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Abstract

Network intrusion detection systems (NIDS) provide an area of expanding research

for cyber defense interests. This research aims to lay the groundwork for a system that can

operate with only knowledge of normal network traffic, using a process known as anomaly

detection. One method for detecting anomalous data is that of Artificial Immune Systems

(AIS). Real-valued negative selection (RNS) is a specific AIS algorithm that can be used

to perform two-class classification when only one class is available for training.

Researchers have shown fundamental problems with the geometry of the most common

detector shape, hyperspheres, in high-dimensional space. Additionally, the research

contained herein shows that the second most common detector type, hypercubes, can

cause problems due to biasing certain features over others in high-dimensional space. To

address these problems, a new detector shape known as the hypersteinmetz solid has been

proposed, the goal of which is to provide a tradeoff between the geometrical problems of

hyperspheres and hypercubes in high-dimensional spaces. In order to investigate the

potential benefits of the hypersteinmetz solid, an effective RNS detector size range is

determined. Then the relationship between content coverage of the dataset and

classification accuracy is investigated. Once these issues are addressed, this research

shows the tradeoffs that take place in high-dimensional data when hypersteinmetzes are

chosen over hyperspheres or hypercubes. The final results of experiments show that

detector shape is the dominant factor in high-dimensional detection, contributing 86% of

variance in the classification accuracy results in 11 dimensions of the chosen dataset as

compared to 0% in 2 dimensions. This verifies that detector shape becomes an

increasingly important factor in classification accuracy within a real-valued negative

selection system as dimensionality increases.
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Detector Design Considerations in High-Dimensional

Artificial Immune Systems

1 Introduction

The United States is currently operating in a networked world. Enemies and allies

alike are increasingly dependent upon cyberspace and, as such, the lines of information

warfare are being drawn. New threats to the U.S.’s information resources are emerging

almost daily. The current research, discussed herein, aims to address these problems by

creating the framework for a network intrusion detection system operating that addresses

the problems presented to artificial immune systems in high-dimensionality by using the

hypersteinmetz solid.

This introductory chapter aims to lay the foundation for the research that proceeds it,

in the following format. First, the vision and policy motivating for the current research are

explored. Next, the problem that this research addresses is proposed. Then, a discussion

of how we attempt to address this problem takes place. Finally, a discussion of the thesis

of this research, and the results obtained follows.

1.1 Motivation

The importance of this research to the United States Air Force (USAF) can be shown

through a discussion of the motivating policies. A few of the pertinent documents include:

the National Military Strategy for Cyberspace Operations, United States Air Force

Blueprint for Cyberspace, Comprehensive National Cybersecurity Initiative, Cyberspace

Operations: Air Force Doctrine Document 3-12, and DoD Strategy for Operating in

Cyberspace. The main points of these documents and how they work together to
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implement the information management initiatives previously outlined are discussed in

the following section.

The first major military policy document regarding the operation of DoD forces

within the cyberspace domain was the National Military Strategy for Cyberspace

Operations (NMSCO), published in December 2006. The purpose of the document was to

provide a working framework of how the DoD operates in cyberspace with regard to

military, intelligence, and business operations. The strategy outlines the contexts in which

military operations would be needed to defend the global information grid (GIG).

Although the document focuses largely on the emerging landscape of using cyber as a

weapon, there are also specific focuses on the securing of cyberspace assets. Specifically,

one of the strategic priorities outlined in NMSCO is to

“Maintain continuous active layered defenses using existing information

assurance guidance to protect confidentiality, integrity, availability,

authentication, and non-repudiation of information as it is processed, created,

and manipulated at rest and in-motion [50].”

This policy clearly reflects the move toward fusing the previously discussed IRM

documents within an emerging threat environment.

The United States Air Force Blueprint for Cyberspace (USAFBC), released in

November 2009, was an initial push made by the USAF to integrate the service’s current

cyberspace operations activities with a long-range cyberspace plan. One of the main

purposes of the document was to provide a culture change to the Air Force’s cyber

personnel, specifically to “shift paradigms from network-focus to mission-focus [49].”

The problem of aligning the USAF mission with NMSCO was that there needed to be less

focus on protecting and ensuring the network “for the network’s sake,” and more focus on

ensuring information resources in support of the broader mission. Within the document
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several strategies for accomplishing this task are outlined, with 11 specific objectives

identified [49].

Soon after the USAFBC was released, National Cybersecurity Coordinator Howard

Schulz from the office of President Barack Obama released the Comprehensive National

Cybersecurity Initiative (CNCI). In a similar vein with USAFBC, the initiative highlighted

12 areas of focus that the federal government would take to help secure its cyberspace

assets. Of the twelve areas identified, two of them pertain to the current discussion:

“Initiative 2. Deploy an intrusion detection system of sensors across the Federal

enterprise” and “Initiative 9. Define and develop enduring ‘leap-ahead’ technology,

strategies, and programs [47].” While there are specific programs outlined in the document

that are beginning to achieve the goal of intrusion detection, Initiative 9 provides the

groundwork for developing new technologies that can help to defend the federal

government’s information resources and the technologies and infrastructure upon which

they rely [47].

Released in July 2010, Cyberspace Operations: Air Force Doctrine Document 3-12

was released by the USAF LeMay Center with a goal of codifying the principles laid out

previously in USAFBC. The document’s specific purpose is outlined as

“[T]he Air Force’s foundational doctrine publication for Air Force

operations in, through, and from the cyberspace domain. [It] represents

known sanctioned ideas and practices . . . to provide insight for Airmen to

follow. This document speaks to Air Force support of maintaining

Cybersapce Superiority.” [48]

With the creation of this document, the USAF had, for the first time, created a set of

operational ideas and practices to not only support and defend operations in cyberspace,

but also to execute offensive operations. A principal problem acknowledged within the

document, however, is that it was created prior to a joint operational cyberspace strategy.
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Therefore, when a joint doctrine document would be established, it would be significantly

harder to ensure that they were in alignment [48].

With this void of joint policy in mind, the DoD created the Department of Defense

Strategy for Operating in Cyberspace (DODSOC) in July 2011. The document created

five strategic initiatives that were aimed at shaping how the military “leverages the

opportunities of cyberspace, while managing inherent uncertainties and reducing

vulnerabilities [51].” The document provides a broad overview of how the DoD is to

operate in cyberspace, and does not provide many details on specific doctrine decisions.

However, it does establish cyberspace as a domain of military operations, decisively

delineating a long-held discussion. It additionally continues to implore organizations to

pursue new defense operating concepts within the context of cyberspace [51].

As the preceding documents have shown, the United States military, and the Air

Force specifically, has-in recent years-taken a keen interest in defining how military

operations are evolving in cyberspace as well as how the federal government’s cyber

assets can be defended. By taking this doctrine, it becomes clear that defense of

information resources relies heavily on the safeguarding of the infrastructure upon which

it resides. Innovation into the realm of network and information infrastructure is essential

to the proper execution of cyberspace operations. The motivational theme of this research,

therefore, is to place the groundwork for a network intrusion detection system in order to

further facilitate protection of United States Air Force technology assets.

1.2 Problem statement

The first question to be answered is “what types of network intrusion detection

systems can be created?” This research investigates anomaly-based network intrusion

detection methods. The specific type of anomaly-based system chosen finds its roots in

the artificial immune systems (AIS) line of research. The specific AIS model chosen is

that of real-valued negative selection. Network intrusion datasets have many features, and
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translate into high-dimensional spaces when translated into real-valued negative selection

problems. However, there are difficulties with real-valued negative selection systems in

high-dimensional data spaces. Two of these problems are: the content covered and biasing

of features by detectors high-dimensional spaces. In order to create a real-valued negative

selection-based NIDS, how do we overcome the content and feature bias problems in

high-dimensional real-valued negative selection detectors?

1.3 How problem statement is addressed

In order to address the problems inherent in high-dimensional real-valued negative

selection detectors, this research focuses on detector shape as the main component of a

successful system design. The hypersteinmetz solid is presented as an alternative to the

most common shapes currently found in the literature: hyperspheres and hypercubes. This

analyzes how the hypersteinmetz performs in high-dimensions, specifically as it pertains

to content coverage and feature bias, when compared against hyperspheres and

hypercubes. The research then shifts toward designing the constraints needed for an

experimental comparison of the three detector shapes. First, the detector radius size is

determined through a set of experiments. Then, the relationship between the content

coverage of a set of detectors, or coverage factor, and real-valued negative selection

classification accuracy is investigated. These experiments are then brought together to

form the basis for an experimental comparison of the effects of detector shape within a

real-valued negative selection system as dimensionality increases.

1.3.1 Thesis statement. This research aims to show that “Detector shape is an

extremely important factor in the effectiveness of a real-valued negative selection system

as the number of dimensions of data increases, especially in comparison to other factors

such as radius size and coverage factor.”
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1.4 Overview of results

The results of the analysis and experiments outlined above confirm the thesis. A

successful detector radius bounding range is found. Then, it is determined that increasing

coverage factor does improve classification accuracy, but at a rate of diminishing returns.

Using these preliminary experiments, it is shown that the classification accuracy of a

real-valued negative selection system is dependent on the shape of the detector chosen

when moving into higher dimensions, and that the hypersteinmetz, specifically, provides

the expected improvements over against the hypersphere detector.
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2 Background

In order to better demonstrate the objective of the current research, a background of

research within applicable fields of study is important. The following chapter aims to lay

the essential framework of knowledge required to sufficiently support the thesis statement

involving detector shapes within a high-dimension artificial immune system.

First, network intrusion detection systems are defined. Then, considerations involving

the selection of a network intrusion dataset are discussed. Finally, an introduction to the

field of artificial immune systems is provided, along with a presentation of research

explaining the problems specific to artificial immune systems in high dimensions.

2.1 Network Intrusion Detection Systems

Before delving into how a network intrusion detection system can aid the information

resource management (IRM) process, an understanding of what network intrusion

detection systems are and how they work is essential. The following sections discuss

intrusion detection systems, distinguish between intrusion detection and intrusion

prevention, explain differences between network and host-based systems, differentiate

anomaly and signature-based methods, and touch on a few of the computational methods

currently used as the backbones of these systems.

According to the National Institute of Standards and Technology (NIST), intrusion

detection is

“The process of monitoring the events occurring in a computer system or

network and analyzing them for signs of possible incidents, which are

violations or imminent threats of violations of computer security policies,

acceptable use policies, or standard security practices.” [39]
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Therefore, An intrusion detection system (IDS) is a system designed to perform the

process of intrusion detection. Namely, an IDS monitors network or computer system

information to determine if incidents are occurring and then acts upon or alerts someone

to act upon that information. Intrusion detection is simply the process of determining that

an incident has occurred, is occurring, or will occur.

An additional layer often added to the intrusion detection process is that of the

intrusion prevention system (IPS). The purpose of an IPS is to not only act as a detector,

but also as a preventer of intrusion. An IPS can act either after detection of an

intrusion–blocking it from continuing–or before an event has taken place–shoring up the

network or computer system from a potential attack [31]. Going forward, the rest of this

discussion assumes an IDS, rather than an IPS, is the subject.

The next delineation that must be drawn regards network and host-based detection

systems. Network-based IDSs (NIDS) monitor network traffic on a specific segment

within a larger network system; they then classify that traffic, identifying many different

types of events that may interest network management personnel. Contrarily, host-based

IDSs (HIDS) reside on a single host system (e.g. a personal computer, a server, etc.) and

monitor characteristics of the host, and events that occur therein, for suspicious activity. In

addition to monitoring the network traffic for that specific host, an anomaly-based IDS can

also look at system logs, processes, system files, access permissions, and application

permissions in order to detect abnormal behavior [41]. A network-based IDS is the subject

of this research.

The last distinction of different IDS methods is signature-based versus

anomaly-based detection. Signature-based detection “is a technique for intrusion detection

that relies on a predefined set of attack signatures [37].” In this scheme, the IDS attempts

to match current network packets or traffic patterns to predefined attack or anomaly

signatures in a database. The burden therefore is in keeping up with the ever increasing
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number of intrusion signatures [40]. In contrast, anomaly-based detection relies on a

pre-defined baseline of normal network traffic. The system compares incoming network

traffic to the baseline. If the incoming traffic is sufficiently different than the baseline, it is

classified as anomalous. The key benefit to an anomaly-based IDS over against a

signature-based system is that it has the potential to detect new and emerging threats that

have not already been defined in a signature database. However, it can be hard to create a

sufficient baseline of normal traffic, thus causing the system to suffer from a plethora of

false alarms [37]. Despite the drawbacks, though, anomaly-based systems currently

provide the greatest area for research, as signature-based systems such as SNORT cannot

detect newly emerging threats [31].

Within anomaly-based NIDS, there are several methods used to detect anomalous

network traffic. The full extent of these methods is not reviewed and a good discussion of

them can be found in [53]. There are several areas of artificial intelligence research which

attempt to solve the intrusion detection problem with varying degrees of success. One

particular method which has shown initial promise takes the approach of modeling the

human immune system in order to detect anomalous network traffic.

2.2 Dataset Selection

To choose a dataset, an investigation of currently available datasets is in order. This

discussion begins with a look into the problems of data collection, and then delves into an

examination of a number of currently available datasets. There are three types of problems

with using real-world datasets: privacy and anonymization of data, unavailability of data,

and the issue of moving targets [19].

One of the most important topics in any real-world network traffic capture is that of

the legal issues surrounding privacy and anonymization of the data. Ohm et al [36]

demonstrate the tremendous legal concerns surrounding the use and sharing of private

organizations’ network traffic. There are regulations at all levels of government
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surrounding the collection of network data, and–in almost all cases–the anonymization of

addresses is essential. This is important to note, as some of the most essential data

features for network intrusion detection can come from specific internet protocol (IP) and

media access control (MAC) address data. Anonymizing or scrubbing this data can cripple

the operation of a network intrusion detection system.

Legal issues can also create a second problem: unavailable data. Because of the

privacy regulations, not only must data be anonymized, but in most cases it cannot be

released to outside organizations at all. For this reason, a large portion of the novel data

sets used in emerging research are home-grown. Lastly, it is important to realize that the

definition of network traffic is a moving target. Some datasets that are currently used for

benchmarking are more than ten years old and can no longer accurately demonstrate

real-world network traffic [19].

Because of the problems with real-world network traffic, it might seem a logical

conclusion to create synthetic traffic. However, there are additional problems with

creating synthetic datasets, namely background traffic generation and attack traffic

generation. Creating normal traffic requires the use of either a large user-base or a traffic

generation tool. One of the problems with using a tool is that it can be difficult to

represent the distributed nature of real networks. Real networks exist not only in disparate

geographic locations, but also in different network locations. Moreover, truly representing

the cacophony of actual user traffic can be difficult. On the other hand, relying on real

users to create fake network traffic is obviously constrained by the availability of the given

user set for this purpose.

Additionally, creating representative attack data is an extremely difficult problem.

There are an infinite number of potential attack vectors available to malicious actors.

From distributed denial of service attacks to structured query language (SQL) injection

attacks, there is no way to predict and/or guard against all potential attack vectors.
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Therefore, choosing an effective representative subset of these potential vectors is an

extremely difficult task [3].

2.2.1 MIT-DARPA Sets. Two datasets that pertain to this discussion form the basis

for a large portion of the intrusion detection dataset body of knowledge. Both datasets

were created by the Massachusetts Institute of Technology (MIT) Lincoln Labs in

conjunction with the Defense Advanced Research Projects Agency (DARPA). The first

was created in 1998 and the second in 1999. Consequently, the datasets are commonly

referred to as the MIT-DARPA ’98 and MIT-DARPA ’99 datasets respectively, and both

can be found online at http://www.ll.mit.edu/mission/communications/ist/CST/index.html .

As stated in [28], the main goal of creating these datasets was “to drive iterative

performance improvements in participating systems by revealing strengths and

weaknesses and helping researchers focus on eliminating weaknesses.” In order to meet

this goal, the research team created two successive datasets to set a baseline for testing

different intrusion detection systems.

Both datasets were created using similar methodology, with the MIT-DARPA ’99

data collection accounting for some problems that were present in the MIT-DARPA ’98

dataset. The datasets were built to model the standard network traffic of a United States

Air Force (USAF) base, and traffic was simulated in order to account for privacy concerns.

The MIT-DARPA ’98 dataset consists of 32 attack vectors spread out over a seven week

period. The attacks are interspersed with normal network traffic and network packet data

was captured using tcpdump, with approximately 4 Gigabytes (Gb) of data in total

[27, 28, 46]. The MIT-DARPA ’99 dataset consists of 200 instances of 58 attack vectors

launched over a five-week period of time. The packet data was captured using tcpdump

and is divided into a three-week training data subset and a two-week testing data

subset [29, 32].
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A third dataset was created by combining network packet based features of the

MIT-DARPA ’98 dataset with traffic and content based features derived from the original

data [46]. This new dataset was used for the The Third International Knowledge

Discovery and Data (KDD) Mining Tools Competition. It is known as the KDD Cup ’99

dataset and can be found at the University of California at Irvine Machine Learning

Repository: http://archive.ics.uci.edu/ml/databases/kddcup99/kddcup99.html. The

purpose of the competition was to find the best method for intrusion detection by

distinguishing “bad” network traffic from “good.” Specifically, the KDD Cup ’99 data

contains about five million “connection vectors.” Each vector contains 41 features and is

labeled not only as normal or attack, but also with the specific type of attack.

Although the KDD Cup and MIT-DARPA datasets are the most widely used within

the network intrusion detection community, there have been several problems noted with

the data. Three underlying problems with the data generation were proposed in [32]. First,

it was suggested that the data did not truly represent real network traffic, and that the

methods used for modeling real-world traffic patterns were never fully explained.

Secondly, there is no evaluation of the effectiveness of the tcpdump feature used to capture

the packets, as it is known to drop packets during intervals of high traffic. Lastly, and most

importantly, there was never a solid definition put forth for each of the different types of

attack [32, 46]. Additionally, the traffic data for both MIT-DARPA datasets was created

pre-2000. Therefore, the data is over 10 years old. As a result it does not properly convey

modern real-world traffic patterns and makeup.

Further problems were noted specific to the KDD Cup ’99 dataset. Two specific areas

of problem include the presence of redundant records which can bias learning algorithms

and the relative ease of classification that results from the default locations of attacks

within the training and test data [46]. This analysis was used to form a new dataset from

the KDD Cup ’99 data. The NSL-KDD dataset, currently housed at
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http://iscx.ca/NSL-KDD/, aims to remove these issues. It still relies on the same

41-feature vectors of the original KDD Cup ’99 data, but removes redundant records and

recreates the training and test sets in a more challenging order. It is important to note that

the NSL-KDD dataset does not solve any of the dataset creation problems that McHugh

outlined in his analysis of the MIT-DARPA ’98 and ’99 datasets [32]. Mainly due to the

fact that it is the most commonly cited dataset and ease of access, the KDD Cup ’99

dataset is used as the primary network intrusion detection dataset for the purposes of this

research. Further information involving the pre-processing of the dataset for use in the

specific system created is discussed in the following chapter.

2.2.2 High-dimensionality of network intrusion datasets. Network intrusion

datasets tend to have many features. These features represent many different measurable

characteristics of both individual packets and network traffic subsets. For example, while

the KDD Cup ’99 dataset has 41 features, other datasets contain as many as 249 features

[34]. The problem with datasets that contain many dimensions is the “curse of

dimensionality.” First proposed in [4], the curse of dimensionality is tied to the problem of

exponential growth. As dimensions are added, the number of computations needed to

perform basic comparisons while working with the data increases exponentially and

computational power and memory are consumed quickly.

In most cases, the dimensionality problem is addressed by reducing dimensionality

by selecting an ideal subset of features [11]. Due to current computing constraints this is

essential–and will be for the foreseeable future. However, less research has addressed

solutions for how to work more effectively with higher-dimensional data. One benefit of

higher dimensions is specific to anomaly detection. Since anomaly detection systems are

trained on normal data, anomalous patterns are not known. Therefore, it is difficult to

determine which features best separate the anomalous traffic from the normal traffic. Since

the scope of the current research aims to avoid an assumption of prior knowledge of attack

13



network traffic, it is important to use as many features as possible. The current research

attempts to address some of the problems inherent with high-dimensional data, especially

as it pertains to both network intrusion detection and artificial immune systems.

2.3 Artificial Immune Systems

The following sections provides a background of artificial immune systems and begin

to explain the challenges in implementing these systems in high-dimensional spaces. First,

a brief overview of artificial immune systems, in general, and real-valued negative

selection, in particular, is performed. Then, the discussion investigates problems presented

by high-dimensional real-valued negative selection systems. Finally, a few competing

approaches to solving the problems presented in high-dimensional real-valued negative

selection systems are presented.

2.3.1 AIS and negative selection. The biological immune system(BIS) is one of

nature’s anomaly detection systems. The basic role of the biological immune system(BIS)

is to recognize all cells within the body and classify them as self or non-self [9]; the cells

used to perform the recognition task are known as antibodies. Many organs, cells, and

processes interact with these antibodies in order to create a robust immune system.

Many BIS processes have been modeled artificially, but the most common is that of

negative selection. Negative selection is a biological process through which antibodies are

“trained.” The process, which takes place in the thymus, begins with a newly-created,

naive, antibody. The naive antibody is presented protein strings that represent self cells

that are commonly found in the host body. If the antibody detectors any of the self strings,

it is “negatively selected” (discarded). This process is repeated continually in order to

create a set of antibodies that does not recognize and thereby destroy healthy self cells.

The negative selection process was first adapted to a computational model by by

Forrest et al [13]. The first phase of the algorithm creates a set of nonself detectors by
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creating detectors and negatively selecting those that detect self point. A large set of these

detectors is created to model the complement of the set of self points within a dataset. In

the next phase, the detector set classifies a set of test points as self and nonself. The

negative selection algorithm was created to operate on sets of binary strings, where each

binary string represented a data point within the dataset.

2.3.2 Real-Valued negative selection. The first attempt to computationally model

the BIS into a real-valued space was that of Perelson and Oster [38]. They presented the

concept of shape-space as an n-dimensional Euclidean vector space. In shape-space, the

Euclidean distance between two points represents the affinity, or similarity, between those

points. Each feature in a dataset can be mapped to a dimension in shape-space.

Shape-space is similar to the concept of feature-space in pattern recognition, but the range

of shape-space is typically limited to the region of feature-space within which values for

each feature can feasibly fall.

By combining the ideas of real-valued shape space along with the negative selection

algorithm, Gonzalez et al [14] created the real-valued negative selection algorithm (RNS).

RNS uses hyper-spheres to define detectors. A random vector is selected to represent the

center of a hypersphere, and a radius is defined to represent an affinity threshold. The

detector generated then defines all points within this hypersphere as non-self. A

randomly-generated detector is compared against all self points. If the detector matches

self, the detector is iteratively moved away from self points toward a location of the most

separation possible from other detectors.

A subsequent approach to randomizing detector generation is to use a method known

as randomized RNS [15]. In this approach, Monte Carlo integration is used to determine

the size of self and non-self within the given feature space, then a number of randomly

placed detectors are chosen according to Monte Carlo integration calculations. Simulated

annealing is then applied to the random detectors in order to space them out as evenly as
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possible over the non-self space. One problem with this method is that it requires a set of

fixed-sized detectors, and this fixed size can cause problems with ensuring that all space is

accurately covered.

In order to solve fixed size detector problem, the V-detector algorithm [22] was

proposed. A V-detector is a variable-sized detector that is used to achieve the largest

possible coverage of non-self space using the smallest number of detectors. In addition to

moving detectors around the non-self space to create a greater spread–as in randomized

RNS–the radii of detectors can be lengthened or shortened to provide a more accurate

coverage. This approach yielded mixed results in practice. It provided for more accurate

non-self/self differentiation, however, two problems arose. First, overlapping detectors can

occur when two detectors’ radii are increased. This overlap causes redundancy in the

detector set and thus wasted computation. Additionally, outliers in the self set can cause

the detectors to shrink and replicate in order to fill a space that would be better represented

by a large detector.

2.3.3 Problem with RNS in high dimensions. Several authors have pointed out the

problem of the curse of dimensionality within real-valued negative selection as it applies

to the growth of shape-space [15, 23, 24]. In order to improve computational efficiency

and feasibility of the ensuing algorithms, several approaches have been used to try to

reduce the size of real-valued shape-space in high-dimensions. The most common

approach is to reduce the number of dimensions through feature selection [11]. Other

approaches include scaling of dimensions in order to reduce unoccupied space [30], and

reducing the complexity of the any ensuing algorithm by reducing the number of self

points present in shape-space [54].

Stibor et al [45] further honed the analysis of how the curse of dimensionality affects

real-valued negative selection a step further by comparing the growth of shape-space to

that of the detectors placed therein. Assuming the length of the radius remains constant, it
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is shown that the content, the n-dimensional extension of the concepts of area in two

dimensions and volume in three dimensions, of a hypersphere approaches zero as the

number of dimensions approaches infinity. Since most algorithms used in real-valued

negative selection use hyperspherical detectors, it is demonstrated through a ROC analysis

that the classification results of traditional RNS-based algorithms suffer due to the

diminishing content of hyperspheres.

2.3.4 Approaches to combat problems with RNS in high dimensions. There have

not been many attempts made to address the problem of hypersphere growth in

comparison to shape-space as dimensionality increases. Stibor et al [44] chose to create a

real-valued positive selection system. In this system, each self point is treated as the center

of a detector of self. Although this approach removes the problem of covering the nonself

portion of shape-space, it fails to address the fundamental problem with hyperspheres.

Rather than eliminating the problem of hyperspherical content approaching zero, it has

just been transferred from nonself space to self space.

The most direct attempt made to combat the hyperspherical growth problem is that of

applying the concept of distance norms to detector shapes [6]. Chmielewski and

Wierzchon first define a real-valued detector as a point centered at a real-valued vector

with an affinity threshold that is not directly tied to Euclidean distance, but rather to a

distance based on either the Minkowski norm distance. The distance between two

n-dimensional points x = [x1, x2, ..., xn] and y = [y1, y2, ..., yn] is determined using the The

Minkowski norm of order m (Lm-norm distance) in shape-space, which is defined in

Equation 2.1.

Lm (x, y) =

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

|xi − yi|m
⎞⎟⎟⎟⎟⎟⎠

1
m

(2.1)

The Minkowski norm distance is equivalent to Manhattan distance when m = 1 and

Euclidean distance when m = 2. Further, the shape of a detector depends on the value of

m.
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The properties of detector shapes with m ≥ 1 were addressed by Ji and Dasgupta

[24]. However, their analysis of the Minkowski norm distance was done for the purposes

of addressing the speed of their algorithm. Therefore, an analysis of Minkowski norm

detectors with m ≥ 1 was not applied to classification results.

The properties of Minkowski norm detectors with 0 ≤ m < 1 have been discussed by

Aggarwal et al [1] and is applied to real-valued negative selection by Chmielewski and

Wierzchon [6]. It is shown that reducing the value of m directly results in higher

classification accuracy in high-dimensional spaces. However, there is a tradeoff that

occurs between effectiveness and time complexity, as the efficiency of the underlying

algorithms decreases as m decreases.
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3 Approach and Methodology

The following chapter builds upon the framework set in the preceding chapters to

explain the methods used to verify the thesis, “Detector shape is fan extremely important

factor in the effectiveness of a real-valued negative selection system as the number of

dimensions of data increases, especially in comparison to other factors such as radius size

and coverage factor.” The methods described herein build upon the foundational

background overviewed in Chapter 2.

First, the real-valued negative selection algorithm used in this research is presented,

followed by a discussion of the properties of the detector shapes in the real-valued

negative selection system in high-dimensional space. Then, a detector radius sizing

method is discussed. Next, the concept of coverage factor is introduced. Limitations of the

radius sizing methods as the system moves into higher-dimensional spaces are then

explained. Finally, an experiment is laid out to compare the different detector shapes

presented, in order to determine how detector shape influences classification accuracy in

high-dimensional spaces.

3.1 Negative selection system overview

In order to perform the task of network intrusion detection, an artificial immune

systems approach was chosen, specifically a naive real-valued negative selection system.

This real-valued representation of space is known as shape-space, which is a subset of

feature-space where bounds are placed on each feature in order to create an n-dimensional

orthotope [38]. The system is modeled after the real-valued negative selection algorithm

(RNS) [15], where the system randomly creates a set number of hyperspherical detectors

and places them in the regions of shape-space not occupied by self points. Then, any time

that a point is detected by one of the hyperspherical detectors, the point is classified as

nonself.
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Additionally, the created system does not attempt to address the problem of detector

overlap, addressed in [15] and [25]. The current research aims to address specific

problems that arise from implementing an AIS in high dimensional spaces. It is not

necessary to solve the overlap problem in order to address the geometrical problems with

AIS in high-dimensional spaces. The real-valued negative selection algorithm used for all

of the proceeding experiments is shown in Algorithm 1, where p is a data point in the

shape-space, P is a set of data points in the shape-space, Pr is the set of training points, Ps

is the set of test points, η is a pre-determined number of detectors, c represents a point in

shape-space, detc is the detector centered at c, and D is a set of detectors.

3.2 Detector shapes in high-dimensional space

Stemming from the problems of high-dimensional data discussed in Section 2.3.3,

previous research has shown poor results when scaling real-valued negative selection

algorithms to higher-dimensional spaces. It is proposed that, the goals in selecting a

detector shape are threefold. First, it should be computationally easy to determine if a

point lies within the detector. Second, the detector should not be biased toward points in

any given dimension or set of dimensions. Third, the content of the detector, as defined in

Section 2.3.3, should grow proportionally to the content of shape-space as the

dimensionality of the shape-space increases. The following sections define the terms

computational complexity, feature bias, and content ratio as they pertain to detector shape.

3.2.1 Computational complexity. A limiting factor within AISs, and negative

selection in particular, is the number of detectors that can be maintained simultaneously.

Due to limited computing power, a maximum number of detectors is imposed on any

negative selection system. In order to determine the maximum number of detectors

allowed, the computational complexity of each detector must be known. The

computational complexity of a detector shape is defined herein as the number of
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Algorithm 1 Negative selection algorithm

Create training dataset Pr consisting of only self points and testing dataset Ps consisting

of both self and nonself points need to be classified

repeat

Randomly select a center point c within the confines of the shape-space.

while detc detects any points in Pr do

Select a new random value for c

end while

Add detc to the set of detectors D

until η detectors have been created

for each point p in Ps do

for each detector det ∈ D do

Determine if p is detected by det

end for

if p was detected by any det then

Label p as nonself

else

Label p as self

end if

end for
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computations needed in order to determine if a point falls within the given detector. The

number of computations needed is then used to create an upper bound on the growth rate

of the complexity as a function of the number of dimensions, which is reported in

O-notation [8].

3.2.2 Feature bias. Based on the works of Clark and Evans [7] and Perelson and

Oster [38], affinity in shape-space is based on the assumption that points in real-valued

shape-space that lie near each other are more closely related than those that are farther.

For this reason, the distance between two points is relevant for AIS self/nonself

determination. Thus, the shape of a detector can influence whether a point is classified as

self or nonself, and feature bias is therefore defined to account for this dilemma. A

detector is biased toward a certain feature if it has a large Euclidean distance between

points in one feature (i.e. dimension) and a small distance in others. If a detector is biased,

the orientation of the detector or of the points around a fixed detector influence the ability

of a detector to recognize an antigen. Figure 3.1 illustrates this point by showing a case

where the orientation of two points around a square detector, rather than distance between

the points alone, determines whether or not the detector survives negative selection.

Feature bias, b, is defined as the ratio of maximum sensitivity to minimum sensitivity,

where sensitivity, δ, is the distance between the center point of a detector and a given point

on the surface of the detector. Equation 3.1 defines the bias ratio. An ideally biased shape

would have a bias of b = 1, which would mean that it has an equal sensitivity in all

dimensions.

b =
δmax

δmin
(3.1)

3.2.3 Content ratio. Content, C, is the n-dimensional generalization of the

concept of area in two dimensions and volume in three dimensions. As stated earlier,
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Figure 3.1: Illustration of the implications of feature bias in a square detector during

negative selection.

shape-space is a subset of feature-space where bounds are placed on each feature in order

to create an n-dimensional orthotope. The content of shape-space, Css, is shown in

Equation 3.2, where pi represents a point in the i-th dimension, βi is the side length of the

i-th dimension, and n is the total number of dimensions in shape-space.

Css = Π
n
i=1 (max(pi) − min(pi)) = Π

n
i=1βi (3.2)

A shape-space element is defined as an orthotopic subset of shape-space with side-length

that is a fraction of the side-length of shape space. Thus, the side-length of a shape-space

element can be represented as β
λ
; where λ, the number of shape-space elements contained

in one dimension of shape-space, is greater than one. The content of a shape-space

element, Cel, is defined in Equation 3.3, where λi is chosen such that βi

λi
is a constant, thus

creating a shape-space element that is cubic in n dimensions.

Cel = Π
n
i=1

βi

λi
(3.3)

A single detector is sized, in the following equations, relative to a shape-space

element such that the shape-space element is the smallest n-dimensional hypercube that
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completely contains the given detector. Figure 3.2 demonstrates a spherical detector

contained within a shape-space element.

Figure 3.2: Illustration of a spherical detector within a shape-space element in (a) two

dimensions and (b) three dimensions.

The number of shape-space elements contained in n-dimensional shape-space, E(n)

is a function of the number of dimensions, as is shown in Equation 3.4.

E(n) = λn (3.4)

This reveals that the number of shape-space elements required to completely fill the

shape-space grows exponentially with regard to the number of dimensions, completely

independently of the detector shape.

Content ratio, γ is defined as the portion of the content of a shape-space element that

is contained within a single detector, and is shown in Equation 3.5, where Cd is the

content of a detector, and Cel is the content of an element of shape-space.

γ =
Cd

Cel
(3.5)
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Content ratio is an indicator of the number of detectors required to completely cover

shape space when compared to the number of shape-space elements, E(n), required to do

the same. The largest possible content ratio is one, which would require E(n)

non-overlapping detectors to cover shape-space. A content ratio less than one would

require a number of non-overlapping detectors greater than E(n) to cover the entire

shape-space. It is proposed that larger values of γ are preferred, because a higher γ

implies that each individual detector has a higher likelihood of anomaly detection within

the bounding shape-space element.

The use of content ratio allows the ability to asses the number of detectors needed as

dimensionality increases. If a detector’s content ratio decreases as dimensionality

increases, then the number of detectors would need to be increased faster than the growth

of E(n) just to keep the same likelihood of anomaly detection.

3.2.4 A comparison of three detector shapes. Using the concepts of computational

complexity, feature bias, and content ratio, the following section compares the two most

common detector shapes: hyperspheres and hypercubes. Then a third shape, the

hypersteinmetz, is proposed to potentially balance the tradeoffs between hyperspheres and

hypercubes.

An n-dimensional hypersphere is a generalization of the two-dimensional circle and

three-dimensional sphere to n ≥ 4 dimensions. It is therefore defined by equation 3.6,

where [c1, c2, ..., cn] defines the hypersphere’s center point c in n-dimensional space,

[p1, p2, ..., pn] is a point p that is within the hypersphere, and r represents the radius of the

hyper-sphere [52].

r2 = (p1 − c1)
2 + (p2 − c2)

2 + · · · + (pn − cn)
2 (3.6)
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Euclidean distance between points p and c, dpc, for an n-dimensional space is defined

by equation 3.7, where di is the Euclidean distance from point p to c in dimension i.

dpc =

√
d1

2 + d2
2 + · · · + dn

2 (3.7)

A point p falls within a given hypersphere detector if its Euclidean distance from the

detector’s center c is ≤ r. This calculation requires three operations for every dimension or

3n = O(n) operations. This is a linear upper bound and is therefore considered

computationally feasible.

Since the surface of a hypersphere is one radius distance from the center point in all

directions, one benefit of using hyperspheres is that they have a feature bias of b = 1; this

is demonstrated in Equation 3.8.

bhs =
δmax

δmin
=

r
r
= 1 (3.8)

Since bhs = 1, we know that the hypersphere is not biased toward any specific dimension

in shape-space.

The primary drawback to using hyperspheres is that as the number of dimensions of

shape-space increases, the content ratio of a hypersphere goes to zero. In [45] it is shown

that for each length of r there exists a dimension n for which the content of the

n-dimensional hypersphere, Chs, is maximized. After this point is reached, Chs goes to

zero as n approaches infinity. This is shown in Equation 3.9.

lim
n→∞ Chs = 0 (3.9)

The content ratio of a hypersphere in comparison to a shape-space element, therefore,

decreases exponentially with respect to the number of dimensions n. The content ratio of a

hypersphere, γhs, is as shown in Equation 3.11 and demonstrated in Figure 3.3. Γ(α) is the

mathematical gamma function, which has factorial growth with respect to α, as shown in
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Equation 3.10 [33].

Γ(α) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if α = 1

(α − 1)Γ(α − 1) if α > 1
(3.10)

γhs =
Chs

Cel
=

π0.5n

n(2n−1)Γ(0.5n)
(3.11)

Figure 3.3: Content and content ratio of a hypersphere with r = 1 as the number of

dimensions increases.
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An n-dimensional hypercube is a generalization of the two-dimensional square and

three-dimensional cube to n ≥ 4 dimensions. For the purpose of this discussion, a

hypercube is assumed to be aligned with the axes of shape space. As such, a hypercube

can be projected onto each dimension as a line segment. A given point y, therefore, falls

within a given hypercube detector if for every dimension it falls within the projected line

segment representing the cube. Each point must be compared to a lower and upper bound

in each dimension. So, the number of comparisons needed is twice the number of

dimensions. This provides a computational complexity bounded by a growth rate of

3n = O(n), making it computationally equivalent to the hypersphere.

The feature bias of a hypercube can be determined by applying the method shown in

Equation 3.1. The shortest distance from a hypercube’s center to the surface, δmin, is equal

to half of the side length, a. The longest distance from a hypercube’s center to the surface,

δmax, is from the center to the corner. The feature bias of a hypercube, bhc, is shown in

Equation 3.12.

bhc =
δmax

δmin
=

√
n
(

a
2

)2
a
2

=
√

n (3.12)

Therefore, as the number of dimensions increases, the hypercubic detector’s feature bias

increases.

Because a hypercube is a specific instance of orthotope where all side lengths ai are

equal, it does not exhibit the decreasing content ratio of a hypersphere as dimensionality

increases. We can see that a is a subset of shape-space such that ahc =
β

λ
. Therefore, there

must exist a shape-space element that contains the hypercube, such that ael =
β

λ
. Based on

Equation 3.3, we can substitute this value and see that a content ratio, γhc, of one is

achieved in Equation 3.13

γhc =
Chc

Cel
=

an(
β

λ

)n = 1 (3.13)

An n-dimensional hypersteinmetz solid is the orthogonal intersection of N cylinders,

where N is equal to the ceiling of half of the number of dimensions, as shown in
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Equation 3.14.

N =
⌈n
2

⌉
(3.14)
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Figure 3.4: Hypersteinmetz solid shown from different angles.

An example of a hypersteinmetz is shown in Figure 3.4. For the current discussion, a

unit hypersteinmetz aligned along the shape space dimensions is assumed. The

n-dimensional hypersteinmetz is defined by the set of equations 3.15, where x is a point in

the hypersteinmetz and xi is the i-th dimensional value of x.

x1
2 + x2

2 ≤ r2

x3
2 + x4

2 ≤ r2

...

xn−1
2 + xn

2 ≤ r2

(3.15)
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In order to determine whether a point y resides within a given hypersteinmetz x, each of

the
⌈

n
2

⌉
cylinders is projected down to two dimensions. The point y is projected onto each

dimensional pair. If all projections lie within the corresponding circles, then the point y is

contained by the hypersteinmetz. Since determining if a point lies within a hypersphere

requires 3n operations and a hypersteinmetz can be projected down to a set of

two-dimensional hyperspheres, a hypersteinmetz detection computation requires 3 · 2 = 6

operations for each cylinder. In the worst case scenario, 6N operations would need to be

performed. Therefore, the computational complexity of the hypersteinmetz is

6N = 6 · n
2 = 3n, resulting in a worst case growth rate of O(n). The growth rate of

determining if a point lies within a hypersteinmetz is, therefore, computationally

equivalent to determining the same for the hypercube and hypersphere.

The distance between the center point of a hypersteinmetz and the closest point on

the surface is equal to the radius length chosen for all cylinders. Since we are assuming a

unit hypersteinmetz, Equation 3.16 represents the minimum distance.

δmin = r = 1 (3.16)

As Equation 3.17 demonstrates, the values for δmax differ in odd and even dimensions.

δmax =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√

n
2 if n is even√

n+1
2 if n is odd

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =
√⌈n

2

⌉
(3.17)

The feature bias of a hypersteinmetz, bst, is shown in Equation 3.18.

bst =
δmax

δmin
=

√⌈
n
2

⌉
1
=

√⌈n
2

⌉
(3.18)

The following equations are presented in order to determine the content ratio of a

hypersteinmetz. First, the content of a hypersteinmetz, Cst, can be found through iterative

integration shown in Equation 3.19, where yi =
√

r2 − xi
2.

Cst =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∫ r2

−r2

∫ yn

−yn
· · · ∫ r2

−r2

∫ y2

−y2
dx1dx2 · · · dxn if n is even∫ r2

−r2

∫ yn

−yn

∫ yn+1

−yn+1
· · · ∫ r2

−r2

∫ y2

−y2
dx1dx2 · · · dxn if n is odd

(3.19)
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Evaluation of the integrals in Equation 3.19 results in the content expression in

Equation 3.20.

Cst =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
πr2
) n

2 if n is even

16
3 rnπ

n−3
2 if n is odd

(3.20)

Equation 3.21 shows the content ratio for a hypersteinmetz, γst, obtained by substituting

Equation 3.20 into Equation 3.5.

γst =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(πr2)

n
2

2n if n is even

16
3

rnπ
n−3

2

2n if n is odd
(3.21)

The optimal number of orthogonal cylinders to use in a hypersteinmetz solid detector

is
⌈

n
2

⌉
, where n is the number of dimensions in the shape space. This is due to the fact that

the feature bias does not change as cylinders are added, while at the same time the number

of operations required increases and the content ratio decreases. Therefore,

hypersteinmetz detectors for the purpose of the current research consists of
⌈

n
2

⌉
orthogonally intersecting cylinders.

Comparing the three shapes, the hypersteinmetz balances the problems between the

hypersphere and hypercube. Table 3.1 shows that the hyperspheres content ratio decreases

factorially due to the presence of the gamma function in the denominator, while that of the

hypersteinmetz only decreases exponentially. Additionally, the feature bias of the

hypercube is reduced in the hypersteinmetz by a factor of
√

2. Although the

hypersteinmetz does better in both regards, it does not approach the ideal content ratio of

the hypercube or the ideal feature bias of the hypersphere.

3.3 Detector radius sizing experimental design

The discussion presented in Section 3.2 proposed that content ratio and feature bias

have an adverse effect on detector shape as dimensionality increases. However, we

investigate whether or not content ratio and feature bias translate directly into
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Table 3.1: Table comparing the content ratio and feature bias of the hypersphere,

hypersteinmetz, and hypercube.

Hypersphere Hypersteinmetz Hypercube

Content ratio π0.5n

n(2n−1)Γ(0.5n)
π0.5n

2n−1 1

Feature bias 1
√⌈

n
2

⌉ √
n

classification accuracy within a real-valued negative selection AIS, and the following

sections describe a set of experiments designed to test this.

The first experiment performed to investigate the relationship between different

detectors is to constrain the range of detector radii that can be used for further

experiments. In order to provide a baseline for the minimum radius size for a detector, it is

important to take into account two things. First, a radius size that is too large does not

allow the detector to fall between data points that are separable. The tradeoff, however, is

that a radius that is too small “overfits” the data by falling between data points that are

similar. Overfitting causes the RNS system to classify points that are self as nonself. The

following sections propose the nearest neighbor method for determining a minimum

detector radius, and a maximum radius sizing method, wherein the largest possible

detector is placed. Once these methods are explained, an experiment is designed to show

that the range produced by the proposed minimum and maximum methods is a feasible

sizing method for the purpose of classification in a real-valued negative selection system.

3.3.1 Minimum radius sizing using nearest neighbor (nn) method. Clark and

Evans [7] noted that the most similarity to any data point is gained by looking at the data

point closest to it. This phenomenon, known as the nearest neighbor principle, is also a

fundamental assumption required in the real-valued negative selection approach to AIS,

expressed by equating the concept of ‘affinity’ with Euclidean distance. Since real-valued
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negative selection fills up negative space with detectors, we need to ensure that groups of

similar points are not broken up by detectors. In order to do this, a nearest neighbor

distance is computed to determine the minimum radius size allowed.

In order to determine how close together similar points are distributed, first a subset

of points P is selected randomly from the set of self training points within the dataset. For

each point p ∈ P, p’s nearest neighbor q is found. The distance, dnn, from p to q is

calculated. Once all values of dnn have been calculated, the mean distance is determined.

This mean nearest neighbor distance then becomes rmin, the minimum radius size. See

Algorithm 2 for further details.

Algorithm 2 Minimum radius sizing using nearest neighbors, where p and q are self data

points, dnn is the minimum distance from p to any q, and rmin is the minimum radius size

for a detector.
repeat

Randomly select a data point p from the training dataset

for each other training data point q do

Determine the distance from p to q

end for

Determine the minimum pq distance, dnn, and record it

until n nearest neighbor distances have been recorded

Set rmin to the mean of all dnn values found

3.3.2 Maximum radius sizing using largest radius placement method. In order to

determine the maximum for the radius range, the largest possible detector is placed. A

detector with radius r =
√

n, where n is the number of dimensions of shape-space, is

placed randomly in shape space. If the detector detects any self training points, its center

point is moved to a new random location. If the detector cannot be placed in fewer than
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10,000 attempts, the radius is reduced by 0.05 · √n and placement is attempted again.

This is repeated until a detector is successfully placed within 10,000 attempts. The radius

length at this point is recorded as the maximum radius size, rmax. Whereas rmin is the same

value regardless of detector shape, each detector shape has a different value for rmax. A

further explanation of the method can be found in Algorithm 3.

Algorithm 3 Maximum radius sizing algorithm, where rc is the radius of a given detector

dc centered at point c, n is the number of dimensions of shape-space, a is the number of

center points tested so far, and rmax is the maximum detector radius length.

rc =
√

n

while dc has not been successfully placed do

while a < 10, 000 AND dc has not been successfully placed do

Randomly choose a new center point c

if dc does not detect any self training points then

dc has been successfully placed

set rmax = rc

else

a = a + 1

end if

end while

if dc has not been successfully placed then

rc = rc − .05
√

n

a = 1

end if

end while
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3.3.3 Detector radius sizing experiment. Current research addresses the need to

search for best radius sizes within a real-valued negative selection system. One solution is

to use the variable sized detectors presented by Ji and Dasgupta [25]. However, when

using fixed-size detectors, the only method shown in the research is that of trial and error

[15]. Additionally, within a variable-sized detector algorithm, all detectors must have an

initial size. Therefore, constraining the range of values in which to search provides the

first steps toward finding the best detector size for a given dataset. The following

experiment is designed to verify that the proposed min and max detector sizing methods

provide a reasonable range of radius lengths within which this search can be performed.

3.3.3.1 Experimental question. Do the nearest neighbor method for sizing the

minimum radius length rmin and the largest detector placement method for sizing the

maximum radius length rmax provide a good lower and upper bound respectively on the

radii to test for the naive real-valued negative selection algorithm described in Algorithm

1?

3.3.3.2 Testable hypothesis. The optimal point, that point closest to the 0%

false positive/100% true positive point via Manhattan distance, on the Receiver Operating

Characteristic (ROC) curve comparing false positives and true positives for a given

classification run falls somewhere between rmin and rmax.

3.3.3.3 Dataset. Datasets are chosen from the University of Memphis

negative selection 2-D synthetic datasets [10]. These datasets have been used by several

researchers in order to baseline and compare effectiveness of real-valued negative

selection algorithms [25][55]. Each dataset involves a training dataset of only self points

and a testing dataset including both self and nonself points. Self points are defined by

some given shape. The datasets used for this specific research include the Pentagram-big,

Pentagram-bigneg, Comb, Combneg, Intersection-thick, Intersection-thickneg, Ring-thick,
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and Ring-thickneg datasets, see Figure 3.5. These specific shapes were chosen as they

provide a good variance of different distributions of data points within shape-space. Each

training dataset includes 1000 2-d self points and each testing set includes 1000 2-d

points, 500 self and 500 nonself.
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Figure 3.5: Datasets used for training, points represent self data.

3.3.3.4 Outline of experiment. For this experiment, the effects of detector

shape is not investigated. Only a two-dimensional hypersphere detector is considered. The

control variables are the percentage of the content of shape-space covered by the detector

set (ignoring detector overlap), size of shape-space, and number of dimensions. The only

independent variable in this experiment is detector size. In order to form a baseline for
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comparison, a successively increasing set of radius sizes are also used. In addition to rmin

and rmax, radius sizes from .01 up to and including rmax, incremented by .01, are tested.

The side-length of shape-space is set at 1 for all dimensions, thus the content of

shape-space is one. The number of detectors created is equal to the number of detectors

needed to create a detector set that holds exactly 200% of the content of shape-space,

ignoring detector overlap. Therefore, the number of detectors, η, is equal to the content of

shape-space divided by the content of a detector, multiplied by the coverage factor f . The

coverage factor is equal to the percentage of content covered, cpct, divided by 100 (see

Equation3.22).

η =
cpct

100
1

2πr2
=

f
2πr2

(3.22)

Additionally, for each radius size threshold, the experiment runs 10 times on each dataset.

Each run of the experiment executes Algorithm 1 recording the numbers of: (I) True

positives - A data point was “NONSELF” and was classified as “NONSELF”, (II) True

negatives - A data point was “SELF” and was classified as an “SELF”, (III) False positives

- A data point was “SELF” and was classified as “NONSELF”, and (IV) False negatives -

A data point was “NONSELF” and was classified as “SELF”. See Algorithm 4 for

pseudo-code representation of this outline and Table 3.2 for tabular specification of

experiment parameters.

3.3.3.5 Representation of results. For each dataset there are 10 runs; the

number of true positives, true negatives, false positives, and false negatives are averaged

over these 10 runs. The mean and variance for each set of runs are recorded. Thus, there

are a mean number and variance of true positives, true negatives, false positives, and false

negatives associated with each radius size of detectors tested. All of these statistics are

collected for each of the datasets and are reported as follows.
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Algorithm 4 Pseudocode of detector radius sizing experiment.

for each dataset do

for r = 0.01→ rmax, by steps of .01 do

Set the number of detectors n such that the total content of all detectors is equal to

200% of the content of the shape-space

repeat

Execute Algorithm 1 and record the true positives, true negatives, false positives,

and false negatives

until 10 tests have been run on each subset

end for

end for

Results are displayed in a series of two-dimensional receiver operating characteristic

(ROC) curve plots. Each plot represents the results for one dataset (e.g. Comb, Ring

Thick Negative, etc.). The x-axis shows the percentage of false positives–the percentage

of points that were SELF and were classified as NONSELF (i.e. false alarms). The y-axis

shows the percentage of true positives–the percentage of points that were NONSELF and

were classified as NONSELF (i.e. detections). Each point on the plot represents one

radius threshold.

3.4 Coverage factor experimental design

Where the first experiment aims to find a range of radius sizes to use in the

real-valued negative selection system, the next experiment aims to determine how many

detectors to produce once a radius size is chosen. Coverage factor was briefly introduced

in the previous experiment. However, a full explanation is warranted. The content of a set

of detectors CD is the cumulative content of all detectors, disregarding detector overlap.

Equation 3.23 shows Cd as a function of the number of detectors η and the content of an

38



Table 3.2: Detector radius sizing experiment design parameters.

Parameter Values

Number of Dimensions n 2

Dataset Comb, Combneg, Intersection-thick, Intersection-thickneg,

Pentagram-big, Pentagram-bigneg, Ring-thick, Ring-thickneg

Detector Radius r 0.01→ rmax, by steps of 0.01,

Shape-Space Content Css 1

Coverage factor f 2

Number of Detectors η f
2πr2

10 iterations are performed for each test.

Measured outputs for each test are true positives, true negatives, false positives, and false negatives.

individual detector Cd.

CD = ηCd (3.23)

The content of a set of detectors is also equal to the content of shape space Css multiplied

by the coverage factor f , as shown in Equation 3.24.

CD = f · Css (3.24)

For this reason, a coverage factor of 2 would represent a CD that contains 200% of

the content of shape-space, disregarding detector overlap.

3.4.1 Experimental question. How do we approximate the relationship between

coverage factor and classification accuracy?

3.4.2 Testable hypothesis. Increasing coverage factor does not necessarily

improve accuracy, as the addition of further detectors may cause the system to overfit the
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self data points and also cause increasing detector overlap. However, the difference in

accuracy between runs should decrease as detectors are added. Therefore, as the coverage

factor is increased from 2 to 30, the standard deviation of the classification accuracy

decreases. It reaches a point at which adding further coverage no longer reduces the

standard deviation. Additionally, the mean of the true positives should increase, while the

mean of false positives should decrease up to the point at which adding additional

detectors does not provide additional benefit. Thus, the ROC curves of higher coverage

factors should approach points closer to 0% false positives and 100% true positives.

3.4.3 Dataset. Fisher’s iris dataset [12] is used. The dataset consists of 150 data

points, 50 of each of three classes (Setosa, Virginica, Versicolour). The dataset is broken

into a set of training and testing datasets as follows. Since real-valued negative selection

acts on only two classes (self and nonself) each dataset is set aside one type of iris as

nonself and combine the other two iris types into the self data points. For example, Setosa

and Virginica are combined to create self in order to test classification of Versicolour as

nonself. The larger dataset is broken up in this way to create three separate sets. This

dataset was chosen for two reasons. First, it provides a distribution of data that is not

synthetic, as were the datasets used in radius sizing experiment. Secondly, the dataset has

been used numerous times and results can be compared with those of others.

Additionally, 90/10 cross-validation is used. Each experimental run trains on 90% of

the data and test on 10%. In order to achieve this, the data sets are first each be broken into

ten subsets. Each subset consists of a training subset and a testing subset. The training

subset consists of 90 points (45 from each of the two self classes of iris) and each testing

subset consists of 15 points (5 from each of the two self and one nonself iris classes). The

ten datasets are created such that different points are chosen as test points for each subset.

Therefore, there are 30 total subsets created.
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3.4.4 Outline of experiment. The experiment runs with a four-dimensional

hypersphere detector. The control variables are the size of shape-space, detector shape,

and number of dimensions. The length of shape-space is set at 1 for all dimensions, thus

the content of shape-space is one. Ten successive radii are tested, and for each radius 11

coverage factors are tested. For each set of parameters, the experiment runs 10 times on

each dataset. Each run of the experiment executes Algorithm 1 recording the numbers of

true positives, true negatives, false positives, and false negatives.

The algorithm is executed with η detectors, where η is calculated in the following

manner. The content of a hypersphere in n dimensions is shown in Equation 3.25.

Chs =
2rnπn/2

nΓ (n/2)
(3.25)

The content of a detector set CD is equal to the content of an individual detector Cd

multiplied by the number of detectors in the set η, as shown previously in equation 3.23.

The number of detectors needed in an individual run, is calculated using Equations

3.24, 3.25, and 3.23. This results in Equation 3.26.

η =
f · Css

Cd
=

f · n · Css · Γ (n/2)
2 · rn · πn/2

(3.26)

See Algorithm 5 for pseudo-code representation of this outline and Table 3.3 for tabular

specification of experiment parameters.

3.4.5 Representation of results. Results are represented in two forms. A ROC

curve of false positives versus true positives is created. The tunable statistic used to create

each ROC curve is the size of the radius.

A low variance of classification accuracy between classification runs is desirable.

Low variance means that regardless of the training points selected and the exact placement

of the detectors, the same results are obtained every time. Therefore, the variance of the

classification runs is important to record. In order to capture this, the following procedure
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Algorithm 5 Pseudocode design of coverage factor experiment. r is the radius of the

detector, f is the coverage factor, and η is the number of detectors.

Set the detector shape to hypersphere

Set the number of dimensions to 4

for r = rmin → rmax, by steps of rmax−rmin

9 do

for f = 2, 4, 6, 8, 10, 12, 14, 15, 20, 25, 30 do

for each dataset: Setosa, Versicolor, Virginica do

for each of the 90/10 cross-validation subsets do

repeat

Set η using equation 3.26

Execute Algorithm 1 using η detectors and record the true positives, true

negatives, false positives, and false negatives

until 10 tests have been run on each subset

end for

end for

end for

end for

is completed: The percentage of true positives and false positives are averaged across each

radius/coverage factor pairing; a percentage is computed for each of the ten test runs for

each of the ten test sets for each of the three iris types. The standard deviation across each

radius/coverage factor pairing is recorded. Then, the mean standard deviation across all

radii for a given coverage factor is reported. By comparing the standard deviations of both

true and false positives across different coverage factors, a good coverage factor can be

obtained for future tests.
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Table 3.3: Coverage factor experiment design parameters.

Parameter Values

Dataset Setosa, Versicolor, Virginica

Detector Shape Hypersphere

Number of Dimensions n 4

Detector Radius r rmin → rmax, by steps of rmax−rmin

9

Detector Content Cd
r4π2

2Γ(2)

Shape-Space Content Css 1

Coverage Factor f 2, 4, 6, 8, 10, 12, 14, 15, 20, 25, 30

Number of Detectors η fCss

Cd

10 iterations are performed for each test.

Measured outputs for each test are true positives, true negatives, false positives, and false negatives.

3.5 Detector size and coverage factor in higher-dimensional space

Network intrusion datasets are inherently high-dimensional, as explained in Section

2.3.3. As AIS systems are applied in higher dimensional shape-space, there are

considerations in addition to those inherent in different detector shapes that arise. First,

memory constraints of the implementation system constrains the number of detectors that

can be implemented, thus limiting the range of radius sizes that can be used to achieve a

given coverage factor. Secondly, it is shown here that there is a relationship between the

number of dimensions and effective coverage factor within an AIS.

3.5.1 Memory limitations on minimum radius size. Equation 3.26 reports the

method for calculating the number of detectors needed within a run of Algorithm 1 given

coverage factor, number of dimensions, and detector size. However, this number cannot

always be implemented due to memory limitations. In order to use Algorithm 1, all
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detector/test point pairs must be in memory simultaneously. Therefore, the maximum

number of detectors allowed, is dependent on both the number of test points and the

number of dimensions (i.e. how many comparisons must be made). The constraining

factor in this regard is dependent on the memory of the computing and programming

platforms being used. By taking into account the specific system capabilities, a maximum

number of elements allowed in the arrays arises. Using this maximum, Equation 3.27

shows the exact relation between the maximum number of elements in an array Emax and

the maximum number of detectors allowed ηmax, where n is the number of dimensions and

Ps is the number of test points. The number of test points is important even in a realtime

system, due to the fact that the speed of network traffic determines how many points need

to be calculated at once in order to avoid significant network slowdown.

ηmax =
Emax

n · Ps
(3.27)

From the maximum number of detectors allowed, a minimum allowable radius size

follows. Solving Equation 3.26 for r and substituting values from Equation 3.27, Equation

3.28 is derived.

rmin =
n

√
f · n · Γ (n/2)
2 · ηmax · πn/2

=
n

√
f · n2 · Ps · Γ (n/2)

2 · Emax · πn/2
(3.28)

Therefore, the minimum radius allowed due to memory constraints is a function of the

number of dimensions n, coverage factor f , number of simultaneously processed test

points Ps, and the maxim number of elements allowed in an array Emax.

3.5.2 Coverage factor limitations on maximum radius size. In addition to the

problem of limited memory in higher-dimensional space, there is also a maximum

constraint on radius size due to coverage factor in high-dimensions. To define these

high-dimensional coverage effects, here we introduce five terms: potential content, actual

content, redundant content, effective content, and lost content.
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The potential content Cp of a detector set is the total sum of the content of all

detectors in the set. The equation for potential content is shown in Equation 3.23 (it is

repeated here in Equation 3.29). This value is termed ‘potential content’ because it is the

amount of content that could be covered by the entire set of detectors if they were placed

within an infinite shape space with no overlap.

Cp = CD = ηCd (3.29)

Actual content Ca is the total content covered by the detector set (i.e. content covered

by more than one detector is only counted once). This value is termed ‘actual content’

because it does not including overlapping content, but only that content that is actually

applied toward coverage. Contrarily, the redundant content Cr is the content contained in

overlapping detectors. Thus, redundant content is calculated as the difference between the

potential and actual content. The relationship between potential, actual, and redundant

content is shown in Equation 3.30.

Cp = Cr + Ca (3.30)

The effective content Ce is the total content covered by the detector set that lies

within shape-space. Thus, effective content is that part of the actual content that falls

within shape-space. This value is termed ‘effective content’ due to the fact that it is only

the portion of the actual content that has an effect on anomaly detection. Lost content Cl is

that portion of the total content covered by the detector set that is not a part of

shape-space. This value is termed ‘lost content’ because it is that content that is using

computing power, since some portion of each detector must fall within shape-space, but

provides no value toward anomaly detection. The relationship between actual, effective,

and lost content is shown in Equation 3.31.

Ca = Ce + Cl (3.31)
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Whereas the potential content is dependent only on the size of the detector; the

actual, redundant, effective, and lost content are also dependent upon where the detector

has been placed in shape space. In order to maximize the effectiveness of a real-valued

negative selection system, it is important to maximize the effective content, while

reducing the redundant and lost content. By reducing redundant and lost content,

computing power and memory is not used on detectors that are providing no further

benefit to the system. Additionally, maximizing the effective content ensures that the

system is using as much of shape-space as possible to detect anomalies. The relationship

between potential, redundant, effective, and lost content is derived in Equation 3.32, by

substituting Equation 3.31 into Equation 3.30.

Cp = Cr +Ce + Cl (3.32)

The naive real-valued selection system determines the number and size of detectors

based on the principle of potential content, which is introduced here. A coverage factor of

x means that the potential content of the detector set created contains x times the content

of shape space. Since detection is dependent upon effective coverage, not potential

coverage, it is important to ensure that lost content and redundant content are reduced (see

Equation 3.32). Determining the redundant coverage Cr of a set of detectors has been

investigated in the literature and shown to be a computationally difficult problem [42, 43].

Thus, this research considers the problem of reducing lost content. In order to reduce Cl,

this research looks at two cases: the scenario where a detector falls in the extreme corner

of shape space, and that where a detector falls in the center of shape space. These two

locations provide bounds on lost content, since a detector placed at the center has minimal

lost content, and a detector in the corner has maximal lost content.

In the case where a detector falls in the corner of shape-space, there is always content

lost. The percent of content lost depends on the radius length and the number of

dimensions. As the number of dimensions increases, the percent of content lost grows at a
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rate greater than or equal to that shown in Equation 3.33, where the side-length of

shape-space is 1 and n is the number of dimensions.

Cl = Cd − Cd

2n
(3.33)

Content loss grows at that rate until the radius of a detector exceeds the side-length of

shape space. After this point, it loses content at a greater rate. For example, two

dimensional content loss is shown in Equation 3.34, where l is the side-length of

shape-space, r is the radius length, and n is the number of dimensions. The first half of

Equation 3.34 is found by inserting 2 as the value of n in Equation 3.33. The second half

of equation 3.34 is derived by using the first half coupled with the derivation of the area of

the content of a circular segment as shown in [18]

Cl =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cd − Cd

4 , for 0 ≤ r ≤ l

Cd − Cd

4 +
r2

2 ·
(
arcsin

( √
r2−l2

r

)
− sin

( √
r2−l2

r

))
, for l < r ≤ √n

(3.34)

This effect is demonstrated in Figures 3.6 and 3.7. Figure 3.6 shows the detector content

lost from a two-dimensional hypersphere detector placed in the corner of shape-space as a

function of radius length, while Figure 3.7 shows the percentage of detector content lost

by the same detector. As additional dimensions beyond two are added, the effect of a

radius length exceeding the side-length of shape space becomes more pronounced.

Therefore, a large percentage of content is always lost when a hyperspherical detector is

placed in the corner of shape-space.

However, when a detector is placed in the center of shape-space there is a different

effect seen. The detector has a Cl = 0 until the radius length is greater than half the

side-length of shape-space. After this point, content is lost at increasing rates as radius

length is increased, which is shown in Figure 3.8.

Since content loss is unavoidable, the proper maximum radius size based on content

loss could be an area for further study. Stibor et al also cited observed effects in a study of
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Figure 3.6: Detector content lost from a two-dimensional hypersphere detector placed in

the corner of shape-space as a function of radius length.

V-detectors stemming from a disjoint between potential and effective content, which may

be attributed to this phenomenon [44]. A maximum radius size of half of the side-length

of shape-space is imposed in order to limit the effects of lost content on the experimental

results of the detector shape comparison.

3.6 Detector shape comparison experimental design

With an understanding of high-dimensional considerations in place, an experiment is

designed to compare the differences between detector shapes in high-dimensional spaces.

First, the goal of the experiment is shown. Next, the pre-processing techniques used on the

chosen dataset–KDD Cup ’99 10% dataset–is explained. Finally, the high-dimensional
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Figure 3.7: Percentage of detector content lost from a two-dimensional hypersphere

detector placed in the corner of shape-space as a function of radius length.

detector sizing considerations explained in Section 3.5 is applied in order to find a

bounding for detector radius sizes. This then leads to an experimental design.

3.6.1 Experimental question. Does the hypersteinmetz solid either provide better

classification results or reduce variance within a real-valued negative selection system as

dimensionality increases when compared to the hypersphere or hypercube?

3.6.2 Testable hypothesis. Holding the number of detectors created for a given

negative selection run constant, the hypersteinmetz solid provides noticeably different

results than the hypersphere, while showing somewhat different results than the hypercube

as dimensionality increases. For the purposes of this experiment, the definition of good
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Figure 3.8: Detector content lost from a hypersphere detector placed in the center of shape-

space as a function of radius length.

relies on the ROC curve for the detection results, comparing false positives to true

positives. For a detector type to provide ”better” results, its classification results, when

reported in ROC curve format, falls closer 0% false positive/100% true positive position

than that of the other detectors; this implies that it can, overall, achieve higher true

positive rates with lower false positives. It is expected that the hypersteinmetz and

hypercube detectors outperforms the hypersphere, by garnering lower mean false positive

percentages and higher mean true positive percentages. This effect becomes more

pronounced as dimensionality increases.
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Additionally, another definition of good for the purpose of this experiment is the

variance that occurs between test runs. If there is a high variance from one run to the next,

the classifications are not repeatable. However, if classification runs are consistently

providing similar results, then they can be relied upon. For this reason, if a shape provides

lower variance–all else remaining equal–than another, it can be considered better in that

regard. It is expected that the hypercube and hypersteinmetz provides classification results

with lower variance than that of the hypersphere.

3.6.3 KDD dataset pre-processing. The KDD Cup ‘99 dataset was chosen for two

reasons. First, it provides an example of a network intrusion dataset with many features.

Secondly, it has been used by many previous researchers, and therefore provides a useful

dataset for comparison purposes. Here, we have used the KDD Cup ’99 10% dataset,

rather than the entirety of the dataset. In the original, there are hundreds of thousands of

data points, and as such an exhaustive investigation of the dataset is not computationally

feasible with accessible resources. Therefore, the 10% dataset provides a subset of the

points that has been used by previous researchers [56]. The dataset is set up in such a way

that all different attack types are fused to form an attack class. This provides for a

two-class classification method, and has been shown previously [5] [35].

In order to use this dataset, however, some pre-processing must first take place. The

KDD Cup ’99 originally contains 41 dimensions of data. However, seven features of the

data are non-real-valued features. The use of the non-real-valued features is an area of

possible future research, but for the current experiment these dimensions are excluded.

Additionally, feature 20 (number of outbound commands) is removed, as every entry in

this field is the same. Thus, the dataset is pared down to 33 dimensions. Similar methods

have been used previously [56].

Three methods were considered for dimensional ordering. The dimension orderings

found in both [26] and [2] were investigated. The method employed in [26] was to rank
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the features from most to least discriminating using information gain, by calculating how

well each feature discriminates a specific class. The method for ranking features proposed

by [2] incorporates the information gain technique along with K-means learning.

Classification results were extremely poor using these two methods. The reason for this is

most likely that both methods were developed in order to determine those features that

would distinguish specific types of attacks, rather than doing a binary–attack versus

normal–classification.

The dimensions were therefore reordered according to the process described in

Algorithm 6, where Psel f and Pnonsel f represent the sets of self and nonself points, p and q

are points within the set of all points, n is the number of dimensions, and ui is the number

of unique nonself points for a given dimension i. The reason the data are arranged in this

manner is that the data are presented to the system in such a way that those features most

likely to show difference between self and nonself points are processed when fewer

dimensions are used. This choice is made, understanding that the objective of the negative

selection algorithm is to train only on self data. However, the objective of this experiment

is not to show the validity of the training process, but rather the effectiveness of the

detector shapes.

From a training perspective, there is no added value in training on duplicate data

points. Previous studies using the KDD data, such as [46], have also recognized duplicate

data as a problem causing the failure of methods using the dataset. In order to eliminate

duplicate points, the dataset is first pared down to only include the features used in the

current iteration. Once this is done, the data is divided into normal and attack traffic sets.

All duplicates are removed from each individual set. However, for testing purposes,

duplicate points may still exist between the normal and attack traffic. This process is

demonstrated in Algorithm 7.
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Algorithm 6 Pseudocode of algorithm to reorder features in KDD dataset

Divide data into self Psel f and nonself Pnonsel f points

for i = 1→ n do

for all points p ∈ Psel f do

Remove all points p with duplicate values in dimension i

end for

for all points q ∈ Pnonsel f do

Remove all points q with duplicate values in dimension i

end for

for all points p ∈ Psel f do

for all points q ∈ Pnonsel f do

if p = q in dimension i then

Remove q from the set of nonself points

end if

end for

end for

Record the number of remaining unique nonself points ui for dimension i

end for

Reorder the dimensions according to ui value, from highest to lowest
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Algorithm 7 Pseudocode of algorithm to remove all duplicate data points

Remove all features not used in this run

Divide data into self Psel f and nonself Pnonsel f points

for all points p ∈ Psel f do

Remove all points p with duplicate values in all dimensions

end for

for all points q ∈ Pnonsel f do

Remove all pointsq with duplicate values in all dimensions

end for

Once the pre-processing is complete, training and testing datasets must be selected

from the data. A random sampling method, similar to that of [56] is used. As the system

must be trained only on self data, only that network traffic considered normal is included

in the training set. 5,000 data points are randomly selected from the entirety of the set of

points classified as normal. Additionally a test dataset is selected; this dataset contains

500 points selected in the same manner. However, these points include not only normal

data, but also data points from the attack traffic (of which there are four types). Attack and

normal traffic points are selected at the same ratio as they exist in the larger dataset, in

order to form the smaller test dataset. The numbers of data points chosen for the

experiment were specifically chosen due to time constraints for completion of the

experiments. More or fewer data points could be chosen in future experiments.

3.6.4 KDD Dataset radius sizing constraints. Detector radius size is a parameter

that must be set in the shape experiment. The methods for minimum and maximum sizing

laid out previously are used to provide a range of testable radii. For every iteration of the

experiment, new rmin and rmax values are determined. Unless memory constraints are the
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constraining factor, the default method for sizing is the nearest neighbor method for

minimum sizing and the largest detector placement method for maximum sizing.

3.6.5 Outline of experiment. This experiment is a full factorial experiment, testing

all three variables: radius size, coverage factor, and detector shape. There are a series of

three different shapes used (hypersphere, hypersteinmetz, and hypercube). For the

purposes of this discussion, the radius of a hypersphere is the distance from the center of

the hypersphere to any point on the surface, the radius of a hypersteinmetz is the

minimum distance from the center of the hypersteinmetz to any point on the surface, and

the term radius is used in conjunction with hypercubes to mean half of the side-length of

the given hypercube. Each detector shape is tested 10 times, using varying coverage

factors, numbers of dimensions, and radius sizes (rmin → rmax, by steps of rmax−rmin
2 ). The

results are recorded as true positives, false positives, true negatives, and false negatives.

See Algorithm 8 for pseudo-code representation of this outline and Table 3.4 for a tabular

representation of the variables being tested.

Choosing the dimensional pairs for each of the
⌈

n
2

⌉
cylinders within a hypersteinmetz,

it is important to ensure that each dimension is chosen at least once, ensuring that the

detectors are bounded in each dimension. If computational complexity were not an issue,

it would be logical to choose a random dimensional pairing for each cylinder within each

detector. This would provide an even distribution of possible detector “orientations”

throughout the space. However, in order to keep track of which detectors have which set

of pairings, a matrix of detector dimensional pairings must be kept. This doubles the space

and time complexity needed. For this reason, all detectors are kept at the same pairing. An

area for future research, therefore, is to determine which is the optimal pairing of

dimensions for the
⌈

n
2

⌉
cylinders within a given dataset. Since an optimal pairing of
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Algorithm 8 Pseudocode design of detector shape comparison experiment. r is the radius

of the detector, f is the coverage factor, η is the number of detectors, n is the number of

dimensions.
for each detector shape: Hypersphere, Hypersteinmetz, Hypercube do

for n = 2, 8, 16 do

Determine rmin and rmax using methods described in Section 3.6.4

for r = rmin → rmax, by steps of rmax−rmin

2 do

for f = 2, 8, 16 do

repeat

Set η according the number of detectors used for a hypersphere using

equation 3.26, and use the same η for equivalent hypersteinmetz and

hypercube

Execute Algorithm 1 using η detectors and record the true positives, true

negatives, false positives, and false negatives

until 10 tests have been run on each subset

end for

end for

end for

end for

dimensions is not an objective of this research, the pairs are determined by order within

the dataset, with the last dimension being paired with itself.

3.6.6 Representation of results. Results are shown in both graphical and tabular

form. A series of graphs shows a set of ROC curves comparing false positives against true

positives. The series shows the results of runs using different numbers of dimensions,

demonstrating the difference between the detection results of the different shapes as
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Table 3.4: Design parameters for detector shape comparison experiment

Parameter Values

Dataset KDD Cup ’99 10% Dataset

Detector Shape Hypersphere, Hypersteinmetz, Hypercube

Number of Dimensions n 2, 5, 8, 11

Detector Radius r rmin → rmax, by steps of rmax−rmin

2

Shape-Space Content Css 1

Coverage Factor f 2, 8, 16

Number of Training Points Pr 5000

Number of Test Points Ps 500

10 iterations are performed for each test.

Measured outputs for each test are true positives, true negatives, false positives, and false negatives.

dimensions are increased. Additionally, a second series of graphs demonstrates how each

individual shape progresses as dimensions are added, with a set of three ROC curves–one

for each shape. Then a set of tables shows the results displayed in the ROC curve, along

with the standard deviations of the results.

3.7 Summary of experiments

All of the experiments contained in this chapter are summarized in Table 3.5.
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Table 3.5: Design parameters for detector shape comparison experiment

Experiment Variables Experimental Question

Detector radius sizing Dataset, Detector ra-

dius r

Do the nearest neighbor method for sizing

the minimum radius length rmin and the

largest detector placement method for

sizing the maximum radius length rmax

provide a good lower and upper bound on

the radii to test for the RNS system?

Coverage factor Dataset, Detector ra-

dius r, Coverage factor

f

How do we approximate the relationship

between coverage factor and classifica-

tion accuracy?

Detector shape compar-

ison

Detector shape, Num-

ber of dimensions n,

Detector radius r, Cov-

erage factor f

Does the hypersteinmetz solid either pro-

vide better classification results or reduce

variance within a RNS system as dimen-

sionality increases when compared to the

hypersphere or hypercube?
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4 Results and Analysis

This chapter present the results of the experiments outlined in Chapter 3. Upon

stating the significant results of each experiment, these results are then analyzed. The

causes of the results are suggested and the significance of each result is discussed.

First, the detector radius sizing experiment results are discussed. Then the results of

the coverage factor experiment are presented. Finally, we present the results of the

detector shape comparison experiment.

4.1 Detector radius sizing experiment results

The detector sizing experiments described in Section 3.3.3 were performed on a Dell

Precision M6500 with an Intel i7 920 processor. This processor has a clock speed of 2.67

Gigahertz (GHz) = 2.67 · 109 cycles/second. The following number of runs were needed:

8 datasets × 20 radius size thresholds per dataset × 10 repetitions per dataset ≈ 1600 runs.

Each run for these thresholds took on average approximately 1.5 minutes. Therefore, the

tests took approximately: 1600 runs × 1.5 minutes/run = 2400 minutes = 30 hours.

Figures 4.1 and 4.2 show the receiver operating characteristic curves of the results of

the experiment. Each data point represents the mean true positive percentage and mean

false positive percentage value attained in ten classification runs with a given radius. The

circled data points represent the results obtained using the rmax value found using the

largest detector placement method for the given dataset. The squared data points represent

the results obtained using the rmin value found using the nearest neighbor method for the

given dataset. Tables 4.1 and 4.2 summarize the results shown in the figures, showing the

true and false positive percentages along with the standard deviation of each percentage.

These results are reported only for those runs completed using the rmin, rmax, and best radii.

The results marked ‘n/a’ in Table 4.1 are due to the fact that the minimum radius size was
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not tested, due to the rmin and rmax falling between the 0.01 radius size step of the

experiment. Complete results from this experiment are shown in Appendix A.

For the purposes of this experiment, a false negative percentage and a false positive

percentage is considered to carry equal weight. For example, increasing false negative

percentage by 1% is considered equally as undesirable as increasing the false positive

percentage by 1%. The ideal point on the ROC curve would be at 0% false positives and

100% true positives. For comparison, given this assumption, the Manhattan distance

between the ideal 0%/100% point and a given radius size point provides the level of

‘goodness’ of the radius size point. If point a has a smaller Manhattan distance to the ideal

point than point b, then a’s false positive percentage plus false negative percentage is less

than that of b. The best radius for a given dataset is the one that produces mean

classification results with the smallest Manhattan distance to the ideal point.

Table 4.1: Condensed results of detector size range experiments for the first four datasets

comparing results obtained using rmin, rmax, and best radius sizes. Dist to 0/100 represents

the Manhattan distance of the point to the 0% false positive/100% true positive point.

Dataset Comb Comb Neg Int Thick Int Thick Neg

Point rmin best rmax rmin best rmax rmin best rmax rmin best rmax

Radius .032 .040 .207 .041 .041 .160 .009 .130 .353 N/A .050 .050

Dist to 0/100 22.4 17.6 49.1 20.8 20.8 67.2 17.5 0.2 51.3 N/A 17.1 17.1

True Pos % 99.9 99.6 53.1 99.4 99.4 33.5 100.0 99.8 48.7 N/A 88.2 88.2

TP% Std Dev 0.09 0.14 0.14 0.12 0.12 0.16 0.03 0.08 0.18 N/A 0.00 0.00

False Pos % 22.4 17.2 2.2 20.2 20.2 0.7 17.5 0.0 0.0 N/A 5.3 5.3

FP% Std Dev 0.87 0.50 0.00 0.70 0.70 0.00 3.54 0.00 0.00 N/A 0.05 0.05
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Figure 4.1: Receiver operating characteristic curves for datasets (a) Comb, (b) Comb

Negative, (c) Intersection Thick, and (d) Intersection Thick Negative

Table 4.2: Condensed results of detector size range experiments for the second four datasets

comparing results obtained using rmin, rmax, and best radius sizes.

Dataset Pent Big Pent Big Neg Ring Thick Ring Thick Neg

Point rmin best rmax rmin best rmax rmin best rmax rmin best rmax

Radius .025 .130 .340 .041 .050 .193 .040 .060 .200 .030 .140 .172

Dist to 0/100 23.5 2.2 57.9 16.5 11.9 50.2 11.7 7.7 51.7 17.6 6.0 10.2

True Pos % 100.0 99.2 42.2 97.4 95.4 50.3 98.5 96.2 48.9 100.0 100.0 95.9

TP% Std Dev 0.00 0.15 0.06 0.15 0.15 106.14 0.00 0.11 0.10 0.00 0.06 0.18

False Pos % 7.2 1.4 0.0 13.9 7.3 0.5 10.2 3.9 0.6 17.6 6.0 6.2

FP% Std Dev 0.55 0.59 0.00 0.80 0.21 1.11 0.99 0.12 0.00 0.49 0.91 0.28
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Figure 4.2: Receiver operating characteristic curves for datasets (a) Pentagram Big, (b)

Pentagram Big Negative, (c) Ring Thick, and (d) Ring Thick Negative
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The trend that emerges from these results is that the best radius size consistently falls

between the minimum and maximum radii. Thus, the rmin and rmax values provide a

reasonable constraint on radius size. The one dataset where the best point does not fall

between the two extremes, Intersection Thick Negative (Figure 4.1d), is because of the

fact that the minimum and maximum values were closer to each other than were the

increments used between radii for the experiment. Therefore, the minimum radius size

was not actually tested. This experiment confirms that the nearest neighbor and largest

detector placement methods are viable constraints for placing a detector radius range in

two-dimensional datasets, given the assumptions of the experiment: two dimensions,

hypersphere detector, and the specified datasets. Therefore, we use this method to bound

detector radius size in future experiments.

4.2 Coverage factor experiment results

The coverage factor experiment described in Section 3.4 was run on a computer with

2 Intel Xeon processors X5472, 3.00 GHz, and 32.0 Gb of random access memory

(RAM). The experiment required the following number of runs: 1 detector shape * 1

dimension size * 10 radius sizes * 11 coverage factors * 30 datasets * 10 runs/dataset =

33,000 runs. An average runtime of 5 seconds created a total runtime of 2,750 minutes (2

days). This was further reduced by running multiple processes, and completion took

approximately 22 hours.

Figure 4.3 contains the ROC curves obtained from the classification results using the

three different types of Iris as nonself. Each line represents all results for one coverage

factor, with the points on the line representing different detector radii. Points are

connected in the order of smallest radius to largest radius, with the smallest usually falling

in the upper-right corner and each consecutive point representing a larger radius until the

final rmax point is reached for the given coverage factor. An individual point represents the

mean classification values for a set of ten runs. Table 4.3 summarizes the results shown in
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figure 4.3 for the best radius for each coverage factor. Complete results are shown in

Appendix B.

The same definition of a best radius is used as that for the previous experiment.

Those points on the ROC curve that provide results with shortest Manhattan distance to

the 0% false positive 100% true positive point are considered to be the best. In that regard,

it can be seen from Figure 4.3 and Table 4.3 that as the coverage factor is increased, the

ROC curves move closer to the 0% false positive 100% true positive point. However, the

aggregate gain in classification accuracy from each successive coverage factor becomes

less. For example, in Figure 4.3a a coverage factor of four provides significantly better

results than a coverage factor of two, but a coverage factor of 15 barely provides better

results than that of coverage factor eight. Specifically, Table 4.3 shows that the best point

produced using coverage factor of two with the Setosa dataset provides a true positive

percentage of 67.2% and a false positive percentage of 5.4%, a coverage factor of four

provides a true positive percentage of 87.6% and a false positive percentage of 4.0%, while

a coverage factor of eight provides only a true positive percentage of 94.2% and a false

positive percentage of 3.2%. Additionally, Table 4.3 shows that each iris type reaches a

point at which the best radius size for the coverage factor is the same for all successive

coverage factors. Setosa reaches this point at a coverage factor of 14, Versicolor reaches it

at f = 12, and Virginica achieves it at f = 8. The reason for this, is that there is that as

coverage factor is increased, the area of nonself space covered by detectors changes less

by the added detectors. As such, the results remain more closely aligned.
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(a) Setosa as nonself
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(b) Versicolor as nonself
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(c) Virginica as nonself

Figure 4.3: Receiver operating characteristic curves as coverage factor increases for

increasing detector sizes for Iris datasets.
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Table 4.3: Condensed results of coverage factor experiments for best radius for each

coverage factor.

Setosa

Cov Factor 2 4 6 8 10 12 14 15 20 25 30

Radius .265 .357 .726 .449 .818 .726 .818 .818 .818 .818 .818

True Pos % 67.2 87.6 89.8 94.2 94.6 97.0 97.2 98.2 98.6 99.0 99.2

False Pos % 5.4 4.0 1.4 3.2 1.4 2.0 1.6 1.3 2.0 2.6 3.1

Versicolor

Cov Factor 2 4 6 8 10 12 14 15 20 25 30

Radius .164 .254 .343 .343 .343 .433 .433 .433 .433 .433 .433

True Pos % 80.2 84.2 85.2 91.2 92.6 93.8 92.0 92.8 94.8 97.4 98.4

False Pos % 15.3 11.0 6.5 8.4 10.2 8.3 9.0 8.9 9.6 13.2 12.3

Virginica

Cov Factor 2 4 6 8 10 12 14 15 20 25 30

Radius .159 .250 .250 .342 .342 .342 .342 .342 .342 .342 .342

True Pos % 73.4 79.4 85.2 84.8 87.6 86.8 90.4 89.8 94.4 95.6 95.0

False Pos % 13.0 10.9 13.7 9.5 10.5 12.8 15.2 16.4 16.5 19.7 21.5
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Another aspect that increasing coverage factor provides is that of reduced variance.

Figure 4.4 reports the mean standard deviation of the percentage of false positive and true

positives over all detector radii for a given coverage factor. Each point represents the mean

percentage obtained by all runs completed with a given coverage factor. Table 4.4 shows

the complete results shown in Figure 4.4 in tabular form.

As can be seen in Figure 4.4 and Table 4.4, as the coverage factor increases, the

standard deviation of the true positive and false positive percentages approaches a

minimum value. This minimum value comes as a result of the fact that by using more

detectors, there is less likelihood of change in the space covered by detectors between two

consecutive runs of the same algorithm. It can also be seen from Table 4.4 that there are

fewer benefits the higher the coverage factor increases.

For example, in the Table 4.4 Setosa section there is a large benefit in moving from a

coverage factor of two up to a coverage factor of 10, with true positive percentage

standard deviation going from 36.5% down to 9.5% and false positive percentage standard

deviation reducing from 18.7% to 8.8%. However, there is little to no benefit once the

coverage factor moves from 10 up to 30, with true positive percentage standard deviation

reducing from 9.5% to 2.3% while the false positive percentage standard deviation

actually increases from 8.8% to 10.0%. The other datasets show a similar effect.

The significance of this finding is that we can use these results to potentially set a

coverage factor range for future experiments. A low coverage factor provides more

variability in the results and a higher coverage factor provides less. It also gives a potential

bound on the highest coverage factor needed to provide a given level of variance.

However, it is important to note that the specific effect of coverage factor is determined by

the dataset in question.
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(a) Setosa
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(b) Versicolor
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(c) Virginica

Figure 4.4: Mean percent standard deviation of the false positives and true positives as the

coverage factor is increased on the iris datasets.
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Table 4.4: Mean percent standard deviations of the true and false positive percentages on

the iris dataset.

Setosa

Cov Factor 2 4 6 8 10 12 14 15 20 25 30

TP% Std Dev 36.5 27.7 18.4 13.9 9.5 7.4 5.5 4.2 3.2 2.8 2.3

FP% Std Dev 18.7 13.9 8.5 8.8 8.8 9.1 9.1 9.4 9.4 9.5 10.0

Versicolor

Cov Factor 2 4 6 8 10 12 14 15 20 25 30

TP% Std Dev 29.8 21.8 19.5 17.9 15.8 14.8 14.2 13.1 11.4 9.6 9.3

FP% Std Dev 18.2 8.6 9.0 9.7 10.1 10.4 10.4 10.6 11.2 11.6 12.3

Virginica

Cov Factor 2 4 6 8 10 12 14 15 20 25 30

TP% Std Dev 22.1 19.3 16.8 16.0 14.7 14.8 14.9 14.6 14.3 12.9 13.5

FP% Std Dev 12.4 10.7 8.4 8.9 8.9 9.8 9.7 9.4 10.3 10.7 10.7
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4.3 Detector shape comparison experiment results

The following section is divided into two sub-sections. First, radius sizing constraints

specifically applied to the KDD Cup ’99 dataset are addressed. Then, the results of the

experiments using these radius sizing constraints are discussed.

4.3.1 Minimum radius sizing. Both the nearest-neighbor and memory limitations

constrain minimum detector size. Using the nearest neighbor method described in section

3.3.1, the minimum radius constraints for the KDD Cup ’99 dataset were found. Figure

4.5 shows the rmin values found using the nearest neighbor method for increasing numbers

of dimensions, it shows that as dimensions are added, the radius of the nearest neighbor

distance increases.
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Figure 4.5: Minimum radius constraint using nearest neighbor (NN) method for KDD Cup

’99 10% Dataset when using 500 test points.

The minimum radius size constraint is calculated using the memory constraint

method described in section 3.5.1. With the limitations of the computer used (AMD

Athlon II X2 215 2.70 GHz Processor, Windows 7 64-Bit operating system, 4.00 Gb

RAM), the maximum usable array contains 250,000,000 elements. These memory

limitations result in a maximum number of detectors. Figure 4.6 shows the maximum

number of detectors allowed with the given constraints as a function of the number of

dimensions. Three numbers of simultaneous test points are compared. The number of

allowable detectors decreases quickly as dimensionality increases. It is significant that the
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number of detectors allowed decreases as dimensions are added, because we have shown

previously that if a detector has a content ratio less than one, the size of a detector is

already decreasing. Therefore, there is not only loss of detection capability due to number

of detectors, but also due to the content ratio of those detectors.
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Figure 4.6: Maximum number of detectors allowed as a function of the number of

dimensions, using a 250,000,000 element array limit.

Figure 4.7 compares constraints on radius size for the memory and nearest-neighbor

methods. Each point in the figure represents the minimum allowable radius for the given

number of dimensions when using one of the two methods, with those using the memory
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constraint method divided among different coverage factors. These results use the same

250,000,000 element limit, with 500 simultaneous test points. Figure 4.7 shows that the

memory constraint quickly dominates the nearest neighbor method for minimum radius

size. In this specific instance, all reported memory constrained minima pass those of the

nearest neigbor method after two dimensions.
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Figure 4.7: Minimum allowable radius size due to memory constraints in comparison to

minimum radius size found using the nearest neighbor method.

Using the nearest neighbor method and the memory constraint method together, the

dominant constraint is chosen. For the two-dimensional case, the nearest neighbor method
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is the dominant constraint. For all other cases, the memory constraint method is the

dominant constraint.

4.3.2 Maximum radius sizing. A similar analysis of the maximum radius sizing

techniques is also undertaken to determine the dominant constraint. The first method

presented in Section 3.3.2, uses the largest detector that can be placed within the dataset to

determine the maximum radius size. Using this method, the maximum detector size limits

shown in Figure 4.8 are obtained. By next imposing the second limit of a maximum

detector radius of half the side-length of shape-space, Figure 4.8 demonstrates how the

constraining factor changes as dimensions are added. Specifically, in Figure 4.8, each

point represents the maximum allowable radius size as a function of the number of

dimensions. The maximum allowable radius size method results are shown for all three

shapes (hypersphere, hypersteinmetz, and hypercube), represented by three different trend

lines. This method is then contrasted with a trend line representing the maximum radius

size determined by the half side-length of shape-space.

Similar to the minimum radius, the maximum radius constraint changes after two

dimensions. Therefore, the maximum radius size for two dimensions is determined by the

maximum detector placement method and the maximum radius for all dimensions greater

than three is set at .5, half the side-length of shape-space. An additional constraint that the

half side-length of shape-space constraint places on the experiment is that no more than 11

dimensions can be used before the minimum values found via memory constraints exceed

the half side-length maximum value. Therefore, the detector shape comparison

experiment was constrained to use between two and eleven dimensions.
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Figure 4.8: Maximum allowable radius size comparing maximum detector placement and

half side-length of shape-space methods.

4.3.3 Experiment results. The detector shape comparison experiment described in

Section 3.6 was run on a computer with 2 Intel Xeon processors X5472, 3.00 GHz, and

32.0 Gb RAM. The following number of runs were performed: 3 detector shapes * 4

numbers of dimensions * 3 radius sizes * 3 coverage factors * 1 dataset * 10 run/dataset =

1080 runs. An average run took approximately 40 seconds to complete, and the total

runtime was approximately 12 hours.

Figure 4.9 shows the receiver operating characteristic curves obtained from the runs

of the detector shape comparison experiment, showing the mean percentage of false
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positives versus the mean percentage of true positives over each set of 10 runs. Each

sub-figure represents a set number of dimensions (2, 5, 8, and 11), and contains a

comparison of the three shapes (hypersphere, hypersteinmetz, and hypercube). Complete

tables of all results are given in Appendix C.
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(b) 5 Dimensions
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(c) 8 Dimensions
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Figure 4.9: Receiver operating characteristic curves for KDD Dataset comparing different

detector shapes in 2, 5, 8, and 11 dimensions. NOTE: Tthe X axis is scaled from 0% to

1.4%.
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The first point of interest in Figure 4.9 is to compare the shapes as dimensionality

increases. The hypersphere appears to perform progressively worse, by producing fewer

true positives. However, the false positive rate does not increase. The hypersteinmetz and

hypercube perform better as dimensionality increases in terms of true positives, but false

positives also increase.

Tables 4.5 and 4.6 further elucidate the values shown in Figures 4.9a and 4.9d

respectively. The classification accuracy results are shown for all three shapes

(hypersphere, hypersteinmetz, and hypercube) for each set of coverage factors and radii in

2 and 11 dimensions respectively. The mean percentages of true positives and false

positives are reported, along with the correlated standard deviations. These tables further

illustrate that the hypersteinmetz and hypercube perform significantly better than the

hypersphere as dimensionality is increased. The reason for this difference in performance

is due to the shape of the detector, and specifically due to the content ratio of the

hypersphere as compared to those of the hypercube and hypersteinmetz.

Specifically, Table 4.5 shows that the results for hyperspheres, hypersteinmetzes, and

hypercubes are very similar in two dimensions, with each shape providing a highest true

positive percentage around 87% and a false positive percentage of 0%. However, in 11

dimensions, shown in Table 4.6, the hypersphere does not provide a true positive

percentage greater than 7.9%, while both the hypersteinmetz and hypercube each provide

a true positive percentage of greater than 90%.
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Table 4.5: Classification accuracy results for three different shapes in 2 dimensions

Hypersphere

Cov Factor 2 8 16

Radius .015 .149 .283 .015 .149 .283 .016 .149 .283

True Pos % 71.1 6.7 0.2 86.0 32.9 1.0 87.5 33.1 1.7

TP% Std Dev 4.42 6.78 0.45 1.44 15.02 1.05 1.13 14.86 1.82

False Pos % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FP% Std Dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hypersteinmetz

Cov Factor 2 8 16

Radius .015 .149 .283 .015 .149 .283 .016 .149 .283

True Pos % 68.1 8.7 0.2 86.4 20.6 0.9 87.8 28.6 1.4

TP% Std Dev 4.18 13.14 0.26 1.58 16.92 1.03 1.24 15.29 1.21

False Pos % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FP% Std Dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hypercube

Cov Factor 2 8 16

Radius .015 .149 .283 .015 .149 .283 .016 .149 .283

True Pos % 74.5 4.2 0.0 85.1 21.9 0.6 86.7 36.9 0.6

TP% Std Dev 2.69 6.30 0.00 1.14 9.19 1.00 1.52 6.14 0.44

False Pos % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FP% Std Dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.6: Classification accuracy results for three different shapes in 11 dimensions

Hypersphere

Cov Factor 2 8 16

Radius .379 .440 .500 .430 .465 .500 .458 .479 .500

True Pos % 0.0 0.0 0.1 0.2 0.1 2.5 7.9 2.1 0.5

TP% Std Dev 0.00 0.00 0.28 0.37 0.28 7.74 10.92 6.07 1.38

False Pos % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FP% Std Dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hypersteinmetz

Cov Factor 2 8 16

Radius .379 .440 .500 .430 .465 .500 .458 .479 .500

True Pos % 59.9 50.2 39.6 81.3 89.0 88.2 93.3 91.1 91.8

TP% Std Dev 22.06 26.23 29.22 16.20 7.76 7.13 2.31 3.95 3.79

False Pos % 0.3 0.2 0.2 0.6 1.1 1.0 0.9 1.3 1.2

FP% Std Dev 0.36 0.21 0.32 0.48 1.15 1.16 0.55 1.00 1.00

Hypercube

Cov Factor 2 8 16

Radius .379 .440 .500 .430 .465 .500 .458 .479 .500

True Pos % 77.9 84.0 91.4 92.2 92.4 92.2 92.5 92.4 92.4

TP% Std Dev 22.10 16.44 1.29 2.13 2.03 2.46 2.12 2.03 2.03

False Pos % 0.2 0.1 0.1 0.3 0.2 0.2 0.3 0.3 0.3

FP% Std Dev 0.18 0.13 0.14 0.19 0.13 0.15 0.15 0.21 0.17
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Table 4.7 shows the classification accuracy (true and false positive percentage means

and standard deviations) for the best radius/coverage factor pairing for each number of

dimensions for each shape. The best result is, as described previously, considered to be

the one that is the closest in Manhattan distance to the point of 0% false positives and

100% true positives, thus equally weighting true and false positives. Each line reports the

mean value and standard deviation obtained over a set of 10 runs. Table 4.7 demonstrates,

again, the divergence between hyperspheres and the other two shapes. The hypersphere’s

best true positive percentage plummets from 87.5% in 2 dimensions down to 7.9% in 11

dimensions, while the hypersteinmetz increases from 87.8% to 93.3% and the hypercube

from 86.7% up to 92.4%.

However, Table 4.7 also shows that the results for the hypersteinmetz and

hypersphere perform equivalently to each other throughout all the dimensional sets. Given

nine degrees of freedom, based on 10 tests per radius, the true positive percentages for all

three shapes’ best detector overlap 95% confidence intervals of each other in two

dimensions. Additionally, the best hypercube and hypersteinmetz perform equivalently

within a 95% confidence interval of each other for all true positive percentages and all but

one false positive percentage (five dimensions).
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Table 4.7: Classification accuracy for the best radius/coverage factor pairing for each

number of dimensions for each shape

Hypersphere

Num Dims Coverage Factor Radius True Pos % TP% Std Dev TP% .95 CI False Pos % FP% Std Dev FP% .95 CI

2 16 0.016 87.5 1.13 ±0.69 0.0 0.00 ±0.00

5 16 0.125 52.5 16.49 ±10.08 0.1 0.14 ±0.09

8 16 0.299 16.6 11.28 ±6.89 0.0 0.10 ±0.06

11 16 0.458 7.9 10.92 ±6.67 0.0 0.00 ±0.00

Hypersteinmetz

Num Dims Coverage Factor Radius True Pos % TP% Std Dev TP% .95 CI False Pos % FP% Std Dev FP% .95 CI

2 16 0.016 87.8 1.24 ±0.76 0.0 0.00 ±0.00

5 16 0.125 79.1 7.29 ±4.45 2.1 2.03 ±1.24

8 16 0.399 79.3 10.69 ±6.53 0.1 0.12 ±0.07

11 16 0.458 93.3 2.31 ±1.41 0.9 0.55 ±0.34

Hypercube

Num Dims Coverage Factor Radius True Pos % TP% Std Dev TP% .95 CI False Pos % FP% Std Dev FP% .95 CI

2 16 0.016 86.7 1.52 ±0.93 0.0 0.00 ±0.00

5 16 0.125 79.9 8.39 ±5.13 0.1 0.13 ±0.08

8 16 0.299 83.5 6.05 ±3.70 0.2 0.18 ±0.11

11 8 0.465 92.4 2.03 ±1.24 0.2 0.13 ±0.08

Figure 4.10 shows a three-way analysis of variance (ANOVA) of the true positive

percentages of all runs, using the method described in [33]. This is used to determine

which variables in the experiment contribute to the variance of the true positive

classification results. The four plotted values in the figure are the most influential: radius

size, coverage factor, shape, and unaccounted for factors. The actual percentages are

reported in Table 4.8, along with the combined factors that are not shown in Figure 4.10.

It can be seen in the figure and table that as the number of dimensions increases, the

influence of the radius size, coverage factor and error each decrease; while the influence of

the shape increases. The most dramatic decrease from 2 dimensions to 11 dimensions is

the influence of radius size, which decreases from 91.3% in 2 dimensions down to 0.0% in
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11 dimensions. While the largest increase is the influence of detector shape, increasing

from 0.0% up to 85.8%. This is due to the influence of the hypersphere’s content going to

zero as the number of dimensions goes to infinity.
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Figure 4.10: Three-way analysis of variance of true positive percentage, comparing the

influence of a = radius size, b = coverage factor, c = shape, and e = unaccounted for factors

as dimensionality increases
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Table 4.8: Three-way analysis of variance (ANOVA) of true positive percentage, comparing

the influence of a = radius size, b = coverage factor, c = shape, all combinations thereof,

and e = unaccounted for factors as dimensionality increases

Variance

Dimensions S S a% S S b% S S c% S S ab% S S ac% S S bc% S S abc% S S e%

2 91.3 3.0 0.0 1.5 0.1 0.1 0.3 3.7

5 27.6 26.4 8.8 1.4 2.1 1.0 1.8 30.8

8 1.2 13.0 64.3 0.3 0.5 3.4 0.7 16.7

11 0.0 3.5 85.8 0.1 0.2 3.4 0.5 6.5

Two notes must be made. First, another factor in the reduction of the influence of

radius size has to do with the reduction in the range of possible radii due to memory

constraints. If more possible sizes were allowable, radius size would probably have a

larger influence. Secondly, there are a few reasons for the variance due to unaccounted for

factors S S e. The choice of training and testing points has some influence on the results

obtained, since they are randomly chosen this could have an effect. Additionally, the

random placement of detectors could hold some sway into the error factor. Lastly, the

ordering of dimensions could have some influence. Specifically, odd numbers of

dimensions allow for biasing of features by the hypersteinmetz solid, since the

hypersteinmetz must use one of the dimensions twice. As such, a future analysis could

look into the best way to order dimensions and choose which dimension to double.

Lastly, one of the reasons that hypersteinmetzes were chosen was because of their

feature bias in comparison to hypercubes. Classification accuracy results for hypercubes

and hypersteinmetzes were very similar (within a 95% confidence interval of each other).

Therefore, the current experiments did not provide enough data to compare feature bias
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between hypersteinmetzes and hypercubes. As such, further experiments could be

designed to specifically compare the feature bias of the different shapes.
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5 Conclusions and Future Work

This research has shown that “Detector shape is an extremely important factor in the

effectiveness of a real-valued negative selection system as the number of dimensions of

data increases, especially in comparison to other factors such as radius size and coverage

factor.” Specifically, the hypersteinmetz solid, detector shape proposed herein, provides

benefits of better classification accuracy in high dimensions when compared with the

hypersphere.

This conclusory chapter aims to summarize the research that precedes it, in the

following format. First, a set of conclusions is drawn from the results and analysis found

in Chapter 4. Then, future projects that could extend the current research are proposed.

5.0.4 Detector radius sizing. The detector radius sizing experiment described in

Section 3.3 and with results reported in Section 4.1 showed that the nearest neighbor

method for finding a minimum radius size paired with the largest radius placement

method for finding a maximum radius size provide a good boundary when searching for

the optimal radius size for a real-valued negative selection algorithm. The nearest

neighbor method helps to avoid overfitting by not allowing detectors that are too small,

while the largest radius placement method avoids attempts to use detectors that are too

large for the shape space.

5.0.5 Coverage factor. The coverage factor experiment described in Section 3.4

and with results reported in Section 4.2 showed that coverage factor is directly related to

the classification accuracy results of a real-valued negative selection system. As the

coverage factor is increased, there is a diminishing return on the improvement of the

results. Additionally, increasing coverage factor also reduces variance between

classification runs. These results, paired with the high-dimensional considerations
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described in Section 3.5.2 demonstrate the vital need to understand the effective coverage

provided within a high-dimensional real-valued system.

5.0.6 High-dimensional memory considerations. In addition to the considerations

on coverage factor that high-dimensionality brings, the limitations of memory on the size

of detector radii must be taken into context. Without taking the memory considerations of

the current system setup into account, the effectiveness of the designed system is hurt

significantly due to the necessary loss of coverage due to the number of usable detectors.

5.0.7 Detector shape comparison. Finally, it has been shown that detector shape

not only plays a pivotal role in the coverage of high-dimensional shape-space, but also that

detector shape is directly related the classification accuracy and becomes more important

with increasing dimensionality. This is illustrated in two ways. First, the use of

hyperspheres as detectors in high-dimensional real-valued negative selection systems has

been shown problematic. Table 4.7 demonstrated that the hypersphere’s best true positive

percentage plummets from 87.5% in 2 dimensions down to 7.9% in 11 dimensions, while

the hypersteinmetz increases from 87.8% to 93.3% and the hypercube from 86.7% up to

92.4%. Additionally, it was shown that detector shape becomes increasingly important as

dimensionality increases through an analysis of variance. Table 4.8 showed that the

influence of detector shape increased from 0.0% in 2 dimensions up to 85.8% in 11

dimensions. For these reasons, detector shape choice is a critical decision in the success of

a real-valued negative selection based artificial immune system as dimensionality

increases.

5.0.8 Effectiveness of hypersteinmetz. The hypersteinmetz solid, specifically, has

proven to provide higher classification accuracies in high dimensions than the

hypersphere. This is due to the fact that the content ratio of a hypersphere decreases

factorially as a function of the number of dimensions, while the content ratio of a
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hypersteinmetz decreases exponentially as a function of the number of dimensions. As

such, the hypersteinmetz can be an effective detector shape for use in high dimensional

real-valued negative selection systems.

5.1 Future Work

This thesis has covered only one small portion of the bigger vision for artificial

immune systems and network anomaly detection research outlined in the introduction and

motivation section. In order to work further toward the over-arching visions the following

areas of research could be accomplished: feature bias comparison between hypercubes

and hypersteinmetzes, creating accurate and effective data testing sets, determining the

proper network implementation point of the outlined system, creating a distributed version

of the system that allows for immune memory, and testing the effectiveness of the system

on a scaled network.

5.1.1 Feature bias. The results obtained in this research did not conclusively show

a difference in feature bias between detector shapes. It is likely that further testing of

high-dimensional results could show that feature bias exists in higher quantity in

hypercubes than in hypersteinmetzes. It is possible that this could be shown through

analysis of the standard deviation.

5.1.2 Other network intrusion datasets. Another way that this research could be

furthered is to compare results on more datasets to see if similar results are possible. One

such dataset could be the University of Cambridge dataset referenced in Chapter 2. Tests

on other datasets could then lead to implementation of a realtime network intrusion

detection system onto a simulated network.

5.1.3 Dataset Creation. The data problems outlined previously are systemic

throughout the whole of network intrusion detection research. Testing on datasets that are
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not contrived simulations requires stripping important data out of actual network traffic

data. Conversely, simulating data is difficult, because although it may account for the

overall statistical probabilities of user network traffic, it can never completely reach

real-world data. Still it is essential that new datasets be created and made available to the

cyber operations research community. Whether it be created for overall intrusion detection

or specific attack vector intrusion detection, a labeled dataset is of paramount importance

in creating synergy within the research community.

5.1.4 Distributed Decision Making. One of the major contributions that the

biological immune system can provide is that of immunological memory. In order to take

full advantage of what can be done with this memory, a distributed system is extremely

important. Previous work at the Air Force Institute of Technology [20, 21, 16, 17] has

looked into distributed systems for network intrusion detection. By incorporating these

concepts into an artificial immune system, it could be possible to allow immunities gained

in one location to be conferred upon others.

5.1.5 Testing and Inoculation. Along with the distributed technology a logical

follow-on is the idea of network inoculations, wherein immunity from a certain vector of

attack would be conferred on a system through a benign network attack. In order to

accomplish this, however, it is incumbent that the system be tested on a smaller network

running real traffic patterns. This is not an easy task to accomplish and would require

extensive planning of the testing and experimentation methods and goals before doing any

sort of actual testing. Additionally, it would require a breadth of expertise from network

engineering to computer programming that would likely necessitate an entire team rather

than an individual effort.
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Appendix A: Complete results of detector size range experiments

Table A.1: Results of detector size range experiments for the Comb dataset.

Dataset Comb

Radius 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110 0.120 0.130 0.130 0.137

True Pos % 100.0 100.0 99.9 99.6 90.4 85.0 76.0 66.9 62.9 62.9 62.9 62.9 62.9 62.9 62.9

TP% Std Dev 0.00 0.00 0.09 0.14 0.44 0.17 0.66 0.20 0.00 0.00 0.04 0.00 0.06 0.05 0.06

False Pos % 94.0 54.9 22.4 17.2 11.2 7.0 4.6 3.3 2.3 2.2 2.2 2.2 2.1 2.1 2.1

FP% Std Dev 0.76 0.89 0.87 0.50 0.47 0.46 0.21 0.29 0.21 0.00 0.00 0.00 0.18 0.14 0.14

Radius 0.140 0.144 0.150 0.160 0.170 0.180 0.186 0.190 0.200 0.207

True Pos % 62.8 62.9 62.8 62.9 62.8 62.8 62.8 62.8 62.9 53.1

TP% Std Dev 0.09 0.04 0.07 0.06 0.11 0.08 0.11 0.09 0.05 0.14

False Pos % 1.9 1.9 1.9 1.9 1.9 1.8 1.8 1.8 1.9 2.2

FP% Std Dev 0.23 0.30 0.30 0.30 0.21 0.24 0.24 0.18 0.23 0.00

Table A.2: Results of detector size range experiments for the Comb Negative dataset.

Dataset Comb Negative

Radius 0.010 0.020 0.025 0.030 0.040 0.050 0.053 0.060 0.070 0.080 0.090 0.100 0.110 0.120 0.130

True Pos % 100.0 100.0 100.0 99.9 99.4 89.8 85.3 79.3 72.7 51.1 48.8 46.8 46.2 45.4 45.0

TP% Std Dev 0.00 0.00 0.00 0.09 0.12 0.14 0.70 0.22 0.77 0.15 0.13 0.08 0.17 0.10 0.13

False Pos % 98.9 79.8 61.0 41.9 20.2 15.2 14.0 10.8 6.4 2.2 1.2 0.7 0.7 0.7 0.7

FP% Std Dev 0.39 0.48 0.73 0.73 0.70 0.25 0.60 0.32 0.58 0.19 0.12 0.00 0.00 0.00 0.00

Radius 0.140 0.150 0.160

True Pos % 44.5 44.1 33.5

TP% Std Dev 0.10 0.13 0.16

False Pos % 0.7 0.7 0.7

FP% Std Dev 0.00 0.00 0.00
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Table A.3: Results of detector size range experiments for the Intersection Thick dataset.

Dataset Intersection Thick

Radius 0.010 0.020 0.025 0.030 0.040 0.050 0.053 0.060 0.070 0.080 0.090 0.100 0.101 0.110 0.115

True Pos % 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.8 99.8 99.9 99.8

TP% Std Dev 0.03 0.00 0.00 0.04 0.07 0.05 0.05 0.06 0.06 0.06 0.09 0.10 0.07 0.05 0.09

False Pos % 17.5 7.5 7.0 6.5 5.5 4.5 5.0 3.5 4.0 2.5 1.5 2.0 1.0 0.5 1.0

FP% Std Dev 3.54 2.64 2.58 2.42 3.69 3.69 3.33 3.37 3.16 2.64 2.42 2.58 2.11 1.58 2.11

Radius 0.120 0.130 0.140 0.150 0.150 0.160 0.170 0.171 0.180 0.190 0.200 0.206 0.210 0.213 0.220

True Pos % 99.9 99.8 99.8 99.8 99.8 99.8 99.2 99.1 98.6 98.1 97.7 97.5 97.2 97.3 97.0

TP% Std Dev 0.10 0.08 0.08 0.10 0.11 0.09 0.19 0.20 0.24 0.21 0.19 0.29 0.23 0.24 0.30

False Pos % 0.5 0.0 1.5 1.5 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FP% Std Dev 1.58 0.00 2.42 2.42 1.58 2.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Radius 0.230 0.240 0.248 0.250 0.260 0.262 0.270 0.276 0.280 0.290 0.297 0.300 0.304 0.310 0.318

True Pos % 96.6 79.4 78.9 78.6 78.5 78.6 72.0 55.3 53.7 52.4 52.1 51.9 51.6 51.2 50.9

TP% Std Dev 0.29 0.28 0.42 0.38 0.24 0.34 4.31 3.03 0.34 0.27 0.15 0.30 0.23 0.29 0.14

False Pos % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FP% Std Dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Radius 0.320 0.330 0.332 0.340 0.346 0.350 0.353

True Pos % 50.7 50.2 50.1 49.8 49.3 49.0 48.7

TP% Std Dev 0.15 0.10 0.13 0.25 0.18 0.15 0.18

False Pos % 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FP% Std Dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.4: Results of detector size range experiments for the Intersection Thick Negative

dataset.

Dataset Intersection Thick Negative

Radius 0.010 0.011 0.018 0.020 0.030 0.038 0.040 0.050

True Pos % 100.0 100.0 100.0 100.0 100.0 98.0 96.1 88.2

TP% Std Dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

False Pos % 99.6 99.7 96.4 92.6 56.2 27.5 20.3 5.3

FP% Std Dev 0.18 0.10 0.30 0.25 0.49 0.45 0.22 0.05
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Table A.5: Results of detector size range experiments for the Pentagram Big dataset.

Dataset Pentagram Big

Radius 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110 0.116 0.120 0.130 0.140

True Pos % 100.0 100.0 100.0 100.0 99.9 99.9 99.9 99.8 99.6 99.5 99.4 99.3 99.2 99.2 98.9

TP% Std Dev 0.00 0.00 0.00 0.05 0.06 0.04 0.00 0.08 0.08 0.17 0.15 0.14 0.19 0.15 0.24

False Pos % 85.0 23.5 7.2 5.1 4.4 4.0 3.2 2.7 2.9 2.4 1.7 1.9 2.1 1.4 1.6

FP% Std Dev 1.34 1.30 0.55 0.96 0.57 0.74 0.76 0.89 0.71 0.65 0.47 0.67 0.74 0.59 0.47

Radius 0.144 0.150 0.158 0.160 0.170 0.180 0.190 0.200 0.210 0.220 0.230 0.235 0.240 0.250 0.260

True Pos % 98.8 98.7 98.4 98.3 97.8 97.2 96.8 96.6 95.7 94.9 94.1 93.7 92.7 86.2 79.5

TP% Std Dev 0.26 0.25 0.26 0.15 0.33 0.64 0.47 0.57 0.32 0.38 0.63 0.43 0.43 5.87 0.29

False Pos % 1.4 1.5 0.6 0.8 0.7 1.0 1.0 1.1 0.9 0.7 1.1 1.0 1.0 0.8 0.3

FP% Std Dev 0.38 0.28 0.59 0.28 0.50 0.47 0.47 0.55 0.35 0.50 0.32 0.57 0.35 0.42 0.35

Radius 0.270 0.280 0.290 0.300 0.310 0.320 0.326 0.330 0.340

True Pos % 75.6 52.6 51.3 42.5 42.4 42.3 42.3 42.3 42.2

TP% Std Dev 5.23 0.21 2.95 0.10 0.08 0.04 0.04 0.05 0.06

False Pos % 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FP% Std Dev 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.6: Results of detector size range experiments for the Pentagram Big Negative

dataset.

Dataset Pentagram Big Negative

Radius 0.010 0.020 0.030 0.032 0.040 0.050 0.060 0.067 0.070 0.080 0.090 0.100 0.110 0.120 0.130

True Pos % 100.0 99.8 99.5 99.5 97.4 95.4 92.3 89.5 87.3 84.2 80.8 76.1 70.4 63.6 60.4

TP% Std Dev 0.00 0.00 0.00 0.00 0.15 0.15 0.31 0.43 0.31 0.22 0.43 0.58 0.31 0.42 0.16

False Pos % 98.6 83.7 39.9 35.7 13.9 7.3 5.6 5.3 5.1 4.6 3.8 2.9 1.8 1.4 1.1

FP% Std Dev 0.38 0.55 0.39 0.44 0.80 0.21 0.17 0.07 0.12 0.12 0.17 0.12 0.06 0.07 0.12

Radius 0.140 0.150 0.160 0.170 0.172 0.180 0.190 0.193

True Pos % 58.4 56.7 55.2 54.3 54.2 53.2 51.5 50.3

TP% Std Dev 0.34 0.25 0.19 0.20 0.16 0.49 0.10 106.14

False Pos % 1.0 0.7 0.7 0.5 0.5 0.5 0.5 0.5

FP% Std Dev 0.06 0.07 0.00 0.00 0.00 0.00 0.00 1.11
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Table A.7: Results of detector size range experiments for the Ring Thick dataset.

Dataset Ring Thick

Radius 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.073 0.080 0.090 0.100 0.110 0.120 0.130 0.140

True Pos % 100.0 100.0 99.8 98.5 97.1 96.2 95.1 94.9 94.2 92.8 91.7 90.8 89.7 88.3 86.7

TP% Std Dev 0.00 0.00 0.00 0.00 0.10 0.11 0.14 0.15 0.07 0.15 0.11 0.17 0.24 0.23 0.24

False Pos % 98.0 82.8 38.1 10.2 4.8 3.9 3.4 3.4 3.0 2.3 2.2 2.1 1.8 1.8 1.6

FP% Std Dev 0.33 0.44 0.73 0.99 0.08 0.12 0.18 0.12 0.12 0.13 0.14 0.13 0.12 0.16 0.12

Radius 0.150 0.150 0.157 0.160 0.164 0.170 0.180 0.185 0.190 0.192 0.200

True Pos % 85.3 85.4 83.9 83.8 83.6 52.2 51.5 51.0 50.1 49.7 48.9

TP% Std Dev 0.50 0.43 0.21 0.10 0.15 0.22 0.07 0.22 0.14 0.10 0.10

False Pos % 1.2 1.2 1.0 0.9 0.8 0.7 0.6 0.6 0.6 0.6 0.6

FP% Std Dev 0.13 0.13 0.13 0.12 0.08 0.00 0.00 0.00 0.00 0.00 0.00

Table A.8: Results of detector size range experiments for the Ring Thick Negative dataset.

Dataset Ring Thick Negative

Radius 0.010 0.020 0.030 0.039 0.040 0.050 0.060 0.060 0.070 0.080 0.081 0.090 0.100 0.110 0.120

True Pos % 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

TP% Std Dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.05 0.00 0.04 0.05 0.04 0.05

False Pos % 90.9 40.3 17.6 13.1 12.9 10.9 9.9 9.6 9.1 7.9 7.8 7.7 6.6 7.6 6.7

FP% Std Dev 1.13 0.90 0.49 0.61 0.68 0.97 0.71 0.73 0.77 0.61 0.91 0.62 1.37 0.71 0.68

Radius 0.130 0.140 0.150 0.160 0.165 0.170 0.172

True Pos % 100.0 100.0 100.0 100.0 100.0 99.8 95.9

TP% Std Dev 0.08 0.06 0.00 0.04 0.00 0.10 0.18

False Pos % 6.5 6.0 6.7 6.9 7.1 7.6 6.2

FP% Std Dev 0.76 0.91 0.73 0.64 0.55 0.66 0.28
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Appendix B: Complete results of coverage factor experiments

Table B.1: Results of coverage factor experiments using coverage factor 2, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 2

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 80.4 66.8 67.2 62.2 57.8 48.2 40.2 57.0 81.0

TP% Std Dev 16.56 28.87 30.95 35.16 36.60 40.25 42.51 43.92 49.48

False Pos % 62.3 15.9 5.4 3.7 0.6 0.5 0.6 57.0 81.0

FP% Std Dev 17.11 19.13 10.06 6.39 4.69 1.81 2.75 35.23 49.48

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 86.2 80.2 66.6 60.0 42.6 29.6 13.0 37.0 50.0

TP% Std Dev 16.91 17.60 26.01 26.57 29.63 31.15 26.53 24.07 49.67

False Pos % 53.4 15.3 6.2 4.0 1.8 1.1 0.6 37.0 50.0

FP% Std Dev 16.12 15.42 10.19 6.91 5.64 3.92 3.37 20.73 49.67

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 83.6 73.4 59.2 41.0 18.8 8.6 2.6 6.0 8.0

TP% Std Dev 15.16 22.59 21.72 28.88 27.83 21.92 16.96 19.38 18.05

False Pos % 53.5 13.0 5.0 2.8 1.4 1.4 0.8 6.0 8.0

FP% Std Dev 15.47 16.57 8.45 5.94 4.47 4.56 3.62 18.22 18.05
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Table B.2: Results of coverage factor experiments using coverage factor 4, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 4

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 94.2 88.0 86.0 87.6 75.2 74.8 73.4 69.2 85.0

TP% Std Dev 11.93 19.21 20.24 23.08 28.27 33.86 30.32 36.61 37.18

False Pos % 78.9 26.4 10.7 4.0 2.5 1.3 1.0 0.0 85.0

FP% Std Dev 12.25 22.45 12.62 7.94 6.46 4.47 3.02 2.86 30.17

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 98.6 92.4 84.2 74.4 64.0 49.8 33.2 27.0 26.4

TP% Std Dev 5.39 10.58 20.07 20.66 24.73 28.18 29.75 27.02 24.93

False Pos % 65.8 22.7 11.0 4.6 2.9 2.4 1.6 1.3 1.5

FP% Std Dev 15.05 20.20 12.45 8.22 7.04 4.69 5.95 3.92 4.31

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 97.0 90.6 79.4 62.8 36.6 17.6 6.4 2.6 7.0

TP% Std Dev 7.29 14.08 16.84 25.55 28.10 25.97 21.08 14.45 14.96

False Pos % 74.1 24.7 10.9 5.8 3.8 1.9 1.3 1.2 7.0

FP% Std Dev 12.60 20.15 11.37 7.64 6.21 5.77 3.02 3.75 10.93
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Table B.3: Results of coverage factor experiments using coverage factor 6, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 6

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 97.6 96.6 95.4 92.8 87.8 83.4 84.0 89.8 80.4

TP% Std Dev 7.24 8.61 8.95 14.59 21.24 23.99 18.70 28.32 20.82

False Pos % 87.1 30.8 13.2 5.7 3.6 2.1 1.8 1.4 0.4

FP% Std Dev 11.96 23.68 14.02 10.33 6.38 4.98 4.75 3.64 3.29

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 99.4 98.0 91.4 85.2 76.8 63.0 42.0 40.2 32.0

TP% Std Dev 2.96 6.03 11.22 17.94 18.38 26.00 30.44 26.76 27.86

False Pos % 74.0 28.8 12.9 6.5 5.6 2.8 3.3 2.4 1.9

FP% Std Dev 13.00 18.92 12.45 9.89 7.07 6.01 5.77 6.70 5.42

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 99.2 95.6 85.2 73.6 47.0 19.8 12.6 4.2 0.8

TP% Std Dev 3.61 9.50 15.04 20.88 28.16 29.23 20.89 20.60 15.30

False Pos % 79.5 27.9 13.7 7.3 4.1 3.3 2.6 1.7 1.3

FP% Std Dev 12.27 19.30 11.61 9.06 6.74 6.08 5.54 5.36 4.12
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Table B.4: Results of coverage factor experiments using coverage factor 8, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 8

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 99.4 98.0 97.6 99.2 94.2 89.0 91.4 88.6 87.4

TP% Std Dev 4.69 6.46 7.61 6.16 9.09 17.63 22.03 19.17 22.53

False Pos % 91.4 38.8 14.4 8.9 3.2 2.5 1.9 1.0 1.3

FP% Std Dev 8.62 23.13 17.39 10.22 7.47 6.26 5.04 3.84 2.69

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 99.8 99.4 95.0 91.2 85.0 69.0 55.6 48.4 45.6

TP% Std Dev 2.11 3.61 8.42 12.42 15.63 23.69 27.79 26.72 28.95

False Pos % 78.6 34.7 15.5 8.4 5.6 4.2 3.9 2.4 2.7

FP% Std Dev 11.52 19.89 14.32 10.58 7.85 7.65 6.96 6.21 5.47

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 99.8 98.2 91.0 84.8 59.2 29.6 13.6 5.8 1.4

TP% Std Dev 0.00 5.39 11.05 17.90 27.41 29.54 25.48 22.96 14.93

False Pos % 83.4 33.4 17.8 9.5 6.5 4.1 3.7 2.3 2.3

FP% Std Dev 10.49 19.52 12.65 10.15 7.61 7.47 6.32 5.74 4.13
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Table B.5: Results of coverage factor experiments using coverage factor 10, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 10

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 99.2 99.6 98.6 98.8 97.0 91.6 94.6 94.8 94.6

TP% Std Dev 3.61 3.61 5.50 5.02 9.40 14.63 14.21 11.24 13.00

False Pos % 93.5 44.2 16.2 8.9 4.2 4.1 2.0 1.7 1.4

FP% Std Dev 7.10 22.40 17.45 11.02 7.30 5.34 5.19 4.62 3.94

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 99.8 99.6 96.6 92.6 89.0 79.0 65.6 52.2 50.2

TP% Std Dev 2.11 2.96 7.47 9.87 14.11 16.97 23.65 21.94 27.98

False Pos % 81.1 36.0 19.5 10.2 7.4 5.0 5.6 2.3 2.9

FP% Std Dev 11.04 20.69 16.24 11.57 8.89 7.79 7.37 7.07 4.69

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 99.8 98.0 92.6 87.6 65.2 38.4 21.6 3.4 1.0

TP% Std Dev 0.00 6.32 10.30 14.45 23.90 25.31 29.83 23.61 8.61

False Pos % 87.2 34.9 18.4 10.5 8.9 4.4 3.6 2.5 3.1

FP% Std Dev 8.62 21.35 12.83 8.65 8.21 6.78 5.99 5.87 5.36
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Table B.6: Results of coverage factor experiments using coverage factor 12, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 12

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 100.0 99.6 99.2 99.2 96.4 93.4 96.2 97.0 96.4

TP% Std Dev 0.00 2.11 3.61 5.84 10.47 11.80 12.45 9.43 8.43

False Pos % 93.7 46.2 20.9 11.4 5.8 3.8 2.5 2.0 1.6

FP% Std Dev 7.24 21.46 18.69 11.80 8.51 6.04 4.78 4.51 4.10

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 100.0 100.0 95.6 94.0 93.8 79.0 68.4 60.0 50.6

TP% Std Dev 0.00 0.00 8.78 10.23 9.49 17.37 19.71 25.95 28.16

False Pos % 82.6 39.4 20.7 10.8 8.3 5.2 3.6 4.1 3.1

FP% Std Dev 11.40 20.24 15.88 11.88 9.52 9.48 7.07 6.10 6.44

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 99.6 98.4 93.8 86.8 70.4 40.4 20.6 5.0 1.0

TP% Std Dev 2.96 5.02 10.40 14.76 21.94 26.72 25.81 23.27 13.42

False Pos % 87.7 38.2 20.9 12.8 8.3 4.7 4.0 4.3 3.1

FP% Std Dev 9.92 22.34 13.14 11.86 8.80 7.58 6.19 6.54 5.98
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Table B.7: Results of coverage factor experiments using coverage factor 14, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 14

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 99.8 100.0 99.2 100.0 97.4 97.2 96.6 97.6 97.2

TP% Std Dev 2.11 0.00 2.96 2.96 6.16 7.24 9.43 6.59 8.91

False Pos % 94.9 48.0 23.9 11.3 7.6 4.4 3.3 2.8 1.6

FP% Std Dev 6.74 21.23 15.74 12.73 8.64 7.03 5.70 5.23 4.75

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 100.0 100.0 97.4 95.0 92.0 82.6 75.4 63.0 57.0

TP% Std Dev 0.00 0.00 6.32 8.74 10.58 19.04 20.07 26.52 26.39

False Pos % 83.8 40.7 20.6 12.2 9.0 6.6 4.7 3.6 2.6

FP% Std Dev 9.93 19.39 15.65 13.48 9.36 8.24 9.35 7.07 6.00

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 100.0 99.4 96.8 90.4 76.2 44.8 26.0 7.2 1.0

TP% Std Dev 0.00 3.61 7.24 12.16 20.33 30.36 29.52 24.80 16.12

False Pos % 88.5 41.5 23.2 15.2 9.6 7.3 4.8 4.2 3.9

FP% Std Dev 9.37 18.33 14.56 11.10 9.35 7.57 7.69 6.91 6.22
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Table B.8: Results of coverage factor experiments using coverage factor 15, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 15

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 100.0 100.0 100.0 99.6 98.4 97.6 97.4 97.8 98.2

TP% Std Dev 0.00 0.00 0.00 2.11 4.14 7.48 8.43 6.59 7.61

False Pos % 95.1 50.0 24.1 12.6 7.9 4.2 2.8 2.2 1.3

FP% Std Dev 6.23 20.89 17.93 13.29 9.99 6.76 6.16 4.57 4.62

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 100.0 99.8 99.0 95.6 92.8 86.0 76.2 65.0 55.8

TP% Std Dev 0.00 2.11 4.14 7.00 11.95 12.35 19.53 21.11 25.93

False Pos % 82.9 43.1 23.2 12.5 8.9 5.8 6.3 4.8 3.3

FP% Std Dev 9.86 20.25 18.13 12.66 10.22 8.14 7.85 7.00 6.73

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 100.0 99.6 96.8 89.8 76.2 48.2 27.4 10.0 1.8

TP% Std Dev 0.00 2.11 7.29 14.66 17.03 24.99 29.22 26.63 18.29

False Pos % 89.1 40.4 23.8 16.4 9.9 7.8 4.8 3.8 3.9

FP% Std Dev 8.82 20.99 12.85 10.52 8.45 7.58 8.01 5.42 5.67
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Table B.9: Results of coverage factor experiments using coverage factor 20, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 20

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 100.0 100.0 100.0 100.0 99.2 97.6 98.0 98.4 98.6

TP% Std Dev 0.00 0.00 0.00 0.00 2.96 5.02 7.24 6.03 5.02

False Pos % 97.1 56.3 28.6 16.3 7.4 5.6 3.8 3.2 2.0

FP% Std Dev 5.50 19.97 17.93 12.45 10.65 6.80 6.04 5.75 4.85

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 100.0 100.0 99.2 97.4 94.8 91.4 80.8 72.4 65.4

TP% Std Dev 0.00 0.00 3.61 6.74 8.42 12.11 16.44 20.65 22.50

False Pos % 85.8 47.6 25.8 14.8 9.6 7.8 7.8 6.3 4.8

FP% Std Dev 9.14 20.36 17.90 13.18 10.83 8.49 7.97 9.21 7.93

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 100.0 99.8 97.8 94.4 84.4 56.0 30.6 13.0 2.4

TP% Std Dev 0.00 2.11 6.32 8.78 16.85 25.82 28.75 27.68 19.02

False Pos % 91.6 46.1 27.1 16.5 12.3 8.0 7.0 5.0 4.3

FP% Std Dev 8.33 19.91 16.91 11.52 9.00 7.18 8.37 7.04 7.23
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Table B.10: Results of coverage factor experiments using coverage factor 25, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 25

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 100.0 100.0 100.0 100.0 99.2 98.6 98.8 98.2 99.0

TP% Std Dev 0.00 0.00 0.00 0.00 3.61 4.14 4.61 5.39 5.39

False Pos % 97.1 58.6 30.3 17.0 9.0 6.4 5.0 3.5 2.6

FP% Std Dev 4.61 19.43 18.24 13.15 10.24 6.64 6.72 6.39 5.26

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 100.0 100.0 99.0 98.0 97.4 93.8 89.4 79.6 68.2

TP% Std Dev 0.00 0.00 3.61 6.03 7.00 8.21 12.32 16.12 21.04

False Pos % 87.2 50.0 27.4 18.8 13.2 9.7 7.9 7.2 5.9

FP% Std Dev 8.30 20.18 17.45 12.74 12.20 10.11 9.23 9.46 8.18

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 100.0 100.0 98.4 95.6 86.4 62.8 33.6 17.0 3.8

TP% Std Dev 0.00 0.00 4.61 8.07 13.49 21.53 26.29 23.65 21.95

False Pos % 92.3 48.9 30.7 19.7 13.8 9.6 7.8 5.9 5.1

FP% Std Dev 7.65 20.85 16.37 12.18 10.69 8.68 8.24 7.73 7.05
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Table B.11: Results of coverage factor experiments using coverage factor 30, true and false

positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f = 30

Dataset Setosa

Radius 0.080 0.172 0.265 0.357 0.449 0.541 0.633 0.726 0.818

True Pos % 100.0 100.0 100.0 100.0 99.8 99.0 98.8 98.6 99.2

TP% Std Dev 0.00 0.00 0.00 0.00 2.11 4.14 2.96 5.39 4.61

False Pos % 97.6 60.7 33.8 19.5 11.2 6.5 5.3 4.0 3.1

FP% Std Dev 4.18 18.85 18.17 14.53 11.04 8.10 7.81 6.74 5.32

Dataset Versicolor

Radius 0.075 0.164 0.254 0.343 0.433 0.522 0.612 0.701 0.791

True Pos % 100.0 100.0 99.4 99.0 98.4 95.0 88.0 81.2 75.2

TP% Std Dev 0.00 0.00 2.11 5.02 5.39 7.47 12.65 17.74 20.07

False Pos % 88.3 50.3 30.2 17.6 12.3 11.6 9.6 8.7 7.8

FP% Std Dev 8.10 18.97 18.29 16.11 11.54 10.83 10.44 9.35 9.14

Dataset Virginica

Radius 0.068 0.159 0.250 0.342 0.433 0.525 0.616 0.707 0.799

True Pos % 100.0 100.0 98.2 95.0 85.8 66.0 40.4 15.8 3.6

TP% Std Dev 0.00 0.00 5.39 7.29 14.76 21.18 27.22 27.58 22.40

False Pos % 93.1 50.9 32.3 21.5 16.0 11.9 8.6 6.7 5.6

FP% Std Dev 7.23 21.10 16.06 12.10 9.39 9.37 8.77 7.83 7.71
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Appendix C: Complete results of detector shape comparison experiments

104



Table C.1: Results of detector shape comparison experiments, true and false positive

percentages are the mean percentage calculated over 10 runs per radius size, true and false

positive percentages standard deviations are calculated over 10 runs per radius size.
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