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Abstract

Network intrusion detection systems (NIDS) provide an area of expanding research
for cyber defense interests. Thisresearch aimsto lay the groundwork for a system that can
operate with only knowledge of normal network traffic, using a process known as anomaly
detection. One method for detecting anomalous data is that of Artificial Immune Systems
(AlS). Real-valued negative selection (RNS) is a specific Al'S algorithm that can be used
to perform two-class classification when only one class is available for training.
Researchers have shown fundamental problems with the geometry of the most common
detector shape, hyperspheres, in high-dimensional space. Additionally, the research
contained herein shows that the second most common detector type, hypercubes, can
cause problems due to biasing certain features over othersin high-dimensional space. To
address these problems, a new detector shape known as the hypersteinmetz solid has been
proposed, the goal of whichisto provide atradeoff between the geometrical problems of
hyperspheres and hypercubes in high-dimensional spaces. In order to investigate the
potential benefits of the hypersteinmetz solid, an effective RNS detector sizerangeis
determined. Then the relationship between content coverage of the dataset and
classification accuracy isinvestigated. Once these issues are addressed, this research
shows the tradeofts that take place in high-dimensional data when hypersteinmetzes are
chosen over hyperspheres or hypercubes. The final results of experiments show that
detector shape is the dominant factor in high-dimensional detection, contributing 86% of
variance in the classification accuracy resultsin 11 dimensions of the chosen dataset as
compared to 0% in 2 dimensions. This verifies that detector shape becomes an
increasingly important factor in classification accuracy within a real-valued negative

selection system as dimensionality increases.
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Detector Design Considerationsin High-Dimensional

Artificial Immune Systems

1 Introduction

The United States is currently operating in a networked world. Enemiesand allies
alike areincreasingly dependent upon cyberspace and, as such, the lines of information
warfare are being drawn. New threatsto the U.S.’s information resources are emerging
almost daily. The current research, discussed herein, aims to address these problems by
creating the framework for a network intrusion detection system operating that addresses
the problems presented to artificial immune systemsin high-dimensionality by using the
hypersteinmetz solid.

Thisintroductory chapter aimsto lay the foundation for the research that proceeds it,
in the following format. First, the vision and policy motivating for the current research are
explored. Next, the problem that this research addressesis proposed. Then, a discussion
of how we attempt to address this problem takes place. Finally, a discussion of the thesis

of thisresearch, and the results obtained follows.

1.1 Motivation

The importance of this research to the United States Air Force (USAF) can be shown
through a discussion of the motivating policies. A few of the pertinent documents include:
the National Military Strategy for Cyberspace Operations, United States Air Force
Blueprint for Cyberspace, Comprehensive National Cybersecurity Initiative, Cyberspace
Operations. Air Force Doctrine Document 3-12, and DoD Strategy for Operating in

Cyberspace. The main points of these documents and how they work together to



implement the information management initiatives previously outlined are discussed in
the following section.

The first major military policy document regarding the operation of DoD forces
within the cyberspace domain was the National Military Strategy for Cyberspace
Operations (NM SCO), published in December 2006. The purpose of the document was to
provide aworking framework of how the DoD operates in cyberspace with regard to
military, intelligence, and business operations. The strategy outlines the contexts in which
military operations would be needed to defend the global information grid (GIG).
Although the document focuses largely on the emerging landscape of using cyber as a
weapon, there are aso specific focuses on the securing of cyberspace assets. Specifically,

one of the strategic priorities outlined in NMSCO isto

“Maintain continuous active layered defenses using existing information
assurance guidance to protect confidentiality, integrity, availability,
authentication, and non-repudiation of information as it is processed, created,

and manipulated at rest and in-motion [50].”

This policy clearly reflects the move toward fusing the previously discussed IRM
documents within an emerging threat environment.

The United States Air Force Blueprint for Cyberspace (USAFBC), released in
November 2009, was an initial push made by the USAF to integrate the service’s current
cyberspace operations activities with along-range cyberspace plan. One of the main
purposes of the document was to provide a culture change to the Air Force's cyber
personnel, specifically to “shift paradigms from network-focus to mission-focus [49].”
The problem of aligning the USAF mission with NM SCO was that there needed to be less
focus on protecting and ensuring the network “for the network’s sake,” and more focus on

ensuring information resources in support of the broader mission. Within the document



severa strategies for accomplishing this task are outlined, with 11 specific objectives
identified [49].

Soon after the USAFBC was released, National Cybersecurity Coordinator Howard
Schulz from the office of President Barack Obama rel eased the Comprehensive National
Cybersecurity Initiative (CNCI). In asimilar vein with USAFBC, the initiative highlighted
12 areas of focus that the federal government would take to help secure its cyberspace
assets. Of the twelve areas identified, two of them pertain to the current discussion:
“Initiative 2. Deploy an intrusion detection system of sensors across the Federal
enterprise” and “Initiative 9. Define and develop enduring ‘leap-ahead’ technology,
strategies, and programs [47].” While there are specific programs outlined in the document
that are beginning to achieve the goal of intrusion detection, Initiative 9 provides the
groundwork for developing new technologies that can help to defend the federal
government’sinformation resources and the technol ogies and infrastructure upon which
they rely [47].

Released in July 2010, Cyberspace Operations. Air Force Doctrine Document 3-12
was released by the USAF LeMay Center with agoal of codifying the principleslaid out

previously in USAFBC. The document’s specific purposeis outlined as

“[T]he Air Force's foundational doctrine publication for Air Force
operationsin, through, and from the cyberspace domain. [It] represents
known sanctioned ideas and practices ... to provideinsight for Airmen to
follow. This document speaksto Air Force support of maintaining

Cybersapce Superiority.” [48]

With the creation of this document, the USAF had, for the first time, created a set of
operational ideas and practices to not only support and defend operations in cyberspace,
but also to execute offensive operations. A principal problem acknowledged within the

document, however, isthat it was created prior to a joint operational cyberspace strategy.



Therefore, when ajoint doctrine document would be established, it would be significantly
harder to ensure that they were in alignment [48].

With this void of joint policy in mind, the DoD created the Department of Defense
Strategy for Operating in Cyberspace (DODSOC) in July 2011. The document created
five strategic initiatives that were aimed at shaping how the military “leverages the
opportunities of cyberspace, while managing inherent uncertainties and reducing
vulnerabilities[51].” The document provides a broad overview of how the DoD isto
operate in cyberspace, and does not provide many details on specific doctrine decisions.
However, it does establish cyberspace as a domain of military operations, decisively
delineating along-held discussion. It additionally continues to implore organizations to
pursue new defense operating concepts within the context of cyberspace [51].

As the preceding documents have shown, the United States military, and the Air
Force specifically, has-in recent years-taken a keen interest in defining how military
operations are evolving in cyberspace as well as how the federal government’s cyber
assets can be defended. By taking this doctrine, it becomes clear that defense of
information resources relies heavily on the safeguarding of the infrastructure upon which
it resides. Innovation into the realm of network and information infrastructure is essential
to the proper execution of cyberspace operations. The motivational theme of this research,
therefore, isto place the groundwork for a network intrusion detection system in order to

further facilitate protection of United States Air Force technology assets.

1.2 Problem statement

Thefirst question to be answered is*“what types of network intrusion detection
systems can be created?’ This research investigates anomaly-based network intrusion
detection methods. The specific type of anomaly-based system chosen findsitsrootsin
the artificial immune systems (AlS) line of research. The specific AIS model chosen is

that of real-valued negative selection. Network intrusion datasets have many features, and



trandate into high-dimensional spaces when translated into real-valued negative selection
problems. However, there are difficulties with real-valued negative selection systemsin
high-dimensional data spaces. Two of these problems are: the content covered and biasing
of features by detectors high-dimensional spaces. In order to create a real-valued negative
selection-based NIDS, how do we overcome the content and feature bias problemsin

high-dimensional real-valued negative selection detectors?

1.3 How problem statement isaddressed

In order to address the problems inherent in high-dimensional real-valued negative
selection detectors, this research focuses on detector shape as the main component of a
successful system design. The hypersteinmetz solid is presented as an aternative to the
most common shapes currently found in the literature: hyperspheres and hypercubes. This
analyzes how the hypersteinmetz performsin high-dimensions, specifically asit pertains
to content coverage and feature bias, when compared against hyperspheres and
hypercubes. The research then shifts toward designing the constraints needed for an
experimental comparison of the three detector shapes. First, the detector radius sizeis
determined through a set of experiments. Then, the relationship between the content
coverage of a set of detectors, or coverage factor, and real-valued negative selection
classification accuracy isinvestigated. These experiments are then brought together to
form the basis for an experimental comparison of the effects of detector shape within a

real-valued negative selection system as dimensionality increases.

1.3.1 Thesis statement. This research aimsto show that “Detector shapeisan
extremely important factor in the effectiveness of areal-valued negative selection system
as the number of dimensions of data increases, especially in comparison to other factors

such asradius size and coverage factor.”



1.4 Overview of results

The results of the analysis and experiments outlined above confirm the thesis. A
successful detector radius bounding range isfound. Then, it is determined that increasing
coverage factor does improve classification accuracy, but at arate of diminishing returns.
Using these preliminary experiments, it is shown that the classification accuracy of a
real-valued negative selection system is dependent on the shape of the detector chosen
when moving into higher dimensions, and that the hypersteinmetz, specifically, provides

the expected improvements over against the hypersphere detector.



2 Background

In order to better demonstrate the objective of the current research, a background of
research within applicable fields of study isimportant. The following chapter aimsto lay
the essential framework of knowledge required to sufficiently support the thesis statement
involving detector shapes within a high-dimension artificial immune system.

First, network intrusion detection systems are defined. Then, considerationsinvolving
the selection of a network intrusion dataset are discussed. Finally, an introduction to the
field of artificial immune systemsis provided, along with a presentation of research

explaining the problems specific to artificial immune systemsin high dimensions.

2.1 Network Intrusion Detection Systems

Before delving into how a network intrusion detection system can aid the information
resource management (IRM) process, an understanding of what network intrusion
detection systems are and how they work is essential. The following sections discuss
intrusion detection systems, distinguish between intrusion detection and intrusion
prevention, explain differences between network and host-based systems, differentiate
anomaly and signature-based methods, and touch on afew of the computational methods
currently used as the backbones of these systems.

According to the National Institute of Standards and Technology (NIST), intrusion

detectionis

“The process of monitoring the events occurring in a computer System or
network and analyzing them for signs of possible incidents, which are
violations or imminent threats of violations of computer security policies,

acceptable use policies, or standard security practices.” [39]



Therefore, An intrusion detection system (IDS) is a system designed to perform the
process of intrusion detection. Namely, an IDS monitors network or computer system
information to determine if incidents are occurring and then acts upon or alerts someone
to act upon that information. Intrusion detection is simply the process of determining that
an incident has occurred, is occurring, or will occur.

An additional layer often added to the intrusion detection process is that of the
intrusion prevention system (IPS). The purpose of an IPSisto not only act as a detector,
but also as a preventer of intrusion. An IPS can act either after detection of an
intrusion—blocking it from continuing—or before an event has taken place—shoring up the
network or computer system from a potential attack [31]. Going forward, the rest of this
discussion assumes an IDS, rather than an IPS, is the subject.

The next delineation that must be drawn regards network and host-based detection
systems. Network-based IDSs (NIDS) monitor network traffic on a specific segment
within alarger network system; they then classify that traffic, identifying many different
types of events that may interest network management personnel. Contrarily, host-based
IDSs (HIDS) reside on a single host system (e.g. a personal computer, a server, etc.) and
monitor characteristics of the host, and events that occur therein, for suspicious activity. In
addition to monitoring the network traffic for that specific host, an anomaly-based IDS can
also look at system logs, processes, system files, access permissions, and application
permissionsin order to detect abnormal behavior [41]. A network-based IDS isthe subject
of thisresearch.

The last distinction of different IDS methods is signature-based versus
anomaly-based detection. Signature-based detection “is atechnique for intrusion detection
that relies on a predefined set of attack signatures[37].” In this scheme, the IDS attempts
to match current network packets or traffic patterns to predefined attack or anomaly

signaturesin a database. The burden therefore isin keeping up with the ever increasing



number of intrusion signatures [40]. In contrast, anomaly-based detection relies on a
pre-defined baseline of normal network traffic. The system compares incoming network
traffic to the baseline. If the incoming traffic is sufficiently different than the baseline, it is
classified as anomalous. The key benefit to an anomaly-based IDS over against a
signature-based system isthat it has the potential to detect new and emerging threats that
have not already been defined in a signature database. However, it can be hard to create a
sufficient baseline of normal traffic, thus causing the system to suffer from a plethora of
false alarms [37]. Despite the drawbacks, though, anomaly-based systems currently
provide the greatest area for research, as signature-based systems such as SNORT cannot
detect newly emerging threats [31].

Within anomaly-based NIDS, there are several methods used to detect anomal ous
network traffic. The full extent of these methodsis not reviewed and a good discussion of
them can be found in [53]. There are several areas of artificial intelligence research which
attempt to solve the intrusion detection problem with varying degrees of success. One
particular method which has shown initial promise takes the approach of modeling the

human immune system in order to detect anomal ous network traffic.

2.2 Dataset Selection

To choose a dataset, an investigation of currently available datasetsisin order. This
discussion begins with alook into the problems of data collection, and then delvesinto an
examination of a number of currently available datasets. There are three types of problems
with using real-world datasets: privacy and anonymization of data, unavailability of data,
and the issue of moving targets [19].

One of the most important topicsin any real-world network traffic capture is that of
the legal issues surrounding privacy and anonymization of the data. Ohm et al [ 36]
demonstrate the tremendous legal concerns surrounding the use and sharing of private

organizations network traffic. There are regulations at all levels of government



surrounding the collection of network data, and—in almost all cases-the anonymization of
addresses is essential. Thisisimportant to note, as some of the most essential data
features for network intrusion detection can come from specific internet protocol (1P) and
media access control (MAC) address data. Anonymizing or scrubbing this data can cripple
the operation of a network intrusion detection system.

Legal issues can aso create a second problem: unavailable data. Because of the
privacy regulations, not only must data be anonymized, but in most cases it cannot be
released to outside organizations at all. For thisreason, alarge portion of the novel data
sets used in emerging research are home-grown. Lastly, it isimportant to realize that the
definition of network traffic isamoving target. Some datasets that are currently used for
benchmarking are more than ten years old and can no longer accurately demonstrate
real-world network traffic [19].

Because of the problemswith real-world network traffic, it might seem alogical
conclusion to create synthetic traffic. However, there are additional problems with
creating synthetic datasets, namely background traffic generation and attack traffic
generation. Creating normal traffic requires the use of either alarge user-base or atraffic
generation tool. One of the problems with using atool isthat it can be difficult to
represent the distributed nature of real networks. Real networks exist not only in disparate
geographic locations, but also in different network locations. Moreover, truly representing
the cacophony of actual user traffic can be difficult. On the other hand, relying on real
users to create fake network traffic is obviously constrained by the availability of the given
user set for this purpose.

Additionally, creating representative attack datais an extremely difficult problem.
There are an infinite number of potential attack vectors available to malicious actors.
From distributed denial of service attacks to structured query language (SQL) injection

attacks, there is no way to predict and/or guard against all potential attack vectors.
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Therefore, choosing an effective representative subset of these potential vectorsisan

extremely difficult task [3].

2.2.1 MIT-DARPA Sets. Two datasets that pertain to this discussion form the basis
for alarge portion of the intrusion detection dataset body of knowledge. Both datasets
were created by the Massachusetts Institute of Technology (MIT) Lincoln Labsin
conjunction with the Defense Advanced Research Projects Agency (DARPA). Thefirst
was created in 1998 and the second in 1999. Consequently, the datasets are commonly
referred to asthe MIT-DARPA *98 and MIT-DARPA ’ 99 datasets respectively, and both
can be found online at http://www.ll.mit.edu/mission/communications/ist/CST/index.html .
As stated in [28], the main goal of creating these datasets was “to drive iterative
performance improvements in participating systems by revealing strengths and
weaknesses and hel ping researchers focus on eliminating weaknesses.” In order to meet
this goal, the research team created two successive datasets to set a baseline for testing
different intrusion detection systems.

Both datasets were created using similar methodol ogy, with the MIT-DARPA 99
data collection accounting for some problems that were present in the MIT-DARPA 98
dataset. The datasets were built to model the standard network traffic of a United States
Air Force (USAF) base, and traffic was ssmulated in order to account for privacy concerns.
The MIT-DARPA ' 98 dataset consists of 32 attack vectors spread out over a seven week
period. The attacks are interspersed with normal network traffic and network packet data
was captured using tcpdump, with approximately 4 Gigabytes (Gb) of datain total
[27, 28, 46]. The MIT-DARPA ' 99 dataset consists of 200 instances of 58 attack vectors
launched over afive-week period of time. The packet data was captured using tcpdump
and isdivided into a three-week training data subset and a two-week testing data

subset [29, 32].
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A third dataset was created by combining network packet based features of the
MIT-DARPA ’ 98 dataset with traffic and content based features derived from the original
data [46]. This new dataset was used for the The Third International Knowledge
Discovery and Data (KDD) Mining Tools Competition. It is known as the KDD Cup '99
dataset and can be found at the University of Californiaat Irvine Machine Learning
Repository: http://archive.ics.uci.edu/ml/databases/kddcup99/kddcup99.html . The
purpose of the competition was to find the best method for intrusion detection by
distinguishing “bad” network traffic from “good.” Specifically, the KDD Cup ’'99 data
contains about five million “connection vectors.” Each vector contains 41 features and is
labeled not only as normal or attack, but also with the specific type of attack.

Although the KDD Cup and MIT-DARPA datasets are the most widely used within
the network intrusion detection community, there have been several problems noted with
the data. Three underlying problems with the data generation were proposed in [32]. First,
it was suggested that the data did not truly represent real network traffic, and that the
methods used for modeling real-world traffic patterns were never fully explained.
Secondly, there is no evaluation of the effectiveness of the tcpdump feature used to capture
the packets, asit is known to drop packets during intervals of high traffic. Lastly, and most
importantly, there was never a solid definition put forth for each of the different types of
attack [32, 46]. Additionally, the traffic data for both MIT-DARPA datasets was created
pre-2000. Therefore, the datais over 10 yearsold. Asaresult it does not properly convey
modern real-world traffic patterns and makeup.

Further problems were noted specific to the KDD Cup ' 99 dataset. Two specific areas
of problem include the presence of redundant records which can bias learning algorithms
and the relative ease of classification that results from the default locations of attacks
within the training and test data [46]. This analysis was used to form a new dataset from
the KDD Cup '99 data. The NSL-KDD dataset, currently housed at
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http://iscx.ca/NSL-KDD/, aims to remove these issues. It still relies on the same
41-feature vectors of the original KDD Cup ' 99 data, but removes redundant records and
recreates the training and test setsin amore challenging order. It isimportant to note that
the NSL-KDD dataset does not solve any of the dataset creation problems that McHugh
outlined in hisanalysis of the MIT-DARPA '98 and ’ 99 datasets [32]. Mainly due to the
fact that it isthe most commonly cited dataset and ease of access, the KDD Cup '99
dataset is used as the primary network intrusion detection dataset for the purposes of this
research. Further information involving the pre-processing of the dataset for use in the

specific system created is discussed in the following chapter.

2.2.2 High-dimensionality of network intrusion datasets. Network intrusion
datasets tend to have many features. These features represent many different measurable
characteristics of both individual packets and network traffic subsets. For example, while
the KDD Cup ' 99 dataset has 41 features, other datasets contain as many as 249 features
[34]. The problem with datasets that contain many dimensionsisthe “ curse of
dimensionality.” First proposed in [4], the curse of dimensionality istied to the problem of
exponential growth. As dimensions are added, the number of computations needed to
perform basic comparisons while working with the data increases exponentially and
computational power and memory are consumed quickly.

In most cases, the dimensionality problem is addressed by reducing dimensionality
by selecting an ideal subset of features[11]. Due to current computing constraintsthisis
essential—and will be for the foreseeable future. However, less research has addressed
solutions for how to work more effectively with higher-dimensional data. One benefit of
higher dimensions is specific to anomaly detection. Since anomaly detection systems are
trained on normal data, anomal ous patterns are not known. Therefore, it is difficult to
determine which features best separate the anomal ous traffic from the normal traffic. Since

the scope of the current research aims to avoid an assumption of prior knowledge of attack
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network traffic, it isimportant to use as many features as possible. The current research
attempts to address some of the problemsinherent with high-dimensional data, especialy

asit pertains to both network intrusion detection and artificial immune systems.

2.3 Artificial Immune Systems

The following sections provides a background of artificial immune systems and begin
to explain the challenges in implementing these systems in high-dimensional spaces. First,
abrief overview of artificial immune systems, in general, and real-valued negative
selection, in particular, is performed. Then, the discussion investigates problems presented
by high-dimensional real-valued negative selection systems. Finally, afew competing
approaches to solving the problems presented in high-dimensional real-valued negative

selection systems are presented.

2.3.1 AIS and negative selection. The biological immune system(BIS) is one of
nature’s anomaly detection systems. The basic role of the biological immune system(BIS)
isto recognize all cells within the body and classify them as self or non-self [9]; the cells
used to perform the recognition task are known as antibodies. Many organs, cells, and
processes interact with these antibodiesin order to create a robust immune system.

Many BIS processes have been modeled artificially, but the most common is that of
negative selection. Negative selection is a biological process through which antibodies are
“trained.” The process, which takes place in the thymus, begins with a newly-created,
naive, antibody. The naive antibody is presented protein strings that represent self cells
that are commonly found in the host body. If the antibody detectors any of the self strings,
itis“negatively selected” (discarded). This processis repeated continually in order to
create a set of antibodies that does not recognize and thereby destroy healthy self cells.

The negative selection process was first adapted to a computational model by by

Forrest et al [13]. Thefirst phase of the algorithm creates a set of nonself detectors by
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creating detectors and negatively selecting those that detect self point. A large set of these
detectorsis created to model the complement of the set of self pointswithin adataset. In
the next phase, the detector set classifies a set of test points as self and nonself. The
negative selection algorithm was created to operate on sets of binary strings, where each

binary string represented a data point within the dataset.

2.3.2 Real-Valued negative selection. The first attempt to computationally model
the BIS into areal-valued space was that of Perelson and Oster [38]. They presented the
concept of shape-space as an n-dimensional Euclidean vector space. In shape-space, the
Euclidean distance between two points represents the affinity, or similarity, between those
points. Each feature in a dataset can be mapped to a dimension in shape-space.
Shape-space is similar to the concept of feature-space in pattern recognition, but the range
of shape-space istypically limited to the region of feature-space within which values for
each feature can feasibly fall.

By combining the ideas of real-valued shape space along with the negative selection
algorithm, Gonzalez et al [14] created the real -valued negative selection algorithm (RNS).
RNS uses hyper-spheres to define detectors. A random vector is selected to represent the
center of a hypersphere, and aradius is defined to represent an affinity threshold. The
detector generated then defines all points within this hypersphere as non-self. A
randomly-generated detector is compared against al self points. If the detector matches
self, the detector isiteratively moved away from self points toward alocation of the most
separation possible from other detectors.

A subsequent approach to randomizing detector generation is to use a method known
as randomized RNS [15]. In this approach, Monte Carlo integration is used to determine
the size of self and non-self within the given feature space, then a number of randomly
placed detectors are chosen according to Monte Carlo integration calculations. Simulated

annealing is then applied to the random detectors in order to space them out as evenly as
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possible over the non-self space. One problem with this method is that it requires a set of
fixed-sized detectors, and this fixed size can cause problems with ensuring that all spaceis
accurately covered.

In order to solve fixed size detector problem, the V-detector algorithm [22] was
proposed. A V-detector is a variable-sized detector that is used to achieve the largest
possible coverage of non-self space using the smallest number of detectors. In addition to
moving detectors around the non-self space to create a greater spread—as in randomized
RNS-the radii of detectors can be lengthened or shortened to provide a more accurate
coverage. This approach yielded mixed resultsin practice. It provided for more accurate
non-self/self differentiation, however, two problems arose. First, overlapping detectors can
occur when two detectors' radii are increased. This overlap causes redundancy in the
detector set and thus wasted computation. Additionally, outliersin the self set can cause
the detectors to shrink and replicate in order to fill a space that would be better represented

by alarge detector.

2.3.3 Problem with RNS in high dimensions. Several authors have pointed out the
problem of the curse of dimensionality within real-valued negative selection as it applies
to the growth of shape-space [15, 23, 24]. In order to improve computational efficiency
and feasibility of the ensuing algorithms, several approaches have been used to try to
reduce the size of real-valued shape-space in high-dimensions. The most common
approach is to reduce the number of dimensions through feature selection [ 11]. Other
approaches include scaling of dimensionsin order to reduce unoccupied space [30], and
reducing the complexity of the any ensuing algorithm by reducing the number of self
points present in shape-space [54].

Stibor et al [45] further honed the analysis of how the curse of dimensionality affects
real-valued negative selection a step further by comparing the growth of shape-space to

that of the detectors placed therein. Assuming the length of the radius remains constant, it

16



is shown that the content, the n-dimensional extension of the concepts of areain two
dimensions and volume in three dimensions, of a hypersphere approaches zero as the
number of dimensions approaches infinity. Since most algorithms used in real-valued
negative selection use hyperspherical detectors, it is demonstrated through a ROC analysis
that the classification results of traditional RNS-based algorithms suffer due to the

diminishing content of hyperspheres.

2.3.4 Approaches to combat problems with RNS in high dimensions. There have
not been many attempts made to address the problem of hypersphere growthin
comparison to shape-space as dimensionality increases. Stibor et al [44] chose to create a
real-valued positive selection system. In this system, each self point istreated as the center
of adetector of self. Although this approach removes the problem of covering the nonself
portion of shape-space, it failsto address the fundamental problem with hyperspheres.
Rather than eliminating the problem of hyperspherical content approaching zero, it has
just been transferred from nonself space to self space.

The most direct attempt made to combat the hyperspherical growth problem isthat of
applying the concept of distance normsto detector shapes[6]. Chmielewski and
Wierzchon first define areal-valued detector as a point centered at a real-valued vector
with an affinity threshold that is not directly tied to Euclidean distance, but rather to a
distance based on either the Minkowski norm distance. The distance between two
n-dimensional points X = [X1, X2, ..., Xn] @ndy = [y1,Y2, ..., Y] iSdetermined using the The
Minkowski norm of order m (Ln,-norm distance) in shape-space, which is defined in

Equation 2.1.
n m
Ln (X.Y) = (Z IXi - yilmJ (2.1)
i=1

The Minkowski norm distance is equivalent to Manhattan distance when m = 1 and
Euclidean distance when m = 2. Further, the shape of a detector depends on the value of

m.
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The properties of detector shapeswith m > 1 were addressed by Ji and Dasgupta
[24]. However, their analysis of the Minkowski norm distance was done for the purposes
of addressing the speed of their algorithm. Therefore, an analysis of Minkowski norm
detectors with m > 1 was not applied to classification results.

The properties of Minkowski norm detectorswith 0 < m < 1 have been discussed by
Aggarwal et al [1] and is applied to real-valued negative selection by Chmielewski and
Wierzchon [6]. It is shown that reducing the value of m directly resultsin higher
classification accuracy in high-dimensional spaces. However, there is a tradeoft that
occurs between effectiveness and time complexity, as the efficiency of the underlying

algorithms decreases as m decreases.
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3 Approach and Methodology

The following chapter builds upon the framework set in the preceding chapters to
explain the methods used to verify the thesis, “ Detector shapeis fan extremely important
factor in the effectiveness of areal-valued negative selection system as the number of
dimensions of data increases, especially in comparison to other factors such asradius size
and coverage factor.” The methods described herein build upon the foundational
background overviewed in Chapter 2.

First, the real-valued negative selection algorithm used in this research is presented,
followed by a discussion of the properties of the detector shapes in the real-valued
negative selection system in high-dimensional space. Then, a detector radius sizing
method is discussed. Next, the concept of coverage factor isintroduced. Limitations of the
radius sizing methods as the system moves into higher-dimensional spaces are then
explained. Finaly, an experiment islaid out to compare the different detector shapes
presented, in order to determine how detector shape influences classification accuracy in

high-dimensional spaces.

3.1 Negative selection system overview

In order to perform the task of network intrusion detection, an artificial immune
systems approach was chosen, specifically a naive real-valued negative selection system.
This real-valued representation of space is known as shape-space, which is a subset of
feature-space where bounds are placed on each feature in order to create an n-dimensional
orthotope [38]. The system is modeled after the real-valued negative selection agorithm
(RNS) [15], where the system randomly creates a set number of hyperspherical detectors
and places them in the regions of shape-space not occupied by self points. Then, any time
that a point is detected by one of the hyperspherical detectors, the point is classified as
nonself.
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Additionally, the created system does not attempt to address the problem of detector
overlap, addressed in [15] and [25]. The current research aims to address specific
problems that arise from implementing an AIS in high dimensional spaces. It is not
necessary to solve the overlap problem in order to address the geometrical problems with
AlISin high-dimensional spaces. The real-valued negative selection agorithm used for all
of the proceeding experimentsis shown in Algorithm 1, where p isadata point in the
shape-space, P isaset of data pointsin the shape-space, P, isthe set of training points, P
isthe set of test points, ;7 is a pre-determined number of detectors, ¢ represents a point in

shape-space, det; isthe detector centered at ¢, and D is a set of detectors.

3.2 Detector shapesin high-dimensional space

Stemming from the problems of high-dimensional data discussed in Section 2.3.3,
previous research has shown poor results when scaling real-valued negative selection
algorithmsto higher-dimensional spaces. It is proposed that, the goalsin selecting a
detector shape are threefold. First, it should be computationally easy to determineif a
point lies within the detector. Second, the detector should not be biased toward pointsin
any given dimension or set of dimensions. Third, the content of the detector, as defined in
Section 2.3.3, should grow proportionally to the content of shape-space as the
dimensionality of the shape-space increases. The following sections define the terms

computational complexity, feature bias, and content ratio as they pertain to detector shape.

3.2.1 Computational complexity. A limiting factor within AlSs, and negative
selection in particular, isthe number of detectors that can be maintained simultaneously.
Due to limited computing power, a maximum number of detectorsisimposed on any
negative selection system. In order to determine the maximum number of detectors
allowed, the computational complexity of each detector must be known. The

computational complexity of a detector shape is defined herein as the number of
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Algorithm 1 Negative selection algorithm
Create training dataset P, consisting of only self points and testing dataset P consisting

of both self and nonself points need to be classified
repeat
Randomly select a center point ¢ within the confines of the shape-space.
while det. detects any pointsin P, do
Select anew random value for ¢
end while
Add det; to the set of detectors D
until n detectors have been created
for each point pin Ps do
for each detector det € D do
Determineif p is detected by det
end for
if p was detected by any det then
Label p as nonself
else
Label p as self
end if

end for
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computations needed in order to determineif a point falls within the given detector. The
number of computations needed is then used to create an upper bound on the growth rate
of the complexity as afunction of the number of dimensions, which isreported in

O-notation [§].

3.2.2 Feature bias. Based on the works of Clark and Evans [7] and Perelson and
Oster [38], affinity in shape-space is based on the assumption that pointsin real-valued
shape-space that lie near each other are more closely related than those that are farther.
For this reason, the distance between two pointsis relevant for AlS self/nonself
determination. Thus, the shape of a detector can influence whether a point is classified as
self or nonself, and feature bias istherefore defined to account for this dilemma. A
detector is biased toward a certain feature if it has alarge Euclidean distance between
pointsin one feature (i.e. dimension) and a small distance in others. If a detector is biased,
the orientation of the detector or of the points around a fixed detector influence the ability
of adetector to recognize an antigen. Figure 3.1 illustrates this point by showing a case
where the orientation of two points around a square detector, rather than distance between

the points alone, determines whether or not the detector survives negative selection.

Feature bias, b, is defined as the ratio of maximum sensitivity to minimum sensitivity,
where sensitivity, ¢, isthe distance between the center point of a detector and a given point
on the surface of the detector. Equation 3.1 defines the biasratio. An ideally biased shape
would have abias of b = 1, which would mean that it has an equal sensitivity in all

dimensions.

p = Jmax (3.1)

3.2.3 Contentratio. Content, C, isthe n-dimensional generalization of the

concept of areain two dimensions and volume in three dimensions. As stated earlier,
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Figure 3.1: lllustration of the implications of feature bias in a square detector during

negative selection.

shape-space is a subset of feature-space where bounds are placed on each feature in order
to create an n-dimensional orthotope. The content of shape-space, Csg, isshownin
Equation 3.2, where p; represents a point in the i-th dimension, 3; isthe side length of the

i-th dimension, and n is the total number of dimensions in shape-space.
Css = ITL; (max(pi) — min(py)) = I ,5; (32

A shape-space element is defined as an orthotopic subset of shape-space with side-length
that isafraction of the side-length of shape space. Thus, the side-length of a shape-space
element can be represented as £; where A, the number of shape-space elements contained
in one dimension of shape-space, is greater than one. The content of a shape-space

element, Cg, isdefined in Equation 3.3, where 4; is chosen such that ﬁi is a constant, thus

creating a shape-space element that is cubic in n dimensions.
Ce =T B (3.3)

A single detector is sized, in the following equations, relative to a shape-space

element such that the shape-space element is the smallest n-dimensional hypercube that
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completely contains the given detector. Figure 3.2 demonstrates a spherical detector

contained within a shape-space el ement.

Enclosed spherical detector: 21 = g
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Hypercubic element of shape-space
(a) (b)
Figure 3.2: Illustration of a spherical detector within a shape-space element in (a) two

dimensions and (b) three dimensions.

The number of shape-space elements contained in n-dimensional shape-space, E(n)

isafunction of the number of dimensions, asis shown in Equation 3.4.

E(n) = A" (3.4)
This reveals that the number of shape-space elements required to completely fill the
shape-space grows exponentially with regard to the number of dimensions, completely
independently of the detector shape.
Content ratio, y is defined as the portion of the content of a shape-space element that
is contained within a single detector, and is shown in Equation 3.5, where Cy isthe

content of a detector, and C is the content of an element of shape-space.

~d (3.5)



Content ratio is an indicator of the number of detectors required to completely cover
shape space when compared to the number of shape-space elements, E(n), required to do
the same. The largest possible content ratio is one, which would require E(n)
non-overlapping detectors to cover shape-space. A content ratio less than one would
require a number of non-overlapping detectors greater than E(n) to cover the entire
shape-space. It is proposed that larger values of y are preferred, because a higher y
impliesthat each individual detector has a higher likelihood of anomaly detection within
the bounding shape-space element.

The use of content ratio allows the ability to asses the number of detectors needed as
dimensionality increases. If a detector’s content ratio decreases as dimensionality
increases, then the number of detectors would need to be increased faster than the growth

of E(n) just to keep the same likelihood of anomaly detection.

3.2.4 A comparison of three detector shapes. Using the concepts of computational
complexity, feature bias, and content ratio, the following section compares the two most
common detector shapes: hyperspheres and hypercubes. Then athird shape, the
hypersteinmetz, is proposed to potentially balance the tradeofts between hyperspheres and
hypercubes.

An n-dimensional hypersphere is a generalization of the two-dimensional circle and
three-dimensional sphereto n > 4 dimensions. It is therefore defined by equation 3.6,
where [Cy, Cy, ..., Cy] defines the hypersphere’s center point ¢ in n-dimensional space,

[p1, P2, ..., Pn] iIS@point p that iswithin the hypersphere, and r represents the radius of the
hyper-sphere [52].

r? = (p1—C1)* + (P2 — €)% + -+ + (Pn — Cn)° (3.6)
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Euclidean distance between points p and ¢, d,, for an n-dimensional space is defined

by equation 3.7, where d; is the Euclidean distance from point p to ¢ in dimension i.

doc = \/d12+d22+---+dn2 (3.7)

A point p falls within a given hypersphere detector if its Euclidean distance from the
detector’s center ¢ is< r. This calculation requires three operations for every dimension or
3n = O(n) operations. Thisisalinear upper bound and is therefore considered
computationally feasible.

Since the surface of a hypersphere is one radius distance from the center point in all
directions, one benefit of using hyperspheresis that they have afeature bias of b = 1; this

is demonstrated in Equation 3.8.

Omax r
bns = =-=1 3.8
hs 5min r ( )

Since bys = 1, we know that the hypersphere is not biased toward any specific dimension
in shape-space.

The primary drawback to using hyperspheresis that as the number of dimensions of
shape-space increases, the content ratio of a hypersphere goesto zero. In [45] it is shown
that for each length of r there exists adimension n for which the content of the
n-dimensional hypersphere, Cy, is maximized. After this point isreached, Cs goesto

zero as n approaches infinity. Thisis shown in Equation 3.9.

n 5o Chs = O (3.9)
The content ratio of a hypersphere in comparison to a shape-space element, therefore,
decreases exponentially with respect to the number of dimensionsn. The content ratio of a
hypersphere, yps, is as shown in Equation 3.11 and demonstrated in Figure 3.3. I'(@) isthe

mathematical gamma function, which has factorial growth with respect to «, as shownin
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Equation 3.10 [33].
1 ifa=1
I'(a) = (3.10)
(@a-Dl(e-1) ifa>1

Chs ﬂ0.5n

Ca _ N(2HI(0.5n) (311
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Figure 3.3: Content and content ratio of a hypersphere with r = 1 as the number of

dimensionsincreases.

27



An n-dimensional hypercubeis a generalization of the two-dimensional square and
three-dimensional cube to n > 4 dimensions. For the purpose of this discussion, a
hypercube is assumed to be aligned with the axes of shape space. As such, a hypercube
can be projected onto each dimension as a line segment. A given point y, therefore, falls
within a given hypercube detector if for every dimension it falls within the projected line
segment representing the cube. Each point must be compared to alower and upper bound
in each dimension. So, the number of comparisons needed is twice the number of
dimensions. This provides a computational complexity bounded by a growth rate of
3n = O(n), making it computationally equivalent to the hypersphere.

The feature bias of a hypercube can be determined by applying the method shownin
Equation 3.1. The shortest distance from a hypercube’s center to the surface, 5min, IS equal
to half of the side length, a. The longest distance from a hypercube’s center to the surface,
dmax, IS from the center to the corner. The feature bias of a hypercube, by, isshownin

Equation 3.12.

(3.12)

Therefore, as the number of dimensions increases, the hypercubic detector’s feature bias
increases.

Because a hypercube is a specific instance of orthotope where all side lengths a; are
equal, it does not exhibit the decreasing content ratio of a hypersphere as dimensionality
increases. We can see that a is a subset of shape-space such that ap, = §. Therefore, there
must exist a shape-space element that contains the hypercube, such that a¢ = §. Based on
Equation 3.3, we can substitute this value and see that a content ratio, yyc, of oneis
achieved in Equation 3.13

n
Yoo = % -2 1 (3.13)

O

An n-dimensional hypersteinmetz solid is the orthogonal intersection of N cylinders,

where N is equal to the celling of half of the number of dimensions, as shown in
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Equation 3.14.
N=[3] (3.14)
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Figure 3.4: Hypersteinmetz solid shown from different angles.

An example of ahypersteinmetz is shown in Figure 3.4. For the current discussion, a
unit hypersteinmetz aligned along the shape space dimensionsis assumed. The
n-dimensional hypersteinmetz is defined by the set of equations 3.15, where x isapoint in

the hypersteinmetz and x; is the i-th dimensional value of x.
X12 + X2 < r?

X324+ X2 <12

Xn12 + Xn2 < I?

(3.15)
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In order to determine whether a point y resides within a given hypersteinmetz x, each of
the [g] cylindersis projected down to two dimensions. The point y is projected onto each
dimensional pair. If al projections lie within the corresponding circles, then the pointy is
contained by the hypersteinmetz. Since determining if a point lies within a hypersphere
requires 3n operations and a hypersteinmetz can be projected down to a set of
two-dimensional hyperspheres, a hypersteinmetz detection computation requires3- 2 = 6
operations for each cylinder. In the worst case scenario, 6N operations would need to be
performed. Therefore, the computational complexity of the hypersteinmetz is
6N = 6- 5 = 3n, resulting in aworst case growth rate of O(n). The growth rate of
determining if a point lieswithin a hypersteinmetz is, therefore, computationally
equivalent to determining the same for the hypercube and hypersphere.

The distance between the center point of a hypersteinmetz and the closest point on
the surface is equal to the radius length chosen for al cylinders. Since we are assuming a

unit hypersteinmetz, Equation 3.16 represents the minimum distance.

As Equation 3.17 demonstrates, the values for 6., differ in odd and even dimensions.

N5

(3.17)

5max =

if niseven [n"

M1 ifnisodd

The feature bias of a hypersteinmetz, by, is shown in Equation 3.18.

bs = Omax _ \/F = \/@ (3.18)

- 5min

The following equations are presented in order to determine the content ratio of a
hypersteinmetz. First, the content of a hypersteinmetz, C;, can be found through iterative
integration shown in Equation 3.19, wherey; = +/r? — x;2.

2 2
f_rrzf_y"n---f_rrzf_yyzzdxldxz---dxn if niseven
2 2
Ll L [ [ dxadxe---dx, if nisodd

n Y=Yn+1

Cy = (3.19)
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Evaluation of the integralsin Equation 3.19 results in the content expression in

Equation 3.20.

NIS

(wr?)® if niseven
Cy = g (3.20)
¥r'77  if nisodd
Equation 3.21 shows the content ratio for a hypersteinmetz, v, obtained by substituting

Equation 3.20 into Equation 3.5.

NIS

(7rr2

2n
Vst = e
16"z
3 2n

if niseven
(3.21)

,_\
N
(e8]

if nisodd

The optimal number of orthogonal cylindersto use in a hypersteinmetz solid detector
is [g] where n is the number of dimensionsin the shape space. Thisis due to the fact that
the feature bias does not change as cylinders are added, while at the same time the number
of operations required increases and the content ratio decreases. Therefore,
hypersteinmetz detectors for the purpose of the current research consists of [21
orthogonally intersecting cylinders.

Comparing the three shapes, the hypersteinmetz balances the problems between the
hypersphere and hypercube. Table 3.1 shows that the hyperspheres content ratio decreases
factorially due to the presence of the gammafunction in the denominator, while that of the
hypersteinmetz only decreases exponentially. Additionally, the feature bias of the
hypercube is reduced in the hypersteinmetz by afactor of V2. Although the
hypersteinmetz does better in both regards, it does not approach the ideal content ratio of

the hypercube or the ideal feature bias of the hypersphere.

3.3 Detector radius sizing experimental design

The discussion presented in Section 3.2 proposed that content ratio and feature bias
have an adverse effect on detector shape as dimensionality increases. However, we

investigate whether or not content ratio and feature bias trand ate directly into
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Table 3.1: Table comparing the content ratio and feature bias of the hypersphere,

hypersteinmetz, and hypercube.

Hypersphere | Hypersteinmetz | Hypercube

ﬂ0.5n ﬂ0.5n
n(2"-1)I(0.5n) -1

Feature bias 1 [g] \n

Content ratio 1

classification accuracy within areal-valued negative selection AlS, and the following
sections describe a set of experiments designed to test this.

The first experiment performed to investigate the relationship between different
detectors isto constrain the range of detector radii that can be used for further
experiments. In order to provide a baseline for the minimum radius size for a detector, itis
important to take into account two things. First, aradius size that is too large does not
allow the detector to fall between data points that are separable. The tradeoft, however, is
that aradius that istoo small “overfits’ the data by falling between data pointsthat are
similar. Overfitting causes the RNS system to classify pointsthat are self asnonself. The
following sections propose the nearest neighbor method for determining a minimum
detector radius, and a maximum radius sizing method, wherein the largest possible
detector is placed. Once these methods are explained, an experiment is designed to show
that the range produced by the proposed minimum and maximum methods is afeasible

sizing method for the purpose of classification in areal-valued negative selection system.

3.3.1 Minimum radius sizing using nearest neighbor (nn) method. Clark and
Evans[7] noted that the most similarity to any data point is gained by looking at the data
point closest to it. This phenomenon, known as the nearest neighbor principle, isalso a
fundamental assumption required in the real-valued negative selection approach to AlS,
expressed by equating the concept of *affinity’ with Euclidean distance. Since real-valued
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negative selection fills up negative space with detectors, we need to ensure that groups of
similar points are not broken up by detectors. In order to do this, a nearest neighbor
distance is computed to determine the minimum radius size allowed.

In order to determine how close together similar points are distributed, first a subset
of points P is selected randomly from the set of self training points within the dataset. For
each point p € P, p’s nearest neighbor q isfound. The distance, d,,, fromptoqis
caculated. Once all values of d,,, have been calculated, the mean distance is determined.
This mean nearest neighbor distance then becomes r,;,, the minimum radius size. See

Algorithm 2 for further details.

Algorithm 2 Minimum radius sizing using nearest neighbors, where p and q are self data
points, d,, is the minimum distance from p to any q, and rp;, is the minimum radius size

for a detector.
repeat

Randomly select a data point p from the training dataset
for each other training data point q do
Determine the distance from p to q
end for
Determine the minimum pq distance, d,,, and record it
until n nearest neighbor distances have been recorded

Set rpyin to the mean of al d,,, values found

3.3.2 Maximum radius sizing using largest radius placement method. In order to
determine the maximum for the radius range, the largest possible detector is placed. A
detector with radiusr = +/n, where n is the number of dimensions of shape-space, is
placed randomly in shape space. If the detector detects any self training points, its center

point is moved to a new random location. If the detector cannot be placed in fewer than
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10,000 attempts, the radius is reduced by 0.05 - +/n and placement is attempted again.
Thisisrepeated until a detector is successfully placed within 10,000 attempts. The radius
length at this point is recorded as the maximum radius Size, r .. Whereas ry;, isthe same
value regardless of detector shape, each detector shape has a different value for rp,y. A

further explanation of the method can be found in Algorithm 3.

Algorithm 3 Maximum radius sizing algorithm, where r., is the radius of a given detector
d. centered at point ¢, n is the number of dimensions of shape-space, a is the number of

center pointstested so far, and rpy,y 1S the maximum detector radius length.
e = ‘/ﬁ
while d. has not been successfully placed do

whilea < 10,000 AND d. has not been successfully placed do
Randomly choose a new center point ¢
if d. does not detect any self training pointsthen
d. has been successfully placed
Set Max = I
else
a=a+1
end if
end while
if d. has not been successfully placed then
re =re—.05+yn




3.3.3 Detector radius sizing experiment. Current research addresses the need to
search for best radius sizes within a real-valued negative selection system. One solution is
to use the variable sized detectors presented by Ji and Dasgupta [25]. However, when
using fixed-size detectors, the only method shown in the research isthat of trial and error
[15]. Additionally, within a variable-sized detector algorithm, all detectors must have an
initial size. Therefore, constraining the range of values in which to search provides the
first steps toward finding the best detector size for a given dataset. The following
experiment is designed to verify that the proposed min and max detector sizing methods

provide areasonable range of radius lengths within which this search can be performed.

3.3.3.1 Experimental question. Do the nearest neighbor method for sizing the
minimum radius length r i, and the largest detector placement method for sizing the
maximum radius length r .« provide a good lower and upper bound respectively on the
radii to test for the naive real-valued negative selection algorithm described in Algorithm
1?

3.3.3.2 Testable hypothesis. The optimal point, that point closest to the 0%
false positive/100% true positive point via Manhattan distance, on the Receiver Operating
Characteristic (ROC) curve comparing false positives and true positivesfor a given

classification run falls somewhere between rpin and rmay.

3.3.3.3 Dataset. Datasets are chosen from the University of Memphis
negative selection 2-D synthetic datasets [ 10]. These datasets have been used by several
researchersin order to baseline and compare effectiveness of real-valued negative
selection algorithms [ 25][55]. Each dataset involves a training dataset of only self points
and atesting dataset including both self and nonself points. Self points are defined by
some given shape. The datasets used for this specific research include the Pentagram-big,

Pentagram-bigneg, Comb, Combneg, Intersection-thick, Intersection-thickneg, Ring-thick,
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and Ring-thickneg datasets, see Figure 3.5. These specific shapes were chosen as they
provide a good variance of different distributions of data points within shape-space. Each
training dataset includes 1000 2-d self points and each testing set includes 1000 2-d
points, 500 self and 500 nonself.

Comb Comb Negative Intersection Intersection Negative

£ 5%
W@

0.5 1
Pentagram Big Pentagram Big Negative Ring Thick Ring Thick Negative
Lpge gt 5o, 3 2% cpumoph 1
.{.?:‘3:.::';‘#&73-;: . N ::'. Py} b
6% oMW T SR
gkl S 05 ﬁﬁ A S/

0
0

Figure 3.5: Datasets used for training, points represent self data.

3.3.3.4 OQutline of experiment. For this experiment, the effects of detector
shapeis not investigated. Only atwo-dimensional hypersphere detector is considered. The
control variables are the percentage of the content of shape-space covered by the detector
set (ignoring detector overlap), size of shape-space, and number of dimensions. The only

independent variable in this experiment is detector size. In order to form a baseline for
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comparison, a successively increasing set of radius sizes are also used. In addition to r i,
and rpay, radius sizes from .01 up to and including ray, incremented by .01, are tested.

The side-length of shape-spaceisset at 1 for al dimensions, thus the content of
shape-space is one. The number of detectors created is equal to the number of detectors
needed to create a detector set that holds exactly 200% of the content of shape-space,
ignoring detector overlap. Therefore, the number of detectors, 7, isequal to the content of
shape-space divided by the content of a detector, multiplied by the coverage factor f. The
coverage factor is equal to the percentage of content covered, ¢y, divided by 100 (see
Equation3.22).

Cpct 1 f

1= 100272 = 2112 (3.22)

Additionally, for each radius size threshold, the experiment runs 10 times on each dataset.
Each run of the experiment executes Algorithm 1 recording the numbers of: (1) True
positives- A data point was “NONSELF’ and was classified as“NONSELF”, (II) True
negatives- A data point was“ SELF’ and was classified asan “SELF”, (111) False positives
- A datapoint was“ SELF’ and was classified as“NONSELF’, and (IV) False negatives -
A data point was “NONSELF’ and was classified as“SELF". See Algorithm 4 for
pseudo-code representation of this outline and Table 3.2 for tabular specification of

experiment parameters.

3.3.3.5 Representation of results. For each dataset there are 10 runs; the
number of true positives, true negatives, false positives, and fal se negatives are averaged
over these 10 runs. The mean and variance for each set of runs are recorded. Thus, there
are amean number and variance of true positives, true negatives, false positives, and false
negatives associated with each radius size of detectors tested. All of these statistics are

collected for each of the datasets and are reported as follows.
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Algorithm 4 Pseudocode of detector radius sizing experiment.
for each dataset do

for r = 0.01 — rpay, by stepsof .01 do
Set the number of detectors n such that the total content of all detectorsis equal to
200% of the content of the shape-space
repeat
Execute Algorithm 1 and record the true positives, true negatives, false positives,
and false negatives
until 10 tests have been run on each subset
end for

end for

Results are displayed in a series of two-dimensional receiver operating characteristic
(ROC) curve plots. Each plot represents the results for one dataset (e.g. Comb, Ring
Thick Negative, etc.). The x-axis shows the percentage of false positives-the percentage
of pointsthat were SELF and were classified as NONSELF (i.e. false dlarms). The y-axis
shows the percentage of true positives-the percentage of points that were NONSELF and
were classified as NONSELF (i.e. detections). Each point on the plot represents one

radius threshold.

3.4 Coveragefactor experimental design

Where the first experiment aimsto find a range of radius sizesto usein the
real-valued negative selection system, the next experiment aims to determine how many
detectors to produce once aradius size is chosen. Coverage factor was briefly introduced
in the previous experiment. However, afull explanation is warranted. The content of a set
of detectors Cp, isthe cumulative content of all detectors, disregarding detector overlap.

Equation 3.23 shows C4 as a function of the number of detectorsn and the content of an
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Table 3.2: Detector radius sizing experiment design parameters.

Parameter Values
Number of Dimensionsn 2
Dataset Comb, Combneg, Intersection-thick, Intersection-thickneg,

Pentagram-big, Pentagram-bigneg, Ring-thick, Ring-thickneg

Detector Radiusr 0.01 — rpay, by stepsof 0.01,
Shape-Space Content Cgg 1
Coverage factor f 2
Number of Detectors -

10 iterations are performed for each test.

Measured outputs for each test are true positives, true negatives, false positives, and fal se negatives.

individual detector Cy.
Co =nCqy (3.23)

The content of a set of detectorsis also equal to the content of shape space Css multiplied

by the coverage factor f, as shown in Equation 3.24.

Cp = f-Ca (3.24)

For this reason, a coverage factor of 2 would represent aCp that contains 200% of

the content of shape-space, disregarding detector overlap.

3.4.1 Experimental question. How do we approximate the relationship between

coverage factor and classification accuracy?

3.4.2 Testable hypothesis. Increasing coverage factor does not necessarily

improve accuracy, as the addition of further detectors may cause the system to overfit the
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self data points and also cause increasing detector overlap. However, the differencein
accuracy between runs should decrease as detectors are added. Therefore, as the coverage
factor isincreased from 2 to 30, the standard deviation of the classification accuracy
decreases. It reaches a point at which adding further coverage no longer reduces the
standard deviation. Additionally, the mean of the true positives should increase, while the
mean of false positives should decrease up to the point at which adding additional
detectors does not provide additional benefit. Thus, the ROC curves of higher coverage

factors should approach points closer to 0% fal se positives and 100% true positives.

3.4.3 Dataset. Fisher'sirisdataset [12] isused. The dataset consists of 150 data
points, 50 of each of three classes (Setosa, Virginica, Versicolour). The dataset is broken
into a set of training and testing datasets as follows. Since real-valued negative selection
acts on only two classes (self and nonself) each dataset is set aside one type of irisas
nonself and combine the other two iris typesinto the self data points. For example, Setosa
and Virginicaare combined to create self in order to test classification of Versicolour as
nonself. The larger dataset is broken up in thisway to create three separate sets. This
dataset was chosen for two reasons. First, it provides a distribution of datathat is not
synthetic, as were the datasets used in radius sizing experiment. Secondly, the dataset has
been used numerous times and results can be compared with those of others.

Additionally, 90/10 cross-validation is used. Each experimental run trains on 90% of
the data and test on 10%. In order to achieve this, the data sets are first each be broken into
ten subsets. Each subset consists of atraining subset and a testing subset. The training
subset consists of 90 points (45 from each of the two self classes of iris) and each testing
subset consists of 15 points (5 from each of the two self and one nonself iris classes). The
ten datasets are created such that different points are chosen as test points for each subset.

Therefore, there are 30 total subsets created.
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3.4.4 Outline of experiment. The experiment runs with a four-dimensional
hypersphere detector. The control variables are the size of shape-space, detector shape,
and number of dimensions. The length of shape-spaceisset at 1 for all dimensions, thus
the content of shape-space isone. Ten successive radii are tested, and for each radius 11
coverage factors are tested. For each set of parameters, the experiment runs 10 times on
each dataset. Each run of the experiment executes Algorithm 1 recording the numbers of
true positives, true negatives, false positives, and false negatives.

The algorithm is executed with r detectors, where 7 is calculated in the following

manner. The content of a hypersphere in n dimensionsis shown in Equation 3.25.

2r""/2
~ nC(n/2)

hs (3.25)

The content of adetector set Cp isequal to the content of an individual detector Cgq
multiplied by the number of detectorsin the set i, as shown previously in equation 3.23.

The number of detectors needed in an individual run, is calculated using Equations
3.24, 3.25, and 3.23. Thisresultsin Equation 3.26.

-G f-n-Csx-T(n/2)
B Cd B 2-r".qn/2

n (3.26)

See Algorithm 5 for pseudo-code representation of this outline and Table 3.3 for tabular

specification of experiment parameters.

3.4.5 Representation of results. Results are represented in two forms. A ROC
curve of false positives versus true positivesis created. The tunable statistic used to create
each ROC curve isthe size of the radius.

A low variance of classification accuracy between classification runsis desirable.
Low variance means that regardless of the training points selected and the exact placement
of the detectors, the same results are obtained every time. Therefore, the variance of the

classification runs isimportant to record. In order to capture this, the following procedure
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Algorithm 5 Pseudocode design of coverage factor experiment. r is the radius of the

detector, f isthe coverage factor, and n is the number of detectors.
Set the detector shape to hypersphere

Set the number of dimensionsto 4
for r = ryin = Fiax. Dy steps of mcm do
for f =2,4,6,8, 10,12, 14,15, 20, 25,30do
for each dataset: Setosa, Versicolor, Virginicado
for each of the 90/10 cross-validation subsets do
repeat
Set 17 using equation 3.26
Execute Algorithm 1 using n detectors and record the true positives, true
negatives, false positives, and fal se negatives
until 10 tests have been run on each subset
end for
end for
end for

end for

iscompleted: The percentage of true positives and false positives are averaged across each
radius/coverage factor pairing; a percentage is computed for each of the ten test runs for
each of the ten test setsfor each of the three iristypes. The standard deviation across each
radius/coverage factor pairing isrecorded. Then, the mean standard deviation across all
radii for a given coverage factor is reported. By comparing the standard deviations of both
true and false positives across different coverage factors, a good coverage factor can be

obtained for future tests.
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Table 3.3: Coverage factor experiment design parameters.

Parameter Values
Dataset Setosa, Versicolor, Virginica
Detector Shape Hypersphere
Number of Dimensionsn 4
Detector Radiusr Fmin = Fmax, DY Steps of fmacinin
Detector Content Cy4 %
Shape-Space Content Cyg 1
Coverage Factor f 2,4,6,8,10, 12, 14, 15, 20, 25, 30
Number of Detectors L

10 iterations are performed for each test.

Measured outputs for each test are true positives, true negatives, false positives, and fal se negatives.

3.5 Detector size and cover age factor in higher-dimensional space

Network intrusion datasets are inherently high-dimensional, as explained in Section
2.3.3. AsAlS systems are applied in higher dimensional shape-space, there are
considerations in addition to those inherent in different detector shapes that arise. First,
memory constraints of the implementation system constrains the number of detectors that
can be implemented, thus limiting the range of radius sizes that can be used to achieve a
given coverage factor. Secondly, it is shown here that there is a relationship between the

number of dimensions and effective coverage factor within an AlS.

3.5.1 Memory limitations on minimum radius size. Equation 3.26 reports the
method for calculating the number of detectors needed within arun of Algorithm 1 given
coverage factor, number of dimensions, and detector size. However, this number cannot

always be implemented due to memory limitations. In order to use Algorithm 1, all
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detector/test point pairs must be in memory simultaneously. Therefore, the maximum
number of detectors allowed, is dependent on both the number of test points and the
number of dimensions (i.e. how many comparisons must be made). The constraining
factor in thisregard is dependent on the memory of the computing and programming
platforms being used. By taking into account the specific system capabilities, a maximum
number of elements allowed in the arrays arises. Using this maximum, Equation 3.27
shows the exact relation between the maximum number of elementsin an array Eax and
the maximum number of detectors allowed nmax, Where n isthe number of dimensions and
P isthe number of test points. The number of test pointsisimportant even in areatime
system, dueto the fact that the speed of network traffic determines how many points need

to be calculated at once in order to avoid significant network slowdown.
E
Mnax = ~—5- _m;js (3.27)

From the maximum number of detectors allowed, a minimum allowable radius size
follows. Solving Equation 3.26 for r and substituting values from Equation 3.27, Equation
3.28 is derived.

rmin:{/f-n-l"(n/Z):{/f-nZ-PS-F(n/Z) 328

2 - Nmax - /2 2 - Epay - "2
Therefore, the minimum radius allowed due to memory constraintsis a function of the
number of dimensionsn, coverage factor f, number of simultaneously processed test

points P, and the maxim number of elements allowed in an array E pay.

3.5.2 Coverage factor limitations on maximum radius size. In addition to the
problem of limited memory in higher-dimensional space, thereis also a maximum
constraint on radius size due to coverage factor in high-dimensions. To define these
high-dimensional coverage effects, here we introduce five terms. potential content, actual

content, redundant content, effective content, and lost content.



The potential content C, of a detector set isthe total sum of the content of all
detectorsin the set. The equation for potential content is shown in Equation 3.23 (itis
repeated here in Equation 3.29). Thisvaueistermed ‘potential content’ because it isthe
amount of content that could be covered by the entire set of detectors if they were placed

within an infinite shape space with no overlap.
Cp =Cp =1nCy (3.29)

Actual content C, isthetotal content covered by the detector set (i.e. content covered
by more than one detector is only counted once). Thisvalueistermed ‘actual content’
because it does not including overlapping content, but only that content that is actually
applied toward coverage. Contrarily, the redundant content C, isthe content contained in
overlapping detectors. Thus, redundant content is calculated as the difference between the
potential and actual content. The relationship between potential, actual, and redundant

content is shown in Equation 3.30.
Cp=Ci+Cy (3:30)

The effective content C, isthe total content covered by the detector set that lies
within shape-space. Thus, effective content is that part of the actual content that falls
within shape-space. Thisvaueistermed ‘effective content’ due to the fact that it isonly
the portion of the actual content that has an effect on anomaly detection. Lost content C, is
that portion of the total content covered by the detector set that is not a part of
shape-space. Thisvalueistermed ‘lost content’ becauseit is that content that is using
computing power, since some portion of each detector must fall within shape-space, but
provides no value toward anomaly detection. The relationship between actual, effective,

and lost content is shown in Equation 3.31.

Ca=Ce+C (3.31)
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Whereas the potential content is dependent only on the size of the detector; the
actual, redundant, effective, and lost content are also dependent upon where the detector
has been placed in shape space. In order to maximize the effectiveness of areal-valued
negative selection system, it isimportant to maximize the effective content, while
reducing the redundant and lost content. By reducing redundant and lost content,
computing power and memory is not used on detectors that are providing no further
benefit to the system. Additionally, maximizing the effective content ensures that the
system is using as much of shape-space as possible to detect anomalies. The relationship
between potential, redundant, effective, and lost content is derived in Equation 3.32, by

substituting Equation 3.31 into Equation 3.30.

The naive real-valued selection system determines the number and size of detectors
based on the principle of potential content, which isintroduced here. A coverage factor of
X means that the potential content of the detector set created contains x times the content
of shape space. Since detection is dependent upon effective coverage, not potential
coverage, it isimportant to ensure that lost content and redundant content are reduced (see
Equation 3.32). Determining the redundant coverage C, of a set of detectors has been
investigated in the literature and shown to be a computationally difficult problem [42, 43].
Thus, this research considers the problem of reducing lost content. In order to reduce C,,
thisresearch looks at two cases: the scenario where a detector falls in the extreme corner
of shape space, and that where a detector falls in the center of shape space. These two
locations provide bounds on lost content, since a detector placed at the center has minimal
lost content, and a detector in the corner has maximal lost content.

In the case where a detector fallsin the corner of shape-space, there is always content
lost. The percent of content lost depends on the radius length and the number of

dimensions. Asthe number of dimensionsincreases, the percent of content lost grows at a
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rate greater than or equal to that shown in Equation 3.33, where the side-length of

shape-space is 1 and n isthe number of dimensions.

C
C =Cq-— 2—" (3.33)

Content loss grows at that rate until the radius of a detector exceeds the side-length of
shape space. After thispoint, it loses content at a greater rate. For example, two
dimensional content lossis shown in Equation 3.34, where | is the side-length of
shape-space, r isthe radius length, and n is the number of dimensions. Thefirst half of
Equation 3.34 isfound by inserting 2 as the value of n in Equation 3.33. The second half
of equation 3.34 is derived by using the first half coupled with the derivation of the area of
the content of a circular segment as shown in [18]

Cq

i— 5, for0O<r<lI

C =
Ca— <+ r—zz-(arcsin(—”i"z)—sin(—wz"z)), forl<r< n

(3.34)

r

This effect is demonstrated in Figures 3.6 and 3.7. Figure 3.6 shows the detector content
lost from a two-dimensional hypersphere detector placed in the corner of shape-space asa
function of radius length, while Figure 3.7 shows the percentage of detector content lost

by the same detector. Asadditional dimensions beyond two are added, the effect of a

radius length exceeding the side-length of shape space becomes more pronounced.
Therefore, alarge percentage of content is always lost when a hyperspherical detector is
placed in the corner of shape-space.

However, when a detector is placed in the center of shape-space there is a different
effect seen. The detector hasaC, = 0 until theradius length is greater than half the
side-length of shape-space. After this point, content islost at increasing rates as radius

length isincreased, which is shown in Figure 3.8.

Since content loss is unavoidable, the proper maximum radius size based on content

loss could be an area for further study. Stibor et al also cited observed effects in a study of
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Figure 3.6: Detector content lost from a two-dimensional hypersphere detector placed in

the corner of shape-space as a function of radius length.

V-detectors stemming from a digoint between potential and effective content, which may
be attributed to this phenomenon [44]. A maximum radius size of half of the side-length
of shape-space isimposed in order to limit the effects of lost content on the experimental

results of the detector shape comparison.

3.6 Detector shape comparison experimental design

With an understanding of high-dimensional considerationsin place, an experiment is
designed to compare the differences between detector shapes in high-dimensional spaces.
First, the goa of the experiment is shown. Next, the pre-processing technigques used on the

chosen dataset—K DD Cup 99 10% dataset—is explained. Finally, the high-dimensional
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Figure 3.7: Percentage of detector content lost from a two-dimensional hypersphere

detector placed in the corner of shape-space as a function of radius length.

detector sizing considerations explained in Section 3.5 isapplied in order to find a

bounding for detector radius sizes. This then leads to an experimental design.

3.6.1 Experimental question. Does the hypersteinmetz solid either provide better
classification results or reduce variance within a real-valued negative selection system as

dimensionality increases when compared to the hypersphere or hypercube?

3.6.2 Testable hypothesis. Holding the number of detectors created for agiven
negative selection run constant, the hypersteinmetz solid provides noticeably different
results than the hypersphere, while showing somewhat different results than the hypercube

as dimensionality increases. For the purposes of this experiment, the definition of good
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Figure 3.8: Detector content lost from a hypersphere detector placed in the center of shape-

space as a function of radius length.

relies on the ROC curve for the detection results, comparing false positivesto true

positives. For a detector type to provide " better” results, its classification results, when

reported in ROC curve format, falls closer 0% fal se positive/100% true positive position

than that of the other detectors; thisimpliesthat it can, overall, achieve higher true

positive rates with lower false positives. It is expected that the hypersteinmetz and

hypercube detectors outperforms the hypersphere, by garnering lower mean false positive

percentages and higher mean true positive percentages. This effect becomes more

pronounced as dimensionality increases.
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Additionally, another definition of good for the purpose of this experiment is the
variance that occurs between test runs. If there is a high variance from one run to the next,
the classifications are not repeatable. However, if classification runs are consistently
providing similar results, then they can be relied upon. For thisreason, if a shape provides
lower variance—all else remaining equal—than another, it can be considered better in that
regard. It is expected that the hypercube and hypersteinmetz provides classification results

with lower variance than that of the hypersphere.

3.6.3 KDD dataset pre-processing. The KDD Cup ‘99 dataset was chosen for two
reasons. First, it provides an example of a network intrusion dataset with many features.
Secondly, it has been used by many previous researchers, and therefore provides a useful
dataset for comparison purposes. Here, we have used the KDD Cup 99 10% dataset,
rather than the entirety of the dataset. In the original, there are hundreds of thousands of
data points, and as such an exhaustive investigation of the dataset is not computationally
feasible with accessible resources. Therefore, the 10% dataset provides a subset of the
pointsthat has been used by previous researchers [56]. The dataset is set up in such away
that all different attack types are fused to form an attack class. This providesfor a
two-class classification method, and has been shown previously [5] [35].

In order to use this dataset, however, some pre-processing must first take place. The
KDD Cup 99 originally contains 41 dimensions of data. However, seven features of the
data are non-real-valued features. The use of the non-real-valued features is an area of
possible future research, but for the current experiment these dimensions are excluded.
Additionally, feature 20 (number of outbound commands) is removed, as every entry in
thisfield isthe same. Thus, the dataset is pared down to 33 dimensions. Similar methods
have been used previously [56].

Three methods were considered for dimensional ordering. The dimension orderings

found in both [26] and [2] were investigated. The method employed in [26] was to rank

51



the features from most to least discriminating using information gain, by calculating how
well each feature discriminates a specific class. The method for ranking features proposed
by [2] incorporates the information gain technique along with K-means learning.
Classification results were extremely poor using these two methods. The reason for thisis
most likely that both methods were developed in order to determine those features that
would distinguish specific types of attacks, rather than doing a binary—attack versus
normal—cl assification.

The dimensions were therefore reordered according to the process described in
Algorithm 6, where Py s and Pponsers represent the sets of self and nonself points, p and g
are points within the set of all points, n is the number of dimensions, and u; is the number
of unique nonself points for a given dimension i. The reason the data are arranged in this
manner isthat the data are presented to the system in such away that those features most
likely to show difference between self and nonself points are processed when fewer
dimensions are used. This choice is made, understanding that the objective of the negative
selection algorithmisto train only on self data. However, the objective of this experiment
is not to show the validity of the training process, but rather the effectiveness of the
detector shapes.

From atraining perspective, there is no added value in training on duplicate data
points. Previous studies using the KDD data, such as [46], have also recognized duplicate
data as a problem causing the failure of methods using the dataset. In order to eliminate
duplicate points, the dataset isfirst pared down to only include the features used in the
current iteration. Once thisis done, the data is divided into normal and attack traffic sets.
All duplicates are removed from each individual set. However, for testing purposes,
duplicate points may still exist between the normal and attack traffic. This processis
demonstrated in Algorithm 7.
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Algorithm 6 Pseudocode of agorithm to reorder featuresin KDD dataset

Divide datainto self P s and nonself Pponsers pOINts
fori=1—-ndo
for al points p € Py do
Remove all points p with duplicate valuesin dimension i
end for
for al pointsq € Pyonsers dO
Remove all points g with duplicate valuesin dimension i
end for
for al points p € Py do
for al pointsg € Pponsers dO
if p=gindimensionithen
Remove g from the set of nonself points
end if
end for
end for
Record the number of remaining unique nonself pointsu; for dimension i
end for

Reorder the dimensions according to u; value, from highest to lowest
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Algorithm 7 Pseudocode of algorithm to remove all duplicate data points
Remove all features not used in thisrun

Divide datainto self P s and nonsalf Ponser pOINts
for al points p € Py do
Remove all points p with duplicate valuesin all dimensions
end for
for al pointsq € Phonserr dO
Remove all pointsq with duplicate valuesin al dimensions

end for

Once the pre-processing is complete, training and testing datasets must be selected
from the data. A random sampling method, similar to that of [ 56] is used. Asthe system
must be trained only on self data, only that network traffic considered normal isincluded
in the training set. 5,000 data points are randomly selected from the entirety of the set of
points classified as normal. Additionally atest dataset is selected; this dataset contains
500 points selected in the same manner. However, these points include not only normal
data, but also data points from the attack traffic (of which there are four types). Attack and
normal traffic points are selected at the same ratio as they exist in the larger dataset, in
order to form the smaller test dataset. The numbers of data points chosen for the
experiment were specifically chosen due to time constraints for completion of the

experiments. More or fewer data points could be chosen in future experiments.

3.6.4 KDD Dataset radius sizing constraints. Detector radius size is a parameter
that must be set in the shape experiment. The methods for minimum and maximum sizing
laid out previoudly are used to provide arange of testable radii. For every iteration of the

experiment, new rpi, and ryay Values are determined. Unless memory constraints are the



constraining factor, the default method for sizing is the nearest neighbor method for

minimum sizing and the largest detector placement method for maximum sizing.

3.6.5 Outline of experiment. Thisexperiment isafull factorial experiment, testing
all three variables: radius size, coverage factor, and detector shape. There are a series of
three different shapes used (hypersphere, hypersteinmetz, and hypercube). For the
purposes of this discussion, the radius of a hypersphere is the distance from the center of
the hypersphere to any point on the surface, the radius of a hypersteinmetz is the
minimum distance from the center of the hypersteinmetz to any point on the surface, and
the term radius is used in conjunction with hypercubes to mean half of the side-length of
the given hypercube. Each detector shape istested 10 times, using varying coverage
factors, numbers of dimensions, and radius sizes (F'min — I'max, DY Steps of @) The
results are recorded as true positives, false positives, true negatives, and false negatives.
See Algorithm 8 for pseudo-code representation of this outline and Table 3.4 for a tabular

representation of the variables being tested.

Choosing the dimensional pairs for each of the [§ | cylinderswithin a hypersteinmetz,
it isimportant to ensure that each dimension is chosen at least once, ensuring that the
detectors are bounded in each dimension. If computational complexity were not an issue,
it would be logical to choose arandom dimensional pairing for each cylinder within each
detector. Thiswould provide an even distribution of possible detector “orientations’
throughout the space. However, in order to keep track of which detectors have which set
of pairings, amatrix of detector dimensional pairings must be kept. This doubles the space
and time complexity needed. For thisreason, all detectors are kept at the same pairing. An
areafor future research, therefore, isto determine which is the optimal pairing of

dimensionsfor the [g] cylinders within a given dataset. Since an optimal pairing of
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Algorithm 8 Pseudocode design of detector shape comparison experiment. r isthe radius
of the detector, f isthe coverage factor, n is the number of detectors, n is the number of

dimensions.
for each detector shape: Hypersphere, Hypersteinmetz, Hypercube do

forn=2,8,16do
Determine rpi, and ryax Using methods described in Section 3.6.4
for r = ryin = Fmax, by steps of m2=im do
for f =2,8,16do
repeat
Set n according the number of detectors used for a hypersphere using
equation 3.26, and use the same n for equivalent hypersteinmetz and
hypercube
Execute Algorithm 1 using n detectors and record the true positives, true
negatives, false positives, and false negatives
until 10 tests have been run on each subset
end for
end for
end for

end for

dimensionsis not an objective of this research, the pairs are determined by order within

the dataset, with the last dimension being paired with itself.

3.6.6 Representation of results. Results are shown in both graphical and tabular
form. A series of graphs shows a set of ROC curves comparing false positives against true
positives. The series shows the results of runs using different numbers of dimensions,

demonstrating the difference between the detection results of the different shapes as
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Table 3.4: Design parameters for detector shape comparison experiment

Parameter Values
Dataset KDD Cup ’99 10% Dataset
Detector Shape Hypersphere, Hypersteinmetz, Hypercube
Number of Dimensionsn 2,5,8,11
Detector Radiusr Fmin = Fmax, Dy Steps of fmacinn
Shape-Space Content Cg; 1
Coverage Factor f 2,8, 16
Number of Training Points P, 5000
Number of Test Points Py 500

10 iterations are performed for each test.

Measured outputs for each test are true positives, true negatives, false positives, and fal se negatives.

dimensions are increased. Additionally, a second series of graphs demonstrates how each
individual shape progresses as dimensions are added, with a set of three ROC curves-one
for each shape. Then a set of tables shows the results displayed in the ROC curve, along

with the standard deviations of the results.

3.7 Summary of experiments

All of the experiments contained in this chapter are summarized in Table 3.5.
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Table 3.5: Design parameters for detector shape comparison experiment

Experiment

Variables

Experimental Question

Detector radius sizing

Dataset, Detector ra-

diusr

Do the nearest neighbor method for sizing
the minimum radius length rn, and the
largest detector placement method for
sizing the maximum radius length ryay
provide agood lower and upper bound on

the radii to test for the RNS system?

Coverage factor

Dataset, Detector ra-

dius r, Coverage factor

f

How do we approximate the relationship
between coverage factor and classifica

tion accuracy?

Detector shape compar-

ison

Detector shape, Num-
ber of dimensions n,
Detector radius r, Cov-

erage factor f

Does the hypersteinmetz solid either pro-
vide better classification results or reduce
variance within a RNS system as dimen-
sionality increases when compared to the

hypersphere or hypercube?
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4 Resultsand Analysis

This chapter present the results of the experiments outlined in Chapter 3. Upon
stating the significant results of each experiment, these results are then analyzed. The
causes of the results are suggested and the significance of each result is discussed.

First, the detector radius sizing experiment results are discussed. Then the results of
the coverage factor experiment are presented. Finally, we present the results of the

detector shape comparison experiment.

4.1 Detector radiussizing experiment results

The detector sizing experiments described in Section 3.3.3 were performed on a Dell
Precision M6500 with an Intel i7 920 processor. This processor has a clock speed of 2.67
Gigahertz (GHz) = 2.67 - 10° cycles/second. The following number of runs were needed:
8 datasets x 20 radius size thresholds per dataset x 10 repetitions per dataset ~ 1600 runs.
Each run for these threshol ds took on average approximately 1.5 minutes. Therefore, the
tests took approximately: 1600 runs x 1.5 minutes/run = 2400 minutes = 30 hours.

Figures 4.1 and 4.2 show the receiver operating characteristic curves of the results of
the experiment. Each data point represents the mean true positive percentage and mean
false positive percentage value attained in ten classification runs with a given radius. The
circled data points represent the results obtained using the rp,y value found using the
largest detector placement method for the given dataset. The squared data points represent
the results obtained using the ry,;, value found using the nearest neighbor method for the
given dataset. Tables 4.1 and 4.2 summarize the results shown in the figures, showing the
true and false positive percentages along with the standard deviation of each percentage.
These results are reported only for those runs completed using the ryin, Fmax, and best radii.

Theresults marked ‘n/a’ in Table 4.1 are due to the fact that the minimum radius size was
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not tested, due to the ry,;, and ryay falling between the 0.01 radius size step of the
experiment. Complete results from this experiment are shown in Appendix A.

For the purposes of this experiment, afalse negative percentage and a false positive
percentage is considered to carry equal weight. For example, increasing false negative
percentage by 1% is considered equally as undesirable asincreasing the false positive
percentage by 1%. Theidea point on the ROC curve would be at 0% fal se positives and
100% true positives. For comparison, given this assumption, the Manhattan distance
between the ideal 0%/100% point and a given radius size point provides the level of
‘goodness’ of the radius size point. If point a has a smaller Manhattan distance to the ideal
point than point b, then a’s fal se positive percentage plus false negative percentage is less
than that of b. The best radius for a given dataset is the one that produces mean

classification results with the smallest Manhattan distance to the ideal point.

Table 4.1: Condensed results of detector size range experiments for the first four datasets
comparing results obtained using rmin, max, and best radius sizes. Dist to 0/100 represents

the Manhattan distance of the point to the 0% false positive/100% true positive point.

Dataset Comb Comb Neg Int Thick Int Thick Neg

Point Fmin | DESt | Fmax | Fmin | D€St | Fmax | Tmin | DESt | Fmax | Fmin | DSt | Fmax
Radius .032 | .040 | .207 | .041 | .041 | .160 | .009 | .130 | .353 | N/A | .050 | .050
Distto 0/100 | 22.4 | 17.6 | 49.1 | 20.8 | 208 | 672 | 175 | 0.2 |51.3 | N/A | 171 |17.1

TruePos% | 99.9 | 99.6 | 53.1 | 99.4 | 99.4 | 33.5 | 100.0 | 99.8 | 48.7 | N/A | 88.2 | 88.2
TP% Std Dev | 0.09 | 0.14 | 0.14 | 0.12 | 0.12 | 0.16 | 0.03 | 0.08 | 0.18 | N/A | 0.00 | 0.00
FasePos% | 224|172 | 22 | 202|202 | 0.7 | 175 | 00 | 0.0 |N/J/A | 53 | 53

FP% Std Dev | 0.87 | 0.50 | 0.00 | 0.70 | 0.70 | 0.00 | 3.54 | 0.00 | 0.00 | N/A | 0.05 | 0.05
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Figure 4.1: Receiver operating characteristic curves for datasets (@) Comb, (b) Comb

Negative, (c) Intersection Thick, and (d) Intersection Thick Negative

Table 4.2: Condensed results of detector size range experimentsfor the second four datasets

comparing results obtained using ryin, max, and best radius sizes.

Dataset Pent Big Pent Big Neg Ring Thick Ring Thick Neg
Point Fmin | €St | Fmax | Fmin | beSt Imax Fmin | DESt | Fmax | Tmin best | rmax
Radius .025 | .130 | .340 | .041 | .050 | .193 |.040 | .060 | .200 | .030 | .140 |.172
Distto0/100 | 235 | 22 |579|165|119 | 502 |11.7| 7.7 |51.7| 176 | 6.0 |10.2
TruePos% | 100.0 | 99.2 | 422 | 97.4 | 954 | 50.3 |98.5|96.2 | 48.9 | 100.0 | 100.0 | 95.9
TP% Std Dev | 0.00 | 0.15 | 0.06 | 0.15 | 0.15 | 106.14 | 0.00 | 0.11 | 0.10 | 0.00 | 0.06 |0.18
FalsePos% | 72 | 1.4 | 00 |139| 7.3 05 |102| 39 | 06 | 176 | 6.0 | 6.2
FP% Std Dev | 0.55 | 0.59 | 0.00 | 080 (021 | 111 |099 | 0.12|0.00| 049 | 091 |0.28
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The trend that emerges from these results is that the best radius size consistently falls
between the minimum and maximum radii. Thus, the ry,;, and rya, Values provide a
reasonable constraint on radius size. The one dataset where the best point does not fall
between the two extremes, Intersection Thick Negative (Figure 4.1d), is because of the
fact that the minimum and maximum values were closer to each other than were the
increments used between radii for the experiment. Therefore, the minimum radius size
was not actually tested. This experiment confirms that the nearest neighbor and largest
detector placement methods are viable constraints for placing a detector radius range in
two-dimensional datasets, given the assumptions of the experiment: two dimensions,
hypersphere detector, and the specified datasets. Therefore, we use this method to bound

detector radius size in future experiments.

4.2 Coverage factor experiment results

The coverage factor experiment described in Section 3.4 was run on a computer with
2 Intel Xeon processors X5472, 3.00 GHz, and 32.0 Gb of random access memory
(RAM). The experiment required the following number of runs: 1 detector shape* 1
dimensionsize* 10 radiussizes* 11 coverage factors * 30 datasets * 10 runs/dataset =
33,000 runs. An average runtime of 5 seconds created a total runtime of 2,750 minutes (2
days). Thiswas further reduced by running multiple processes, and completion took
approximately 22 hours.

Figure 4.3 contains the ROC curves obtained from the classification results using the
three different types of Iris as nonself. Each line represents all results for one coverage
factor, with the points on the line representing different detector radii. Points are
connected in the order of smallest radius to largest radius, with the smallest usually falling
in the upper-right corner and each consecutive point representing alarger radius until the
final rmax point isreached for the given coverage factor. Anindividua point represents the

mean classification values for a set of ten runs. Table 4.3 summarizes the results shown in
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figure 4.3 for the best radius for each coverage factor. Complete results are shown in
Appendix B.

The same definition of a best radiusis used as that for the previous experiment.
Those points on the ROC curve that provide results with shortest Manhattan distance to
the 0% false positive 100% true positive point are considered to be the best. In that regard,
it can be seen from Figure 4.3 and Table 4.3 that as the coverage factor isincreased, the
ROC curves move closer to the 0% fal se positive 100% true positive point. However, the
aggregate gain in classification accuracy from each successive coverage factor becomes
less. For example, in Figure 4.3a a coverage factor of four provides significantly better
results than a coverage factor of two, but a coverage factor of 15 barely provides better
results than that of coverage factor eight. Specifically, Table 4.3 shows that the best point
produced using coverage factor of two with the Setosa dataset provides a true positive
percentage of 67.2% and a false positive percentage of 5.4%, a coverage factor of four
provides atrue positive percentage of 87.6% and afalse positive percentage of 4.0%, while
acoverage factor of eight provides only atrue positive percentage of 94.2% and afalse

positive percentage of 3.2%. Additionally, Table 4.3 shows that each iris type reaches a

point at which the best radius size for the coverage factor isthe same for all successive
coverage factors. Setosa reaches this point at a coverage factor of 14, Versicolor reaches it
at f =12, and Virginicaachievesit a f = 8. Thereason for this, isthat thereisthat as
coverage factor isincreased, the area of nonself space covered by detectors changes less

by the added detectors. As such, the results remain more closely aligned.
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Figure 4.3: Recelver operating characteristic curves as coverage factor increases for

increasing detector sizesfor Iris datasets.
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Table 4.3: Condensed results of coverage factor experiments for best radius for each

coverage factor.
Setosa

Cov Factor 2 4 6 8 10 12 14 15 20 25 30

.818 | .726 | .818 | .818 | .818 | .818 | .818

.265 | .357 | .726 | .449
876|898 | 942|946 | 97.0
14132 | 14 | 20

Radius
TruePos% | 67.2

97.2 1982|986 | 99.0 | 99.2

FalsePos% | 54 | 4.0 16 | 1.3 | 20 | 26 | 31

Versicolor
30

12 | 14 | 15 | 20 | 25
433 | 433 | 433 | 433 | 433
928 (948 | 97.4 | 984

Cov Factor
Radius 164

True Pos% | 80.2 | 84.2
153|110 | 65

852|912 926|938 | 920

84 /102 |83 | 90 | 89 | 96 |132|123

False Pos %

Virginica

14 | 15 | 20 | 25 | 30
342 | 342 | 342 | 342
94.4 1 956 | 95.0
19.7 | 21.5

Cov Factor 2
Radius 159 | .250
734|794 | 852 | 84.8
137 | 95

250 | .342 | 342 | 342 | .342
87.6 | 86.8 | 90.4 | 89.8

105|128 | 152 | 164 | 165

True Pos %
False Pos% | 13.0 | 10.9
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Another aspect that increasing coverage factor providesisthat of reduced variance.
Figure 4.4 reports the mean standard deviation of the percentage of false positive and true
positives over all detector radii for a given coverage factor. Each point represents the mean
percentage obtained by all runs completed with a given coverage factor. Table 4.4 shows
the complete results shown in Figure 4.4 in tabular form.

As can be seen in Figure 4.4 and Table 4.4, as the coverage factor increases, the
standard deviation of the true positive and fal se positive percentages approaches a
minimum value. This minimum value comes as a result of the fact that by using more
detectors, there islesslikelihood of change in the space covered by detectors between two
consecutive runs of the same algorithm. It can also be seen from Table 4.4 that there are
fewer benefits the higher the coverage factor increases.

For example, in the Table 4.4 Setosa section there is alarge benefit in moving from a
coverage factor of two up to a coverage factor of 10, with true positive percentage
standard deviation going from 36.5% down to 9.5% and fal se positive percentage standard
deviation reducing from 18.7% to 8.8%. However, there islittle to no benefit once the
coverage factor moves from 10 up to 30, with true positive percentage standard deviation
reducing from 9.5% to 2.3% while the false positive percentage standard deviation
actually increases from 8.8% to 10.0%. The other datasets show a similar effect.

The significance of thisfinding is that we can use these results to potentially set a
coverage factor range for future experiments. A low coverage factor provides more
variability in the results and a higher coverage factor provides|less. It also gives a potential
bound on the highest coverage factor needed to provide a given level of variance.
However, it isimportant to note that the specific effect of coverage factor is determined by

the dataset in question.
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coverage factor isincreased on the iris datasets.
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Table 4.4: Mean percent standard deviations of the true and false positive percentages on

theiris dataset.

Setosa

Cov Factor 2 4 6 8 10 | 12 | 14 | 15 | 20 | 25 | 30

TP% StdDev | 365|277 | 184 | 139 | 95 | 74 | 55 | 42 | 32 | 28 | 23
FP% StdDev | 187 | 139 | 85 | 88 | 88 | 91 | 91 | 94 | 94 | 95 | 10.0

Versicolor

Cov Factor 2 4 6 8 10 | 12 | 14 | 15 | 20 | 25 | 30

TP% StdDev | 29.8 | 21.8 | 195|179 | 158 | 148 | 142 | 131|114 | 96 | 93
FP% StdDev | 182 | 86 | 90 | 9.7 | 10.1 | 104 | 104 | 106 | 11.2 | 11.6 | 123

Virginica

Cov Factor 2 4 6 8 10 | 12 | 14 | 15 | 20 | 25 | 30

TP% StdDev | 221 | 19.3 | 16.8 | 16.0 | 14.7 | 148 | 149 | 146 | 143 | 129 | 135
FP% Std Dev | 12.4 | 10.7 | 84 | 89 | 89 | 98 | 9.7 | 94 | 103 | 10.7 | 10.7
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4.3 Detector shape comparison experiment results

The following section is divided into two sub-sections. First, radius sizing constraints
specifically applied to the KDD Cup ' 99 dataset are addressed. Then, the results of the

experiments using these radius sizing constraints are discussed.

4.3.1 Minimum radius sizing. Both the nearest-neighbor and memory limitations
constrain minimum detector size. Using the nearest neighbor method described in section
3.3.1, the minimum radius constraints for the KDD Cup " 99 dataset were found. Figure
4.5 shows the rni, values found using the nearest neighbor method for increasing numbers
of dimensions, it showsthat as dimensions are added, the radius of the nearest neighbor

distance increases.
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Figure 4.5: Minimum radius constraint using nearest neighbor (NN) method for KDD Cup
"99 10% Dataset when using 500 test points.

The minimum radius size constraint is calculated using the memory constraint
method described in section 3.5.1. With the limitations of the computer used (AMD
Athlon 1l X2 215 2.70 GHz Processor, Windows 7 64-Bit operating system, 4.00 Gb
RAM), the maximum usable array contains 250,000,000 elements. These memory
limitations result in a maximum number of detectors. Figure 4.6 shows the maximum
number of detectors allowed with the given constraints as a function of the number of
dimensions. Three numbers of simultaneous test points are compared. The number of

allowable detectors decreases quickly as dimensionality increases. It is significant that the
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number of detectors allowed decreases as dimensions are added, because we have shown
previously that if a detector has a content ratio less than one, the size of a detector is
already decreasing. Therefore, there isnot only loss of detection capability due to number

of detectors, but also due to the content ratio of those detectors.
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Figure 4.6: Maximum number of detectors allowed as a function of the number of

dimensions, using a 250,000,000 element array limit.

Figure 4.7 compares constraints on radius size for the memory and nearest-neighbor
methods. Each point in the figure represents the minimum allowable radius for the given

number of dimensionswhen using one of the two methods, with those using the memory
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constraint method divided among different coverage factors. These results use the same
250,000,000 element limit, with 500 simultaneous test points. Figure 4.7 shows that the
memory constraint quickly dominates the nearest neighbor method for minimum radius
size. In this specific instance, all reported memory constrained minima pass those of the

nearest neigbor method after two dimensions.
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Figure 4.7. Minimum alowable radius size due to memory constraints in comparison to

minimum radius size found using the nearest neighbor method.

Using the nearest neighbor method and the memory constraint method together, the

dominant constraint is chosen. For the two-dimensional case, the nearest neighbor method
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isthe dominant constraint. For all other cases, the memory constraint method is the

dominant constraint.

4.3.2 Maximum radius sizing. A similar analysis of the maximum radius sizing
techniques is also undertaken to determine the dominant constraint. The first method
presented in Section 3.3.2, uses the largest detector that can be placed within the dataset to
determine the maximum radius size. Using this method, the maximum detector size limits
shown in Figure 4.8 are obtained. By next imposing the second limit of a maximum
detector radius of half the side-length of shape-space, Figure 4.8 demonstrates how the
constraining factor changes as dimensions are added. Specifically, in Figure 4.8, each
point represents the maximum allowabl e radius size as a function of the number of
dimensions. The maximum allowabl e radius size method results are shown for all three
shapes (hypersphere, hypersteinmetz, and hypercube), represented by three different trend
lines. This method is then contrasted with atrend line representing the maximum radius

size determined by the half side-length of shape-space.

Similar to the minimum radius, the maximum radius constraint changes after two
dimensions. Therefore, the maximum radius size for two dimensionsis determined by the
maximum detector placement method and the maximum radius for all dimensions greater
than three is set at .5, half the side-length of shape-space. An additional constraint that the
half side-length of shape-space constraint places on the experiment is that no more than 11
dimensions can be used before the minimum values found via memory constraints exceed
the half side-length maximum value. Therefore, the detector shape comparison

experiment was constrained to use between two and eleven dimensions.
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Figure 4.8: Maximum allowable radius size comparing maximum detector placement and

half side-length of shape-space methods.

4.3.3 Experiment results. The detector shape comparison experiment described in
Section 3.6 was run on a computer with 2 Intel Xeon processors X5472, 3.00 GHz, and
32.0 Gb RAM. The following number of runs were performed: 3 detector shapes* 4
numbers of dimensions* 3 radius sizes* 3 coverage factors* 1 dataset * 10 run/dataset =
1080 runs. An average run took approximately 40 seconds to complete, and the total
runtime was approximately 12 hours.

Figure 4.9 shows the receiver operating characteristic curves obtained from the runs

of the detector shape comparison experiment, showing the mean percentage of false
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positives versus the mean percentage of true positives over each set of 10 runs. Each

sub-figure represents a set number of dimensions (2, 5, 8, and 11), and contains a

comparison of the three shapes (hypersphere, hypersteinmetz, and hypercube). Complete

tables of all results are given in Appendix C.
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Thefirst point of interest in Figure 4.9 is to compare the shapes as dimensionality
increases. The hypersphere appears to perform progressively worse, by producing fewer
true positives. However, the fal se positive rate does not increase. The hypersteinmetz and
hypercube perform better as dimensionality increases in terms of true positives, but false
positives also increase.

Tables 4.5 and 4.6 further elucidate the values shown in Figures 4.9a and 4.9d
respectively. The classification accuracy results are shown for al three shapes
(hypersphere, hypersteinmetz, and hypercube) for each set of coverage factors and radii in
2 and 11 dimensions respectively. The mean percentages of true positives and false
positives are reported, along with the correlated standard deviations. These tables further
illustrate that the hypersteinmetz and hypercube perform significantly better than the
hypersphere as dimensionality isincreased. The reason for this difference in performance
is due to the shape of the detector, and specifically due to the content ratio of the
hypersphere as compared to those of the hypercube and hypersteinmetz.

Specifically, Table 4.5 shows that the results for hyperspheres, hypersteinmetzes, and
hypercubes are very similar in two dimensions, with each shape providing a highest true
positive percentage around 87% and a fal se positive percentage of 0%. However, in 11
dimensions, shown in Table 4.6, the hypersphere does not provide a true positive
percentage greater than 7.9%, while both the hypersteinmetz and hypercube each provide

atrue positive percentage of greater than 90%.
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Table 4.5: Classification accuracy results for three different shapesin 2 dimensions

Hypersphere

Cov Factor 2 8 16

Radius .015| .149 | 283 |.015| .149 | .283 | .016 | .149 |.283

TruePos% |71.1| 67 | 02 [8.0| 329 | 1.0 | 875 331 | 1.7
TP% StdDev | 442 | 6.78 | 045 | 1.44 | 15.02 | 1.05 | 1.13 | 14.86 | 1.82
FasePos% | 00 | 00 | 00| 00| 00 | 00| 00 | 00 | 00
FP% Std Dev | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Hypersteinmetz

Cov Factor 2 8 16

Radius .015| .149 | 283 |.015| .149 | .283 | .016 | .149 | .283

TruePos% |681| 87 | 0.2 [ 864 | 206 | 09 | 878 | 286 | 14
TP% Std Dev | 4.18 | 13.14 | 0.26 | 1.58 | 16.92 | 1.03 | 1.24 | 15.29 | 1.21
FasePos% | 00 | 00 | 00| 00| 00O | 00| 00| 00 | 00

FP% Std Dev | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Hypercube

Cov Factor 2 8 16

Radius .015| .149 | .283|.015| .149 | .283 | .016 | .149 |.283

TruePos% |745| 42 | 0.0 [8.1| 219 | 0.6 | 867 | 369 | 0.6
TP% StdDev | 269 | 6.30 | 0.00 | 1.14 | 9.19 | 1.00 | 1.52 | 6.14 | 0.44
FalsePos% | 0.0 | 00 | 00 | 0O | 0O | 00 | 0O | 00 | 00
FP% Std Dev | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
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Table 4.6: Classification accuracy results for three different shapesin 11 dimensions

Hypersphere

Cov Factor 2 8 16

Radius 379 | 440 | 500 | .430 |.465|.500 | .458 | .479 | .500

True Pos % 0.0 0.0 0.1 02 | 01|25 79 | 21|05
TP% StdDev | 0.00 | 0.00 | 0.28 | 0.37 | 0.28 | 7.74 | 10.92 | 6.07 | 1.38
FalsePos% | 0.0 0.0 0.0 00 | 00| 00| 00 | 00| OO
FP% Std Dev | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Hypersteinmetz

Cov Factor 2 8 16

Radius 379 | 440 | 500 | .430 |.465|.500 | .458 | .479 | .500

TruePos% | 59.9 | 50.2 | 39.6 | 81.3 | 89.0 882 | 933 | 911|918
TP% Std Dev | 22.06 | 26.23 | 29.22 | 16.20 | 7.76 | 7.13 | 2.31 | 3.95 | 3.79
FalsePos% | 0.3 0.2 0.2 06 | 11|10 | 09 |13 | 12
FP% StdDev | 0.36 | 0.21 | 0.32 | 048 |1.15| 116 | 0.55 | 1.00 | 1.00

Hypercube

Cov Factor 2 8 16

Radius 379 | 440 | 500 | .430 |.465|.500 | .458 | .479 | .500

TruePos% | 779 | 840 | 914 | 922 | 924|922 | 925 | 924 | 924
TP% Std Dev | 22.10 | 16.44 | 1.29 | 213 | 2.03 | 246 | 212 | 2.03 | 2.03
FalsePos% | 0.2 0.1 0.1 03 |02|02| 03 |03 |03
FP% StdDev | 018 | 0.13 | 014 | 0.19 | 0.13|0.15| 0.15 | 0.21 | 0.17
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Table 4.7 shows the classification accuracy (true and fal se positive percentage means
and standard deviations) for the best radius/coverage factor pairing for each number of
dimensions for each shape. The best result is, as described previously, considered to be
the one that is the closest in Manhattan distance to the point of 0% false positives and
100% true positives, thus equally weighting true and false positives. Each line reports the
mean value and standard deviation obtained over a set of 10 runs. Table 4.7 demonstrates,
again, the divergence between hyperspheres and the other two shapes. The hypersphere’s
best true positive percentage plummets from 87.5% in 2 dimensionsdownto 7.9%in 11
dimensions, while the hypersteinmetz increases from 87.8% to 93.3% and the hypercube
from 86.7% up to 92.4%.

However, Table 4.7 also shows that the results for the hypersteinmetz and
hypersphere perform equivalently to each other throughout all the dimensional sets. Given
nine degrees of freedom, based on 10 tests per radius, the true positive percentages for all
three shapes’ best detector overlap 95% confidence intervals of each other in two
dimensions. Additionally, the best hypercube and hypersteinmetz perform equivalently
within a 95% confidence interval of each other for all true positive percentages and all but

one false positive percentage (five dimensions).
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Table 4.7: Classification accuracy for the best radius/coverage factor pairing for each

number of dimensionsfor each shape

Hypersphere

Num Dims | Coverage Factor | Radius | True Pos % | TP% Std Dev | TP% .95 Cl | False Pos % | FP% Std Dev | FP% .95 Cl
2 16 0.016 87.5 1.13 +0.69 0.0 0.00 +0.00
5 16 0.125 52.5 16.49 +10.08 0.1 0.14 +0.09
8 16 0.299 16.6 11.28 +6.89 0.0 0.10 +0.06
11 16 0.458 7.9 10.92 +6.67 0.0 0.00 +0.00

Hypersteinmetz

Num Dims | Coverage Factor | Radius | True Pos% | TP% Std Dev | TP% .95 CI | False Pos % | FP% Std Dev | FP% .95 Cl
2 16 0.016 87.8 124 +0.76 0.0 0.00 +0.00
5 16 0.125 79.1 7.29 +4.45 21 2.03 +1.24
8 16 0.399 79.3 10.69 +6.53 0.1 0.12 +0.07
11 16 0.458 93.3 231 +1.41 0.9 0.55 +0.34

Hypercube

Num Dims | Coverage Factor | Radius | True Pos % | TP% Std Dev | TP% .95 Cl | False Pos % | FP% Std Dev | FP% .95 Cl
2 16 0.016 86.7 152 +0.93 0.0 0.00 +0.00
5 16 0.125 79.9 8.39 +5.13 0.1 0.13 +0.08
8 16 0.299 835 6.05 +3.70 0.2 0.18 +0.11
11 8 0.465 92.4 2.03 +1.24 0.2 0.13 +0.08

Figure 4.10 shows athree-way analysis of variance (ANOVA) of the true positive

percentages of all runs, using the method described in [33]. Thisisused to determine

which variables in the experiment contribute to the variance of the true positive

classification results. The four plotted valuesin the figure are the most influential: radius

size, coverage factor, shape, and unaccounted for factors. The actual percentages are

reported in Table 4.8, along with the combined factors that are not shown in Figure 4.10.

It can be seen in the figure and table that as the number of dimensionsincreases, the

influence of the radius size, coverage factor and error each decrease; while the influence of

the shape increases. The most dramatic decrease from 2 dimensionsto 11 dimensionsis

the influence of radius size, which decreases from 91.3% in 2 dimensions down to 0.0% in
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11 dimensions. While the largest increase is the influence of detector shape, increasing
from 0.0% up to 85.8%. Thisis due to the influence of the hypersphere’s content going to

zero as the number of dimensions goes to infinity.
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Figure 4.10: Three-way analysis of variance of true positive percentage, comparing the
influence of a = radiussize, b = coverage factor, ¢ = shape, and e = unaccounted for factors

as dimensionality increases
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Table4.8: Three-way analysisof variance (ANOVA) of true positive percentage, comparing
the influence of a = radius size, b = coverage factor, ¢ = shape, al combinations thereof,

and e = unaccounted for factors as dimensionality increases

Variance
Dimensions | SS;% | SSp% | SS% | SSp% | SS5c% | SSpc% | SSanc% | SS%
2 91.3 3.0 0.0 15 0.1 01 0.3 3.7
5 276 | 264 8.8 14 21 1.0 1.8 30.8
8 12 13.0 | 643 0.3 0.5 34 0.7 16.7
11 0.0 35 85.8 0.1 0.2 34 0.5 6.5

Two notes must be made. First, another factor in the reduction of the influence of
radius size has to do with the reduction in the range of possible radii due to memory
constraints. If more possible sizes were allowable, radius size would probably have a
larger influence. Secondly, there are afew reasons for the variance due to unaccounted for
factorsSS.. The choice of training and testing points has some influence on the results
obtained, since they are randomly chosen this could have an effect. Additionally, the
random placement of detectors could hold some sway into the error factor. Lastly, the
ordering of dimensions could have some influence. Specifically, odd numbers of
dimensions allow for biasing of features by the hypersteinmetz solid, since the
hypersteinmetz must use one of the dimensionstwice. As such, afuture analysis could
look into the best way to order dimensions and choose which dimension to double.

Lastly, one of the reasons that hypersteinmetzes were chosen was because of their
feature bias in comparison to hypercubes. Classification accuracy results for hypercubes
and hypersteinmetzes were very similar (within a 95% confidence interval of each other).

Therefore, the current experiments did not provide enough data to compare feature bias
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between hypersteinmetzes and hypercubes. As such, further experiments could be

designed to specifically compare the feature bias of the different shapes.



5 Conclusionsand Future Work

This research has shown that “ Detector shape is an extremely important factor in the
effectiveness of areal-valued negative selection system as the number of dimensions of
dataincreases, especially in comparison to other factors such as radius size and coverage
factor” Specifically, the hypersteinmetz solid, detector shape proposed herein, provides
benefits of better classification accuracy in high dimensions when compared with the
hypersphere.

This conclusory chapter aims to summarize the research that precedesit, in the
following format. First, a set of conclusionsis drawn from the results and analysis found

in Chapter 4. Then, future projects that could extend the current research are proposed.

5.0.4 Detector radius sizing. The detector radius sizing experiment described in
Section 3.3 and with results reported in Section 4.1 showed that the nearest neighbor
method for finding a minimum radius size paired with the largest radius placement
method for finding a maximum radius size provide a good boundary when searching for
the optimal radius size for a real-valued negative selection algorithm. The nearest
neighbor method helps to avoid overfitting by not allowing detectors that are too small,
while the largest radius placement method avoids attempts to use detectors that are too

large for the shape space.

5.0.5 Coverage factor. The coverage factor experiment described in Section 3.4
and with results reported in Section 4.2 showed that coverage factor is directly related to
the classification accuracy results of areal-valued negative selection system. Asthe
coverage factor isincreased, there is a diminishing return on the improvement of the
results. Additionally, increasing coverage factor also reduces variance between

classification runs. These results, paired with the high-dimensional considerations
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described in Section 3.5.2 demonstrate the vital need to understand the effective coverage

provided within a high-dimensional real-valued system.

5.0.6 High-dimensional memory considerations. In addition to the considerations
on coverage factor that high-dimensionality brings, the limitations of memory on the size
of detector radii must be taken into context. Without taking the memory considerations of
the current system setup into account, the effectiveness of the designed system is hurt

significantly due to the necessary loss of coverage due to the number of usable detectors.

5.0.7 Detector shape comparison. Finally, it has been shown that detector shape
not only plays a pivotal rolein the coverage of high-dimensional shape-space, but also that
detector shape is directly related the classification accuracy and becomes more important
with increasing dimensionality. Thisisillustrated in two ways. First, the use of
hyperspheres as detectors in high-dimensional real-valued negative selection systems has
been shown problematic. Table 4.7 demonstrated that the hypersphere’s best true positive
percentage plummets from 87.5% in 2 dimensions down to 7.9% in 11 dimensions, while
the hypersteinmetz increases from 87.8% to 93.3% and the hypercube from 86.7% up to
92.4%. Additionally, it was shown that detector shape becomes increasingly important as
dimensionality increases through an analysis of variance. Table 4.8 showed that the
influence of detector shape increased from 0.0% in 2 dimensions up to 85.8% in 11
dimensions. For these reasons, detector shape choiceisacritical decision in the success of
areal-valued negative selection based artificial immune system as dimensionality

increases.

5.0.8 Effectiveness of hypersteinmetz. The hypersteinmetz solid, specifically, has
proven to provide higher classification accuracies in high dimensions than the
hypersphere. Thisis due to the fact that the content ratio of a hypersphere decreases

factorially as afunction of the number of dimensions, while the content ratio of a
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hypersteinmetz decreases exponentially as a function of the number of dimensions. As
such, the hypersteinmetz can be an effective detector shape for usein high dimensional

real-valued negative selection systems.

5.1 FutureWork

This thesis has covered only one small portion of the bigger vision for artificial
immune systems and network anomaly detection research outlined in the introduction and
motivation section. In order to work further toward the over-arching visions the following
areas of research could be accomplished: feature bias comparison between hypercubes
and hypersteinmetzes, creating accurate and effective data testing sets, determining the
proper network implementation point of the outlined system, creating a distributed version
of the system that allows for immune memory, and testing the effectiveness of the system

on a scaled network.

5.1.1 Feature bias. Theresults obtained in thisresearch did not conclusively show
adifference in feature bias between detector shapes. It islikely that further testing of
high-dimensional results could show that feature bias existsin higher quantity in
hypercubes than in hypersteinmetzes. It is possible that this could be shown through

analysis of the standard deviation.

5.1.2 Other network intrusion datasets. Another way that this research could be
furthered isto compare results on more datasets to see if similar results are possible. One
such dataset could be the University of Cambridge dataset referenced in Chapter 2. Tests
on other datasets could then lead to implementation of arealtime network intrusion

detection system onto a simulated network.

5.1.3 Dataset Creation. The data problems outlined previously are systemic

throughout the whole of network intrusion detection research. Testing on datasets that are
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not contrived simulations requires stripping important data out of actual network traffic
data. Conversely, simulating data is difficult, because athough it may account for the
overal statistical probabilities of user network traffic, it can never completely reach
real-world data. Still it isessential that new datasets be created and made available to the
cyber operations research community. Whether it be created for overall intrusion detection
or specific attack vector intrusion detection, alabeled dataset is of paramount importance

in creating synergy within the research community.

5.1.4 Distributed Decision Making. One of the major contributions that the
biological immune system can provide is that of immunological memory. In order to take
full advantage of what can be done with this memory, a distributed system is extremely
important. Previous work at the Air Force Institute of Technology [20, 21, 16, 17] has
looked into distributed systems for network intrusion detection. By incorporating these
conceptsinto an artificial immune system, it could be possible to alow immunities gained

in one location to be conferred upon others.

5.1.5 Testing and Inoculation. Along with the distributed technology alogical
follow-on is the idea of network inoculations, wherein immunity from a certain vector of
attack would be conferred on a system through a benign network attack. In order to
accomplish this, however, it isincumbent that the system be tested on a smaller network
running real traffic patterns. Thisis not an easy task to accomplish and would require
extensive planning of the testing and experimentation methods and goal's before doing any
sort of actual testing. Additionally, it would require a breadth of expertise from network
engineering to computer programming that would likely necessitate an entire team rather

than an individual effort.
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Appendix A: Completeresults of detector size range experiments

Table A.1: Results of detector size range experiments for the Comb dataset.

Dataset Comb
Radius 0.010 | 0.020 | 0.030 | 0.040 | 0.050 | 0.060 | 0.070 | 0.080 | 0.090 | 0.100 | 0.110 | 0.120 | 0.130 | 0.130 | 0.137
TruePos% | 100.0 | 100.0 | 99.9 | 996 | 904 | 850 | 76.0 | 669 | 629 | 629 | 629 | 629 | 629 | 629 | 629
TP% StdDev | 0.00 | 0.00 | 0.09 | 0.14 | 044 | 017 | 066 | 0.20 | 0.00 | 0.00 | 0.04 | 0.00 | 0.06 | 0.05 | 0.06
FalsePos% | 940 | 549 | 224 | 172 | 11.2 7.0 4.6 33 2.3 2.2 2.2 2.2 21 21 21
FP% StdDev | 0.76 | 0.89 | 0.87 | 0.50 | 047 | 046 | 021 | 029 | 0.21 | 0.00 | 0.00 | 0.00 | 0.18 | 0.14 | 0.14
Radius 0.140 | 0.144 | 0.150 | 0.160 | 0.170 | 0.180 | 0.186 | 0.190 | 0.200 | 0.207
TruePos% | 62.8 | 629 | 628 | 629 | 628 | 628 | 628 | 628 | 629 | 53.1
TP% StdDev | 0.09 | 004 | 007 | 0.06 | 011 | 0.08 | 0.11 | 0.09 | 0.05 | 0.14
False Pos % 19 19 19 1.9 1.9 1.8 1.8 18 19 22
FP% StdDev | 0.23 | 0.30 | 0.30 | 0.30 | 0.21 | 024 | 024 | 018 | 0.23 | 0.00
Table A.2: Results of detector size range experiments for the Comb Negative dataset.
Dataset Comb Negative
Radius 0.010 | 0.020 | 0.025 | 0.030 | 0.040 | 0.050 | 0.053 | 0.060 | 0.070 | 0.080 | 0.090 | 0.100 | 0.110 | 0.120 | 0.130
TruePos% | 100.0 | 100.0 | 100.0 | 99.9 | 994 | 89.8 | 853 | 793 | 727 | 51.1 | 488 | 46.8 | 46.2 | 454 | 45.0
TP% StdDev | 0.00 | 0.00 | 0.00 | 0.09 | 012 | 024 | 0.70 | 022 | 0.77 | 0.15 | 0.13 | 0.08 | 0.17 | 0.10 | 0.13
FalsePos% | 989 | 79.8 | 61.0 | 419 | 202 | 152 | 140 | 108 6.4 2.2 12 0.7 0.7 0.7 0.7
FP% StdDev | 0.39 | 048 | 0.73 | 0.73 | 0.70 | 0.25 | 0.60 | 0.32 | 058 | 0.19 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00
Radius 0.140 | 0.150 | 0.160
TruePos% | 445 | 441 | 335
TP% StdDev | 0.10 | 0.13 | 0.16
False Pos % 0.7 0.7 0.7
FP% Std Dev | 0.00 | 0.00 | 0.00
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Table A.3: Results of detector size range experiments for the Intersection Thick dataset.
Dataset Intersection Thick
Radius 0.010 | 0.020 | 0.025 | 0.030 | 0.040 | 0.050 | 0.053 | 0.060 | 0.070 | 0.080 | 0.090 | 0.100 | 0.101 | 0.110 | 0.115
TruePos% | 100.0 | 100.0 | 100.0 | 100.0 | 99.9 | 999 | 999 | 999 | 999 | 999 | 998 | 99.8 | 99.8 | 99.9 | 99.8
TP% StdDev | 0.03 | 0.00 | 0.00 | 0.04 | 0.07 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | 0.09 | 0.10 | 0.07 | 0.05 | 0.09
FasePos% | 17.5 75 7.0 6.5 55 45 5.0 35 4.0 25 15 2.0 10 0.5 1.0
FP% StdDev | 354 | 264 | 258 | 242 | 369 | 3.69 | 333 | 337 | 316 | 264 | 242 | 258 | 211 | 158 | 211
Radius 0.120 | 0.130 | 0.140 | 0.150 | 0.150 | 0.160 | 0.170 | 0.171 | 0.180 | 0.190 | 0.200 | 0.206 | 0.210 | 0.213 | 0.220
TruePos% | 999 | 99.8 | 99.8 | 998 | 998 | 998 | 99.2 | 99.1 | 986 | 981 | 97.7 | 975 | 972 | 97.3 | 97.0
TP% StdDev | 0.10 | 0.08 | 0.08 | 010 | 011 | 0.09 | 019 | 020 | 0.24 | 0.21 | 0.19 | 0.29 | 0.23 | 0.24 | 0.30
False Pos % 0.5 0.0 15 15 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FP% StdDev | 1.58 | 0.00 | 242 | 242 | 158 | 211 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Radius 0.230 | 0.240 | 0.248 | 0.250 | 0.260 | 0.262 | 0.270 | 0.276 | 0.280 | 0.290 | 0.297 | 0.300 | 0.304 | 0.310 | 0.318
TruePos% | 96.6 | 794 | 789 | 786 | 785 | 786 | 720 | 553 | 53.7 | 524 | 521 | 51.9 | 516 | 51.2 | 50.9
TP% StdDev | 029 | 028 | 042 | 038 | 0.24 | 034 | 431 | 3.03 | 0.34 | 027 | 0.15 | 0.30 | 0.23 | 0.29 | 0.14
False Pos % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FP% Std Dev | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Radius 0.320 | 0.330 | 0.332 | 0.340 | 0.346 | 0.350 | 0.353
TruePos% | 50.7 | 50.2 | 50.1 | 49.8 | 49.3 | 49.0 | 48.7
TP% StdDev | 0.15 | 0.10 | 0.13 | 0.25 | 0.18 | 0.15 | 0.18
False Pos % 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FP% Std Dev | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Table A.4: Results of detector size range experiments for the Intersection Thick Negative

dataset.

Dataset Intersection Thick Negative
Radius 0.010 | 0.011 | 0.018 | 0.020 | 0.030 | 0.038 | 0.040 | 0.050
TruePos% | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 98.0 | 96.1 | 88.2
TP% StdDev | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
FalsePos% | 996 | 99.7 | 964 | 926 | 56.2 | 275 | 203 | 53
FP% StdDev | 0.18 | 0.10 | 0.30 | 0.25 | 049 | 045 | 0.22 | 0.05
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Table A.5: Results of detector size range experiments for the Pentagram Big dataset.

Dataset Pentagram Big

Radius | 0.010 | 0.020 | 0.030 | 0.040 | 0.050 | 0.060 | 0.070 | 0.080 | 0.090 | 0.100 | 0.110 | 0.116 | 0.120 | 0.130 | 0.140
TruePos% | 100.0 | 100.0 | 100.0 | 100.0 | 99.9 | 99.9 | 99.9 | 99.8 | 99.6 | 995 | 99.4 | 99.3 | 992 | 99.2 | 989
TP% StdDev | 0.00 | 0.00 | 0.00 | 0.05 | 0.06 | 0.04 | 0.00 | 0.08 | 0.08 | 017 | 0.15 | 0.14 | 019 | 0.15 | 0.24
FalsePos% | 85.0 | 235 7.2 51 4.4 4.0 32 2.7 29 24 17 19 21 14 16
FP% StdDev | 1.34 | 1.30 | 055 | 0.96 | 057 | 0.74 | 0.76 | 0.89 | 0.71 | 0.65 | 047 | 067 | 0.74 | 0.59 | 0.47

Radius | 0.144 | 0.150 | 0.158 | 0.160 | 0.170 | 0.180 | 0.190 | 0.200 | 0.210 | 0.220 | 0.230 | 0.235 | 0.240 | 0.250 | 0.260
TruePos% | 988 | 98.7 | 984 | 983 | 97.8 | 972 | 968 | 966 | 957 | 949 | 941 | 937 | 92.7 | 86.2 | 795
TP% StdDev | 0.26 | 025 | 0.26 | 0.15 | 033 | 0.64 | 047 | 057 | 0.32 | 0.38 | 063 | 043 | 043 | 587 | 0.29
FelsePos% | 14 | 15 | 06 | 08 | 07 | 1.0 | 10 | 11 | 09 | 07 | 11 | 1.0 | 10 | 08 | 03
FP% StdDev | 0.38 | 028 | 059 | 0.28 | 0.50 | 047 | 0.47 | 055 | 035 | 050 | 0.32 | 057 | 0.35 | 0.42 | 0.35

Radius | 0.270 | 0.280 | 0.290 | 0.300 | 0.310 | 0.320 | 0.326 | 0.330 | 0.340

TruePos% | 75.6 | 52.6 | 51.3 | 425 | 424 | 423 | 423 | 423 | 422

TP% StdDev | 523 | 021 | 295 | 0.10 | 0.08 | 0.04 | 0.04 | 0.05 | 0.06

FelsePos% | 02 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00

FPY% Std Dev | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Table A.6: Results of detector size range experiments for the Pentagram Big Negative
dataset.

Dataset Pentagram Big Negative

Radius | 0.010 | 0.020 | 0.030 | 0.032 | 0.040 | 0.050 | 0.060 | 0.067 | 0.070 | 0.080 | 0.090 | 0.100 |0.110 | 0.120 | 0.130
TruePos% | 100.0 | 99.8 | 995 | 995 | 97.4 | 954 | 923 | 895 | 87.3 | 842 | 808 | 76.1 | 70.4 | 636 | 60.4
TP% StdDev | 0.00 | 0.00 | 0.00 | 0.00 | 015 | 015 | 031 | 043 | 031 | 0.22 | 043 | 0.58 | 0.31 | 0.42 | 0.16
FelsePos% | 986 | 837 | 39.9 | 357 | 139 | 73 | 56 | 53 | 51 | 46 | 38 | 29 | 18 | 14 | 11
FP% StdDev | 0.38 | 055 | 039 | 044 | 080 | 021 | 0.17 | 007 | 012 | 012 | 017 | 0.12 | 0.06 | 0.07 | 0.12

Radius | 0.140 | 0.150 | 0.160 | 0.170 | 0.172 | 0.180 | 0.190 | 0.193

TruePos% | 584 | 567 | 552 | 543 | 542 | 532 | 515 | 50.3

TP% StdDev | 0.34 | 025 | 0.19 | 0.20 | 0.16 | 049 | 0.10 |106.14

False Pos % 1.0 0.7 0.7 0.5 0.5 0.5 0.5 0.5

FPY% Std Dev | 0.06 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 111
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Table A.7: Results of detector size range experiments for the Ring Thick dataset.

Dataset Ring Thick
Radius | 0.010 | 0.020 | 0.030 | 0.040 | 0.050 | 0.060 | 0.070 | 0.073 | 0.080 | 0.090 | 0.100 | 0.110 | 0.120 |0.130 | 0.140
TruePos% | 100.0 | 100.0 | 99.8 | 985 | 97.1 | 962 | 95.1 | 949 | 942 | 928 | 917 | 90.8 | 89.7 | 883 | 86.7
TP% Std Dev | 0.00 | 0.00 | 0.00 | 0.00 | 010 | 011 | 0.14 | 015 | 0.07 | 0.5 | 0.11 | 0.17 | 024 | 0.23 | 0.24
FalsePos% | 980 | 828 | 381 | 102 | 48 | 39 | 34 | 34 | 30 | 23 | 22 | 21 | 1.8 | 18 | 16
FP% StdDev | 0.33 | 044 | 073 | 099 | 008 | 012 | 018 | 012 | 0.12 | 013 | 0.14 | 013 | 0.12 | 0.16 | 0.12
Radius | 0.150 | 0.150 | 0.157 | 0.160 | 0.164 | 0.170 | 0.180 | 0.185 | 0.190 | 0.192 | 0.200
TruePos% | 853 | 854 | 839 | 838 | 836 | 522 | 51.5 | 51.0 | 50.1 | 49.7 | 48.9
TP% StdDev | 050 | 043 | 0.21 | 010 | 015 | 0.22 | 0.07 | 0.22 | 0.14 | 0.10 | O.10
FalsePos% | 1.2 | 12 | 1.0 | 09 | 08 | 0.7 | 06 | 06 | 06 | 06 | 06
FP% StdDev | 0.13 | 0.13 | 013 | 0.12 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Table A.8: Results of detector size range experiments for the Ring Thick Negative dataset.
Dataset Ring Thick Negative
Radius | 0.010 | 0.020 | 0.030 | 0.039 | 0.040 | 0.050 | 0.060 | 0.060 | 0.070 | 0.080 | 0.081 | 0.090 | 0.100 |0.110 | 0.120
TruePos% | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
TP% Std Dev | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.05 | 0.00 | 0.04 | 0.05 | 0.04 | 0.05
FalsePos% | 90.9 | 403 | 176 | 131 | 129 | 109 | 99 | 96 | 91 | 79 | 7.8 | 7.7 | 66 | 76 | 67
FP% StdDev | 1.13 | 0.90 | 049 | 0.61 | 068 | 097 | 0.71 | 0.73 | 0.77 | 061 | 091 | 0.62 | 1.37 | 0.71 | 0.68
Radius | 0.130 | 0.140 | 0.150 | 0.160 | 0.165 | 0.170 | 0.172
TruePos% | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.8 | 95.9
TP% Std Dev | 0.08 | 0.06 | 0.00 | 0.04 | 0.00 | 0.10 | 0.18
FalsePos% | 65 | 60 | 67 | 69 | 71 | 7.6 | 62
FP% StdDev | 0.76 | 091 | 0.73 | 0.64 | 055 | 0.66 | 0.28
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Appendix B: Complete results of coverage factor experiments

Table B.1: Results of coverage factor experiments using coverage factor 2, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =2

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 804 | 668 | 67.2 | 622 | 57.8 | 482 | 40.2 | 57.0 | 810
TP% Std Dev | 16.56 | 28.87 | 30.95 | 35.16 | 36.60 | 40.25 | 42.51 | 43.92 | 49.48
FalsePos% | 623 | 159 | 54 3.7 0.6 0.5 06 | 57.0 | 81.0
FP% Std Dev | 17.11 | 19.13 | 10.06 | 6.39 | 4.69 | 1.81 | 2.75 | 35.23 | 49.48

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 86.2 | 80.2 | 66.6 | 60.0 | 426 | 296 | 13.0 | 37.0 | 50.0
TP% Std Dev | 16.91 | 17.60 | 26.01 | 26.57 | 29.63 | 31.15 | 26.53 | 24.07 | 49.67
FalsePos% | 534 | 153 | 6.2 4.0 1.8 11 06 | 37.0 | 50.0
FP% Std Dev | 16.12 | 1542 | 10.19 | 691 | 5.64 | 3.92 | 3.37 | 20.73 | 49.67

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 836 | 734 | 59.2 | 410 | 188 | 8.6 2.6 6.0 8.0
TP% Std Dev | 15.16 | 22.59 | 21.72 | 28.88 | 27.83 | 21.92 | 16.96 | 19.38 | 18.05
FalsePos% | 535 | 13.0 | 5.0 2.8 14 14 0.8 6.0 8.0

FP% Std Dev | 1547 | 16.57 | 845 | 594 | 447 | 456 | 3.62 | 18.22 | 18.05
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Table B.2: Results of coverage factor experiments using coverage factor 4, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =4

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 942 | 880 | 860 | 876 | 752 | 748 | 734 | 69.2 | 850
TP% Std Dev | 11.93 | 19.21 | 20.24 | 23.08 | 28.27 | 33.86 | 30.32 | 36.61 | 37.18
FalsePos% | 789 | 264 | 10.7 | 4.0 2.5 1.3 1.0 0.0 | 85.0
FP% Std Dev | 12.25 | 22.45 | 1262 | 7.94 | 6.46 | 447 | 3.02 | 2.86 | 30.17

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 986 | 924 | 842 | 744 | 640 | 498 | 332 | 27.0 | 264
TP% Std Dev | 5.39 | 10.58 | 20.07 | 20.66 | 24.73 | 28.18 | 29.75 | 27.02 | 24.93
FalsePos% | 65.8 | 22.7 | 11.0 | 46 2.9 24 16 13 15
FP% Std Dev | 15.05 | 20.20 | 1245 | 822 | 7.04 | 469 | 595 | 392 | 431

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 970 | 906 | 794 | 628 | 366 | 176 | 64 2.6 7.0
TP% StdDev | 7.29 | 14.08 | 16.84 | 25.55 | 28.10 | 25.97 | 21.08 | 14.45 | 14.96
FalsePos% | 741 | 247 | 109 | 58 3.8 1.9 13 12 7.0
FP% Std Dev | 12.60 | 20.15 | 11.37 | 7.64 | 6.21 | 577 | 3.02 | 3.75 | 10.93
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Table B.3: Results of coverage factor experiments using coverage factor 6, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =6

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 976 | 966 | 954 | 928 | 878 | 834 | 84.0 | 89.8 | 804
TP% StdDev | 7.24 | 861 | 895 | 1459 | 21.24 | 23.99 | 18.70 | 28.32 | 20.82
FalsePos% | 87.1 | 30.8 | 132 | 57 3.6 21 18 14 0.4
FP% Std Dev | 11.96 | 23.68 | 14.02 | 10.33 | 6.38 | 498 | 475 | 3.64 | 3.29

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 994 | 980 | 914 | 852 | 768 | 63.0 | 420 | 40.2 | 320
TP% StdDev | 296 | 6.03 | 11.22 | 17.94 | 18.38 | 26.00 | 30.44 | 26.76 | 27.86
FalsePos% | 740 | 288 | 129 | 65 5.6 2.8 3.3 24 1.9
FP% Std Dev | 13.00 | 18.92 | 1245 | 989 | 7.07 | 6.01 | 577 | 6.70 | 542

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 99.2 | 956 | 852 | 73.6 | 470 | 198 | 126 | 4.2 0.8
TP% StdDev | 3.61 | 950 | 15.04 | 20.88 | 28.16 | 29.23 | 20.89 | 20.60 | 15.30
FalsePos% | 795 | 279 | 137 | 73 4.1 3.3 2.6 17 13
FP% Std Dev | 12.27 | 19.30 | 11.61 | 9.06 | 6.74 | 6.08 | 554 | 536 | 4.12
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Table B.4: Results of coverage factor experiments using coverage factor 8, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =8

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 994 | 980 | 976 | 99.2 | 942 | 8.0 | 914 | 88.6 | 874
TP% StdDev | 469 | 646 | 761 | 6.16 | 9.09 | 17.63 | 22.03 | 19.17 | 22.53
FalsePos% | 91.4 | 388 | 144 | 89 3.2 2.5 1.9 1.0 13
FP% StdDev | 862 | 23.13 | 17.39 | 10.22 | 747 | 6.26 | 504 | 3.84 | 2.69

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 99.8 | 994 | 95.0 | 91.2 | 850 | 69.0 | 55.6 | 484 | 456
TP% StdDev | 211 | 361 | 842 | 1242 | 1563 | 23.69 | 27.79 | 26.72 | 28.95
FalsePos% | 78.6 | 347 | 155 | 84 5.6 4.2 39 24 2.7
FP% Std Dev | 11.52 | 19.89 | 14.32 | 1058 | 7.85 | 7.65 | 6.96 | 6.21 | 547

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 99.8 | 982 | 91.0 | 84.8 | 59.2 | 296 | 136 | 5.8 14
TP% StdDev | 0.00 | 539 | 11.05| 17.90 | 27.41 | 29.54 | 25.48 | 22.96 | 14.93
FalsePos% | 834 | 334 | 178 | 95 6.5 4.1 3.7 2.3 2.3
FP% Std Dev | 10.49 | 19.52 | 1265|1015 | 7.61 | 747 | 6.32 | 574 | 413
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Table B.5: Results of coverage factor experiments using coverage factor 10, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =10

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 99.2 | 996 | 986 | 988 | 970 | 916 | 946 | 948 | 946
TP% StdDev | 3.61 | 361 | 550 | 502 | 940 | 14.63 | 1421 | 11.24 | 13.00
FalsePos% | 935 | 442 | 162 | 89 4.2 4.1 2.0 1.7 14
FP% StdDev | 7.10 | 2240 1745|1102 | 730 | 534 | 519 462 | 3.9

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 99.8 | 996 | 96.6 | 926 | 89.0 | 790 | 656 | 522 | 50.2
TP% StdDev | 211 | 296 | 7.47 | 9.87 | 1411 | 16.97 | 23.65 | 21.94 | 27.98
FalsePos% | 811 | 36.0 195 | 102 | 74 5.0 5.6 2.3 29
FP% Std Dev | 11.04 | 20.69 | 16.24 | 11.57 | 889 | 7.79 | 7.37 | 7.07 | 4.69

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 998 | 980 | 926 | 876 | 652 | 384 | 216 | 34 1.0
TP% StdDev | 0.00 | 6.32 | 10.30 | 14.45 | 23.90 | 25.31 | 29.83 | 23.61 | 8.61
FalsePos% | 87.2 | 349 | 184 | 105 | 89 4.4 3.6 2.5 31
FP% StdDev | 862 | 21.35 1283 | 865 | 821 | 6.78 | 599 | 587 | 536
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Table B.6: Results of coverage factor experiments using coverage factor 12, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =12

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 1000 | 996 | 99.2 | 99.2 | 964 | 934 | 96.2 | 97.0 | 964
TP% StdDev | 0.00 | 211 | 3.61 | 584 | 1047 | 11.80 | 1245 | 943 | 843
FalsePos% | 937 | 46.2 | 209 | 114 | 58 3.8 2.5 2.0 16
FP% StdDev | 7.24 | 21.46 1869 | 11.80 | 851 | 6.04 | 478 | 451 | 410

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 100.0 | 100.0 | 95.6 | 94.0 | 938 | 79.0 | 684 | 60.0 | 50.6
TP% StdDev | 0.00 | 0.00 | 878 | 10.23 | 9.49 | 17.37 | 19.71 | 25.95 | 28.16
FalsePos% | 82.6 | 394 | 20.7 | 108 | 83 5.2 3.6 4.1 31
FP% Std Dev | 11.40 | 20.24 | 15.88 | 11.88 | 952 | 948 | 7.07 | 6.10 | 6.44

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 996 | 984 | 938 | 86.8 | 704 | 404 | 206 | 5.0 1.0
TP% StdDev | 296 | 502 | 10.40 | 14.76 | 21.94 | 26.72 | 25.81 | 23.27 | 13.42
FalsePos% | 87.7 | 382 | 209 | 128 | 83 4.7 4.0 4.3 31
FP% StdDev | 992 | 22.34 1314 | 11.86 | 880 | 758 | 6.19 A 654 | 598
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Table B.7: Results of coverage factor experiments using coverage factor 14, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =14

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 99.8 | 100.0 | 99.2 | 100.0 | 974 | 97.2 | 96.6 | 97.6 | 97.2
TP% StdDev | 211 | 000 | 296 | 296 | 6.16 | 7.24 | 943 | 659 | 891
FalsePos% | 949 | 480 | 239 | 113 | 7.6 4.4 3.3 2.8 16
FP% StdDev | 6.74 | 21.23 | 1574 | 1273 | 864 | 7.03 | 570 | 523 | 475

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 100.0 | 100.0 | 974 | 95.0 | 920 | 826 | 754 | 63.0 | 57.0
TP% StdDev | 0.00 | 0.00 | 6.32 | 8.74 | 10.58 | 19.04 | 20.07 | 26.52 | 26.39
FalsePos% | 83.8 | 40.7 | 206 | 122 | 9.0 6.6 4.7 3.6 2.6
FP% Std Dev | 9.93 | 19.39 | 15.65 | 1348 | 936 | 824 | 935 | 7.07 | 6.00

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 1000 | 994 | 968 | 904 | 76.2 | 448 | 260 | 7.2 1.0
TP% StdDev | 0.00 | 361 | 7.24 | 12.16 | 20.33 | 30.36 | 29.52 | 24.80 | 16.12
FalsePos% | 885 | 415 | 232 | 152 | 9.6 7.3 4.8 4.2 3.9
FP% StdDev | 9.37 | 18.33 | 1456 | 11.10 | 935 | 757 | 769 | 691 | 6.22
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Table B.8: Results of coverage factor experiments using coverage factor 15, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =15

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 100.0 | 100.0 | 100.0 | 99.6 | 984 | 976 | 974 | 97.8 | 98.2
TP% StdDev | 0.00 | 0.00 | 0.00 | 211 | 414 | 748 | 843 | 659 | 7.61
FalsePos% | 951 | 50.0 | 241 | 126 | 7.9 4.2 2.8 2.2 13
FP% StdDev | 6.23 | 20.89 | 17.93 | 1329 | 999 | 6.76 | 6.16 | 457 | 4.62

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 1000 | 998 | 99.0 | 95.6 | 928 | 860 | 76.2 | 65.0 | 55.8
TP% StdDev | 0.00 | 211 | 414 | 7.00 | 11.95 | 12.35 | 19.53 | 21.11 | 25.93
FalsePos% | 829 | 431 | 232 | 125 | 89 5.8 6.3 4.8 3.3
FP% Std Dev | 9.86 | 20.25 | 18.13 | 12.66 | 10.22 | 814 | 7.85 | 7.00 | 6.73

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 1000 | 996 | 968 | 89.8 | 76.2 | 482 | 274 | 10.0 | 1.8
TP% StdDev | 0.00 | 211 | 7.29 | 14.66 | 17.03 | 24.99 | 29.22 | 26.63 | 18.29
FalsePos% | 89.1 | 404 | 238 | 164 | 9.9 7.8 4.8 3.8 3.9
FP% StdDev | 882 | 20.99 | 12.85| 1052 | 845 | 758 | 801 | 542 | 5.67
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Table B.9: Results of coverage factor experiments using coverage factor 20, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =20

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 100.0 | 100.0 | 100.0 | 100.0 | 99.2 | 976 | 98.0 | 984 | 98.6
TP% StdDev | 0.00 | 0.00 | 0.00 | 0.00 | 296 | 502 | 7.24 | 6.03 | 5.02
FalsePos% | 97.1 | 56.3 | 286 | 163 | 74 5.6 3.8 3.2 2.0
FP% Std Dev | 550 | 19.97 1793 | 1245 | 1065 | 6.80 | 6.04 | 575 | 485

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 100.0 | 100.0 | 99.2 | 974 | 948 | 914 | 808 | 724 | 654
TP% StdDev | 0.00 | 0.00 | 361 | 6.74 | 842 | 1211 | 16.44 | 20.65 | 22.50
FalsePos% | 858 | 476 | 258 | 148 | 9.6 7.8 7.8 6.3 4.8
FP% Std Dev | 9.14 | 20.36 | 17.90 | 13.18 | 10.83 | 849 | 7.97 | 9.21 | 7.93

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 1000 | 998 | 978 | 944 | 844 | 56.0 | 306 | 13.0 | 24
TP% StdDev | 0.00 | 211 | 6.32 | 878 | 16.85 | 25.82 | 28.75 | 27.68 | 19.02
FalsePos% | 916 | 461 | 27.1 | 165 | 123 | 8.0 7.0 5.0 4.3
FP% StdDev | 833 | 1991 1691 | 11.52 | 9.00 | 7.18 | 837 | 7.04 | 7.23
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Table B.10: Resultsof coverage factor experiments using coverage factor 25, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =25

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 100.0 | 100.0 | 100.0 | 100.0 | 99.2 | 986 | 98.8 | 98.2 | 99.0
TP% StdDev | 0.00 | 0.00 | 0.00 | 0.00 | 361 | 414 | 461 | 539 | 539
FalsePos% | 97.1 | 586 | 30.3 | 17.0 | 9.0 6.4 5.0 3.5 2.6
FP% StdDev | 461 | 19.43 1824 | 1315 | 10.24 | 6.64 | 6.72 | 639 | 526

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 100.0 | 100.0 | 99.0 | 98.0 | 974 | 938 | 894 | 79.6 | 68.2
TP% StdDev | 0.00 | 0.00 | 361 | 6.03 | 700 | 821 | 1232 | 16.12 | 21.04
FalsePos% | 87.2 | 50.0 | 274 | 188 | 132 | 9.7 7.9 7.2 59
FP% Std Dev | 8.30 | 20.18 | 1745 | 12.74 | 1220 | 10.11 | 9.23 | 9.46 | 8.18

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 100.0 | 100.0 | 984 | 956 | 864 | 628 | 336 | 17.0 | 3.8
TP% StdDev | 0.00 | 0.00 | 4.61 | 807 | 13.49 | 21.53 | 26.29 | 23.65 | 21.95
FalsePos% | 923 | 489 | 30.7 | 19.7 | 138 | 9.6 7.8 5.9 5.1
FP% StdDev | 7.65 | 20.85  16.37 | 12.18 | 1069 | 868 | 824 | 7.73 | 7.05

102



Table B.11: Resultsof coverage factor experiments using coverage factor 30, true and false
positive percentages are the mean percentage calculated over 10 runs per radius, true and

false positive percentages standard deviations are calculated over 10 runs per radius.

Coverage Factor f =30

Dataset Setosa

Radius 0.080 | 0.172 | 0.265 | 0.357 | 0.449 | 0.541 | 0.633 A 0.726 | 0.818

TruePos% | 100.0 | 100.0 | 100.0 | 100.0 | 99.8 | 99.0 | 98.8 | 98.6 | 99.2
TP% StdDev | 0.00 | 0.00 | 0.00 | 0.00 | 211 | 414 | 296 | 539 | 4.61
FalsePos% | 976 | 60.7 | 338 | 195 | 11.2 | 65 5.3 4.0 31
FP% Std Dev | 4.18 | 18.85 | 18.17 | 1453 | 11.04 | 810 | 781 | 6.74 | 5.32

Dataset Versicolor

Radius 0.075 | 0.164 | 0.254 | 0.343 | 0.433 | 0.522 | 0.612 | 0.701 | 0.791

TruePos% | 100.0 | 100.0 | 994 | 99.0 | 984 | 950 | 88.0 | 81.2 | 75.2
TP% StdDev | 0.00 | 0.00 | 211 | 502 | 539 | 747 | 1265 | 17.74 | 20.07
FalsePos% | 883 | 50.3 | 30.2 | 176 | 123 | 116 | 9.6 8.7 7.8
FP% Std Dev | 8.10 | 18.97 | 18.29 | 16.11 | 11.54 | 10.83 | 1044 | 9.35 | 9.14

Dataset Virginica

Radius 0.068 | 0.159 | 0.250 | 0.342 | 0.433 | 0.525 | 0.616 | 0.707 | 0.799

TruePos% | 100.0 | 100.0 | 98.2 | 95.0 | 858 | 66.0 | 404 | 158 | 3.6
TP% StdDev | 0.00 | 0.00 | 539 | 7.29 | 14.76 | 21.18 | 27.22 | 27.58 | 22.40
FalsePos% | 931 | 509 | 323 | 215 | 160 | 119 | 86 6.7 5.6
FP% StdDev | 7.23 | 21.10 | 16.06 | 1210 | 9.39 | 937 | 877 | 7.83 | 7.71
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Appendix C: Completeresults of detector shape comparison experiments
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