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Abstract

Suppose we are given a video of a rotating object and suppose we want to

determine the rate of rotation solely from the video itself and its known frame rate.

In this thesis, we present a new mathematical operator called the Geometric Sum

Transform (GST) that can help one determine the angular frequency of the object in

question. The GST is a generalization of the discrete Fourier transform (DFT) and

as such, the two transforms have much in common. However, whereas the DFT is

applied to a sequence of scalars, the GST can be applied to a sequence of vectors.

Most importantly, we show that the GST, like the DFT, can (1) be used to estimate

frequency and (2) can be computed surprisingly quickly. Indeed, we provide a Fast

Geometric Sum Transform (FGST) algorithm that computes the GST in O(N logN)

matrix-vector multiplications, where N is the number of images in the video sequence.

This is a vast improvement over the O(N2) such multiplications required for a direct

computation of the GST. The remainder of this thesis is devoted to proving other

properties of the GST and giving proof-of-concept numerical examples.
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Determining angular frequency from video

with a generalized fast Fourier transform

I. Introduction

Consider a video sequence of image frames in which an object moves throughout

the sequence, such as those presented in Figure 1. This figure is an image sequence

of a rotating jet of plasma which is being ejected through a small propulsive device

called a thruster. Suppose you want to know the rate in which this jet is rotating, but

only the video sequence and its sampling rate is known. In this thesis we introduce

an operator called the Geometric Sum Transform (GST) that, when applied to such a

video sequence, allows us to estimate this rate of rotation. Specifically, this operator

is useful in finding the rate of translation or alternatively, the rate of rotation of an

object captured on video. It turns out that the GST is closely related to the Discrete

Fourier Transform (DFT). As such, we begin here by recalling the basic properties of

the DFT.

The DFT is an operator which is widely used in signal and image processing.

Letting N ∈ N, the DFT is defined over the following sequence space of all discrete-

time, complex-valued N-periodic signals:

`(ZN ,C) := {x : Z→ C | x[n+N ] = x[n],∀n ∈ Z}. (1)

Specifically, for any x ∈ `(ZN ,C), define the DFT of x to be DFT(x) ∈ `(ZN ,C),

DFT(x)[n] :=
N−1∑
n′=0

e−
2πinn′
N x[n′]. (2)

There are three main reasons why the DFT is popular: (1) it determines fre-

quency, (2) there is a fast algorithm to compute it, and (3) it helps us understand
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Figure 1: This 15-frame image sequence shows a rotating jet of plasma coming out
of a 200-Watt Hall thruster, which is a small device intended to propel a
satellite. Not only is the plasma ejected from the thruster rotating, the
brightness of the plasma is also not constant. These images were collected
by Liu as discussed in [8], but the true rate of rotation of the thruster was
an unknown parameter. Applying the GST to a sufficiently well-sampled
video sequence will provide a good estimate of the true rate of the plasma’s
rotation.

filters. The GST generalizes the first two of these properties to vector-valued func-

tions. We introduce this new operator by generalizing the scalar field C to any Hilbert

space H, and also generalizing the root of unity e
2πi
N in (2) to a unitary transformation

U : H→ H of finite order. In particular, whereas the DFT is defined over `(ZN ,C), as

given in (1), the GST is an operator over the space of all discrete-time, vector -valued

N -periodic sequences:

`(ZN ,H) := {X : Z→ H | X[n+N ] = X[n],∀n ∈ Z}. (3)

Specifically, the GST is an operator from this space into itself:

2



Definition 1. Let U be a unitary operator on H with the property that UN = I. The

Geometric Sum Transform of any X ∈ `(ZN ,H) is GSTU(X) ∈ `(ZN ,H) whose nth

element is the vector:

GSTU(X)[n] :=
N−1∑
n′=0

U−nn
′
X[n′]. (4)

Note that the order of a unitary operator U is defined as the least nonnegative integer

K such that UK = I. In order to define the GST, the order of U must necessarily

divide N .

Like the DFT, the GST (4) can be used to estimate frequency. While the

DFT determines the frequency of a sequence of numbers by measuring how quickly

they circle the origin in the complex plane, the GST estimates the frequency of a

sequence of vectors with respect to the action of U . To be precise, if U is a rotation

operator then GSTU(X) can be used to estimate the angular frequency of objects seen

rotating in the video sequence X. Meanwhile, if U is a cyclic translation operator,

then GSTU(X) can be used to estimate lateral velocity.

To see this, consider the toy example depicted in Figure 2. There, N = 8, the

Hilbert space is H = L2(R2), and the video sequence is thus a member of `(Z8, L
2(R2)).

The sequence of images X[n] is depicted in the first row, where n = (0, . . . , 7). It

turns out the Mercedes-Benz shape in these images is rotating by a factor of 3(2π
8

)

radians in each image frame, namely by 135 ◦ counterclockwise from the previous

frame. Suppose we want to use the GST to determine this fact. Since N = 8, we can

only apply the GST with an operator U that satisfies U8 = I. We choose U to be

rotation by 2π
8

, namely 45 ◦ in the counterclockwise direction.

To see what the GST does in this example, note that the U−nn
′

term in the

GST definition (4) fixes n and then sums over different values of n′. Specifically, for

a conjectured frequency n, the GST simulates taking a long exposure as the camera

rotates backwards—in the clockwise direction—at a rate of n complete revolutions

over the N image frames. To see this, the X[0] column of Figure 2 is equivalent to

holding the camera still, that is, rotation by 0 radians per image. Meanwhile, the X[1]
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column corresponds to rotating the camera by −2π
8

radians per image. This process

is continued for each possible frequency until the camera has been rotated by −7(2π
8

)

radians in the final column.

When the conjectured frequency n corresponds to the true rotational frequency,

the two rates of rotation, both simulated and actual, cancel each other perfectly.

This yields a coherent sum, resulting in a sharp image. For any other frequency, the

corresponding sum is at least partially incoherent, resulting in a blurry image. One

can thus determine the rate of rotation by computing the sharpness of the sum. In

Figure 2, GST(X[3]) appears to be the sharpest GST image; this confirms that the

Mercedes-Benz shape indeed makes 3 complete revolutions over the course of this

simulated video sequence.

Meanwhile, for the 100-frame thruster video sequence, 15 frames of which are

depicted in Figure 1, the resulting GST consists of 100 images. Rather than plot each

of these images and look for the one which is the sharpest, we can alternatively plot a

sequence of their norms, as shown in Figure 3. Intuitively, the peak of this norm plot

corresponds to the true rate of rotation, as we expect coherent sums to have larger

norms than incoherent ones. Later in this thesis, we formally show that this is indeed

the case.

From the above examples, we see that the GST is useful. However, the question

now arises of whether or not it is practical to compute. Since n and n′ both have

N possible values in (4), the computation of the GST appears to require O(N2)

matrix-vector multiplications. When N is large, this can be prohibitively expensive.

Fortunately, in this thesis we show that like the DFT, there exist a fast algorithm for

computing the GST that reduces this computational burden to O(N logN) matrix-

vector multiplications.
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1.1 Major contributions

The most significant contribution of this thesis is the Fast Geometric Sum Trans-

form (FGST), a fast algorithm to compute the GST. Applied to a video sequence, the

FGST significantly decreases the amount of matrix-vector multiplications required to

compute the GST. Indeed, the FGST improves the GST computations required from

O(N2) to O(N logN) matrix-vector multiplications. In this way, we see that the GST

mimics two important facets of the DFT: (1) it can be used to estimate frequency, and

(2) it can be computed surprisingly quickly. Additionally, there are other properties

of the GST that are similar to those of the DFT, and are proven in this thesis. For

example, the GST is a linear operator, has an adjoint, and can formally be shown to

provide a good frequency estimate for a certain class of signals. Further, we perform

a spectral analysis which shows that the GST is invertible under certain conditions,

and moreover shows that the GST can indeed be regarded as a system of DFTs.

Several of these results are novel contributions to mathematical literature. In

particular, as far as we know, our definition of the GST (4) is the first time any-

one has generalized the DFT in a way that allows one to estimate rotational fre-

quency from video. Moreover, the proof of the FGST algorithm (Theorem 5), though

heavily inspired by the well-known FFT algorithms, is substantially more succinct

and straightforward than all other similar decimation-in-frequency arguments that

we could find in the existing literature. Finally, the spectral theory of Chapter V,

which formally shows that the GST is, in fact, equivalent to computing a system of

DFTs, is completely new.

1.2 Outline

Chapter II provides a summary of previous literature in this area of research.

Since this thesis introduces the GST, we focus on background theory about the DFT,

as these two transforms have many of the same properties. Many basic properties

of the GST are provided in Chapter III. Then, Chapter IV includes a clear way to
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define a generalized bit reversal, and most importantly, provides the FGST algorithm

and the proof of its validity. A spectral analysis of the GST is given in Chapter V

and we conclude in Chapter VI with more examples and numerical experimentation

concerning the GST. The appendix includes Matlab R© code for the implementation

of the FGST, so that this research can be more easily applied in future research.
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Figure 2: This is a GST rotation example of data length N = 8 applied to the
Mercedes-Benz shape. The first row is the original X sequence. Each
column under that initial row shows successively rotated images that are
added together to form the final image in each column, namely the GST of
a given X[n].
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Figure 3: This plot shows the `∞ norm of the GST of a thruster video, several image
frames of which are depicted in Figure 1. In this example, N = 100 and U is
rotation by 2π

100
. Intuitively, it makes sense that the correct rate of rotation

corresponds to the peak in the plot, since at the true rate of rotation, we
expect the image frames to add coherently, in particular at their brightest
point. Here, that peak occurs at n = 8, which once converted to standard
units means the plasma is rotating at a rate of 80 Kilohertz.

8



II. Literature Review

The GST (4) is a new way to generalize the DFT (2). Indeed, it is a natural gen-

eralization because of the relationship between the DFT and the GST. Recall that

the FFT is a fast algorithm to compute the DFT. In this thesis, we provide the

FGST, a similarly fast algorithm for computing the GST. In this chapter, we focus

on background theory about the DFT alone, since the GST and the DFT share many

of the same properties, and no previous literature about a GST-like operator could

be found.

Three properties of the DFT that are related to the work presented in this thesis

are (1) the DFT has an inverse, (2) the DFT is a linear transform, and (3) the FFT

assumes periodicity [11]. In addition, the FFT computes the finite Fourier transform

of a length N data set in O(N logN) operations [4]. Contrast this difference in

efficiency to the O(N2) operations required to compute the DFT directly.

Two main reasons the FFT has a computing advantage over directly computing

the DFT is because it applies known periodicity of the sine and cosine functions

and also exploits indices that contain a factor that is a power of two [4]. Cooley and

Tukey [3] showed how to compute an FFT whose length is a highly composite number

N , that is, an integer with many prime factors. Their research showed that an FFT

of size N = p1p2 . . . pm takes N(p1 + p2 + . . .+ pm) operations.

Often, the first step in many FFT algorithms of length N is to reverse the order

of the bit representation of the indices n = (0, . . . , N − 1). Such bit reversal can be

found by using Buneman’s algorithm, as presented by Walker in [14]. For example,

the number 5 has a bit representation of 0101, which when reversed becomes 1010

and corresponds to the number:

β(5) = 1(23) + 0(22) + 1(21) + 0(20) = 10.

This description of bit expansion and this example are described in more detail in [1].

In Chapter IV, we generalize this notion of bit reversal to arbitrary n-ary expansion.
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Although all FFT algorithms incorporate bit reversal, each algorithm can be

computed using either decimation in time or decimation in frequency. The 1965

Cooley-Tukey algorithm is an example of decimation in time, that is, where each

computation group gets bigger than the previous one [11]. On the other hand, the

1966 Gentleman-Sande algorithm [5] is an example of decimation in frequency, that is,

where each computation group is smaller than the previous level. These two different

computation methods are best visualized with well-known FFT “butterfly diagrams,”

as shown in [1], [2], and [14].

According to Heideman [6], in 1805 preceding Fourier’s introduction of sinu-

soidal expansion, Gauss created an algorithm that closely resembles the FFT, but his

algorithm did not quantify computational complexity to the N logN operations FFT

algorithm we now use. Gauss’s algorithm computed the coefficients of a finite Fourier

series, and was similar to a decimation in frequency algorithm that has been modified

for a real data sequence [6]. Note, the FGST algorithm we present in Chapter IV

is also an example of decimation in frequency, where the initial input length value

is factored and then computation groups are continually broken down into smaller

groups.

Now, more than two hundred years after Gauss’s work, there have been many

different FFT algorithms created. In [13], Van Loan presents a summary of many

popular FFT algorithms, and categorizes them based on the size of each framework.

That is, the frameworks are distinguished by how an FFT of length N is broken into

computation groups. For instance, there is a class of algorithms specifically created

for computing the FFT of a length N = 2k signal for k ∈ N. Several examples of

these algorithms are the Cooley-Tukey algorithm, the Stockham algorithm, and the

Pease algorithm, all presented in [13].

Variations of each algorithm are also presented in [13], including ways of splitting

the computational groups, such as Radix-2, Split-Radix, and Mixed-Radix. A Radix-
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2 framework is applied to a signal of length N = 2k, but a Mixed-Radix framework

is applied to a signal of length N = p1 · · · pk where each pi is a factor of N .

Most of the FFT algorithms we have mentioned up to this point are similar

to the FGST algorithm we introduce in Chapter IV. However, there are some FFT

algorithms that exactly follow the approach we pursue in this thesis. For example, in

1968, Rader created a way to compute an FFT of prime length by treating the signal

like a cyclic convolution [10]. Then, in 1999, Mohlenkamp found a fast transform for

spherical harmonics, that is, problems where the Fourier exponential functions are

generalized to functions over the sphere S2 in R3 [9]. More recently in 2006, Rokhlin

and Tygert presented a fast algorithm for forward and inverse spherical harmonic

transforms [12].

11



III. Basic properties of the GST

In this chapter we introduce and prove several of the basic properties of the GST (4).

3.1 `(ZN,H) is a Hilbert space

Recall the GST (4) is defined over the space `(ZN ,H) defined in (3). We now

verify that this space is indeed a Hilbert space with inner product:

〈X, Y 〉`(ZN ,H) :=
N−1∑
n=0

〈X[n], Y [n]〉H. (5)

To verify this, we just need to show that 〈X, Y 〉`(ZN ,H) satisfies the four properties

of an inner product space. First, for any X, Y, Z ∈ `(ZN ,H):

〈X + Y, Z〉`(ZN ,H) =
N−1∑
n=0

〈X[n] + Y [n], Z[n]〉H

=
N−1∑
n=0

(〈X[n], Z[n]〉H + 〈Y [n], Z[n]〉H)

=
N−1∑
n=0

〈X[n], Z[n]〉H +
N−1∑
n=0

〈Y [n], Z[n]〉H

= 〈X,Z〉`(ZN ,H) + 〈Y, Z〉`(ZN ,H).

Second, for any α ∈ C and any X, Y ∈ `(ZN ,H):

〈X,αY 〉`(ZN ,H) =
N−1∑
n=0

〈X[n], αY [n]〉H =
N−1∑
n=0

〈X[n], αY [n]〉H = α〈X, Y 〉`(ZN ,H).

12



Third, for any X, Y ∈ `(ZN ,H):

〈X, Y 〉`(ZN ,H) =
N−1∑
n=0

〈X[n], Y [n]〉H

=
N−1∑
n=0

〈Y [n], X[n]〉∗H

=

(
N−1∑
n=0

〈Y [n], X[n]〉H

)∗
= 〈Y,X〉∗`(ZN ,H).

Lastly, for X ∈ `(ZN ,H) with X 6= 0, we have X[n] 6= 0 for some n and so:

〈X,X〉`(ZN ,H) =
N−1∑
n=0

〈X[n], X[n]〉H =
N−1∑
n=0

‖X[n]‖2H > 0.

Therefore (5) is indeed an inner product space on (3), as claimed.

3.2 GSTU is a linear operator

To better understand the GST operator, we first show that GSTU is, for any

unitary operator U , a well-defined linear operator from `(ZN ,H) into itself. That is,

the domain of the definition of GSTU is `(ZN ,H). Then for any X ∈ `(ZN ,H), the

fact that GSTU(X) is N -periodic follows from the assumption that UN = I:

GSTU(X)[n+N ] =
N−1∑
n′=0

U−n
′(n+N)X[n′]

=
N−1∑
n′=0

U−nn
′(
UN
)−n′

X[n′]

=
N−1∑
n′=0

U−nn
′
X[n′]

= GSTU(X)[n].

13



Having this fact, we next show that GSTU is linear. Let X1, X2 be vectors of length

N such that both X1, X2 ∈ `(ZN ,H). Then for all n ∈ ZN and scalars α1, α2 ∈ C, we

fix n and have:

[
GSTU(αX + βY )

]
[n] =

N−1∑
n′=0

U−n
′n
(
αX[n′] + βY [n′]

)
=

N−1∑
n′=0

(
αU−n

′nX[n′] + βU−n
′nY [n′]

)
= α

N−1∑
n′=0

U−n
′nX[n′] + β

N−1∑
n′=0

U−n
′nY [n′]

= αGSTU(X)[n] + βGSTU(Y )[n]

=
[
αGSTU(X) + βGSTU(Y )

]
[n].

Since this is true for all n ∈ ZN , α, β ∈ C and X, Y ∈ `(ZN ,H), then GST is a linear

operator.

As discussed in the introduction, the GST is a generalization of the DFT. More-

over, one of the well-known properties of the DFT is that conjugating a translation

operator by the DFT results in a modulation operator. Specifically, defining the

operator Tk : `(ZN ,H) → `(ZN ,H), (Tkx)[n] := x[n − k], it is easy to show that

DFT(Tkx)[n] = e−
2πikn
N DFT(x)[n] for any k, n ∈ Z. If we generalize this notion of

translation to the operator Tk : `(ZN ,H) → `(ZN ,H), (TkX)[n] := X[n − k] then,

making the substitution n′′ = n′ − k gives a similar result:

GSTU(TkX)[n] =
N−1∑
n′=0

U−nn
′
X[n′ − k]

= U−kn
N−1∑
n′′=0

U−nn
′′
X[n′′]

= U−knGSTU(X)[n].

14



3.3 The adjoint of the GST

The GST also generalizes the well-known characteristics of the adjoint of the

DFT, namely the operator DFT∗ : `(ZN)→ `(ZN) where:

DFT∗(x)[n] =
N−1∑
n′=0

e
2πinn′
N x[n′]. (6)

In particular, the only difference between DFT (2) and its adjoint (6) is the sign of

the exponential. We now show a similar result holds for the GST.

Theorem 2. GST∗U = GSTU∗.

Proof. It suffices to show that for any two vectors X, Y ∈ `(ZN , H):

〈X,GST∗U(Y )〉`(ZN ,H) = 〈X,GSTU∗(Y )〉`(ZN ,H).

By definition of the adjoint and the inner product (5) on `(ZN ,H), we have:

〈X,GST∗U(Y )〉`(ZN ,H) = 〈GSTU(X), Y 〉`(ZN ,H)

=
N−1∑
n=0

〈
GSTU(X)[n], Y [n]

〉
H

=
N−1∑
n=0

〈 N−1∑
n′=0

U−nn
′
X[n′], Y [n]

〉
H
.
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Interchanging sums and using the fact that U is unitary gives:

〈X,GST∗U(Y )〉`(ZN ,H) =
N−1∑
n=0

N−1∑
n′=0

〈
U−nn

′
X[n′], Y [n]

〉
H

=
N−1∑
n′=0

N−1∑
n=0

〈
X[n′], (U−nn

′
)∗Y [n]

〉
H

=
N−1∑
n′=0

〈
X[n′],

N−1∑
n=0

Unn′Y [n]
〉
H

=
N−1∑
n′=0

〈
X[n′],GSTU−1(Y )[n′]

〉
H

=
〈
X,GSTU∗(Y )

〉
`(ZN ,H)

.

Despite these many similarities between the DFT and the GST, they are not

completely identical. Indeed, the DFT is invertible with DFT−1 = 1
N

DFT∗. However,

this is not always the case for the GST. For example, when U = I, GSTI produces

N copies of the sum of the entries of X, and so GSTI is clearly not invertible. It will

be shown with more in-depth spectral analysis in Chapter V, GSTU is only invertible

for certain choices of U .

3.4 Estimating frequency with the GST

Applications discussed in Chapter VI have H = L2(R2), where the most impor-

tant property of the GST is its ability to estimate rate of rotation. To be precise,

the dominant frequency of a complex-valued signal x is usually taken as the location

of the highest peak in its DFT. The GST has a similar property: given video of an

object rotating at a uniform rate, the next result shows how this rate of rotation can

be computed by finding the “peak” of the GST.

Theorem 3. If X ∈ `(ZN ,H) has the property that there exist n0 ∈ Z such that

X[n+1] = Un0X[n] for all n ∈ Z, then n0 = arg maxn ‖GSTU(X)[n]‖, where ‖·‖ may
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be any U-invariant norm, that is, any norm that has the property that ‖Ux‖ = ‖x‖

for all x ∈ H.

Proof. The given assumption is equivalent to having X[n] = Unn0X[0] for all n ∈ Z.

Using this property, we have:

‖GSTU(X)[n]‖ =

∥∥∥∥∥
N−1∑
n′=0

U−nn
′
X[n′]

∥∥∥∥∥
=

∥∥∥∥∥
N−1∑
n′=0

U−nn
′
Un0n′X[0]

∥∥∥∥∥
=

∥∥∥∥∥
N−1∑
n′=0

Un′(n0−n)X[0]

∥∥∥∥∥.
By the triangle inequality and the U-invariance of the norm:∥∥∥∥∥

N−1∑
n′=0

Un′(n0−n)X[0]

∥∥∥∥∥≤
N−1∑
n′=0

∥∥∥∥∥Un′(n0−n)X[0]

∥∥∥∥∥=
N−1∑
n′=0

‖X[0]‖ = N‖X[0]‖.

Therefore ‖GSTU(X)‖ has an upper bound of N‖X[0]‖. Moreover, this upper bound

is achieved at n = n0:

‖GSTU(X)[n0]‖ =

∥∥∥∥∥
N−1∑
n′=0

Un′(n0−n0)X[0]

∥∥∥∥∥=

∥∥∥∥∥
N−1∑
n′=0

X[0]

∥∥∥∥∥= N‖X[0]‖.

Hence, N‖X[0]‖ is the maximum value achieved by any choice of n, and so n0 =

arg maxn ‖GSTU(X)[n]‖, as claimed.

Note that n0 is not necessarily unique. For example, when U = I the GST is

constant and so any choice of n0 is equal to arg maxn ‖GSTU(X)[n]‖. In summary,

the previous result shows how a GST, once computed, can provide useful information

about the rate of rotation (or translation) in a given sequence of vectors. However,

as we shall see in the following chapter, the GST can be expensive to compute, both

in time and memory, whenever N or the dimension of H is large. This raises the

question: is there a fast, memory efficient algorithm for computing a GST? In the

17



next chapter, we show that such an algorithm indeed exists. In particular, since the

GST is a generalization of the DFT, we look to generalize the well-known decimation-

in-frequency fast Fourier transform algorithm to the GST setting.
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IV. A fast algorithm for computing the GST

In the previous chapter, we discussed how the GST is a useful tool for estimating

frequency. Note however, that computing the GST directly requires N2 matrix-vector

multiplications, that is N multiplications for each of the N distinct choices of n in

(4). In this chapter, we will present a fast algorithm for computing the GST which

generalizes the way in which the FFT quickly computes the DFT.

As mentioned in the introduction, Cooley and Tukey’s FFT algorithm takes

advantage of the property that an DFT of a given nonprime size can be successively

broken into smaller DFTs of prime order. When N is not prime, the GST behaves

similarly. Indeed, if N is divisible by P ∈ N, then an N -point GST can be computed

in terms of P GSTs of length N
P

. To see this, note that making the substitution

n′ = Pq + p gives:

GSTU(X)[n] =
N−1∑
n′=0

U−nn
′
X[n′]

=
P−1∑
p=0

N
P
−1∑

q=0

U−(Pq+p)nX[Pq + p]

=
P−1∑
p=0

U−pn

N
P
−1∑

q=0

(
UP
)−qn

X[Pq + p].

By the definition of GST, we have:

GSTU(X)[n] =
P−1∑
p=0

U−pnGSTUP (X[P (0 : N
P
− 1) + p])[n],

where the notation X[P (0 : N
P
− 1) + p] denotes the subsequence of X whose indices

lie in the coset {Pq + p : q = 0, . . . , N
P
− 1}.

For example, a 16-point GST can be broken into two GSTs of size 4, or alterna-

tively eight GSTs of size 2, or even two GSTs of size 8. This property also holds for

the FFT. In fact, in the literature, a size 2k FFT for some k ∈ N is referred to as a

radix-2 FFT. Meanwhile, a FFT of size N where N can be factored into non-primes is
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sometimes referred to as a mixed-radix FFT. Later in this chapter we show that the

prime factorization is the particular factorization which makes our FGST algorithm

perform at its best.

Moreover, in such algorithms, it is not only the factors themselves that matter,

their order is also significant. Indeed, a fundamental part of many FFT computations,

namely the bit reversal operation defined below, is defined in terms of this ordered list

of factors. Note that we are using the term “bit reversal” to imply an n-ary represen-

tation reversal. For example, when N = 2k for some k ∈ Z, the binary representation

of any number in the range (0, . . . , N − 1) is length k with each “significant digit”

having value either 0 or 1. A bit reversal reverses the order of these digits. More

generally, for any N , the number of prime factors of N determines the length of the

n-ary representation, where each significant digit is determined by the prime factors

themselves. To be precise, we have the following definition.

Definition 4. Let N ∈ N and let P = {P0 · · ·PJ−1} be an ordered factorization of

N , that is N =
∏J−1

j=0 Pj, where each Pj is a positive integer greater than 1. We define

the partial product sequence as N = {N0, . . . , NJ}, where for any j = (0, . . . , J),

Nj :=
J−1∏
j′=j

Pj′

which gives NJ = 1, and we also observe:

Nj = PjNj+1, ∀j = (0, . . . , J − 1). (7)

For each j = (1, . . . , J) we define the bit reversal βj as a permutation on {0, . . . , N
Nj
−

1}. This definition is recursive. Specifically, we let β1(n) := n for all n = (0 . . . , P0−1).

Meanwhile, for any j = (1 . . . , J − 1) we let:

βj+1(Pjn+ p) := N
Nj
p+ βj(n), ∀n = (0, . . . , N

Nj
− 1), p = (0, . . . , Pj − 1). (8)
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For example, suppose N = 30 and let P0 = 2, P1 = 3, and P2 = 5. The

partial products for this ordered factorization of N are N0 = 30, N1 = 15, N2 = 5,

and N3 = 1. So, using (8), n = 27 has the n-ary expansion 27 = 2(1) + 2(5) +

1(15) = 2N3 + 2N2 + 1N1. Then, to compute β3(27), we reverse the bits such that

β3(27) = 1 N
N0

+ 2 N
N1

+ 2 N
N2

= 1(1) + 2(2) + 2(6) = 17. However, computing the bit

reversal in this way is cumbersome. An equivalent but faster method for computing

the bit reversal is to use Kronecker tensor products:

βj+1 := βj ⊗ 1Pj +
N

Nj

1 N
Nj

⊗ (0 : Pj − 1). (9)

The ⊗ symbols above represent the Kronecker product operations, also known as

matrix direct products, and the the 1N denotes an N ×1 vector of ones. This method

of computing bit reversal is also implemented in Matlab code given in the appendix.

Returning to the N = 30 example, we will now show how to recursively compute bit

reversal using (9):

β1 =

0

1

 ,

β2 =

0

1

⊗


1

1

1

+ 2

1

1

⊗


0

1

2

 =



0

0

0

1

1

1


+



0

2

4

0

2

4


=



0

2

4

1

3

5


,
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β3 =



0

2

4

1

3

5


⊗



1

1

1

1

1


+ 6



1

1

1

1

1

1


⊗



0

1

2

3

4


=



0

0

0

0

0

2

2

2

2

2

4

4

4

4

4

1

1

1

1

1

3

3

3

3

3

5

5

5

5

5



+



0

6

12

18

24

0

6

12

18

24

0

6

12

18

24

0

6

12

18

24

0

6

12

18

24

0

6

12

18

24



=



0

6

12

18

24

2

8

14

20

26

4

10

16

22

28

1

7

13

19

25

3

9

15

21

27

5

11

17

23

29



.
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The binary bit reversal discussed in the introduction exploited the characteris-

tics of binary bit flipping. The n-ary bit reversal given in Definition 4 generalizes this

operation to any N . Further note that these bit reversals are well-defined permuta-

tions. We can see this by induction on j. By definition, β1(n) = n, and, thus, β1 is

one-to-one. Now suppose βj is one-to-one. To see that βj+1 is also one-to-one, assume

for some k1, k2 = (0, . . . , N
Nj+1

− 1) that βj+1(k1) = βj+1(k2). Write k1 = Pjn1 + p1

and k2 = Pjn2 + p2 for some n1, n2 = (0, . . . , N
Nj
− 1) and p1, p2 = (0, . . . , Pj − 1), we

have:

N
Nj
p1 + βj(n1) = βj+1(Pjn1 + p1) = βj+1(Pjn2 + p2) = N

Nj
p2 + βj(n2).

Subtracting gives N
Nj

(p1− p2) = βj(n2)−βj(n1). Since βj(n1), βj(n2) ∈ [0, . . . , N
Nj
− 1]

this implies N
Nj

(p1 − p2) = 0. Thus, p1 = p2, and so βj(n1) = βj(n2), implying by

the inductive hypothesis that n1 = n2. Thus, k1 = k2 and so βj+1 is one-to-one, as

claimed.

In the next result, we show how this notion of bit reversal can be used in a fast,

memory efficient algorithm for computing the GST. In short, this result shows that

the decimation-in-frequency method for computing an FFT generalizes to the GST

setting.
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Theorem 5. The GST of any X ∈ `(ZN ,H) can be computed by the following Fast

Geometric Sum Transform (FGST)algorithm:

(00) let N ∈ N, J ∈ N with 1 < J < N

(01) let X(0)[n] = X[n] for all n = (0, . . . , N − 1)

(02) for j = (0, . . . , J − 1)

(03) for k = (0, . . . , Nj+1 − 1)

(04) for l = (0, . . . , N
Nj
− 1)

(05) for p = (0, . . . , Pj − 1)

(06) X(j+1)[Nj+1(Pjl + p) + k]

=

Pj−1∑
q=0

(
UNj+1

)−qβj+1(Pj l+p)

X(j)[Nj+1(Pjl + q) + k]

(07) end

(08) end

(09) end

(10) end

Then for all n = (0, . . . , N − 1):

X(J)[n] = GSTU(X)[βJ(n)]. (10)

Proof. For brevity of notation, let N ∈ N and J ∈ N with J < N , then: GSTU(X) :=

GST(X,U). For any j = (0, . . . , J) we claim it suffices to show the values of the jth

iteration of the GST algorithm are given by:

X(j)[Nja+ b] = GST(X[Nj(0 : N
Nj
− 1) + b], UNj)[βj(a)] (11)

for all a = (0, . . . , N
Nj
− 1) and b = (0, . . . , Nj − 1), where βj is the N

Nj
-ary bit reversal

permutation on {0, . . . , N
Nj
− 1} given in Definition 4. Indeed, if (11) holds for all

j = (0, . . . , J), then, in particular, when j = J we have a = (0, . . . , N − 1) and b = 0.
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Letting a = n, (11) becomes:

X(J)[n] = GST(X,U)[βJ(n)].

We prove (11) by induction on j. When j = 0, we have a = 0 and b = (0, . . . , N − 1)

where the right hand side of (11) becomes:

GST(X[b], I)][β0(0)] = X[b] = X(0)[b].

Hence (11) holds for j = 0. Now, assume (11) holds for a given j ∈ {0, . . . , J}. We

want to show (11) holds for j + 1, that is:

X(j+1)[Nj+1(Pjl + p) + k]

= GST(X[Nj+1(0 : N
Nj+1
− 1) + k], UNj+1)[βj+1(Pjl + p)] (12)

where l = (0 . . . , N
Nj
−1), p = (0, . . . , Pj−1), and k = (0, . . . , Nj+1−1). The left hand

side of (12) is given by Line (06) of the algorithm. To see that this equals equals the

right hand side we expand it:

GST(X[Nj+1(0 : N
Nj+1
− 1) + k], UNj+1)[βj+1(Pjl + p)]

=

N
Nj+1

−1∑
c=0

(UNj+1)−cβj+1(Pj l+p)X[Nj+1c+ k]. (13)
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Letting c = Pja+ q where a = (0, . . . , N
Nj
− 1) and q = (0, . . . , Pj − 1), (13) becomes:

GST(X[Nj+1(0 : N
Nj+1
− 1) + k], UNj+1)[βj+1(Pjl + p)]

=

Pj−1∑
q=0

N
Nj
−1∑

a=0

(UNj+1)−(Pja+q)βj+1(Pj l+p)X[Nj+1(Pja+ q) + k]

=

Pj−1∑
q=0

(UNj+1)−qβj+1(Pj l+p)

N
Nj
−1∑

a=0

(UNj)−aβj+1(Pj l+p)X[Nja+ (Nj+1q + k)]

=

Pj−1∑
q=0

(UNj+1)−qβj+1(Pj l+p)

·GST(X[Nj(0 : N
Nj
− 1) + (Nj+1q + k)], UNj)[βj+1(Pjl + p)]. (14)

By definition, βj+1(Pjl+ p) = N
Nj
p+ βj(l). It is also simple to show that the GSTs in

(14) are N
Nj

-periodic. Thus:

GST(X[Nj(0 : N
Nj
− 1) + (Nj+1q + k)], UNj)[βj+1(Pjl + p)]

= GST(X[Nj(0 : N
Nj
− 1) + (Nj+1q + k)], UNj)[ N

Nj
p+ βj(l)]

= GST(X[Nj(0 : N
Nj
− 1) + (Nj+1q + k)], UNj)[βj(l)]

= X(j)[Njl +Nj+1q + k] (15)

where the final equality follows by the inductive hypothesis (11). Then substituting

(15) into (14) gives:

GST(X[Nj+1(0 : N
Nj+1
− 1) + k], UNj+1)[βj+1(Pjl + p)]

=

Pj−1∑
q=0

(UNj+1)−qβj+1(Pj l+p)X(j)[Njl +Nj+1q + k]

=

Pj−1∑
q=0

(UNj+1)−qβj+1(Pj l+p)X(j)[Nj+1(Pjl + q) + k] (16)

which is Line (06) of the algorithm. Thus, (11) holds for all j = (0, . . . , J).
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The computational requirement to run a GST of size Pj is only Pj places in

memory. Matlab code to compute the FGST provided in the appendix advanta-

geously uses in-place computation for memory efficiency. Note that at the heart of

the algorithm of Theorem 5 lies a GST of size Pj. Indeed, the quantity computed in

Line (06) can be rewritten as:

Pj−1∑
q=0

(UNj+1)−qβj+1(Pj l+p)X(j)[Nj+1(Pjl + q) + k]

=

Pj−1∑
q=0

(UNj+1)
−q( N

Nj
p+βj l)

X(j)[Nj+1(Pjl + q) + k]

=

Pj−1∑
q=0

(U
N
Pj )−qpU−Nj+1qβj(l)X(j)[(Njl + k) +Nj+1q]. (17)

which is precisely the pth value of GST of:

{U−Nj+1qβj(l)X(j)[(Njl + k) +Nj+1q]}P0−1
q=0 .

That is, the algorithm of Theorem 5 indeed breaks a single large GST computation

into many smaller ones.

To see that the FGST is indeed faster than a direct computation of (4), note

that for any fixed j = (0, . . . , J − 1), Lines (03)–(09) involve (Nj+1)(
N
Nj

)(Pj)(Pj) =

NPj matrix-vector multiplications. Thus, the total matrix-vector multiplications is

N
∑J−1

j=0 Pj. In the case when N = P J , that total becomes PN logP N matrix-vector

multiplications. For a nonprime N , this is less than the N2 such multiplications used

in a direct computation of (4).

Note that the FGST algorithm of Theorem 5 depends on a given ordered fac-

torization of N , as seen in Definition 4. From the point-of-view of minimizing compu-

tation, the optimal factorization of N is its prime factorization. Indeed, if the factors

of N are taken to be {Pj}J−1j=0 where Pj0 = Q0Q1 is not prime, then a more factored
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Figure 4: A comparison of the GST computational time using the direct method
versus using the FGST, for length N ranging from 1 to 64.

algorithm is faster; we have:

N
J−1∑
j=0

Pj ≥ N(Q0 +Q1 +
J−1∑
j=0
j 6=j0

Pj)

since Q0 +Q1 ≤ Q0Q1 = Pj0 .

Matlab code implementing the FGST algorithm with a full prime factorization

is given in the appendix. When N itself is a prime number, the direct method of

computing the GST takes the same amount of time as the FGST, both using N2

matrix-vector multiplications. In fact, from Figure 4 it is clear that the FGST is

always at least as fast as the direct method, and is often significantly faster.

Note that here we are measuring computational complexity solely in terms of

the number of matrix-vector multiplications. The true computational cost depends

on the expense of each such multiplication, which, in turn, depends on the nature of

U . We discuss these ideas in greater detail in the following chapter.
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V. Spectral analysis of the GST

In the previous chapter, we gave a fast algorithm for computing the GST that was

inspired by the classical FFT decimation-in-frequency approach. In this chapter,

we show this similarity is not a coincidence; the GST can be regarded as a system

of DFTs, provided we know the eigenvectors and eigenvalues of U . To be precise,

assume H is M -dimensional and note that since U is unitary, then it is normal. Then,

by Shur’s Theorem U can be unitarily diagonalized as U = V DV ∗, where D is a

diagonal matrix and V is unitary.

Since U is unitary, we further know the diagonal entries of D, namely the

eigenvalues of U , are unimodular, that is, have modulus one. Moreover, since UN =

I, we know these eigenvalues are actually Nth roots of unity. Specifically, letting

{λm}M−1m=0 denote the eigenvalues of U , we have λNm = 1 for all m. Letting vm denote

the eigenvector corresponding to λm, and writing λm = e
2πiθm
N , we have the following

result.

Theorem 6. For any eigenvector vm of U with corresponding eigenvalue e
2πiθm
N ,

〈vm,GSTU(X)[n]〉 =
N−1∑
n′=0

e−
2πiθmnn

′
N 〈vm, X[n′]〉.

Proof. By the definition of the GST given in (4),

〈vm,GSTU(X)[n]〉 =

〈
vm,

N−1∑
n′=0

U−nn
′
X[n′]

〉
=

N−1∑
n′=0

〈vm, U−nn
′
X[n′]〉.

Then since U∗ = U−1, this becomes:

N−1∑
n′=0

〈vm, U−nn
′
X[n′]〉 =

N−1∑
n′=0

〈Unn′vm, X[n′]〉

=
N−1∑
n′=0

〈
e

2πiθmnn
′

N vm, X[n′]
〉

=
N−1∑
n′=0

e−
2πiθmnn

′
N 〈vm, X[n′]〉.
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We now use Theorem 6 to investigate the invertibility of the GST. In particular,

applying this result to U−1 gives:

〈vm,GST∗U(Y )[n]〉 = 〈vm,GSTU−1(Y )[n]〉 =
N−1∑
n′′=0

e
2πiθmnn

′′
N 〈vm, Y [n′′]〉.

Let Y = GSTU(X) such that:

〈vm,GST∗U(GSTU(X))[n]〉 =
N−1∑
n′′=0

e
2πiθmnn

′′
N 〈vm,GSTU(X)[n′′]〉

=
N−1∑
n′′=0

e
2πiθmnn

′′
N

N−1∑
n′=0

e−
2πiθmn

′n′′
N 〈vm, (X)[n′]〉

=
N−1∑
n′=0

〈vm, (X)[n′]〉
N−1∑
n′′=0

e
2πiθm(n−n′)n′′

N . (18)

By the Geometric Sum Formula,

N−1∑
n′′=0

e
2πiθm(n−n′)n′′

N =

 N, e
2πiθm(n−n′)

N = 1

1−e2πiθm(n−n′)

1−e
2πiθm(n−n′)

N

, e
2πiθm(n−n′)

N 6= 1
=

 N, θm(n−n′)
N

∈ Z

0, θm(n−n′)
N

6∈ Z
(19)

Then substituting (19) into (18) gives:

〈vm,GST∗U(GSTU(X))[n]〉 = N
N−1∑
n′=0

N |θm(n−n′)

〈
vm, X[n′]

〉

= N
〈
vm,

N−1∑
n′=0

N |θm(n−n′)

X[n′]
〉
.

Thus, we see that the mth component of 1
N

GST∗U(GSTU(X)) is the like compo-

nent of the sum of the entries of X whose indices lie in a certain coset of ZN . When

each θm is relatively prime to N , each of these cosets only consists of a single index,

meaning the GST is invertible:
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Corollary 7. If θm is relatively prime to N for all m, then the GST is invertible with

GST−1U = 1
N

GST∗U .

If, on the other hand, even a single θm shares a common factor with N , then

this summing process destroys some of the frequency information in the sequence

{〈vm, X[n]〉}N−1n=0 . This implies GST∗UGSTU , and so GSTU , is not invertible in such

cases.

The DFT can be viewed as a special case of the GST that is invertible. To be

precise, let H = C, that is, N = 1, and let U be the act of multiplying by e
2πi
N , an

operation whose only eigenvalue is e
2πi
N , that is, θ1 = 1. Since θ1 is relatively prime to

N , Corollary 7 states that the DFT is invertible with DFT−1 = 1
N

DFT∗.

However, for the angular-frequency-determination problem that motivated this

work, the relatively prime condition of Corollary 7 does not hold, meaning the corre-

sponding GST is not invertible. Indeed, letting U be a rotation operator, the constant

vector v0 is an eigenvector for U with eigenvalue equal to 1, and so θ0 = 0, which is

not relatively prime to N . In this case, Theorem 6 states:

〈v0,GSTU(X)[n]〉 =
N−1∑
n′=0

1〈v0, X[n′]〉 = 〈v0,
N−1∑
n′=0

X[n′]〉,

meaning the DC component of every entry of the GST is the DC component of the

sum of all the video frames. Such lossy behavior is accentuated in the extreme case

where U = I. Here,

GSTIX[n] =
N−1∑
n′=0

X[n′],

meaning every entry of the GST is a sum of all the entries of X.

As these examples illustrate, the idea of computing a GST as a system of M

DFTs made explicit in Theorem 6 is a useful theoretical concept. However, we must

point out that it offers no real advantages from a computational point of view. This

method of computing the GST requires us to first know the eigenvalues and eigen-

vectors of U . When U is a rotation operator, we do not have these eigenvalues and
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eigenvectors explicitly. Moreover, even if these values were known, such as in the

case where U is a translation operator, the lengthy computation time of this method

makes it undesirable.

Indeed, the Theorem 6 method for finding the GST requires us to first compute

MN inner products of the form 〈vm, X[n′]〉 in H, where H is M -dimensional. Thus,

in general, when the v′ms are not sparse, we expect to need O(M2N) operations just

to compute these inner products. We then must compute M FFTs of size N to

find the values 〈vm,GSTU(X)[n]〉, requiring O(MN logN) operations total. We then

reconstruct GSTUX[n] according to:

GSTUX[n] =
M−1∑
m=0

〈vm,GSTUX[n]〉vm, (20)

which uses an additional O(M2N) operations, for a total complexity of O(M2N +

MN logN). If we assume U has sparse eigenvectors, this value decreases to O(MN+

MN logN).

Meanwhile, computing the GST using the FGST algorithm of Theorem 5 re-

quires O(N logN) matrix-vector products. The imrotate command in Matlab ap-

plies a sparse neighbor interpolation to complete each matrix-vector product, each re-

quiring O(M) operations. Hence, the total computation requirement for this method

is O(MN logN). Meanwhile, computing the GST directly from its definition requires

O(N2) matrix-vector products, and is therefore the slowest method overall. Note that

although the methods of Theorems 5 and 6 both require O(MN logN) operations,

the FGST is less complicated and does not require the eigenvalues and eigenvectors

of U to be known.

A similar comparison can be made when U is a circular translation operator,

namely, when H = `(ZN), U = T1, and M = N . Here, we first need 〈vm, X[n′]〉 for all

m,n′ where the vm’s are the Fourier basis, namely the eigenvectors of U = T. For any
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fixed n′, this task reduces to computing the DFT of X[n′]. Indeed, since the number

of n′s is equal to N , and the computational cost of each DFT is O(N logN).

We then use Theorem 6 to compute 〈vm,GSTU(X)[n]〉 for all choices of m

and n, incurring an additional cost of N DFTs of order N . Next, we reconstruct

according to (20) using an additional N DFTs of size N . Therefore, in the case of

the translation operator, the total number of operations use to compute the GST

according to Theorem 6 is O(N2 logN).

Meanwhile, applying the FGST algorithm of Theorem 5 to the circular trans-

lation operator requires O(N logN) matrix-vector products, each of which can be

implemented in O(N) operations using Matlab’s circshift command. These circ-

shifts only involve data transfer in memory, that is, no multiplications. Together,

the total cost of computing a GST using Theorem 5 when U is a circular translation

operator is thus O(N2 logN).

Although the methods of Theorems 5 and 6 are comparable in terms of order

of operations, the FGST is less complicated and involves no complex arithmetic. In

conclusion, we see that in every case in which we wish to compute the GST it is

better, from a computational point of view, to generalize the FFT algorithm in the

form of our FGST algorithm (Theorem 5) than to write a GST as a system of FFTs

in the spectral domain (Theorem 6). In fact, in the applications discussed in the

next chapter, we use an FGST with Matlab’s imrotate command directly without

needing to have the eigenvalues and eigenvectors of our rotation operator.
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VI. Applications

We now consider several examples in which we apply the FGST algorithm of Theorem

5 in order to estimate angular frequency. Consider our first application of the GST,

a pinwheel rotating at a constant unknown rate. To obtain this experimental data,

we set up a digital camera in front of a pinwheel that was rotating at a constant rate

with air flowing from a nearby fan.

We first shot a series of still frames in continuous shooting mode. According

to Landau in [7], every finite energy signal with bandwidth W Hz can be completely

recovered by taking samples at the rate of 2W per second, which is known as the

Nyquist rate. However, as soon as the GST was applied to this image sequence it was

evident by every GST image appearing blurry that the continuous shooting frame

rate did not meet the Nyquist requirement.

We then recorded 6 seconds of digital video and converted it into a sequence of

192 image frames in Matlab. The top left image of Figure 5 shows an example of one

of these pinwheel images. After computing the GST of this sequence—computing the

GST of each of the red, green, and blue channels separately an then combining the

result—the frames 5–7 GST images and frames 10–13 GST images are examples of

blurry GST images. Note the GST images from frames 1–4 and frames 13–192 are not

shown since they look similar to the blurry images already displayed. These blurry

images with no color distinction between the shades indicate the rate of rotation does

not match that particular choice of n.

In the frame 8 and 9 GST images however, the GST is are clearly sharper and has

separated colors. It makes intuitive sense that the two sharper GST images correspond

to the true rate of rotation, because the colors have been added coherently on top

of each other. During this video sequence, we visually estimated that the pinwheel

completed 8.5 revolutions in 6 seconds. Then, the GST algorithm corroborated this

as the total number of revolutions of the pinwheel, as seen in the location of the peak

in Figure 6.
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Figure 5: On the top left, the pinwheel image shown is one of the 192-frame pinwheel
video sequence. The frame 8 and 9 GST images correspond to the true rate
of rotation of the pinwheel, while the other blurry GST images do not.

For our second GST example, we obtained a 100-frame video sequence of real

data from a 200-Watt thruster, as discussed in the introduction. This thruster was

operating at 80 Volts, and Liu in [8] used a camera to capture these images at one

million frames per second with an exposure time of 750 nanoseconds. The top left

image in Figure 7 is an example of plasma being ejected from the thruster. Each

image from the thruster sequence is 312× 260 pixels, and in light of Figure 4, we did

not attempt to compute the GST directly. On a standard laptop with a 2.26 GHz

Intel Core 2 Duo processor, it took 36 seconds to compute the GST using the FGST

algorithm.

After computing the GST of this sequence of thruster images, the frame 1–7

GST images and frame 9–14 GST images are examples of blurry GST images. Like

the pinwheel example, these blurry images indicate the rate of rotation does not

match that particular choice of n. While challenging to verify visually, the frame 8

GST image corresponds to our true rate of plasma rotation, and is confirmed by the

peak of the norms shown in Figure 8. Interpreting this result implies the plasma

was rotating at approximately 80 Kilohertz, which is reasonable given the parameters

specified in [8].
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Figure 6: The `2 norm and the `∞ norm of the GST of the pinwheel video sequence. In
both norm plots there is a peak at approximately 8.5, corresponding to the
number of revolutions the pinwheel completed in 6 seconds. Note, we do not
show the graph of the `1 norm because it does not provide any information
about the rate of rotation. Indeed, since the GST is computed by summing
up rotations of the pinwheel frames, the total sums as calculated by the `1

norm are equal in all GSTs of the video sequence.

As these examples have shown, the GST can be applied to real data and provide

an accurate estimate of the rate of rotation. While not shown in this chapter, the

GST can also be applied to translation problems to provide an accurate estimate of

the lateral velocity. In fact, the appendix includes Matlab code already prepared

with circshift commands, so that is can be applied to translation problems. Further

guidance is also included in the appendix about how to change the code appropriately

for rotation problems.
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Figure 7: On the top left, the thruster image shown is one of the 100-frame thruster
sequence collected by Liu in [8]. The frame 8 GST corresponds to the true
rate of rotation of the plasma, while the other blurry GST images do not.
The frame 15–192 GSTs are not shown since they look blurry just like the
ones already displayed.

Figure 8: The `2 norm and the `∞ norm of the GST of the thruster video sequence
are shown above. In both norm graphs there is a peak at approximately 8,
indicating the true rate of rotation of the plasma is 80 Kilohertz.
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Algorithm for Matlab Code

The following Matlab code shows algorithms for the direct GST and the FGST.

The direct GST should not be implemented since it is not as computational efficient

as the FGST, but is presented below for comparison. In both versions of the code,

X is a video sequence (3D data cube), and must be defined by the user before the

function can be called. Both code versions can also be easily generalized to the case of

cyclic translations provided the imrotate commands are replaced by uses of circshift.

The following code computes the GST directly:

N = size(X,3);

Y = zeros(size(X));

for n = 0:N-1

for m = 0:N-1

Y(:,:,n+1) = Y(:,:,n+1)+imrotate(X(:,:,m+1),-1*m*n);

end

end

This second set of code computes the FGST according to the algorithm of Theorem 5

and is implemented by only using a small amount of memory:

% Computing the prime factorization of N and resulting partial products

% according to Definition 4.

CalP = factor(size(X,3))’;

J = length(CalP);

CalN = [ flipud(cumprod(flipud (CalP))) ; 1];

% Computing the FGST in bit reversal order according to Theorem 5.

CumProd = [1; cumprod(CalP)];

B = 0;

for j = 0:J-1;
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% Computing the bit reversal permutation (8) according to (9).

B = kron(B, ones(CalP(j+1),1))

+CumProd(j+1)*kron(ones(CumProd(j+1),1),(0:CalP(j+1)-1)’);

for k = 0:CalN(j+2)-1;

for l = 0:CalN(1)/CalN(j+1) -1;

Indices = CalN(j+2)*(CalP(j+1)*l+(0:CalP(j+1) -1))+k;

X1 = X(:,:,Indices+1);

for p = 0:CalP(j+1) -1;

X(:,:,Indices(p+1)+1)=zeros(size(X(:,:,Indices(p+1)+1)));

for q = 0:CalP(j+1)-1;

X(:,:,Indices(p+1)+1) = X(:,:,Indices(p+1)+1)

+imrotate(X1(:,:,q+1),-CalN(j+2)*q*B(CalP(j+1)*l+p+1));

end

end

end

end

end

% Permuting the bit-reversed FGST into standard order.

for n=0:CalN(1)-1;

index= find(B==n);

X1 = X(:,:,index);

X(:,:,index) = X(:,:,n+1);

X(:,:,n+1) = X1;

B(index) = B(n+1);

B(n+1) = n;

end
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