vulnerabilities 

can be generalized into vulnerability classes. Classes discussed in the following sections 

include uninitialized pointer dereferences, memory corruption vulnerabilities, integer 

overflows, and race conditions. 

2.2.1 Uninitialized Pointer Dereferences 

A pointer is a variable that holds the address of another variable in memory. 

When dereferencing a point, the object pointed to is accessed. Static, uninitialized 

pointers will always contain a NULL (0x0) value and a NULL return value indicates a 

failure in memory allocation. NULL pointer dereferences occur when a kernel path 

dereferences a NULL pointer causing a kernel panic. The kernel will try to use the 

memory address 0x0 which usually is not mapped. Exploitation can occur when an 

attacker can predict or force a pointer dereference to an uninitialized, unvalidated, or 

corrupted pointer resulting in a read or write to an arbitrary location by the kernel [Per10] 

[Sqr07]. 
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2.2.2 Memory Corruption Vulnerabilities 

Memory corruption vulnerabilities classes include cases in which kernel memory 

is corrupted as a consequence of poorly written code that overwrites the kernel’s 

contents. Kernel memory consists of the kernel stack and the kernel heap [Per10]. The 

kernel stack is associated with each process whenever it runs at the kernel level. The 

kernel heap is used each time a kernel needs to allocate memory. The fundamentals of 

exploiting these structures translate to the user space as buffer overflows. Buffer 

overflows are explained below to introduce kernel memory exploitation. 

Buffer overflow exploits are a common avenue for an attacker to gain access and 

control of a machine. The vulnerability is typically exploited by sending more data to a 

program than the developer intended [How09]. The memory a program uses to store 

instances of the same data type is known as a buffer which stores things like character 

arrays or strings. Strings are primarily used for input and output to the user. The structure 

of how this data is handled in a program must be understood to take advantage of a buffer 

overflow.  

A program process is organized into three memory sections: text, data, and stack 

[Ale96]. The text section is fixed by the program and includes code and read-only data. 

As this section contains executable code, it normally has read-only permissions; attempts 

to write to this section will result in a memory segmentation fault. The data section 

contains initialized and uninitialized data. Data variables for the program are stored here. 

This section corresponds to the data-bss section of the executable file. While these two 

sections are important to executing a program, the stack section is the target of a buffer 

overflow. 
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The stack section is where dynamic data is stored. It is used for local variables, to 

pass parameter values, and to return values from functions and procedures. The stack 

section is a Last-In-First-Out (LIFO) data structure which means that elements are added 

or removed from only one end or top of the structure. The stack grows into the higher 

memory addresses as elements are added. If the data and stack section grow into each 

other, the process is blocked and run again with more memory allocated.  

A pointer to the top of the stack in memory is stored in a CPU register called the 

stack pointer (SP). The stack consists of logical stack frames that are allocated when 

calling a function and unallocated when returning. The base of the current stack frame is 

pointed to by the stack frame pointer (FP). When a function is called, the previous FP is 

pushed (i.e., saved) onto the stack. The SP is copied into the FP to allocate the new frame 

and the SP is incremented to allocate space for local variables. These actions are called 

the prolog of the function while the actions of a returning function are called an epilog. 

At the epilog, the actions of the prolog must be “reversed” and cleaned up. An attacker 

can develop an exploit with a process’ stack structure via buffer overflows. 

 

Figure 2.2 Program Stack 

Consider a vulnerable program stack as shown in Figure 2.2. The variable bufferX 

has 8 bytes allocated and the saved frame pointer and return pointer have 4 bytes 
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allocated, respectively. If bufferX is controlled by user input and the bounds of the buffer 

are not checked within the program, a malicious user could exploit this. To test for buffer 

overflow vulnerabilities, the user may enter a large amount of input. Based on the 

example presented earlier, this will change the memory state from Table 2.1 to Table 2.2 

supposing the user entered hexadecimal A’s. 

Table 2.1 The Initial State of Memory 

 bufferX Saved Frame PTR Return PTR 

Address 0x00 – 0x07 0x08 – 0x0B 0xC – 0x0F 

Data 0x0 0x1234 0x600D 

 

Table 2.2 The Post State of Testing Memory 

 bufferX Saved Frame PTR Return PTR 

Address 0x00 – 0x07 0x08 – 0x0B 0xC – 0x0F 

Data AAAA AAAA AAAA AAAA 

 

A segmentation fault will occur but the user now knows a buffer overflow is 

present. Therefore, the user will probe the program until the location of the return pointer 

is located. The objective of this exploit is for the malicious user to run shellcode [Sko06]. 

Suppose it is determined that the return pointer starts 12 bytes from buffer; the process 

can be forced to return to an address where desired malicious code resides by overwriting 

the 4 bytes after that. If the input from Table 2.3 is entered the instruction pointer will 

point to the malicious code in bufferX and the malicious user has successfully 

compromised the program and the machine running it. 

Table 2.3 Exploiting Memory 

 bufferX Saved Frame PTR Return PTR 

Address 0x00 – 0x07 0x08 – 0x0B 0xC – 0x0F 

Data /bin/sh SSSS 0x00 
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The heap data structure can also be targeted by a malicious user if the buffer 

bounds are not properly checked when memory is allocated. These exploits are known as 

heap overflows. As in buffer overflow, heap overflow can allow an attacker to redirect 

the flow of program execution or change other variables in vulnerable programs. The 

buffer overflow example is simplified but the same technique is applied to stack and heap 

structures. This technique can be leveraged by attackers to run shell code and gain access 

from remote machines, exfiltrate information, or install software such as rootkits. 

2.2.3 Integer Overflows 

Integer overflow occurs when the value of an integer is increased beyond the 

maximum value it can represent given the number of bytes allocated. The result can 

include ignoring the overflow or aborting the program. However, most compilers store 

the incorrect value and continue executing causing sometimes disastrous and unexpected 

results.  

Integers are typically the same size as a pointer on the system they are compiled 

on. The Android operating system runs on 32-bit ARM processors therefore the pointers 

and the integers will be 32-bit. Suppose a program sets an unsigned short integer variable 

x to its maximum value of 65,535 (represented in hexadecimal as 0xffffffff). Suppose the 

program is overwritten so that it will add 1 to x until it reaches 70,000 where it will 

terminate. The program will actually never terminate. If overflow is ignored when 1 is 

added to 65,535, the result is truncated to a size that can be stored into the 32-bit length 

of x, in this case is 0x00000000. Thus, the program will continue in an infinite loop. 

Signed integers also have this problem because the range for a 32-bit signed integer is 

from –32,768 to 32,767. When 1 is added to 32,767, the result is –32,768. Integer 
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overflow affecting the sign of the value is classified as a signedness bug. These examples 

are clearly programming errors and cannot be exploited by a malicious user. If, however, 

there was user input and a more complex control structure, a malicious user could alter 

the execution flow by entering input targeting the integer overflow and thereby exploit 

the program.  

Frequent targets of integer overflow exploits include network daemons and 

operating system kernels. However, all integer overflows are not exploitable because 

memory is not being directly overwritten [Ble02]. They do not allow direct execution 

flow control but the subtle effect of an erroneous value can lead to problems later in the 

code which may enable the exploitation of bugs such as buffer or heap overflows 

[How09]. Although, integer overflows may not cause direct compromise of an 

application, the application will not detect that a calculation was performed incorrectly 

and will continue to execute. The unexpected behavior of the application continuing after 

an integer overflow introduces a vulnerability into the system. 

2.2.4 Race Conditions 

A race condition occurs when two actors (i.e., processes or threads) compete 

within the same time interval for the same resource. The integrity of the resulting data or 

the correctness of computing tasks may be affected. Race conditions primarily occur in 

operating systems but can also occur in multithreaded or cooperating processes [Pfl11]. 

The type of system can complicate exploiting a race condition. Symmetric 

multiprocessing (SMP) systems are easier to exploit because multiple kernel paths can be 

concurrently executing on multiple processors increasing the likelihood of a kernel race 

condition. On uniprocessor (UP) systems, however, it is more difficult to set up a 
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situation where race condition will occur. For example, suppose two kernel tasks with a 

possible race condition are concurrently executing on an UP system. The first task must 

somehow be preempted. The scheduler then must be forced into selecting the second 

‘racing’ thread. Finally, the race condition is exploited if the second task modifies the 

same kernel memory as the first. Race conditions can be prevented using synchronization 

primitives (e.g., locks, semaphores, conditional variables, or monitors) but these reduce 

performance and often induce deadlocks in a system [Per10].  

A race condition is possible at a relatively high level in Linux using files and 

other objects [How09]. Suppose an application needs to create a temporary file. It first 

checks to see if the file already exists and if not the application creates the file. An 

attacker deduces the naming scheme of the temporary file and creates a link back to a file 

of the attacker’s choice. If the temporary file’s suid bit is set to root, the file executes as 

root causing a privilege escalation for the attacker. Thus, this race condition causes a 

privilege escalation. 

2.2.5 Summary 

This section reviewed software exploitation of a Linux kernel. There are 

protection technologies built to defend against these exploits but attacks continue to 

overcome these protection mechanisms. The following section discusses how rootkits 

avoid detection and maintain persistence within a compromised system. 

2.3 Introduction to Rootkits 

Suppose a user with malicious intent has an exploit for an Android phone. The 

exploit runs shellcode but the delivery mechanism may be detected. Therefore, the 
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attacker wants to deliver one payload that maintains access and is not detectable by the 

end user or an administrator. A backdoor that bypasses authentication mechanisms is a 

good solution, but it is not the best because backdoors are noisy and detectable by an 

Intrusion Detection System (IDS). The best solution to avoid detection would be a 

rootkit. A rootkit allows an attacker to permanently or consistently maintain undetectable 

access to the root, that is, the most powerful user on a system. Rootkits can enable an 

attacker to install a backdoor to remote control a compromised system and exfiltrate 

information.  

Rootkits are typically organized into two classes, user level and kernel level. A 

typical user level rootkit is designed to gain full control of the memory space of a 

targeted application, while kernel level rootkits run at the highest privilege by controlling 

the memory known as kernel space. This section explains the techniques used in these 

classes of rootkits. 

2.3.1 User Level Rootkits 

User level rootkits are unprivileged and are stored outside of kernel memory 

space. They are user space code that patches or replaces existing applications to provide 

cover for malicious activities. User level rootkits replace system binaries, add malicious 

utilities, change configuration files, delete files, or launch malicious processes [Gri06]. 

For example, the Linux system program ‘ls’ could be changed so as to not reveal the 

presence of a malicious file in a directory. These rootkits, while effective, are easily 

detected by file system integrity and signature checking tools [Dav08], therefore, most 

modern IDS software prevent these rootkits from being installed or can detect an active 

intruder. 



 

16 

 

2.3.2 Kernel Level Rootkits 

Kernel level rootkits defeat such tools by directly modifying the operating system 

kernel. These rootkits modify the execution flow of kernel code to run their own payload. 

However, modifying the kernel in this way can drastically affect the stability of the 

system causing a kernel panic.  

The simplest way to introduce code into a running kernel is through a Loadable 

Kernel Module (LKM) [Kon07]. LKMs add flexibility to an operating system by 

providing a means to add functionality without recompiling the entire kernel. Added 

functionality might include device drivers, filesystem drivers, system calls, network 

drivers, TTY line disciplines, and executable interpreters [Hen06]. Most modern UNIX-

like systems, including Solaris, Linux, and FreeBSD, use or support LKMs [Zov01]. 

However, the kernel packaged with Android does not support LKMs by default. The 

kernel can be recompiled and installed on Android to add LKM support if physical access 

to the mobile is available. LKMs are very useful, but they also allow maliciously written 

kernel modules to subvert the entire operating system which can lead to a loss of control 

of the Linux kernel and consequently all the layers above the kernel [Pap10]. Kernel level 

rootkits typically subvert the kernel to hide processes, modules, connections and more to 

avoid detection. Particular techniques include hooking system calls, direct kernel object 

manipulation (DKOM), run-time kernel memory patching, interrupt descriptor table 

hooking, and intercepting calls handled by Virtual File System (VFS). These techniques 

are discussed at a high level in this section. 



 

 

2.3.2.1 Hooking System Calls

The kernel provides a set o

in user space can interact with the system. The applications in user

through this interface and the kernel fulfills requests or returns an error. The execution 

flow of a system call can be seen in Figure 2.3

system call to jump from user space to the assembly language function called the system 

call handler in kernel space. The system call number passes from the wrapper routine to 

the handler function via the EAX register. The system call table calls the appropriate 

system call service routine location 

indicating success or error. Not allowing user space applications to access or run in 

kernel space provides stability and security to the entire operating system. This 

arbitration prevents applications from incorrectly using hardware, stealing other 

processes’ resources, or otherwise doing harm to the system inadvertently or otherwise. 

Even so, system calls can be hooked to exploit the power of the kernel.

Figure 2.

Hooking is a technique tha

control flow [Kon07]. A new hook registers its address as the location for a specific 
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Hooking System Calls  

The kernel provides a set of interfaces or system calls by which processes running 

space can interact with the system. The applications in user space send requests 

through this interface and the kernel fulfills requests or returns an error. The execution 

l can be seen in Figure 2.3 [Bov05] [Lov10]. A process invokes a 

system call to jump from user space to the assembly language function called the system 

call handler in kernel space. The system call number passes from the wrapper routine to 

ction via the EAX register. The system call table calls the appropriate 

system call service routine location based on the number passed and returns a number 

indicating success or error. Not allowing user space applications to access or run in 

provides stability and security to the entire operating system. This 

arbitration prevents applications from incorrectly using hardware, stealing other 

processes’ resources, or otherwise doing harm to the system inadvertently or otherwise. 

alls can be hooked to exploit the power of the kernel. 

Figure 2.3 Normal System Call [Bov05] [Lov10] 

Hooking is a technique that employs handler function, called hooks,

. A new hook registers its address as the location for a specific 

f interfaces or system calls by which processes running 

space send requests 

through this interface and the kernel fulfills requests or returns an error. The execution 

. A process invokes a 

system call to jump from user space to the assembly language function called the system 

call handler in kernel space. The system call number passes from the wrapper routine to 

ction via the EAX register. The system call table calls the appropriate 

the number passed and returns a number 

indicating success or error. Not allowing user space applications to access or run in 

provides stability and security to the entire operating system. This 

arbitration prevents applications from incorrectly using hardware, stealing other 

processes’ resources, or otherwise doing harm to the system inadvertently or otherwise. 
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function, so when that function is called the hook runs instead. Typically, a hook will call 

the original function at some point to preserve the original behavior. System

hooked using a maliciously designed LKM to alter the structure of the system call table. 

To hook the system call table, the original targeted system call pointer to the 

function must be saved. The original system call is 

behavior because the objective of a hooked call is to modify the I/O of the function, not 

destroy it. A pointer to the hooked 

saved in the system call table location of the target. At a

made, it will move through the hooked system call handler providing a system

stored in kernel space. Figure 2.

and how it maintains the execution flow by calling the proper system call service routine.  

The hooked system call returns control to user space after completion.

Figure 2.

2.3.2.2 Direct Kernel Object Manipulation (DKOM)

Hooking the system write call allows a rootkit to hide from system binaries like 

ls, lsmod, and ps; even so, robust IDSs can still detect the existence by following the 

kernel structures. All operating sy
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function, so when that function is called the hook runs instead. Typically, a hook will call 

the original function at some point to preserve the original behavior. System

hooked using a maliciously designed LKM to alter the structure of the system call table. 

To hook the system call table, the original targeted system call pointer to the 

function must be saved. The original system call is also called to preserve the original 

behavior because the objective of a hooked call is to modify the I/O of the function, not 

destroy it. A pointer to the hooked system call handler, typically located in the LKM,

saved in the system call table location of the target. At any point the target system call is 

made, it will move through the hooked system call handler providing a system

Figure 2.4 [Bov05] [Lov10] shows the inserted hooked system call 

s the execution flow by calling the proper system call service routine.  

The hooked system call returns control to user space after completion. 

Figure 2.4 Hooked System Call [Bov05] [Lov10] 

Direct Kernel Object Manipulation (DKOM) 

Hooking the system write call allows a rootkit to hide from system binaries like 

ls, lsmod, and ps; even so, robust IDSs can still detect the existence by following the 

kernel structures. All operating systems store internal record-keeping data in main 

function, so when that function is called the hook runs instead. Typically, a hook will call 

the original function at some point to preserve the original behavior. System calls can be 

hooked using a maliciously designed LKM to alter the structure of the system call table.  

To hook the system call table, the original targeted system call pointer to the 

rve the original 

behavior because the objective of a hooked call is to modify the I/O of the function, not 

located in the LKM, is 

ny point the target system call is 

made, it will move through the hooked system call handler providing a system-wide hook 

shows the inserted hooked system call 

s the execution flow by calling the proper system call service routine.  

Hooking the system write call allows a rootkit to hide from system binaries like 

ls, lsmod, and ps; even so, robust IDSs can still detect the existence by following the 

keeping data in main 
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memory [Kon07]. The Linux kernel is no exception and provides generic data structures 

and primitives to encourage code reuse by developers [Bov05]. These structures, that all 

programmers are familiar with, include linked lists, queues, maps, and binary trees. 

Altering the data in these structures to hide an attacker’s activity is called Direct Kernel 

Object Manipulation (DKOM) 

For example, the Linux kernel contains a process list that links together all 

existing process descriptors in a doubly linked list. Each process is contained in a 

task_struct structure as in Figure 2.5 [But04]. The task_struct contains the pointers to the 

prev_task and next_task. Removing the malicious process from the list of prev_task and 

next_task will hide the malicious process from the system as shown in Figure 2.6 

[But04]. This technique can change depending on the kernel version but the technique is 

essentially the same in each implementation. 

 

Figure 2.5 Normal Kernel Object Linking [But04] 
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Figure 2.6 Direct Kernel Object Manipulation [But04] 

 

2.3.2.3  Run-Time Kernel Memory Patching 

The classic and arguably easiest way to introduce code into the Linux kernel is 

through a LKM. Another technique patches a running kernel with user space code, also 

known as Run-Time Kernel Memory Patching (RKP) [Kon07][Pra99]. Interacting with 

/dev/kmem device allows reading and writing to kernel virtual memory. Note that root 

permissions must be present. RKP has been used to install LKMs without LKM support 

[Ces98] and cloak system call hooks [Sdd01]. 

2.3.2.4 Interrupt Descriptor Table (IDT) Hooking 

An interrupt is an event that alters the sequence of instructions executed by the 

processor. When an interrupt occurs a system table called the Interrupt Descriptor Table 

(IDT) associates each interrupt or exception with the address of the corresponding 

handler [Bov05]. System calls use software interrupts to switch from user mode to kernel 
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mode. The interrupt handler invokes the system call handler from the address stored in 

the system call table. A rootkit can hook the IDT by modifying the interrupt handler 

address in the IDT or by patching the first few instructions of the interrupt handler 

[Sha08]. These modifications would put the rootkit code in the flow of execution while 

still letting the system handle interrupts properly [Kad02]. 

2.3.2.5 Intercepting Calls Handled by VFS 

The virtual file system (VFS) can also be targeted to compromise the kernel and 

hide the attacker’s presence. The VFS is a software layer in the Linux kernel that handles 

all system calls related to the standard UNIX file system. VFS can handle several 

different types of file systems [Lev06]. The adore-ng kernel-level rootkit targets the VFS 

by replacing the VFS handler routines with its own routines. These handler routines 

provide directory listings to /proc file systems. Therefore, modifying these handles can 

hide specified files and processes from the user mode programs. 

2.3.3 Firmware Level Rootkits 

Firmware-based rootkits (also known as bootkits) can ensure persistence against 

removal. A firmware-based rootkit hides by modifying the software on devices such as 

the Advanced Configuration and Power Interface (ACPI) BIOS and Peripheral 

Component Interconnect (PCI) BIOS. The firmware is modified to contain malicious 

ACPI Machine Language (AML) instructions that interact with system memory and the 

I/O space thereby allowing the rootkit to bootstrap code that overwrites kernel memory as 

a means of infection [Hea06]. Although an effective technique, firmware rootkits are 

easily detected by Trusted Computing Group’s Trusted Platform Module (TPM). TPM 



 

 

checks the integrity of the operating system

today [Dav08]. 

2.3.4 Virtual Machine Based Rootkits (VMBR)

Rootkit activity can be also hidden using a Virtual Machine Based Rootkit 

(VMBR). VMBR operates without modifying anything on the system while monitoring 

an operating system’s activity. Therefore, any IDS integrity checks will not detect any 

presence of a rootkit because it is actually handling the virtualization of the entire 

operating system. VMBRs can be either software or hardware based.

2.3.4.1 Software Virtual Machine Based Rootkit

Software VMBRs virtualize the target operating system by executing the rootkit 

within a separate operating system hosting a virtual machine monitor (VMM). 

shows how the subverted system is stacked after a software VMBR is installed. The 

rootkit code remains hidden from the subverted operating system because it executes in a 

separate operating system context

uses this technique by installing a microkernel to subvert the Android operating system to 

provide malicious services [

rootkit induces performance overhead

between virtual and physical hardware 

Figure 2.
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operating system image and firmware and is in widespread use 

Virtual Machine Based Rootkits (VMBR) 

Rootkit activity can be also hidden using a Virtual Machine Based Rootkit 

MBR operates without modifying anything on the system while monitoring 

an operating system’s activity. Therefore, any IDS integrity checks will not detect any 

presence of a rootkit because it is actually handling the virtualization of the entire 

system. VMBRs can be either software or hardware based. 

Software Virtual Machine Based Rootkit 

Software VMBRs virtualize the target operating system by executing the rootkit 

within a separate operating system hosting a virtual machine monitor (VMM). 

shows how the subverted system is stacked after a software VMBR is installed. The 

rootkit code remains hidden from the subverted operating system because it executes in a 

separate operating system context [Kim08]. µBeR, a proof of concept VMBR rootkit, 

uses this technique by installing a microkernel to subvert the Android operating system to 

[Tri10]. Although the microkernel has a small footprint, the 

rootkit induces performance overhead which can be detected based on discrepancies 

virtual and physical hardware [Dav08]. 

 

Figure 2.7 Software Virtual Machine Based Rootkit 

image and firmware and is in widespread use 

Rootkit activity can be also hidden using a Virtual Machine Based Rootkit 

MBR operates without modifying anything on the system while monitoring 

an operating system’s activity. Therefore, any IDS integrity checks will not detect any 

presence of a rootkit because it is actually handling the virtualization of the entire 

Software VMBRs virtualize the target operating system by executing the rootkit 

within a separate operating system hosting a virtual machine monitor (VMM). Figure 2.7 

shows how the subverted system is stacked after a software VMBR is installed. The 

rootkit code remains hidden from the subverted operating system because it executes in a 

BeR, a proof of concept VMBR rootkit, 

uses this technique by installing a microkernel to subvert the Android operating system to 

. Although the microkernel has a small footprint, the 

which can be detected based on discrepancies 



 

23 

 

2.3.4.2 Hardware Virtual Machine Based Rootkits 

Hardware VMBRs are a specialized rootkit that uses specific instruction sets to 

switch contexts between VMM and the guest operating system. The rootkit virtualizes an 

operating system by gaining root access and installing the rootkit hypervisor. It carves out 

memory for the hypervisor and migrates the running operating system into a virtual 

machine.  The rootkit then intercepts access to hypervisor memory and selected hardware 

devices. Figure 2.8 illustrates the structure of the system after the hypervisor is installed 

[Zov06]. Hardware VMBRs are specialized because they only target specific 

technologies such as AMD SVM (Bluepill) and Intel VT (Vitriol) processors [Rut06] 

[Zov06]. Hardware VMBRs are detectable because hypervisors must use cache, memory 

bandwidth, and TLB entries in the course of multiplexing a CPU. A guest operating 

system can be made intentionally sensitive to these resources to detect an attempted 

hypervisor install [Kim08]. 

 

Figure 2.8 Hardware Virtual Machine Based Rootkit [Zov06] 

2.3.5 Summary 

This section provides a taxonomy of rootkits and an overview of techniques that 

can be employed by a kernel level rootkit in Linux. The rootkits described include user 
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level rootkits, kernel level rootkits, firmware level rootkits, and virtual machine based 

rootkits. The kernel level rootkit techniques covered include hooking system calls, direct 

kernel object manipulation (DKOM), run-time kernel memory patching, interrupt 

descriptor table (IDT) hooking, and intercepting calls handled by the virtual file system 

(VFS). This section reviews the attack target, initial compromise through exploits, and 

maintaining persistence and stealth within the Linux kernel with rootkits. 
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III. Methodology 

3.1 Background 

The Android operating system is a mobile device operating system for 

Smartphones and Tablet PCs designed by Google and the Open Handset Alliance. The 

code is open source licensed and available under the Android Open Source Project 

(AOSP) [Goo12]. Releasing the code under open source license makes it readily 

available for analysis and compilation. The Android operating system stack runs on top 

of the Linux kernel typically on the 32-bit mobile device ARM processor. Since Android 

is built on top of the Linux kernel, it inherits its vulnerabilities and the possibility of 

exploitation by malware, backdoors, and rootkits to gain control of the system or induce 

denial of service (DoS). Widespread adoption of Android has led to increased targeting 

by malware writers. Android attacks have naturally sparked interest in researching 

protections for Android. This research is particularly interested in developing kernel level 

rootkits; a set of tools consisting of small programs that allow an attacker to permanently 

or reliably maintain undetectable access to the root user, that is, the most powerful user 

on a system. Kernel level rootkits run at the highest privilege by manipulating memory 

known as kernel space. Attackers insert rootkits into operating system by exploiting 

software bugs. This research examines the detectability of system call hooking rootkits 

for the Android operating system by examining subversion techniques inherited from the 

underlying Linux kernel. The rootkit’s detectability is measured against currently 

available security mechanisms and anomaly detection methods. 
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3.2 Problem Definition 

This section describes the specific goals of the research along with the research 

hypothesis. The approach describes how the hypothesis is tested against the research 

goal. 

3.2.1 Goals and Hypothesis 

The goal of this research is to determine the effectiveness of traditional system 

call hooking techniques implemented by a kernel level rootkit against the Android 

operating system. The effectiveness of the rootkit is measured with respect to its stealth 

against currently available security mechanisms and anomaly detection methods. 

The hypothesis of this research is that the Android’s Linux kernel cannot be 

trusted and additional measures should be implemented before handling sensitive data 

with Android. The rootkit is expected to be effective without the end user noticing, 

thereby preventing any indication of infection. 

3.2.2 Approach 

Rootkits maintain access to a system by hiding their presence from the end user. 

An administrator may use the conventional Linux tools to look for suspicious files, 

processes, modules, or ports. These tools include ls, netstat, ps, and lsmod, respectively. 

The cat command is also used to probe files containing system information. A rootkit 

designed to hide from these commands would then be an effective way to remain 

undetected by an end user or administrator. Modifying the behavior of these tools’ 

processes can be done by hooking system call functions with code at the kernel level to 

remove signs of an access breach or infection.  
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The most straightforward way to introduce code into the kernel is by using a 

loadable module in Linux. The operating system allows these extensions to be loaded so 

manufacturers of third party hardware can add support for their products. Therefore, any 

code can be loaded into kernel space via a Loadable Kernel Module (LKM). Code 

running at the kernel level has full access to all privileged memory of the kernel and 

system processes. This research leverages LKMs to introduce covert techniques by 

hooking system calls to control the Linux kernel component of the Android operating 

system.  

The effectiveness of each rootkit is evaluated against rootkit detection methods on 

both an emulator and device. These detection methods are probe-based, integrity-based, 

behavior-based, heuristic-based, and signature-based. Each method’s implementation is 

discussed in detail in Appendix A. 

3.3 System Boundaries 

The System Under Test (SUT) is the Covert Android Rootkit Detection System 

(CARDS). CARDS includes the Android mobile device, the Android operating system 

(OS), an Android LKM rootkit, and the infection data hidden by the covert techniques. 

The Android operating system platform is built for the ARM processor architecture. No 

other operating system or processors are considered. The SUT does not initially include 

any Android applications that provide system protection. The workload is the covert 

techniques employed by the LKM rootkit and the detection methods used against the 

rootkit. 
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The Component Under Test (CUT) is the LKM rootkit inserted into the Android 

operating system on the emulator or device. Figure 3.1 shows CARDS complete with 

input, outputs, and internal components. 

Figure 3.1 Covert Android Rootkit Detection System (CARDS) 

3.4 System Services 

The service that CARDS provides is stealth from detection methods. Since the 

rootkit is hiding from both the operating system and user, no functionality or service 

should be restricted in any way unless it is an outcome of the subversion. For example, 

the command netstat will not print out information about port 31337 because it is 

required to provide a backdoor to the operating system and end user. The rootkit should 
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not cause denial of service such as loss of network communications, application crashes, 

or operating system crashes.  

CARDS stealth service has two outcomes: the rootkit is detected or is undetected 

on the device. The desired outcome for the stealth service is to be undetected, but even if 

it is, functionality degradation can prompt a user to wipe the devices internal memory 

which will result in the removal of the rootkit and infection data. Therefore, the 

performance latency of an infection is evaluated with the behavioral-based detection 

method to account for possible functionality degradation. 

3.5 Workload 

The workload is the rootkit employing varying system call hooks to achieve 

covert operations and the detection methods used to detect an infection or anomalies. 

Detection methods use system commands, forensics tools, and Android applications. 

System commands include Linux system binaries used by administrators to determine a 

rootkit’s presence. The forensics tools are open source programs compiled for the ARM 

processor. The Android application is publicly available in the Google Play Store. The 

end user initializes system commands, forensics tools, and Android applications; 

however, some tools are automated using scripts for streamlining data collection.  

Each workload specified has separate parameters. The different covert techniques 

are employed interchangeably by the LKM rootkit. The Android applications, the system 

commands and forensic tools are included in the detection methods workload. Varying 

the workload will determine the stealth effectiveness against the detection methods. 
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3.6 Performance Metrics 

The first metric is a binary response of detection methods. Successful scan 

detection is classified by a “yes” and an unsuccessful scan is classified by a “no”. This 

metric determines if the rootkit remains undetectable against probe-based, signature-

based, integrity-based, and heuristic-based detection methods. The covert technique 

performance is best when it is not detected by any method. 

The second metric, latencies, compares the measured time for an uninfected or 

clean system call execution with an infected system call execution. The system calls 

measured are unique to each rootkit. System call hooking can potentially add delay to the 

time for a system call to be completed because the additional code added by the LKM is 

executed before returning to user space. This delay may alert the presence of a rootkit to 

the end user or a system administrator. The measurement of this metric is the difference 

between the beginning and the end of the system call. 

3.7 System Parameters 

The parameters listed below affect the performance of the rootkit: 

Device Type – The device type specifies the particular mobile device platform 

being tested. The device determines the targeted operating system configuration 

and therefore the techniques that can be employed by the rootkit. This research 

uses an emulator from AOSP and GSM Samsung Galaxy Nexus (GN). 

Operating System (OS) – The operating system determines the kernel that the 

LKM rootkit can be compiled against. The operating system version used in this 

research is Android 4.0 (Ice Cream Sandwich). 
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Kernel Version – The kernel version changes how the rootkit covert techniques 

are implemented. The emulator uses Linux kernel 2.6 and GN uses Linux kernel 

3.0. 

Central Processing Unit (CPU) – The processor determines how fast the system 

can execute instructions in which how the operating system performs. The rootkit 

may become more detectable if the processor cannot handle the overhead of the 

rootkit. The emulator has an ARMEABI-v7A ARM Cortex-A8 processor and the 

GN has a 1.2 GHz TI OMAP 4460 ARM Cortex-A9 dual-core processor. 

Onboard Random-Access Memory (RAM) – The RAM available determines how 

quickly the operating system can read and write to memory thus affecting overall 

performance. After a power cycle, RAM is wiped and the operating system is 

reloaded at boot. Consequently, the LKM rootkit will also be wiped at this time. 

The emulator has a 1024MB allocated RAM and the GN has 1GB of onboard 

RAM. 

Onboard Storage Space – The storage space available in the system determines 

how much data and programs can be loaded on the device at a time. More 

executable code can be loaded with higher capacities. The emulator has a 496MB 

storage and 4GB SD card allocated and the GN has 16GB of onboard storage. 

Network Connections – Network connections allow the phone to communicate 

with other devices and can be leveraged by the rootkit for remote command and 

control or to exfiltrate data. The emulator has only an Internet network connection 

shared from the host machine. The network connections the GN has are GSM 

850/900/1800/1900 MHz, HSPDA 850/1700/1900/2100 MHz, and Wi-Fi: IEEE 
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802.11 a/b/g/n (2.4/5 GHz). The netstat command can be used to view the open 

ports; the rootkit hides its open connection. 

CPU Scheduler – The CPU scheduler allocates CPU time efficiently while 

providing responsive user feedback. By allocating CPU time to a process, the 

current running process is preempted until it runs again by the scheduler. 

Preemption can lead to artificial execution completion delays in performance. 

Installed Applications – Installed applications indicate the type of data that may 

be covertly exfiltrated from the target. Default applications on Android 4.0 

include: Browser, Calculator, Calendar, Camera, Clock, Email, Gallery, 

Messaging, Movie Studio, Music, People, Phone, Search, Settings, and Voice 

Dialer.  

System Commands – These programs are installed with the kernel and can be 

used over the Android Debug Bridge (ADB) command line. These tools are in the 

directory /system/bin and are included in the PATH environment variable by 

default. Commands typically loaded on a Linux device can also be used by 

compiling compatible open source code for ARM. These missing programs are 

included in the side-loaded BusyBox toolkit. 

3.8 Factors 

The following experimental factors are used at the indicated levels. Table 3.1 

contains all the factors and levels. 
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Table 3.1 Experimental Factors 

Factors Levels 

Covert Techniques 

hide_file 

hide_proc 

hide_mod 

hide_port 

Platforms 
Emulator 

Device 

Detection Methods 

Probe 

Integrity 

Signature 

Heuristic 

Behavioral 

• Covert Techniques 

o hide_file – a technique that hooks system calls to hide files that contain a 

specified magic string. The rootkit is designed to completely hide the 

specified file from the command ls and cat.  

o hide_proc – a technique that hooks system calls to hide running processes 

that contain a specified magic string. The rootkit is designed to completely 

hide the specified running process from the command ps, ls /proc, and kill.  

o hide_mod – a technique that hooks system calls to hide modules that 

contain a specified magic string. The rootkit completely hides such 

modules from the command lsmod, cat /proc/modules, and rmmod.  

o hide_port – a technique that hooks system calls to hide a specified open 

port from the command netstat and cat /proc/net/tcp6.  

• Platforms 

o Emulator – a virtual mobile device that runs a full Android system 

stack on a computer. The emulator allows a simulation of how the 
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rootkits are expected to perform. The emulator is compiled with 

AOSP and runs the codenamed Goldfish Linux kernel.  

o Device – a physical mobile device compatible with the Android 

OS. The device allows a real world performance analysis for the 

rootkits. The device is the Samsung Galaxy Nexus and runs the 

codenamed Maguro Linux kernel. 

• Detection Methods 

o Probe – Rootkit detection using the system commands to find an 

unusual presence of a file, open port, process, or module. This 

method is the base detection method that all the covert techniques 

implemented should circumvent. 

o Integrity – Rootkit detection by comparing files and memory with 

a trusted source. An example of a trusted source is a baseline 

system or a previous snapshot of the files and memory.  

o Signature – Android applications installed on a mobile device to 

scan for signatures of known malware. The rootkits implemented 

are not expected to be detected because they have not been 

publicly released. 

o Heuristic – Rootkit detection by recognizing any deviations in a 

computer’s expected output.  

o Behavioral – Rootkit detection by deducing a rootkit infection by 

monitoring normal system execution to identify anomalies in 

performance.  
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3.9 Evaluation Technique 

A combination of simulation and measurement is used to evaluate the system. 

Each rootkit's objective functionality is validated by the probe-based detection and then 

tested against the test harness that includes the signature, integrity, and heuristic detection 

methods. Performance latencies are measured via system call completion times using the 

strace command. The completion times are measured 5 times before and after infection 

for a total of 10 measurements for each system call hooked by the rootkit. Repeating 

capture of system call completion times 5 times was determined to be sufficient to 

distinguish a difference between the uninfected and infected state. The evaluation is 

performed on the emulator and then performed on the mobile device to show real-world 

performance.  

This evaluation is performed on both the emulator and a mobile device loaded 

with Android 4.0 Ice Cream Sandwich (ICS). A Dell Latitude E6510 laptop is used to 

compile code, run the emulator, and communicate via ADB. AOSP provides an emulator 

for the Android environment [Goo12]. The mobile device tested is an unlocked GSM-

version of Samsung Galaxy Nexus, which is one of few phones recommended for 

building Android from AOSP [Goo12]. The kernel is configured to enable LKM 

installation and loaded to the emulator and device via ADB. Tools installed on to 

Android include: BusyBox [Vla12], unhide-tcp [Lin12], skdet [Gev12], Lookout Security 

& Antivirus [Loo12], and strace v4.5.18 [Kra12]. Scripts used to automate testing are 

included in Appendix A. 
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3.10 Experimental Design 

A full factorial design is used to evaluate the interaction between the factors. The 

factors include covert techniques employed by each rootkit, platforms used for 

evaluation, and detection methods, with 4, 2, and 5 levels, respectively. This results in 4 x 

2 x 5 = 40 experiments. Each experiment is run until the output can be determined. The 

kernel versions, CPU, onboard RAM, onboard storage, network connections depend on 

the device type. The operating system, CPU scheduler, installed applications and system 

commands are consistent throughout all the experiments while factors vary. 

The variance in the results in this research should be low or zero because the 

results directly depend on a successful detection and the latency of repeated system call 

code. The latency of the system calls will be reported with 95% confidence. System 

overhead is expected to be higher for most of the system calls infected by each rootkit. 

3.11 Methodology Summary 

As mobile devices become more widespread, they continue to become targets for 

malicious attackers. Unfortunately, mobile operating systems have inherited the same 

vulnerabilities as their PC counterparts. This chapter describes the methodology for 

evaluating the detectability of a kernel level rootkit against the Google Android operating 

system on an emulator and Samsung Galaxy Nexus. The goal of the research is to 

determine whether a novel kernel level rootkit is undetectable to current security 

mechanisms. 

The SUT and CUT are identified along with accompanying parameters. Factors 

are selected from the system and workload parameters. The methodology tests these 



 

37 

 

factors during experimentation to produce results to determine the effectiveness of the 

rootkit. The metrics used for evaluation are detectability and system call latencies. 

The methodology consists of both simulation and measurement evaluations. 

AOSP supplies an emulator to use for simulations and Samsung Galaxy Nexus connected 

to a Dell Latitude E6510 laptop is used for the measurement evaluations. A full factorial 

design is implemented with 40 experiments. 
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IV. Covert Android Rootkit Detection Experimentation Results 

4.1 Introduction 

This chapter presents the covert techniques that utilize system call hooking 

implemented in the tested rootkits. The evaluation technique used to determine the 

effectiveness of the rootkits is presented. Finally, the results for detection method testing 

and behavior latency benchmarking for covert technique rootkits are reported. 

4.2 Rootkit Technical Design and Implementations 

The Android operating system is fundamentally an application framework built on 

top of a Linux kernel. The applications that execute within the framework are written in 

Java and run in individual Dalvik Virtual Machine (DVM) instances [God12]. However, 

the system below that framework is written in a combination of C/C++, therefore C 

executables can be compiled and executed over a command line shell via Android Debug 

Bridge (ADB). Loadable kernel modules (LKM) can also be compiled for extending the 

kernel without recompiling. Modules operate within kernel space allowing a degree of 

control over the operating system. Therefore, they can be used to deliver rootkit code that 

can hide an intrusion in the operating system. 

4.2.1 System Call Hook Development 

System call hooking can be used to modify control flow of a system call in an 

operating system by employing an intercepting handler function. This technique is 

commonly installed via LKMs because the modules give direct control over memory in 

kernel space. This software is commonly referred to as a rootkit with the objective of 
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hiding and maintaining privileged access to a system. To understand how this is 

implemented, this section will inspect targeting and hooking individual system calls. 

One of the goals of a rootkit is to hide from the user without disrupting the 

execution flow of the operating system. However, in most cases, one cannot know which 

code is being executed by a process unless it is open source. The simplest way to 

determine which system calls are invoked by the process is the strace command. The 

strace command intercepts and records the system calls used by a specified process and 

the signals (or return values) received by that process [Cla05]. For instance, an attacker 

wants to hide a file in the directory from the ls command. A report of the system calls for 

the ls command can be generated using the command ‘strace –o ls.out ls’. The grep 

command can then search the output for the directory of the intended hidden file to 

identify that the open() operates on the directory. By targeting that open() in the output, it 

can be seen that the getdents64() is invoked with the pointer returned by open() as seen in 

Figure 4.1. 

 

Figure 4.1 Opening the directory of the intended hidden file 

The sequence of system calls reveals that getdents64() is the pivotal function to 

the execution of ls and should be the target of the rootkit. Note that the grep command 

may not always be available on the Android image. BusyBox, a toolkit of common UNIX 

utilities optimized for embedded systems, can be installed on the system to access the 

missing tool [Vla12]. 
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To intercept the execution of the system call, a new function needs to be inserted 

in place of the targeted system call table entry. The system call table can be modified by 

code delivered by LKM. Prior to 2.5 Linux kernels, the system call table structure 

(sys_call_table) was exported to the entire kernel memory space. This new feature is an 

obstacle since Android runs on 2.6 or higher Linux kernels. However, there are other 

ways to determine the address of system call table. The first method brute forces the 

address by starting at a location in kernel space and incrementing the address [Cla05]. 

After each increment, the address is compared to the known locations of exported system 

calls, such as sys_read() and sys_write(), to determine the actual system call table 

location. The second, simpler way is by searching (using the grep utility) for 

‘sys_call_table’ against the System.map file or, if that is unavailable, /proc/kallsyms on 

the Android image. 

Once the system call table address is determined, it is simple to change the system 

call table entry to the location of a new handler function. The system call table entry is 

changed when the LKM is loaded using the insmod command. Figure 4.2 contains code 

that saves the original address of the open() and getdents64() system call table entries and 

changes them to new function handlers prefixed with “hooked_”. 

 

Figure 4.2 System Call Hook LKM Initialization 
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In Figure 4.2, the symbol representing the offset of the system call found in 

unistd.h header (AOSP: kernel/arch/arm/include/asm/unistd.h) refers to the system call 

table entry. That entry is saved into a global variable and replaced with a new handler 

function defined in the LKM. The new handler function is called instead of the original 

system call when it is invoked. Therefore, the handler function must match the 

declaration of the original function to handle the intercepted parameters properly. The 

system call table entries can be restored by assigning the saved original addresses. 

Restoring the system call table to its original state is typically performed when the 

module is removed with the rmmod command.  

This method of targeting system calls and writing functions to alter the return 

values of system calls can also be used to hide files, processes, ports and modules. The 

next section describes the implementations of the LKM rootkits that hide these targets. 

The full source code implementation and description can be obtained available from Dr. 

Rusty O. Baldwin at the Air Force Institute of Technology (rusty.baldwin@afit.edu). 

4.2.2 Hiding a File or Directory with hide_file.ko 

The hide_file.ko rootkit hooks the system calls lstat64(), open(), and getdents64() 

to hide files or directories that are named with a specified substring. The new lstat64() 

handler function simply checks if the path contains the hidden file constant string. If the 

string is present, the system call returns a “No such file or directory” signal. Otherwise, 

the original lstat64() returns. The new open() handler function compares the inode of a 

specified path to hide and the inode of the requested file path to open.  If the two inodes 

are equal, open() returns “No such file or directory” signal. Otherwise, the original open() 

is returned. The new getdents64() handler function calls the original system call and 
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copies the returned dirent buffer into kernel space and then iterates through the entries. If 

an entry contains the specified substring of the intended hidden file, the entry is removed 

from the buffer and size are changed to reflect the removal. The buffer is then copied 

back to user space and the size is returned. All these operations hide the files or 

directories so that the infection is covert from probe-based detection methods. 

4.2.3 Hiding a Process with hide_proc.ko 

The hide_proc.ko rootkit hides processes that are named with a specified 

substring by hooking the system calls getdents64() and kill(). The new getdents64() 

handler function calls the original system call and copies the returned dirent buffer into 

kernel space and then iterates through the entries. The PID (process id) of the iterated 

entry is compared to every running task. Once the matching running task is found, the 

task name is extracted and compared to the specified substring. The matching record is 

removed from the buffer and size is changed to reflect the removal. The buffer then is 

copied back to user space and the size is returned. The new kill() handler function 

compares the passed PID value to every running process to extract the name of the task. 

If the task name contains the specified substring, the function returns a “No process or 

process group can be found corresponding to that specified by PID” signal. Otherwise, 

the original kill() system call returns. All these operations hide processes so that the 

infection is covert from probe-based detection methods. 

4.2.4 Hiding a Module with hide_mod.ko 

The hide_mod.ko rootkit hides modules that are named with a specified substring 

by hooking the system calls delete_module() and read(). The new delete_module() 

handler function simply checks if the module name passed to the function contains the 
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specified substring. If the substring is present, a “No module by that name exists” signal 

is returned. Otherwise, the original delete_module() system call returns. The new read() 

handler function calls the original read to obtain the buffer that will be returned to the 

user. The function then determines the inode of the current open file and compares that 

inode to the /proc/modules inode obtained when the module was loaded. If the inodes 

match and the current running task is lsmod or cat, the buffer is examined. Since the 

structure of the data in /proc/modules is consistent, the data in the buffer can be modified 

to make a search easier. Each new line is first changed to a terminating null. This 

technique allows the code to iterate through the data like an array of character strings. If 

one of those strings contains the substring of the intended hidden module, the string is 

removed from the buffer and the size is changed to reflect the removal. The newlines are 

inserted back into the null terminator positions after iterating through the buffer. The 

buffer is then copied back to user space and the size is returned. All these operations hide 

modules so that the infection is covert from probe-based detection methods. 

4.2.5 Hiding a Port with hide_port.ko 

The hide_port.ko rootkit hooks the read() system call to hide a specified port 

number. /proc/net/tcp6 is targeted because the open backdoor connection is created over 

an IPv6 TCP port. The new read() handler function calls the original read to obtain the 

data that will be returned to the user. The function determines the inode of the current 

open file and compares that inode to the /proc/net/tcp6 inode obtained when the module 

was loaded. If the inodes match and the current running task is netstat or cat, the buffer is 

examined. Since the structure of the data in /proc/net/tcp6 is consistent, the data in the 

buffer can be modified to make a search easier. Each new line is first changed to a 
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terminating null. This technique allows the code to iterate through the data like an array 

of character strings. The first string is skipped because that is the line containing the 

column headers for the data. Each line after that begins with a line number beginning at 

line 0. The line number and local port number are extracted from each string. If the local 

port number matches the intended hidden port, the string is removed from the data and 

the size is changed to reflect the removal. The iteration then begins from the beginning of 

the data again and corrects the line number if the cat command is used on /proc/net/tcp6. 

Once the data has been iterated through without any removals, the newlines are inserted 

back into the null terminator positions. The buffer is then copied back to user space and 

the size is returned. All these operations hide ports so that the infection is covert from 

probe-based detection methods. 

4.3 Rootkit Evaluation by Detection 

The detectability of the covert Android rootkits effectiveness is determined by its 

effectiveness in hiding the presence of infection data from different detection methods.  

The covert techniques used are hide files, hide open ports, hide processes, and hide 

modules.  

Two metrics measure the effectiveness of rootkits’ stealth on both the emulator 

and device. The first metric is detection to determine the detectability by traditional 

detection methods. Four scans using methods discussed in Chapter 3 are used for this 

metric. The scans are probe-based, integrity-based, signature-based, and heuristic-based 

method detection. A successful detection by any of these scans is indicated by a “yes” 

and an infection not detected is indicated by a “no”.  
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The second metric is system behavior when rootkits are present (infected) and not 

present (clean). The system call hook is intercepting the system call and running more 

instructions before returning. It is likely that this adds a delay to the execution of the 

system call. These delays, also described in Appendix A.5, are measured using the strace 

tool. 

4.4 Detection Method Testing Results 

Table 4.1 contains the detection method testing results for each of the covert 

techniques tested on the emulator. The first column lists the configurations tested and 

each row represents a covert technique implemented in its respective rootkit. The 

remaining columns to the right indicate the type of detection method tool used against 

each covert technique rootkit. Probe-based and signature-based did not detect the rootkit 

infection and thereby did not limit the effectiveness of the rootkits. These results were 

expected because the rootkits were designed for commands used in the probe-based 

detection. Signature-based detection methods failed because they only search application 

folders, SD card files, SMS and contacts. Root privileges cannot be provided to the 

scanner to search for infections in the system area and the implemented covert techniques 

rootkits have not been publicly released. The Integrity-based scanner detected 100% of 

the covert technique rootkits; however, it is dependent on having a trusted source to find 

infections. The heuristic-based scanner limits the effectiveness of each rootkit 

configuration except hide_file. The results are not surprising because the tools used to 

determine an infection for a heuristic scan perform exhaustive collection of system data. 
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Table 4.1 Emulator Rootkit Detection 

  Detection Method 

Configuration Probe Integrity Signature Hueristic 

hide_file no yes no no 

hide_proc no yes no yes 

hide_mod no yes no yes 

hide_port no yes no yes 

 

The detection method results for each of the covert techniques tested on the 

device are shown in Table 4.2. The results are similar to the emulator except for the 

Lookout Security & Antivirus scan against the hide_proc rootkit and the infection data 

not being detected by the heuristic scanner for the hide_mod rootkit. The freezing during 

Lookout Security & Antivirus is because the hide_proc rootkit must have unintentionally 

corrupted the execution of the application. Although this is not helpful for the test results, 

such a crash could lead a user to wipe the phone to fix the unintended behavior. The wipe 

would remove the rootkit infection and lead to an ineffective infection. The heuristic scan 

was not able to find the hidden module on the device because the buffer from the 

/proc/modules read() system call is constructed differently than that on the emulator. 

Overall, the integrity and heuristic-based detection methods best limit the effectiveness of 

the covert rootkits. 

Table 4.2 Device Rootkit Detection 

Detection Method 

Configuration Probe Integrity Signature Hueristic 

hide_file no yes no no 

hide_proc no yes no* yes 

hide_mod no yes no no 

hide_port no yes no yes 

* phone became unresponsive when starting app and rebooted if the 

rootkit was removed via ADB 
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4.5 Behavior Latency Benchmark Results 

The measurements of the system call completion times with the rootkit installed 

(infected) and not installed (clean) on the tested emulator are shown in Table 4.3. The 

system calls targeted by the rootkit are the only ones timed since the others will not be 

affected by the system call hooking. The table is organized by the specific test 

configurations: type of the intended target, the rootkit infection, and the system calls 

being measured. The clean latencies are placed above the infected latencies to make it 

easy to compare and do not illustrate the order in which the data was collected. The 

system call completion times measured five times and the sample mean are listed to the 

right of each test configuration. All the clean latency means were less than infected 

except the lstat64() system call.  

Table 4.3 Emulator System Call Latencies (in microseconds) 

Target Rootkit System Call Run 1 Run 2 Run 3 Run 4 Run 5 Mean 

file 

none getdents64 350 435 362 412 483 408.4 

hide_file getdents64 511 434 392 479 458 454.8 

none lstat64 167 232 187 202 155 188.6 

hide_file lstat64 108 147 125 173 167 144 

none open 232 167 215 174 163 190.2 

hide_file open 190 257 203 243 233 225.2 

proc 

none getdents64 1093 1310 1193 1387 1107 1218 

hide_proc getdents64 1788 1314 1370 1400 1625 1499.4 

none kill 109 132 106 124 131 120.4 

hide_proc kill 180 162 176 156 173 169.4 

mod 

none delete_module 142 131 113 126 112 124.8 

hide_mod delete_module 207 201 194 212 188 200.4 

none read 151 147 157 148 153 151.2 

hide_mod read 255 215 226 221 268 237 

port 
none read 15597 17248 17013 17960 16536 16870.8 

hide_port read 18762 18492 18054 17064 17666 18007.6 

 

The time elapsed is calculated from the difference between the beginning and the 

end wall-clock timestamps. If the process executing the system call is preempted by the 



 

48 

 

scheduler for a longer than average time, the elapsed time can be quite large. For 

example, Run 5 of clean getdents64() had a large outlier of 2602 microseconds which put 

the average latency for the test configuration at 832 microseconds. This latency is 313% 

higher than the average latency indicating it was preempted longer than the other runs. It 

is also well past the 1.5 IQR from the second quartile, a further indication that it is indeed 

an outlier. Therefore, it was replaced by collecting a new latency using the command 

from the Perl script. There were 6 outliers total in the data collected from the emulator. 

These were all handled the same way. 

Figure 4.3 is a box plot comparing the clean verses infected system call 

completion times on the emulator. As seen in the collected data and calculated means, the 

infected getdents64() and open() system calls for hide_file tend to take longer to 

complete than the clean system call while lstat64() opposes that trend. Box plots for all 

the clean verses infected system call completion times for the tested emulator are 

available in Appendix B. 

 

Figure 4.3 Emulator hide_file System Call Latencies Box Plots 
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Table 4.4 shows the upper and lower bounds of the 95% confidence intervals for 

the results from the emulator. The table is organized by the specific test configurations: 

type of the intended target, the rootkit infection, and the system calls being measured. 

The clean CI are placed above the infected CI to make it easy to compare but do not 

indicate the order the data was collected. The true population mean is 95% certain to lie 

between the upper and lower bounds of the confidence interval for each test 

configuration. As seen previously, the confidence intervals trend higher for infected 

system call completion times except, again, for lstat64(). 

Table 4.4 Emulator System Call Latency 95% t-Confidence Interval Bounds (in microseconds) 

Target Rootkit System Call Lower Mean Upper 

file 

none getdents64 340.820 408.4 475.980 

hide_file getdents64 398.819 454.8 510.781 

none lstat64 151.035 188.6 226.165 

hide_file lstat64 109.792 144 178.208 

none open 151.415 190.2 228.985 

hide_file open 190.518 225.2 259.882 

proc 

none getdents64 1058.994 1218 1377.006 

hide_proc getdents64 1251.018 1499.4 1747.782 

none kill 105.228 120.4 135.572 

hide_proc kill 156.934 169.4 181.866 

mod 

none delete_module 109.109 124.8 140.491 

hide_mod delete_module 188.407 200.4 212.393 

none read 146.202 151.2 156.198 

hide_mod read 208.240 237 265.760 

port 
none read 15780.623 16870.8 17960.977 

hide_port read 17171.667 18007.6 18843.533 

 

Table 4.5 shows the results of a single-sided t-test to determine if the difference in 

the means of the clean verses infected system calls on the emulator. The left column is 

the target while the remaining right columns are the system calls affected by each rootkit. 

The null hypothesis is that the clean was less than the infected system call. As expected, 
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all the system calls except lstat64() were statistically significant meaning that the means 

of the clean latencies were less than the infected latencies. The clean lstat64() system call 

was greater than the infected. The actual function invoked by that system call is inspected 

to determine what causes this difference. 

Table 4.5 Emulator Clean vs. Infected System Call Completion Times 

 
System Call 

Target open() lstat64() getdents64() kill() delete_module() read() 

files LESS GREATER LESS - - - 

procs - - LESS LESS - - 

modules - - - - LESS LESS 

ports - - - - - LESS 

 

Table 4.6 shows the difference between the means of the clean and infected 

system call latencies on the emulator. All show an increase in the infected system call 

completion times except lstat64() under hide_file. This exception can be attributed to the 

short amount of code the hooked function runs. In the source code in 

/kernel/common/fs/stat.c, lstat64() executes more code since it handles more initializing 

and flag checking. Although, hooking lstat64() results in a shorter execution time, the 

existence of the difference in means indicates that an infection can still be detected by a 

specially designed algorithm. Since all the differences are less than 0.1 second (or 

100,000 microseconds), the threshold proposed by Nielsen for a user to notice a 

difference in system performance [Nie93], the latency induced by the covert technique 

would likely remained unnoticed by the average user. 
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Table 4.6 Emulator Behavior Difference in Latency Means (in microseconds) 

Rootkit System Call 
Clean Mean 

Latency 

Infected Mean 

Latency 

Difference in 

Latency Means 

hide_file 

getdents64 408.4 454.8 46.4 

lstat64 188.6 144 -44.6 

open 190.2 225.2 35 

hide_proc 
getdents64 1218 1499.4 281.4 

kill 120.4 169.4 49 

hide_mod 
delete_module 124.8 200.4 75.6 

read 151.2 237 85.8 

hide_port read 16870.8 18007.6 1136.8 

 

Table 4.7 lists the measurement of the system call completion times with the 

rootkit installed (infected) and not installed (clean) on the device tested, Samsung Galaxy 

Nexus. The table is organized identically to the emulator data in Table 4.3. The 

measurements were taken on the device to show the real-world performance of the covert 

technique rootkits. The latencies measured for the device do not reflect the same range or 

magnitude as the emulator. However, the difference in means caused by the additional 

instructions added by the system call hook is evident as it was on the emulator. 

Table 4.7 Device Behavior Latency Data (in microseconds) 

Target Rootkit System Call Run 1 Run 2 Run 3 Run 4 Run 5 Mean 

file 

none getdents64 2346 2503 2165 2471 2230 2343 

hide_file getdents64 2319 2382 2442 2563 2748 2490.8 

none lstat64 274 428 305 335 458 360 

hide_file lstat64 152 184 214 244 275 213.8 

none open 396 214 244 275 305 286.8 

hide_file open 763 793 824 916 1099 879 

proc 

none getdents64 672 701 763 793 824 750.6 

hide_proc getdents64 1373 1402 1465 1494 1556 1458 

none kill 30 31 61 91 92 61 

hide_proc kill 152 183 213 244 274 213.2 

mod 

none delete_module 91 61 31 30 92 61 

hide_mod delete_module 152 183 214 244 275 213.6 

none read 91 61 31 30 92 61 

hide_mod read 244 275 335 306 336 299.2 

port 
none read 946 976 1007 1037 1068 1006.8 

hide_port read 2258 2289 2319 2350 2411 2325.4 
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The measured system call completion times also suffered from outliers. As with 

the emulator, outliers were replaced by collecting a new latency measurement using the 

specific command from the Perl script. There were 4 outliers total in the data collected 

from the device. These were handled the same way as described when replacing outliers 

with the emulator data. 

Figure 4.4 shows a box plot that illustrates the comparison for the clean verses 

infected system call completion times on the tested device. As expected, the infected 

getdents64() is shown to tend to take longer to complete the clean system call. Box plots 

for all the clean verses infected system call completion times on the tested device are 

available in Appendix B. 

 

Figure 4.4 Device hide_file System Call Latencies Box Plots 

Table 4.8 shows the upper and lower bounds of the 95% confidence intervals on 

the tested device. The table is organized identically to the emulator data in Table 4.4. The 

true population mean is 95% certain to lie between the upper and lower bounds of the 
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confidence interval for each test configuration. Again, all the clean latency means were 

less than infected except for the lstat64() system call.  

Table 4.8 Device Behavior Latency 95% t-Confidence Interval Bounds (in microseconds) 

Target Rootkit System Call Lower Mean Upper 

file 

none getdents64 2160.465 2343 2525.535 

hide_file getdents64 2280.175 2490.8 2701.425 

none lstat64 261.301 360 458.699 

hide_file lstat64 153.721 213.8 273.879 

none open 200.046 286.8 373.554 

hide_file open 710.520 879 1047.480 

proc 

none getdents64 672.126 750.6 829.074 

hide_proc getdents64 1367.371 1458 1548.629 

none kill 23.124 61 98.876 

hide_proc kill 153.320 213.2 273.080 

mod 

none delete_module 23.124 61 98.876 

hide_mod delete_module 153.327 213.6 273.873 

none read 23.124 61 98.876 

hide_mod read 249.865 299.2 348.535 

port 
none read 946.920 1006.8 1066.680 

hide_port read 2252.360 2325.4 2398.440 

 

Table 4.9 shows the results of a single-sided t-test to determine if the difference in 

the means of the clean verses infected system calls on the tested device. The table is 

organized identically to the emulator data in Table 4.5. The null hypothesis tested that the 

clean was again less than the infected system call. As expected, all the system calls 

except lstat64() were statistically significant meaning that the means of the clean 

latencies were less than the infected latencies. The clean lstat64() system call was again 

determined to be greater than the infected. 

Table 4.9 Device Clean vs. Infected System Call Completion Times 

System Call 

Target open() lstat64() getdents64() kill() delete_module() read() 

files LESS GREATER LESS - - - 

procs - - LESS LESS - - 

modules - - - - LESS LESS 

ports - - - - - LESS 
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Table 4.10 shows the difference between the means of the clean and infected 

system call latencies. The table is organized identically to the emulator data in Table 4.6. 

As seen on the tested emulator, all the cases show an increase in the infected system call 

completion times except lstat64() under hide_file. This exception is attributed to the short 

amount of code the new handler function runs compared to the original system call as 

explained previously on the emulator. As before, the existence of the difference in means 

indicates that an infection can still be detected by an algorithm but may be unnoticed by a 

user because the differences are less than 0.1 second. 

Table 4.10 Device Behavior Difference in Latency Means (in microseconds) 

Rootkit System Call 
Clean Mean 

Latency 

Infected Mean 

Latency 

Difference in 

Latency Means 

hide_file 

getdents64 2343 2490.8 147.8 

lstat64 360 213.8 -146.2 

open 286.8 879 592.2 

hide_proc 
getdents64 750.6 1458 707.4 

kill 61 213.2 152.2 

hide_mod 
delete_module 61 213.6 152.6 

read 61 299.2 238.2 

hide_port read 1006.8 2325.4 1318.6 

4.6 Summary 

This chapter presents the evaluation technique used to determine the effectiveness 

of the rootkits. The results of the covert techniques tested against detection methods are 

presented and statistical analysis is performed on the data provided for the behavioral-

based detection. Both the evaluations were performed on the emulator and Samsung 

Galaxy Nexus device.  

The results of the detection method testing showed that while conventional probe-

based and signature based-detection did not limit the effectiveness of the tested rootkits, 

integrity-based and heuristic-based were able to detect the presence of an infection 
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thereby limiting the stealth and the effectiveness of the rootkit. The results of behavior 

latency benchmark showed that the difference in means is statistically significant and 

could be used as a basis for detecting system call hooking rootkit infections. As expected, 

the results were similar for both the emulator and the device. Chapter V addresses 

accomplishments of this research and proposes future work for kernel level rootkit design 

and detection on Android. 
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V.  Conclusions 

5.1 Research Accomplishments 

This research defined software attacks from a technical perspective, designed 

kernel level rootkits with covert functionality on Android mobile devices, and evaluated 

the effectiveness of the rootkits by scanning an infected system with detection methods 

and benchmarking the behavior of the covert techniques used.  

A mobile device, such as a Smartphone, can carry multiple connections from 

cellular networks, wireless Bluetooth, the Internet (via Wi-Fi), USB and other 

peripherals. Smartphone users can access email, social networks, and banking, all from 

their mobile device. Information security becomes an immediate concern with this 

amount of sensitive data being handled on these potentially unsecured devices. This 

research demonstrates that the Android software stack is not robust enough to be fully 

trusted since the kernel can be directly manipulated to hide an attacker’s presence. The 

kernel level rootkits tested against detection methods were designed for the Linux kernel 

used by the latest release, Android 4.0 Ice Cream Sandwich. These rootkits focused on 

covert techniques to hide the presence of data used by an attacker to infect a mobile 

device. Detection methods were used to measure the effectiveness of the kernel level 

rootkits. The effect of hooking system calls have on performance behavior was analyzed 

in depth. 

A rootkit is most effective when its presence cannot be detected. The most 

popular free Antivirus, Lookout Security & Antivirus, and the built-in system commands 

for Android were not able to detect the presence of an infection hidden by the covert 
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rootkits. The Lookout Security & Antivirus has signatures for attacks that take advantage 

of the native Linux kernel but are ineffective since they only look for a signature of the 

data unpacked on to the device from the application. 

Integrity-based detection methods were 100% effective against the covert 

techniques but rely on installing prior to the infection or have a trusted source. Heuristic-

based detection also shows signs of weakening the effectiveness of the kernel level 

rootkits. However, the strace command can be used to target the processes of both these 

methods to implement new hooks to block detection. 

The behavioral-based detection method analysis showed that the rootkits tested 

can have a noticeable impact on the latency of a system call completion time. The 

magnitude is too small for a user to notice but the differences could be discovered by 

another algorithm. However, this method again requires an uncompromised state to 

identify anomalies [Sha12]. 

5.2 Research Impact 

Rootkits are a real threat on mobile devices, especially ones that use the Android 

platform. While the installation method used to test this requires a custom setup not 

common to all phones, it may be possible to exploit and install this rootkit using exploits 

[Ces98]. Keeping the device updated also might not be possible because of fragmentation 

in Android, therefore, the user is left to depend on the manufacturer for security. This 

security model is unsustainable and more research into Android rootkits and detection 

needs to be performed because the problem is only going to get worse. 
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5.3 Future Research Areas 

Kernel level rootkits are a real threat on the Android operating system even 

though as yet there are not many reported cases. Sophisticated attackers can use rootkits 

to maintain long periods of undetected presence on an Android mobile device. The proof 

of concept rootkits and the detection methods presented can be extended for new research 

in both attack and defense. 

Integrity and heuristic detection methods limited the effectiveness of the kernel 

level rootkits during testing. The rootkit could be more effective by evading integrity 

detection using techniques presented in [You11] and [You12] since the system call table 

structure is not directly modified. Heuristic detection can be evaded by designing the 

covert technique to thwart detection tools like unhide-tcp and skdet. Research into 

exploring different kernel level rootkits is always expanding and designing rootkits for 

the post-PC era devices should not be ignored. 

Behavioral detection also limited a rootkit’s covert effectiveness by detecting 

differences in the mean of the system call latencies. However, its reliance on having an 

uncompromised state to compare the measured latencies needs to be removed. 

Algorithms designed to monitor system behavior for performance anomalies should be 

investigated further. This additional detection measure could increase the effectiveness of 

an IDS for Android or other operating systems. 

Beyond the stealth and detection, research methods to hook into the Android 

framework from the kernel level rootkit should be developed. Although the personal data 

such as contacts, text messages, and application data can be found by searching known 

locations, new ways of getting to this data in a more abstract and Android framework 
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friendly way would make data exfiltration and remote control of an Android mobile 

device much easier. Removing the need to reverse engineer a target application for that 

application’s data would have a long lasting impact on the security research for Android. 

The rootkits were designed for the Android operating system but should also be 

easily portable by compiling for a targeted Linux kernel. As Android and Linux continue 

to be used across more devices and platforms, the need for security research increases 

since the inherent vulnerabilities are not going away. The success of implementing a 

kernel level rootkit in a mobile device environment demonstrates that additional security 

measures should be implemented on Android and its Linux kernel. 
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Appendix A. Detection Method Implementations 

This appendix contains the detection method implementations including 

description and scripts.  

A.1 Probe-based Detection 

Probe-based detection identifies signs of infection by forensic analysis using the 

system commands: ls, cat, ps, kill, lsmod, and rmmod. The function of the system 

commands are described below: 

• List Files (ls) – lists the files in a current or specified directory.  

• Catenate File (cat) – writes the contents of each file specified in the standard 

output. 

• List Processes (ps) – lists the processes currently running.  

• Kill Process (kill) – sends a signal to a process. The default signal sent is the 

termination signal but the command can also send other specified signals. This 

extra functionality is not used in this research.  

• List Modules (lsmod) – lists the modules currently installed.  

• Remove Module (rmmod) – removes a specified module.  

• List Network Connections (netstat) – lists all incoming and outgoing network 

connections, routing tables, and network interface statistics.  

Table A.1 is a list of the system commands used to search for infection traces 

during probe-based detection. 

Table A.1 Probe-based Detection Method Commands 

Infection Traces System Commands Used 

Files ls, ls <filename>, ls –l, ls –l <filename>, cat <filename> 

Processes ps, ps <process_name>, ls /proc/, kill <pid> 

Modules lsmod, cat /proc/modules, rmmod <module_name> 

Ports netstat, cat /proc/net/tcp6 
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A.2 Signature-based Detection 

The signature-based malware detection tool Lookout Security & Antivirus 

[Loo12] is scanned against each covert technique on both Android platforms. Anti-virus 

(AV) tools like Lookout Security & Antivirus are ineffective in detecting all attacks 

because they typically only scan application folders, SD card files, SMS and contacts 

[Far11]. Since a typical Android device does not have root privileges by default, the AV 

applications cannot search for infections in the system area that is the most targeted and 

vulnerable. 

The Lookout Security & Antivirus application is available in the Google Play 

Store. The application was downloaded from the Google Play Store on another device 

and the .apk installer file was copied using Astro File Manager [Gop12] from that device. 

The .apk is then installed over the ADB with the command ‘adb install Lookout-

70800.apk’ [God12]. The security scan was then initialized when running Lookout 

Security & Antivirus. Figure A.1 shows the interface of Astro File Manager and Lookout 

Security & Antivirus. 

 

Figure A.1  Astro File Manager Backup, Lookout Security & Antivirus Menu 
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A.3 Integrity-based Detection 

Rootkits often take control over of a kernel by modifying static system structures. 

Integrity-based detection compares data of a trusted source with potentially infected data 

to find differences that identify a possible attack. In the case of the system call hooking 

technique, used by the rootkits in this research, the rootkit overwrites the address of the 

system call table entry so that the malicious code in a new handler function is executed. 

The addresses in the system call entries are supposed to be permanent and should not 

change even after a reboot of the operating system. Therefore, the system structures need 

to be validated in a trusted state before searching for changes from an attacker. The 

trusted source for a system call table can be found in the System.map file if it is available.  

Android devices typically do not have the System.map file available. Therefore, 

the addresses of the system call table entries can be determined by scanning kernel 

memory using an LKM [Bur10]. The system call table address can be found the same 

way as described in Section 4.2.1. When the LKM is installed, each system call table 

entry is saved into a copy array. Upon removal of the LKM, each system call table entry 

is compared to the copy array. A detection message prints to the message buffer of the 

kernel if a difference is found and can be read using the dmesg command. 

During testing, the LKM used to test integrity was named scprint. The scprint 

module was compiled for the specific kernel being tested, the same as the rootkits. Prior 

to the rootkit infection, scprint was installed. This way the system call table is in a trusted 

state. The specific covert technique rootkit is installed which hooks its respective system 

calls. The scprint module is then uninstalled and the proper detection messages are 

printed to the message buffer of the kernel. The process of downloading, installing, and 
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uninstalling the scprint module was automated using a Perl script named integrity.pl. 

Figure A.2 shows a successful detection by the integrity-based detection.  

 

Figure A.2  Integrity Check Output Pre and Post Infection 

The code for integrity.pl: 

#!/usr/bin/perl -w 

# Android System Call Table Inegrity Check 

# Bobby Brodbeck, AFIT, June 2012 

 

use 5.10.0; 

 

print "Android Integrity Check (AIC) over ADB \n"; 

 

my $lsmod_out = `adb shell lsmod`; 

 

if ($lsmod_out =~ /scprint/) 

{ 

 print "Found scprint! Unistalling...\n"; 

 `adb shell rmmod scprint`; 

 print "Collecting output...\n"; 

 my $dmesg_out = `adb shell dmesg | tail -10`; 

 # print "Output:\n$dmesg_out\n"; 

 my @detects = ($dmesg_out =~ /(DETECTION:(.)+)\n/g); 

 for($i = 0; $i < @detects; $i++) 

 {  

  print "$detects[$i]\n"; 

 } 

} 

else 

{ 

 print "scprint.ko LKM must be installed prior to infection for this script to work 

correctly.\n"; 

 print "Pushing over ADB..."; 

 `adb push ~/mods/scprint/scprint.ko /data/local/`; 

 print "Installing...\n"; 

 `adb shell insmod /data/local/scprint.ko`; 

 print "Installed. Run check again after infection.\n"; 

} 

 

############## EOF: integrity.pl ############## 
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Figure A.3  Port Heuristic Detection Output 

Rootkits take control of execution flow to hide data; however, there are other 
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The heuristic scanner identifies hidden processes by comparing the output of the 

ps –T command and skdet tool. The ps –T command returns all the running task threads 

on the device. The ps command from the BusyBox toolkit is used. Skdet is designed to 

detect rootkits such as SucKIT, adore-ng, trojaned files, and more. The Rootkit Hunter 

Project can also take advantage of skdet to enhance its detection capabilities. The 

heuristic scanner uses skdet for an alternative source of running task threads by using the 

–c option. The difference of the two sets of data PIDs is then printed out. The operator 

running the heuristic scanner must have some extra knowledge to understand the printed 

difference. Three of the processes are unique to the ps command and skdet tool because 

of the shell over ADB. Therefore they can be ignored in the results. These processes 

found during testing were sh (shell), adbd (ADB daemon), and the skdet tool. Figure A.4 

shows the output of the heuristic scanner when a hidden process is detected 

(hidemy_proc). 

 

Figure A.4  Process Heuristic Detection Output 

Hidden modules are identified by comparing the number of lines in the lsmod 

command output verses the line count of /proc/modules. The lsmod command is built into 

the Android Linux kernel but the wc command is found with the BusyBox toolkit. If the 

line counts are not equal, the difference is printed out. The lsmod command is expected 

to have the smaller amount of lines since it is the command targeted by the system call 
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The code for heuristic.pl 

#!/usr/bin/perl -w 

# Android heuristic scanning 

# Bobby Brodbeck, AFIT, June 2012

 

use 5.10.0; 

 

print "Android Heuristic Scanner (AHS) over ADB 
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shows the output of the heuristic scanner when a hidden module is 

Figure A.5  Module Heuristic Detection Output 

Hidden files are identified by comparing the number of lines in the ls command 
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1’. The ls command is built into the Android Linux kernel but the find command is found 

with the BusyBox toolkit. The ‘maxdepth’ option dictates the amount of levels to descend 

from the directory specified in the command line arguments. One line is subtracted from 

the results of the find command because it will include a line for the target directory. If 

the line counts are not equal, the difference is printed out. The ls command is expected to 

have the smaller amount of lines since it is the command targeted by the system call 
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Figure A.6  File/Directory Heuristic Detection Output 
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my $prog; 

 

# HIDDEN PORT SCANNING ################ 

print "Scanning for hidden ports with Unhide-TCP...\n\n"; 

 

# RUN UNHIDE-TCP AND PRINT OUTPUT 

$prog = "/data/local/unhide-tcp"; 

my $find_ports = `adb shell $prog`; 

printf("%s\n", $find_ports); 

 

# HIDDEN PROCESS SCANNING ############# 

print "Scanning for hidden processes...\n\n"; 

 

# GET ALL THREADS PIDS PROVIDED TO PS 

$prog = "/data/local/busybox ps -T"; 

my $ps_out = `adb shell $prog`; 

 

# remove first line 

$ps_out = substr($ps_out, (index($ps_out,"\n")+1)); 

my @ps_pids = split /\s+[0-9]+\s+[0-9]+[:][0-9]+\s+.*\R/, $ps_out; 

 

# trim whitespace 

foreach (@ps_pids)  

{ 

 $_ =~ s/^\s+//; 

 $_ =~ s/\s+$//; 

} 

 

# for($i = 0; $i < 5; $i++) 

# { 

 # printf ("ps[%i] = %s\n", $i, $ps_pids[$i]); #Prints ith first element 

# } 

 

# GET ALL THREADS PIDS ATTAINED BY SKDET 

$prog = "/data/local/skdet -c"; 

my $skdet_out = `adb shell $prog`; 

 

my @skdet_pids = split /\s+[\b]+\s.*\R/, $skdet_out; 

my @skdet_pnames = split /.*[\b]+\s+/, $skdet_out; 

chomp(@skdet_pnames); 

 

# for($i = 0; $i < 5; $i++) 

# { 

 # printf ("skdet[%i] = %s\t%s\n", $i,  

  # $skdet_pids[$i], $skdet_pnames[$i+1]); #Prints ith first element 

# } 

 

# GET THE DIFFERENCE OF THE TWO SETS 

%ps_pids = map {$_=>1} @ps_pids; 

my @absent_pids = grep(!defined $ps_pids{$_}, @skdet_pids); 

 

# foreach(@absent_pids) 

# { 

 # print $_."\n"; 

# } 

 

# GET INDEX OF THREADS MISSING FROM PS 

my @absent_index; 

for($i = 0; $i < @absent_pids; $i++) 

{ 

 @absent_index[$i] = grep{ $skdet_pids[$_] == $absent_pids[$i]} 0 .. $#skdet_pids; 

} 

 

# PRINT OUT THE NAMES OF THE THREADS MISSING FROM PS 

print "Threads missing from 'ps':\nPID\tNAME\n"; 

for($i = 0; $i < @absent_index; $i++) 

{ 
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 printf("%s\t%s\n", $skdet_pids[$absent_index[$i]], 

$skdet_pnames[$absent_index[$i]+1]); 

} 

print "\n"; 

 

# HIDDEN MODULE SCANNING ############## 

print "Scanning for hidden modules...\n\n"; 

 

# GET LSMOD OUTPUT AND COUNT LINES 

$prog = "lsmod"; 

my $lsmod_out = `adb shell $prog`; 

my $lsmod_lines = $lsmod_out =~ tr/\n//; 

 

# printf("lsmod = %i modules\n", $lsmod_lines); 

 

# GET LINE COUNT FROM MODULES FILE 

$prog = "/data/local/busybox wc -l /proc/modules"; 

my $wcl_out = `adb shell $prog`; 

$wcl_out =~ s/[^0-9]//g; 

 

# printf("wc -l = %i modules\n", $wcl_out); 

 

# COMPARE VALUES 

if($wcl_out != $lsmod_lines) 

{ 

 my $hidden_mods = $wcl_out - $lsmod_lines; 

 printf("There is %i hidden module/s present\n\n", $hidden_mods); 

} 

else 

{ 

 printf("There are no hidden modules present\n\n"); 

} 

 

# HIDDEN FILE SCANNING ################ 

print "Scanning for hidden files...\n\n"; 

 

$prog = "ls /sdcard/ -a"; 

my $ls_out = `adb shell $prog`; 

my $ls_lines = $ls_out =~ tr/\n//; 

 

printf("ls = %i files/dirs\n", $ls_lines); 

 

$prog = "/data/local/busybox find /sdcard/ -maxdepth 1"; 

my $find_out = `adb shell $prog`; 

my $find_lines = $find_out =~ tr/\n//; 

$find_lines--; # for the parent dir 

 

printf("find = %i files/dirs\n", $find_lines); 

 

if($find_lines != $ls_lines) 

{ 

 my $hidden_files = $find_lines - $ls_lines; 

 printf("There is %i hidden file/s present\n\n", $hidden_files); 

} 

else 

{ 

 printf("There are no hidden files present\n\n"); 

} 

 

# COMPLETE ############################ 

print "Android Heuristic Scan Complete!\n" 

 

############## EOF: heuristic.pl ############## 
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A.5 Behavioral-based Detection 

Behavioral-based detection deduces a rootkit infection by monitoring kernel level 

execution to identify anomalies in performance. A rootkit employing system call hooking 

can potentially add a delay to a system call to complete execution because the additional 

hook code is executed before returning to the user space program. This delay is the most 

noticeable to the end user because slow execution hinders productivity. The annoyance 

caused by the delay may lead the user to wipe the mobile device regardless if there is a 

rootkit presence detected.  

Behavioral-based detection measures latencies of uninfected or clean and infected 

system calls using the strace command. The system calls measured are only those that 

have their execution intercepted by a system call. Table A.2 lists these infected system 

calls for each rootkit. Each rootkit has a Perl script that captures the system call 

completion time of the target strace output. These scripts are named sc_file.pl, sc_proc.pl, 

sc_mod.pl, and sc_port.pl. 

Table A.2 System Calls Infected by Rootkit 

Rootkit Infected System Calls 

hide_file.ko getdents64(), lstat64(), open() 

hide_proc.ko getdents64(), kill() 

hide_mod.ko read(), delete_module() 

hide_port.ko read() 

 

The strace command shows the time spent in system calls when the –T option is 

set as an argument to the command. The time elapsed is calculated from the difference 

between the beginning and the end wall-clock timestamps. The –e option is set to print 

only relevant system calls by using the expression “trace=”. Following the strace 

command and options, the actual targeted process command is stated. These commands 
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were chosen as direct targets of the rootkit and the most straightforward output to parse 

with the Perl script. Table A.3 lists all the strace commands used by the Perl scripts. 

Table A.3 strace Commands Used to Measure System Call Completions 

Rootkit Measured System Call strace Command 

hide_file.ko getdents64() strace -T -e trace=getdents64 ls -a /sdcard/ 

hide_file.ko lstat64() strace -T -e trace=lstat64 ls -l /sdcard/hidemy.txt 

hide_file.ko open() strace -T -e trace=open cat /sdcard/hidemy.txt 

hide_proc.ko getdents64() strace -T -e trace=getdents64 ps hidemy_proc 

hide_proc.ko kill() strace -T -e trace=kill kill <PID> 

hide_mod.ko read() strace -T -e trace=read lsmod 

hide_mod.ko delete_module() strace -T -e trace=delete_module rmmod hidemy_mod 

hide_port.ko read() strace -T -e trace=open,read netstat 

 

The code for sc_file.pl: 

#!/usr/bin/perl -w 

# Android system call traces for hide_file.ko 

# Bobby Brodbeck, AFIT, June 2012 

 

use 5.10.0; 

 

# open output file 

$fout = "strace_file.txt"; 

open(OUT, ">>$fout") || die("This file will not open!\n"); 

 

 

print OUT "Run\tgetdents64\tlstat64\topen\n"; 

 

for($i = 0; $i < 5; ) 

{ 

 $i++; 

 print OUT "$i\t"; 

  

 # ls -a <dir of hidden file> system call times 

 my $lsa_out = `adb shell /data/local/strace -T -e trace=getdents64 ls -a 

/sdcard/`; 

 # print OUT "$lsa_out\n"; 

 my @lsa_times = ($lsa_out =~ /<(\d+.\d+)>/g); 

 # print "getdents64($i): @lsa_times\n"; 

 # sum getdents calls 

 $getdents_total = 0; 

 $getdents_total += $_ for @lsa_times; 

 printf(OUT "%f\t", $getdents_total); 

  

 # ls -l <dir of hidden file> system call times 

 my $lsl_out = `adb shell /data/local/strace -T -e trace=lstat64 ls -l 

/sdcard/hidemy.txt`; 

 # print OUT "$lsl_out\n"; 

 my @lsl_times = ($lsl_out =~ /<(\d+.\d+)>/g); 

 # print "lstat64($i): @lsl_times\n"; 

 # sum lstat calls 

 $lstat_total = 0; 

 $lstat_total += $_ for @lsl_times; 

 printf OUT "%f\t", $lstat_total; 

  

 # cat <hidden file> system call times 
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 # print OUT "STRACE OUTPUT FOR 'cat'\n"; 

 my $cat_out = `adb shell /data/local/strace -T -e trace=open cat 

/sdcard/hidemy.txt`; 

 # print OUT "$cat_out\n"; 

 $cat_out =~ /open\("\/sdcard\/hidemy.txt".+<(\d+.\d+)>/; 

 printf OUT "%f\n", $1; 

  

 sleep(1); 

} 

 

close OUT; 

 

############## EOF: sc_file.pl ############## 

 

The code for sc_proc.pl: 

#!/usr/bin/perl -w 

# Android system call traces for hide_proc.ko 

# Bobby Brodbeck, AFIT, June 2012 

 

use 5.10.0; 

 

# open output file 

$fout = "strace_file.txt"; 

open(OUT, ">>$fout") || die("This file will not open!\n"); 

 

# ps <proc name> system call times 

my $ps_out = `adb shell /data/local/strace -T -e trace=getdents64 ps hidemy_proc`; 

# print "$ps_out\n"; 

my @ps_times = ($ps_out =~ /<(\d+.\d+)>/g); 

#print "@ps_times\n"; 

$getdents_total = 0; 

$getdents_total += $_ for @ps_times; 

printf(OUT "%f\t", $getdents_total); 

 

# use skdet to get pid 

my $skdet_out = `adb shell /data/local/skdet -c`; 

# print "$skdet_out\n"; 

 

# get thread names and pids 

my @skdet_pids = split /\s+[\b]+\s.*\R/, $skdet_out; 

my @skdet_pnames = split /.*[\b]+\s+/, $skdet_out; 

chomp(@skdet_pnames); 

 

# remove carriage return 

foreach(@skdet_pnames) 

{ 

 $_=~ s/\r|\n//g; # remove /r or /n 

 #$_ =~ s/(.)/sprintf("%x",ord($1))/eg; 

 # print "$_\n"; 

 # print "$string\n"; 

} 

 

# get pid of hidden proc 

my $pid = -1; 

for($i = 0; $i <@skdet_pnames; $i++) 

{ 

 # print "$string = $skdet_pnames[$i]\n"; #Prints ith first element 

 if("hidemy_proc" eq $skdet_pnames[$i] ) 

 { 

  $pid = $skdet_pids[$i - 1]; 

  last; 

 } 

} 
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# kill <pid> system call times 

if ($pid > 0) 

{ 

 # $pid = $skdet_pids[$found_index-1]; 

 my $kill_out = `adb shell /data/local/strace -T -e trace=kill kill $pid`; 

 # print "$kill_out\n"; 

 $kill_out =~ /<(\d+.\d+)>/; 

 printf OUT "%f\n", $1; 

} 

else 

{ 

 print "Could not test kill()\n"; 

} 

 

close OUT; 

 

############## EOF: sc_proc.pl ############## 

 

The code for sc_mod.pl: 

#!/usr/bin/perl -w 

# Android system call traces for hide_mod.ko 

# Bobby Brodbeck, AFIT, June 2012 

 

use 5.10.0; 

 

# open output file 

$fout = "strace_file.txt"; 

open(OUT, ">>$fout") || die("This file will not open!\n"); 

 

print OUT "Run\tread\tdelete_module\n"; 

 

for($i = 0; $i < 5; ) 

{ 

 $i++; 

 print OUT "$i\t";  

  

 # lsmod system call times 

 my $lsmod_out = `adb shell /data/local/strace -T -e trace=read lsmod`; 

 # print "$lsmod_out\n"; 

 # uncomment line below for clean: hello always first 

 #$lsmod_out =~ /read\(3, "hello.+<(\d+.\d+)>/; 

 # uncomment line below for infected: hide_mod always first 

 $lsmod_out =~ /read\(3, "hide_mod.+<(\d+.\d+)>/; 

 printf OUT "%f\t", $1; 

  

 # rmmod <hidden mod> system call times 

 my $rmmod_out = `adb shell /data/local/strace -T -e trace=delete_module rmmod 

hidemy_mod`; 

 # print  "$rmmod_out\n"; 

 $rmmod_out =~ /<(\d+.\d+)>/; 

 printf OUT "%f\n", $1; 

} 

 

close OUT; 

 

############## EOF: sc_mod.pl ############## 

 

The code for sc_port.pl: 

#!/usr/bin/perl -w 

# Android system call traces for hide_port.ko 
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# Bobby Brodbeck, AFIT, June 2012 

 

use 5.10.0; 

 

# open output file 

$fout = "strace_file.txt"; 

open(OUT, ">>$fout") || die("This file will not open!\n"); 

 

print OUT "Run\tread\n"; 

 

for($i = 0; $i < 5; ) 

{ 

 $i++; 

 print OUT "$i\t";  

  

 # netstat system call times 

 my $netstat_out = `adb shell /data/local/strace -T -e trace=open,read netstat`; 

 # print "$netstat_out\n\n"; 

   

 # separate lines for parsing 

 @nslines = split(m/\R/,$netstat_out); 

 chomp(@nslines); 

  

 # find boundaries of read calls 

 my $start = 0;  

 my $end = scalar(@nslines); 

 my $tcp6_flag = 0; 

 for($j = 0; $j < $end; $j++) 

 { 

  # print "$j: $nslines[$j]\n"; 

   

  if($nslines[$j] =~ /open\("\/proc\/net\/tcp6"/) 

  { 

   $start = $j+1; 

   $tcp6_flag = 1; # stop looking for tcp6 

  } 

   

  if($tcp6_flag && $j > $start && ($nslines[$j] =~ /open/)) 

  { 

   $end = $j;  # grab and go on 

  } 

 } 

   

   

 # collect read completion times 

 my @reads; 

 for($j = $start; $j < $end; $j++) 

 { 

  if($nslines[$j] =~ /<(\d+.\d+)>/g) 

  { 

   push(@reads, $1); 

   # print "$j: $nslines[$j]\n"; 

  } 

 } 

  

 # sum completion times 

 # print "@reads\n"; 

 my $read_total = 0; 

 $read_total += $_ for @reads; 

 printf(OUT "%f\n", $read_total); 

} 

 

close OUT; 

 

############## EOF: sc_port.pl ############## 
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Appendix B. System Call Latency Box Plots 

This appendix contains all the clean verses infected system call latencies box plots 

for the emulator and device. These box plots are discussed in detail in Section 4.5. 

 

Figure B.1 Emulator: File System Call Latencies 
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Figure B.2 Device: File System Call Latencies 
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Figure B.3 Emulator: Process System Call Latencies 
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Figure B.4 Device: Process System Call Latencies 
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Figure B.5 Emulator: Module System Call Latencies 
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Figure B.6 Device: Module System Call Latencies 
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Figure B.7 Emulator: Port System Call Latencies 
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Figure B.8 Device: Port System Call Latencies 
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