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Abstract

The Dempster-Shafer Theory, a generalization of the Bayesian theory, is based

on the idea of belief and as such can handle ignorance. When all of the required

information is available, many data fusion methods provide a solid approach. Yet,

most do not have a good way of dealing with ignorance. In the absence of information,

these methods must then make assumptions about the sensor data. However, the real

data may not fit well within the assumed model. Consequently, the results are often

unsatisfactory and inconsistent. The Dempster-Shafer Theory is not hindered by

incomplete models or by the lack of prior information. Evidence is assigned based

solely on what is known, and nothing is assumed. Hence, it can provide a fast and

accurate means for multi-sensor fusion with ignorance. In this research, we apply the

Dempster-Shafer Theory in target tracking and in gait analysis. We also discuss the

Dempster-Shafer framework for fusing data from a Global Positioning System (GPS)

and an Inertial Measurement Unit (IMU) sensor unit for precise local navigation.

Within this application, we present solutions where GPS outages occur.
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A Dempster-Shafer Method for Multi-Sensor Fusion

I. Introduction

In his 1976 book, Glenn Shafer introduced the Theory of Evidence, later referred

to as the Dempster-Shafer Theory (DST). This data fusion method is based on the

idea of belief and as such can handle ignorance. According to Shafer, this theory was a

“reinterpretation of Dempster’s work” from the 1960’s; whereas, according to Arthur

Dempster, Shafer “greatly extended, refined, and recast” his original work [53].

The DST is considered a generalization of the Bayesian Theory. It has been

greatly utilized in the fields of computer science and artificial intelligence although it

is not widely accepted [28]. However, it is still applied to many of the same problems

as the Bayesian and the fuzzy set theories. These three theories are often used as

comparisons to one another [3; 5; 14; 40; 41; 50]. In some applications, the DST has

even been used in conjunction with other methods, such as particle filters [13; 29; 47;

48].

In the DST, ignorance can be represented. Instead of assigning unknown ev-

idence to prior probabilities, we assign this evidence to ‘ignorance’. We can then

distinguish between the amount of evidence supporting a proposition and the lack of

evidence refuting this proposition [1] or between ignorance and contradiction [63].

In addition, the DST can easily deal with ignorance. Its application is not

hindered by incomplete models or by no prior information [30]. We assign evidence

based solely on what information we do obtain, and with specific knowledge missing,

nothing has to be assumed about the data.

When all of the required information is available, other methods, such as the

Bayesian Theory, provide a solid approach for combining evidence. However, most do

not have a good way to handle ignorance. For example, the Bayesian Theory requires

the prior probabilities to be defined or assumed [30]. The lack of this information
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creates a significant problem for data fusion [1; 7]. All of the evidence must still

be divided among the hypotheses. How to assign the evidence to each hypothesis

becomes an issue [30]. Then the combined evidence often produces unsatisfactory

and inconsistent results [1; 5]. As ignorance is already accounted for in the DST, it

does not affect the final results.

In the absence of information, many fusion methods and techniques must make

assumptions about the sensor or source data. The most common is how the data is

modeled. The uncertainty for a sensor is usually modeled as Gaussian, and the error

terms from each sensor are assumed to be independent [1; 43; 44; 45]. The problem

is that these assumptions tend to work well in theory, but when put into practice

become hard to apply. The real sensor data may not fit well within the assumed

model [1; 44]. Because the DST does not make these assumptions, it can provide an

accurate means for multi-sensor fusion.

For this method, evidence is assigned to belief through a probability mass func-

tion. These functions are established by ‘expert opinion’ [4; 5]. The user can de-

termine them either from experience or through statistical sampling tests. There is

much freedom in this determination. One author used hazard detection algorithms

and classification and regression trees (CART) to obtain his probability masses [52].

Yet as the results rely greatly on the mass functions, this determination can be a

difficult task [4].

The DST has applications in many different areas. A common use is detection.

This can include detection of signals, vehicles, ship wakes, objects, fire, and even

intrusions in computer systems [5; 7; 8; 13; 24; 39; 48; 65; 66]. Similar to detection,

recognition, specifically pattern, object, or target recognition, is a highly applied area

[3; 6; 10; 13; 19; 26; 31; 37; 40; 48; 62]. Within the topic of recognition, there is

classification. This includes everything from land cover and terrain to target and

image classification [24; 31; 34; 37; 50; 51; 52].

2



Two less common applications for DST are decision-making [2; 9; 14; 19; 28;

51; 55; 59; 62] and navigation for autonomous vehicles with a focus on map building

[41; 49; 60; 63]. This method can even be used in medical applications [21; 24; 39;

51]. Finally, one of the least utilized areas, where the DST is still applicable, is

location determination [39]. In this research, we demonstrate how the Dempster-

Shafer Method can be used to determine the exact location of a moving object and

then used along with gait analysis to make an assessment.

Chapter II summarizes the framework of the DST. It also discusses several ad-

vantages and disadvantages for this method and provides an illustration for one of its

most highly criticized disadvantages. Chapter III presents the tracking of an aircraft’s

trajectory by two external sensors. Applying two fusion methods, we demonstrate how

well this method stands up to a more commonly used method. In Chapter IV we fuse

the data from a multi-sensor unit for precise local navigation. Chapter V shows how

we can apply the DST in gait analysis for decision-making.
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II. Basics

2.1 Framework

According to Shafer, the Dempster-Shafer Theory consists of two theories: a

theory of evidence and a theory of probable reasoning. “It is a theory of evidence

because it deals with weights of evidence and with numerical degrees of support based

on evidence. It is a theory of probable reasoning because it focuses on the fundamental

operation of probable reasoning: the combination of evidence” [53, 3].

2.1.1 Theory of Evidence. Assume there exists a set of n elemental propo-

sitions, called the frame of discernment. A proposition can be a hypothesis or a

combination of hypotheses [30]. These propositions can contain overlapping and even

conflicting hypotheses [23]. However, the frame of discernment, denoted by θ, is a set

of mutually exclusive and exhaustive propositions. The power set, 2θ, is the set of all

subsets of θ and the empty set, ∅ [30].

Given 2θ, the probability mass function m: 2θ → [0,1], also called the basic

probability assignment, represents evidence assigned to a proposition based on the

data. The probability mass function has the following properties:

m(∅) = 0 (1)

∑
m(bj) = 1 ∀ bj ∈ 2θ (2)

[53]. Any mass that is not directly assigned to the propositions is assigned to θ,

denoted m(θ). This “represents the uncertainty ... concerning the accuracy and

interpretation of the evidence” [30, 151].

From the probability mass functions, we obtain the degrees of belief and the

degrees of plausibility. The degree of belief is the total evidence in support of or

committed to a proposition, measured by the belief function. A belief function over
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θ, Bel: 2θ → [0,1], is given by

Bel(bi) =
∑
bj⊂bi

m(bj) ∀ bj, bi ∈ 2θ. (3)

The plausibility function calculates the extent to which the evidence finds a propo-

sition to be credible or plausible. So for a belief function over θ, the plausibility

function, Pl: 2θ → [0,1], is defined by

Pl(bi) = 1−Bel(b̄i) (4)

=
∑

bj∩bi 6=∅

m(bj) ∀ bj, bi ∈ 2θ (5)

where b̄i is the negation of bi [53].

With these functions, we define the uncertainty interval for a proposition bi to

be [Bel(bi), P l(bi)] where Bel(bi) ≤ Prob(bi) ≤ Pl(bi). Here the degrees of belief and

of plausibility “show what proportion of evidence is truly in support of a proposition

and what proportion results merely from ignorance” [30, 152]. Because of uncertainty

in the data, instead of having an exact value for the probability of bi, there exists

a range in which it lies. The length of this interval is called the uncertainty or the

ignorance [3; 50]. Thus, when the length is zero, Prob(bi) = Bel(bi) .

2.1.2 Theory of Probable Reasoning. Dempster’s Rule of Combination is a

method to combine evidence from multiple independent sources. More specifically it

is used to combine the probability mass functions. Let BelA and BelB be two belief

functions over the same frame of discernment, θ, with probability masses mA and mB,

respectively. Then the total probability mass committed to proposition c is

m(c) = K
∑

ai∩bj=c

mA(ai) ∗mB(bj) (6)
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where K is the normalizing constant. This function is called the orthogonal sum of

BelA and BelB, denoted BelA ⊕ BelB [53]. This sum can also be denoted mA ⊕mB

[41] if there is no sum in (6), i.e.,

m(c) = K[mA(ai) ∗mB(bj)].

The normalizing constant, K, “serves as a measure of the extent of the conflict”

between the two belief functions [53, 65]. It is defined by

K =
1

1− κ
=

1

1−
∑

ai∩bj=∅[mA(ai) ∗mB(bj)]
. (7)

Here κ is called the degree of conflict between the two belief functions. If BelA and

BelB do not conflict, then κ = 0. If the functions completely contradict each other, κ

= 1, and BelA⊕BelB does not exist [53]. The issues that arise with degrees of conflict

are shown in Section 2.3.

Finally, there are usually more than two sources of evidence for a proposition.

To combine multiple belief functions, Dempster’s Rule is repeatedly applied to pairs of

functions. For example, take these four belief functions: BelA, BelB, BelC , and BelD.

BelA and BelB are first combined. Then BelA⊕BelB is combined with BelC , and so

on. The final sum is ((BelA⊕BelB)⊕BelC)⊕BelD. However, the order of combination

does not matter. The end result will be the same [53].

2.2 Advantages and Disadvantages

Like all fusion methods, the DST has positive and negative aspects in its ap-

plication. Some aspects make it very useful. Other aspects make it less attractive.

These have led people to develop modified or improved methods [19; 57; 61; 66]. Here

we briefly discuss the main advantages and disadvantages of the DST.

As stated in Chapter I, this method can represent ignorance. The unknown

evidence is not assigned to prior probabilities [1]. Thus, the DST can discern between
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the lack of evidence (ignorance) and negative evidence (contradiction) [51; 63]. In the

Bayesian Theory, any evidence not assigned to a hypothesis is assigned to its negation

[21]. However, this may not be true to the real model. As a result of representing

ignorance, the DST has a “freedom of motion.” The probability of a proposition is

contained within the uncertainty interval; it is not set to a specific value [30].

A similar advantage is accepting incomplete information. As discussed previ-

ously, evidence is assigned based on our current knowledge. Prior probabilities and

likelihood functions do not have to be known [30]. Also with the lack of knowledge,

no assumptions have to be made as real data does not always fit into an assumed

model [1].

Another advantage is the use of propositions instead of hypotheses. As Hall

points out in [23], this is a major distinction from the Bayesian Theory. In the

Bayesian Theory, we can only assign evidence to one hypothesis. In the DST, evidence

can be assigned to multiple hypotheses, which make up a proposition. Again these

hypotheses can even be conflicting. Thus we are not constrained to assign evidence

to mutually exclusive hypotheses but rather have fewer limitations with propositions

[23].

A major disadvantage arises in the computation time. The DST tends to be

more computationally complex than other methods. “For two or three sensors in

a nonparallel implantation, the Dempster-Shafer technique requires approximately

twice the computational effort of Bayesian inference” [23, 228]. Recall that probability

mass is assigned to elements of a power set. Given a frame of discernment with

n elements, the power set has 2n−1 elements. So, as n increases, the number of

computations required will increase exponentially. However, in most cases not every

element in the power set is assigned evidence. The actual significance of the increased

computation time is dependent on the specific application. Also other aspects of the

DST make it easier to use. Klein explains further in [30].
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For the DST, another disadvantage is in dealing with high degrees of conflict.

This is also the biggest criticism of this theory, brought to light by Zadeh [40]. In

some scenarios, two probability mass functions (or belief functions) highly contradict

one another. Thus, κ approaches 1. Consequently, Dempster’s Rule of Combination

tends to produce counterintuitive and erroneous results [30]. In the next section, we

go through an example that shows what can happen with such a case. It should

be noted that several authors have argued that Zadeh’s criticism is not justified.

Mahler proposed that this issue is actually a criticism of Bayes’ Rule, not Dempster’s

[35]. Xiong stated in [58] that this result is caused by the necessary condition of

independence not being satisfied. Finally, Haenni concluded the problem is not with

Dempster’s Rule but rather with misapplication of Dempster’s Rule [22].

In summary in the DST, the main advantages are in accepting ignorance and

in assigning evidence to propositions. Its disadvantages relate to computation time

and problems with high conflict. Despite these disadvantages, it still remains a useful

method for multi-sensor fusion as we illustrate in later chapters.

2.3 Degrees of Conflict

The degree of conflict between two belief functions is defined by

κ =
∑

ai∩bj=∅

[mA(ai) ∗mB(bj)]. (8)

If two belief functions do not conflict, then κ = 0. If the functions completely contra-

dict each other, κ = 1, and the orthogonal sum does not exist [53]. As κ approaches

one, the results from Dempster’s Rule are often inaccurate. The following example

shows how contradicting beliefs lead to the wrong conclusion. This is often referred

to as “Zadeh’s paradox” [35].

Based on a patient’s symptoms, the evidence supports three possible diagnoses:

flu (F), ulcer (U), or internal infection (I). Thus, the frame of discernment is θ =

{F,U, I}. There are two independent sources of evidence: Doctor A and Doctor B.

8



Doctor A believes his patient has the flu or an ulcer with probability masses of 0.8

and 0.2, respectively. Doctor B supports a diagnosis of the flu or an internal infection

with masses of 0.9 and 0.1, respectively. So the probability masses are mA(F, U,

I)=(0.8, 0.2, 0) and mB(F, U, I)=(0.9, 0, 0.1). Notice each proposition is mutually

exclusive, and the probability masses of A and B each sum to one. In this case, the

degrees of belief equal their probability masses.

The unnormalized results of applying Dempster’s Rule are shown in Table 1.

Adding up the empty sets, κ = 0.28. After normalizing, [mA⊕mB](F ) = 1 and, thus,

[BelA ⊕ BelB](F ) = 1. So the diagnosis, or proposition, of flu is determined to be

true with a low degree of conflict.

Table 1: Case 1 Low Conflict

mA(F) = 0.8 mA(U) = 0.2 mA(I) = 0

mB(F) = 0.9 m(F) = 0.72 m(∅) = 0.18 m(∅) = 0
mB(U) = 0 m(∅) = 0 m(U) = 0 m(∅) = 0
mB(I) = 0.1 m(∅) = 0.08 m(∅) = 0.02 m(I) = 0

Now suppose Doctors A and B still support the same diagnoses but with different

probability masses: mA(F, U, I)=(0.2, 0.8, 0) and mB(F, U, I)=(0.1, 0, 0.9). Table 2

shows the unnormalized orthogonal sums of the masses. In this example, κ = 0.98.

After normalizing, mA ⊕mB(F) is still equal one. So the patient is again diagnosed

with the flu, but the degree of conflict between the two doctors is very high.

Table 2: Case 2 High Conflict

mA(F) = 0.2 mA(U) = 0.8 mA(I) = 0

mB(F) = 0.1 m(F) = 0.02 m(∅) = 0.08 m(∅) = 0
mB(U) = 0 m(∅) = 0 m(U) = 0 m(∅) = 0
mB(I) = 0.9 m(∅) = 0.18 m(∅) = 0.72 m(I) = 0

In combining the evidence, both cases result in the same diagnosis, the flu. Yet,

in Case 2, both doctors considered this to be a very unlikely cause. With a high

9



degree of conflict, Dempster’s Rule produced an erroneous diagnosis. However, the

Dempster-Shafer Method performed well when the degrees of conflict were lower [1].
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III. External Tracking

3.1 Introduction

In this chapter, we demonstrate how the Dempster-Shafer Method compares to

the Kalman filter, a more commonly used method. We take multiple sensors placed

separately across a space. The sensors may or may not generate the same amount of

noise. As an object moves into the space, the sensors individually track it and report

its position over a given time. Then we must apply a fast and accurate method to

combine all of the sensor data.

Many fusion methods produce excellent results if information is known or as-

sumed about the sensor or its data. The Kalman filter is one such method. It is used

“to fuse dynamic low-level redundant data in real-time.” This filter assumes that the

noise generated by the sensors is independent Gaussian with mean zero and standard

deviation σ′ [1, 41].

However, in many cases, this information is not available or is incomplete. Also

the real sensor data may not fit well within the assumed model [1]. As stated in

Chapter I, the DST does not require prior knowledge to combine evidence. The

probability mass function is merely determined by the user. Nothing else is required

to be known.

The sensor data used in this chapter was generated through a MATLAB pro-

gram. The code was provided by Major Kenneth Fisher from the AFIT Advanced

Navigation Technology (ANT) Center. The MATLAB program generates a random

trajectory of an object. Then it adds noise to corrupt the true measurements, pro-

ducing two new measurements. These new values are the sensors’ outputs. The noise

is actually modeled as Gaussian with a specific standard deviation. This standard

deviation, denoted σi, is considered the sensor’s error and can be changed within the

program.

In the following, we used the DST and the Kalman filter to combine the two

sensors’ data. For the Dempster-Shafer Method, we made no assumptions about the
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data. We chose to assign the probability masses by (11) and (12), but these equations

were not the only option. We did, however, assume knowledge of the sensors’ errors,

σi. Yet, this would not hinder the use of the DST if these errors were not known.

3.2 Scenario

An aircraft is moving across the space with a constant speed. Two external

sensors are tracking its position. Each sensor returns the measured range in meters

and the measured angle in radians to the aircraft as a function of time. Over a 30

second window, the sensors return the measured positions every 0.2 seconds. Laid

out on a grid, Sensor 1 is located at (0, 30), and Sensor 2 is at (0, -30) in Cartesian

coordinates. In addition, each sensor has a range error associated with it, denoted by

σi > 0 for i ∈ {1, 2}.

Because this scenario was simulated, the true position of the aircraft is always

known. For each case, this simulation was run multiple times to complete a Monte

Carlo analysis. The number of runs varies depending on the case. See Table 3.

Since each measurement is relative to the location of the sensors, a common point

of reference was needed. Thus, the polar coordinates were converted to Cartesian

coordinates x = (x1, x2). The sensor errors for the new coordinates were then assumed

to be the same as the range error. Let xt,1 and xt,2 be the position measurements at

time t from Sensor 1 and Sensor 2, respectively. Thus, xt,i = xt,ACTUAL + nt,i, where

xt,ACTUAL is the actual position of the aircraft and nt,i is the noise from Sensor i.

3.3 Approach

To combine the position measurements from the two sensors, we had four dif-

ferent approaches. Each is denoted Kalman, DST True, DST Mean, or DST Mean

Mod. For the last three approaches, we used the Dempster-Shafer Method, but each

approach had slightly different probability mass and, thus, a different result. Then
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with the four approaches, we evaluated five cases with different variances and different

numbers of runs. The cases are shown in Table 3.

Table 3: The Five Different Cases

CASE # # OF RUNS σ1 σ2
1 8 2 4

2 10 2 2

3 30 2 4

4 30 2 2

5 30 2 8

Table 4 defines the subscript indicators that are used for the variables in this

chapter. Note that all of the variables use indicators j and t. If an indicator is not

used, then it is not applicable to that particular variable. In many cases, indicators i

and l will not be used at the same time. If indicator k is not shown, then all of the

variables are from the same run.

Table 4: Variable Subscript Indicators

Indicator Meaning Input

j coordinate 1, 2

t time 1-149

i sensor 1, 2

l approach KAL, TRUE, MEAN, MEAN MOD

k run # 1-30

For a comparison to the Dempster-Shafer Method, a Kalman filter was applied

to the sensor data. As this data was originally generated to implement navigation

filters, the Kalman filter provided a good method for data fusion and for comparison.

Then as the code was designed, the measurement noises were modeled as independent

Gaussian with mean zero and variance σ2
i . Note this variance is equal to the sensor

range error squared. Thus, the combined position for the Kalman approach is given

by

xj,t,KAL =
σ2
2

σ2
1 + σ2

2

xj,t,1 +
σ2
1

σ2
1 + σ2

2

xj,t,2 (9)
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and the combined variance becomes [1]

σ2 =
σ2
1σ

2
2

σ2
1 + σ2

2

. (10)

With the formulas for the Kalman filter established, we moved on to applying

the DST. For the probability masses, we have two propositions: aircraft present (A)

and aircraft not present (N). Thus, the frame of discernment is θ = {A,N}, and the

power set is 2θ = {∅, A,N,A ∪N}. Then the probability mass functions are defined

as follows:

mj,t,i,l(A) =
1√

2πσi
exp

(
−(xj,t,i − µ∗)2

2σ2
i

)
, (11)

mj,t,i,l(N) = 1−mj,t,i,l(A). (12)

The total probability masses become:

mj,t,l(A) = K ∗ [mj,t,1,l(A) ∗mj,t,2,l(A)], (13)

mj,t,l(N) = K ∗ [mj,t,1,l(N) ∗mj,t,2,l(N)], (14)

where K, the normalizing constant, was calculated by (7). Note the degrees of belief

are equal to their probability masses, i.e. Belj,t,l(A) = mj,t,l(A).

For the parameter, σ2
i , required in (11), the squared error of Sensor i was used.

Since the variance of total probability mass of A, mj,t,l(A), improves, the combined

variance was calculated by (10).

Then µ∗ was set in two different ways for the DST True and the DST Mean ap-

proaches. The first µ∗, denoted µj,t,TRUE, is equal to the actual position, xj,t,ACUTAL.

Again because this was a simulation, this value was known. However, in most cases,

this information would not be available. The results using first µ∗ served as yet an-

other comparison for the latter results. By having knowledge of the true position,

we were able to improve the definitions of the probability mass functions for the sit-

uations where xj,t,ACTUAL is unknown. For the DST Mean approach, µ∗, denoted
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µj,t,MEAN , was calculated as the average of the sensor measurements for all of the

simulation runs. So

µj,t,i,MEAN =
1

N

N∑
k=1

xj,t,i,k. (15)

Then for the total probability mass, µj,t,MEAN is the average of the µj,t,1,MEAN and

µj,t,2,MEAN .

Each of the five cases was completed two times using µj,t,TRUE and µj,t,MEAN .

The results of the total probability mass using µj,t,MEAN , denoted xj,t,MEAN , were

then compared to the positions determined from the Kalman filter, xj,t,KAL, and from

the total probability mass using µj,t,TRUE, denoted xj,t,TRUE. Finally, after going

through each run, we averaged the results for each case, called the Averaged Run.

Thus xj,t,l ,AVG = 1
N

∑N
k=1 xj,t,l ,k.

While evaluating Case 1, we noticed that several of the total probability masses,

m2,t,MEAN(A), were equal to zero or one. So m2,t,MEAN(A) produced infinite or un-

defined values for the aircraft’s position, x2,t,MEAN . This may have been due to the

precision within the MATLAB function used. To resolve this issue, the probability

masses were modified to be the following:

m∗j,t,MEAN(A) =


mj,t,MEAN(A)− 10−16, if mj,t,MEAN(A) = 1

mj,t,MEAN(A) + 10−16, if mj,t,MEAN(A) = 0

mj,t,MEAN(A), otherwise.

(16)

Another problem arose in evaluating Case 2 Run 5. In the Figure 1, the plot

shows how xt,MEAN cuts through the middle of the true trajectory, xt,ACTUAL. This

clearly indicated that the total probability mass, m∗2,t,MEAN , produced weak results

over these times. Similar problems occurred in other cases, as well. Table 5 lists these

runs.
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Figure 1: Case 2 Run 5 - Problem Run

Table 5: Problem Runs

CASE # RUN #

1 NONE

2 5

3 17, 25, 30

4 1, 5, 9, 11, 14, 27, 28

5 30

To resolve this, we again had to make modifications to the probability mass

functions. First, a determination had to be made about at which times the mass

functions generated bad outputs. To do so, an error value was calculated by taking

the absolute difference between the average of the two sensor measurement positions

and the result from the Dempster-Shafer Method,

errorj,t = |1
2

(xj,t,1 + xj,t,2)− xj,t,MEAN |. (17)

Notice that this error was completed for both the x1 and the x2 coordinates. As hinted

earlier, many of the points were off in only one of these axes.

Figure 2 shows the error values for Run 5. The errors for x1 are all less than one,

but for x2 the errors spike in the middle with the largest values at t ∈ [7, 18]. Based

on these values, we chose to examine times that had errors greater than 2, denoted α,

for Case 2 Run 5. Using the same process, α was determined for other problematic

16



runs. They are listed in Table 6. Notice α values were set for all of the runs. Thus, if

errorj,t > α, then mj,t,i,MEAN was changed, regardless of whether or not the run was

problematic.
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Figure 2: Case 2 Run 5 Error Values

Table 6: Alpha Values

CASE # RUN # α

2 ALL 2

2 2 1

3 ALL 4

3 17, 25 2

3 30 1.5

4 ALL 2

4 27, 28 1

5 ALL 2

Rather than modifying (11), µ∗ was changed from (15) to the average of the

absolute value of sensor measurements for all of the simulation runs. So the new µ∗

is

µj,t,i,MEAN MOD =
1

N

N∑
k=1

|xj,t,i,k|, (18)

and µj,t,MEAN MOD = 1
2
(µj,t,1,MEAN MOD + µj,t,2,MEAN MOD). This approach is called

DST Mean Mod. Again this modification only affected the xj-coordinate if errorj,t >

α. In many cases, only one xj-coordinate was changed, not both. The results using

this new µ∗ are denoted xj,t,MEAN MOD.
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Like m2,t,MEAN(A), mj,t,MEANMOD(A) was equal to one or zero at several points.

Thus, the probability masses were modified using the same equations that are in (16).

The new mass is then denoted m∗j,t,MEANMOD(A).

After initially setting the α values based on errorj,t and evaluating xt,MEAN MOD,

several of the problematic runs did not show improved results. So the α values were

modified; this change is already reflected in Table 6. Although Case 2 Run 2 was not

a problematic run, its α value was changed, as well.

As this approach was applied to all of the runs, most of the runs also showed

improvement. However, several, shown in Table 7, did not. For these runs, µ∗ was

not changed even if the error values exceeded α.

Table 7: Unmodified Runs

CASE # RUN #

1 ALL

3 1, 7, 10, 15, 16, 26

5 2, 5, 9, 15, 20, 21, 25, 26, 27, 28

We have outlined the four different approaches to combine our sensor data:

Kalman, DST True, DST Mean, and DST Mean Mod. Note that for the DST Mean

Mod approach, if any case’s runs used µj,t,MEAN MOD, then all of the results for that

case are denoted xt,MEAN MOD. So in some of the runs, xt,MEAN MOD = xt,MEAN. Note

that often the results of the approaches are referred to by the name of the approach

only, instead of xt,l . Section 3.5 provides the results for each case.

3.4 Comparison Techniques

With the positioning results from each run, we used three comparison techniques

to provide indications on how well each approach performed against the others. Every

comparison was completed for the individual runs and the Averaged Runs. Note that

not every run is shown in Section 3.5, but every run was examined.
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We first compared the three results by plotting the points on the same graph

with the true position, xj,t,ACTUAL. These are referred as Point Plots. We looked for

position results for DST Mean Mod (or DST Mean for Case 1) to follow the same

general path as the true aircraft. Also, if the points diverged from the true track, we

looked to see if the same trend existed for the Kalman position measurements.

Next, the differences between the actual position and the combined positions

were plotted, called Difference Plots. The difference was calculated by the Euclidean

norm of the difference of the pairs,

√
(x1,t,l − x1,t,ACTUAL)2 + (x2,t,l − x2,t,ACTUAL)2.

Two Difference Plots were produced for each run. One compared Kalman and DST

Mean Mod (or DST Mean), and the other compared DST True and DST Mean Mod

(or DST Mean). For these plots, we looked for the differences for DST Mean Mod (or

DST Mean) to be less than or close to the other differences. Also, the differences for

DST Mean Mod (or DST Mean) should have followed a similar increasing/decreasing

trend, and finally, they should not have had any significant deviations from other

approaches except the occasional spike.

Finally, we found the Mean Average Deviation (MAD) and the Mean Square

Error (MSE), where

MADl =
1

n

n∑
t=1

√
(x1,t,l − x1,t,ACTUAL)2 + (x2,t,l − x2,t,ACTUAL)2

MSEl =
1

n

n∑
t=1

((x1,t,l − x1,t,ACTUAL)2 + (x2,t,l − x2,t,ACTUAL)2).

Here, we looked for DST Mean Mod (or DST Mean) values to be less than DST

True and preferably Kalman. If they were not, then the MAD and the MSE for

DST Mean Mod (or DST Mean) should have been close to Kalman. Finally, if again

the values for DST Mean Mod (or DST Mean) were not smaller than Kalman, the

19



difference between the DST Mean Mod (or DST Mean) and the Kalman should have

been smaller than the difference between DST Mean Mod (or DST Mean) and DST

True.

3.5 Results

3.5.1 Case 1. For Case 1, the errors, σi, for Sensor 1 and Sensor 2 were

set to 2 and 4, respectively. Eight runs were completed. Figure 3 shows the position

measurements, xt,i, for six of the runs. Since Sensor 2 has a larger error, its measure-

ments were further from the true position, xt,ACTUAL, than those of Sensor 1. Figure

4 shows the measurements for the Averaged Run.
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Figure 3: Case 1 Sensor Measurements

As there were no problematic runs, the DST Mean Mod approach was not used

for Case 1. So we applied the following three: Kalman, DST True, and DST Mean.

With the results, we examined the Point Plots, the Difference Plots, and the MAD

and the MSE values for the individual runs and the Averaged Run.
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Figure 4: Case 1 Averaged Sensor Measurements

The Point Plot for Case 7 is shown in Figure 5. The DST Mean points followed

the true trajectory of the aircraft. Its results were similar to those for DST True and

Kalman. Also DST Mean had the same clustering of points as the others specifically

for x1 ∈ [17, 22]. The other runs in Case 1 had similar plots.
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Figure 5: Run 7 Point Plot

The Difference Plots for Run 7 are shown in Figure 6. For the most part,

the differences for the Kalman approach were smaller than those for the DST Mean.

However, there were still many instances where DST Mean was smaller. Also DST

Mean followed the same trend as Kalman. The plot for DST True and DST Mean

showed the reversal of the previous plot. At almost every time t, the DST Mean had

smaller differences than DST True, and spikes occurred at the same times t. So we

saw what we had expected. Again for the other runs, the same patterns were present.
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Figure 6: Run 7 - Difference Plots

Figure 7 shows the Point Plot for the Averaged Run. We can see that DST

Mean had very good results. The points followed closely along the true trajectory

and were similar to the position measurements for the other approaches. Except for

a few points, such as x ≈ (16,−7.5), DST Mean provided solid positioning data.
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Figure 7: Averaged Run

The differences for the Averaged Run are shown in Figure 8. Here we saw

similar results to the individual runs except the differences were smaller values. The

DST Mean differences were slightly greater than the Kalman, with significant spikes

around t = 14, 19, and 29, but again both differences presented a similar trend. For

the other plot, DST Mean had slightly smaller differences than DST True, but they

still had the same trend. DST True even had spikes around t = 14, 19, and 29.
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Figure 8: Averaged Run - Difference Plots

After examining the plots, we compared the values for the MAD and the MSE

in Table 8. For the individual runs, both values for DST Mean were smaller than

DST True but larger than Kalman. However, in half of the runs, the MAD’s for the

DST Mean were closer to the Kalman value than to the DST True, and in all but

Runs 5 and 8, the MSE values were closer. For example, in Run 3, the difference

between DST Mean MAD and Kalman MAD was 0.1587, but the difference between

DST Mean and DST True was 0.5946.

For the Averaged Run, all of the values decreased significantly. Yet based on

the Point Plot, this decrease was expected. The MAD values for Kalman, DST True,

and DST Mean were 0.6268, 0.8456, and 0.8205, respectively. The MSE was 0.5102

for Kalman, 0.9062 for DST True, and 0.8653 for DST Mean. For both values, we had

DST Mean less than DST True but still greater than Kalman. According to these

values, the DST Mean approach provided a slightly improved result to DST True.

While Kalman still had smaller values, all of the MAD and the MSE values were very

similar.
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Table 8: Case 1-MAD/MSE Values

DST

RUN # MEASURE KALMAN TRUE MEAN

1
MAD 1.7870 2.5372 2.0790
MSE 4.1199 7.9433 5.6830

2
MAD 1.9787 2.6386 2.1695
MSE 4.9544 8.4459 6.0358

3
MAD 1.8180 2.5713 1.9767
MSE 4.3538 8.1536 5.0067

4
MAD 1.8172 2.3856 2.1551
MSE 4.1316 6.9015 5.8396

5
MAD 1.8474 2.4699 2.2011
MSE 4.4920 7.6822 6.2921

6
MAD 1.9980 2.5860 2.0629
MSE 5.0641 8.2987 5.2934

7
MAD 1.8561 2.6433 2.2406
MSE 4.4915 8.5819 6.2995

8
MAD 1.8298 2.4427 2.3100
MSE 4.3190 7.4400 6.6446

AVG
MAD 0.6268 0.8456 0.8205
MSE 0.5102 0.9062 0.8653

3.5.2 Case 2. For Case 2, the sensors’ errors, σ1 and σ2, were both set to

2. Then ten runs were completed. Figure 9 shows the position measurements, xt,i,

for a sample of the runs. Unlike the previous case, the measurements for the sensors

showed a similar spread. One did not appear worse than the other. Figure 10 shows

the measurements for the Averaged Run.

For Case 2, we had one problematic run: Run 5. Because of this, we used

the DST Mean Mod approach, in addition to the other three. Again in some runs,

xt,MEAN MOD = xt,MEAN. As with Case 1, we looked at the Point Plots, the Difference

Plots, and the MAD and the MSE values for the individual runs and the Averaged

Run.
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Figure 9: Case 2 Sensor Measurements
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Figure 10: Case 2 Averaged Sensor Measurements

The Point Plots for Runs 2 and 10 are shown in Figure 11. Notice how more

of the DST Mean Mod points fell slightly above but still followed the True line. Yet,

these points were similar to those for Kalman and DST True. Also, there were no

obvious deviations from the true trajectory. The other runs in Case 2 had similar

plots.
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Figure 11: Case 2 Point Plots

The Difference Plots are shown in Figures 12 and 13 for Runs 2 and 10. For

the first plot with Kalman, the differences for both methods had the same trend. For

most of the times t where DST Mean Mod had a large spike, Kalman did too. Again

for the most part, the Kalman differences were slightly less than the DST Mean Mod.

For Run 2, the DST Mean Mod differences were not as good as Run 10. However,

in the second plot with DST True, there still was significant improvement from DST

True to DST Mean Mean. At almost every time t, DST Mean Mod was smaller than

DST True. The other runs had similar results.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

D
iff

er
en

ce
 (

m
)

 

 
Kalman
DST Mean Mod

Kalman

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (sec)

D
iff

er
en

ce
 (

m
)

 

 
DST True
DST Mean Mod

DST True

Figure 12: Run 2 - Difference Plots

26



0 5 10 15 20 25 30
0

1

2

3

4

5

6

Time (sec)

D
iff

er
en

ce
 (

m
)

 

 

Kalman
DST Mean Mod

Kalman

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time (sec)

D
iff

er
en

ce
 (

m
)

 

 
DST True
DST Mean Mod

DST True

Figure 13: Run 10 - Difference Plots

As previously mentioned, Run 5 had poor results using µj,t,MEAN . This is clear

in the Before Plots in Figures 14 and 15. The DST Mean results fell well below

but run parallel to the actual position, and the differences formed an arch above the

Kalman differences. Also, the DST Mean MAD increased from 2.1670 for DST True

to 2.2353, and in every other run, this value decreased. Then the MSE value went

from 5.7576 to 6.0238.
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Figure 14: Run 5 - Point Plot

Thus, based on the Error Plot in Figure 16, α was set to 2 , and m∗j,t,i,MEAN MOD

was calculated. The change is very evident in the After Plots. The differences for

DST Mean Mod no longer had the large jump for the middle times. Although there

were still some spikes around t = 12, 21, and 25, there were similar patterns as the
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Figure 15: Run 5 - Difference Plot

other Difference Plots. Finally, the MAD and the MSE values decreased to 1.9725

and 4.9349, both below the values for DST True. Therefore, we got the improvement

expected from using the DST Mean Mod approach.
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Figure 16: Case 2 Run 5 Error Plot

In addition to the improvements in Run 5, Run 2 also improved from using the

DST Mean Mod approach. Recall for Run 2, α was set to 1 instead of 2. For the

remaining eight runs, the errors for xj,t,MEAN did not exceed the α threshold. The

results from these two improved runs positively affected the Averaged Run. Notice

the subtle changes in the two Point Plots in Figure 17. In the Before Plot, there was

a larger DST Mean grouping below the true path after x1 = 9, but, in the After Plot,

the positions for DST were more evenly spread around the true position and closer

to the Kalman results. This change can also be seen in the Difference Plots for the

Averaged Run in Figure 18. Note that the plots have a different scale. In the After

Plot, many of the large spikes for DST Mean decreased or disappeared. At t = 11,
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the spike decreased from 1.8 to 1.5 and became equal to the Kalman difference. Also

notice the grouping of spikes at t ∈ [16, 23] that decreased, as well. Thus, these two

runs improved the Averaged Run.
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Figure 17: Averaged Run - Point Plot
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Figure 18: Averaged Run - Difference Plot

Again only Runs 2 and 5 changed between the DST Mean and the DST Mean

Mod approach. NO CHANGE in Table 9 indicates this. However, there was still a

decrease in values from DST True to DST Mean for all of the runs. For example,

Run 3’s MAD went from 1.9266 to 1.5498 and became closer to the Kalman value of

1.4115.

For the Averaged Run, we got slightly different results. From DST Mean to

DST Mean Mod, there was a small increase in the MAD and the MSE. The MAD
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went from 0.5561 to 0.5604. Similarly the MSE increased from 0.3936 to 0.3973. Note

that these increases were less than 1%. Also, both were still less than the DST True

values and closer the Kalman values. In addition, the Point Plots and Difference

Plots indicated improvement from Mean to Mean Mod, so there did not appear to be

a problem with the DST Mean Mod approach. It still provided a good result.

Table 9: Case 2-MAD/MSE Values

DST

RUN # MEASURE KALMAN TRUE MEAN MEAN MOD.

1
MAD 1.4542 1.9998 1.7706 NO CHANGE
MSE 2.5905 4.7672 3.8512 NO CHANGE

2
MAD 1.4137 1.9620 1.6834 1.6693
MSE 2.4353 4.5678 3.4060 3.3588

3
MAD 1.4115 1.9266 1.5498 NO CHANGE
MSE 2.6945 4.7487 3.3166 NO CHANGE

4
MAD 1.4307 1.9759 1.5651 NO CHANGE
MSE 2.7783 5.1077 3.2210 NO CHANGE

5
MAD 1.5961 2.1670 2.2353 1.9725
MSE 3.2275 5.7576 6.0238 4.9349

6
MAD 1.4226 1.9464 1.5498 NO CHANGE
MSE 2.6245 4.7627 3.1645 NO CHANGE

7
MAD 1.4937 2.0398 1.8306 NO CHANGE
MSE 2.8541 5.1140 4.2218 NO CHANGE

8
MAD 1.4950 2.0564 1.6328 NO CHANGE
MSE 2.8873 5.2720 3.3334 NO CHANGE

9
MAD 1.4261 1.9620 1.7790 NO CHANGE
MSE 2.5784 4.7170 4.0041 NO CHANGE

10
MAD 1.4973 2.0398 1.5206 NO CHANGE
MSE 2.9701 5.2365 2.9677 NO CHANGE

AVG
MAD 0.4811 0.6490 0.5561 0.5604
MSE 0.3004 0.5456 0.3936 0.3973

3.5.3 Case 3. For Case 3, the errors, σi, for Sensor 1 and Sensor 2 were

set to 2 and 4, respectively. Then thirty runs were completed. This was done as a

comparison to Case 1 to see if increased number of runs would show better results.

Figure 19 shows the position measurements, xt,i, for a sample of the thirty runs.

Because Sensor 2 has a larger error, note that its measurements were further from the

30



true position, xt,ACTUAL. Then Figure 20 shows the measurements for the Averaged

Run.
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Figure 19: Case 3 Sensor Measurements
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Figure 20: Case 3 Averaged Sensor Measurements

For Case 3, we had three problematic runs: Run 17, Run 25, and Run 30.

Because of this, we used the DST Mean Mod approach. As before, depending on the

run, xt,MEAN MOD may have equaled xt,MEAN. Then unless specified α = 4. Also for

this case, several runs did not improve when using the DST Mean Mod approach. So
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even if errorj,t > α, the following runs were not modified: 1, 7, 10, 15, 16, and 26.

The three problem runs are examined after the Difference Plots.

The Point Plots for Runs 2 and 5 are shown in Figure 21. In Run 2, all of

the approaches’ points formed a tight grouping around the True line, and the points

for DST Mean Mod and Kalman clustered at the same places. In Run 5 all three

points were more scattered, but DST Mean Mod had better results than the other

two. Notice its points formed a slightly tighter grouping along the true trajectory

than Kalman’s. The other runs in Case 3 had similar plots to these two.
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Figure 21: Case 3 Point Plots

The Difference Plots are shown in Figures 22 and 23. For the first plot, the

differences for both methods had the same trend. DST Mean Mod and Kalman had

spikes at most of the same times t. In Run 5 DST Mean Mod appeared to have more

smaller differences while in Run 2 Kalman’s differences were smaller over the most

times t. Yet, the Point Plot for Run 2 showed better results than Run 5. In the

Difference Plots with DST True, the usual patterns existed. The differences for DST

Mean Mod were less than DST True. In Run 5, there was a significant decrease in

value from DST True to DST Mean Mean. In other run, there was not as much of

a decrease but still a decrease. For the remaining 28 runs, there were similar results

with some closer to Run 2 and others closer to Run 5.
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Figure 22: Run 2 - Difference Plots
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Figure 23: Run 5 - Difference Plots

As previously mentioned, Runs 17, 25, and 30 had poor results using µj,t,MEAN .

This is clear the Before Plots in Figures 24 - 29. For Run 17 in the Point Plot, xt,MEAN

seemed to level off at x2 = 16, and in the Difference Plot, the DST Mean values curved

up after t = 24. Run 30 had the same trend but more severe. For Run 25, the Point

Plot showed a large grouping of xt,MEAN above the xt,ACTUAL at x1 ∈ [15 − 25], and

the Difference Plot had an arch at t ∈ [7, 17]. Despite the obvious problems indicated

in the plots, the MAD and the MSE values for the first two runs did not increase

from DST True to DST Mean, but in Run 30 there was a fairly significant increase.

The MAD went from 2.4535 to 3.2294 and the MSE from 7.2419 to 13.9755.
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Figure 24: Run 17 - Point Plot
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Figure 25: Run 17 - Difference Plot
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Figure 26: Run 25 - Point Plot
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Figure 27: Run 25 - Difference Plot
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Figure 28: Run 30 - Point Plot
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Figure 29: Run 30 - Difference Plot
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Recall the discussion in Section 3.3 where α was slightly modified for more

accurate results. Based on this and the Error Plots in Figure 30, α = 2 for Runs 17

and 25, and α = 1.5 for Run 30. Notice for Runs 17 and 30, error2,t was significantly

larger than the other, and for Run 30, error1,t was larger. With this, m∗j,t,i,MEAN MOD

was calculated. The change is very evident in the After Plots. So xt,MEANMOD no

longer diverged from the actual trajectory and formed a tighter grouping. Also the

differences for DST Mean Mod no longer had large jumps or arches over the Kalman

differences. Although there still were some spikes, more so in Run 17, similar patterns

appeared as seen in the non-problematic runs. Finally, all of the values for the MAD

and the MSE decreased in each run. However, Run 30 significantly dropped to 2.1222

for the MAD and 5.8125 for the MSE. The other values are listed in Table 10.
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Figure 30: Case 3 - Error Plots

In addition to the problematic runs, several other runs showed improvement

from using the DST Mean Mod approach. They are indicated in Tables 10 and 11.

We saw that the results from all of the improved runs again positively affected the

Averaged Run. In Figure 31, the After Point Plot shows a tighter grouping for DST

Mean Mod, and the values were closer to the actual. Particularly notice the points

below the True line. Except for a few outlying points, all moved up closer to the

line. In Figure 32, the After Difference Plot also shows the improvement. The largest

decreases were at t ∈ [15, 20] and t ∈ [24, 30]. However, the four large spikes still

exist in the After Plot. These correspond to the four major outlying points seen in

the Point Plot.
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Figure 31: Averaged Run - Point Plot
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Figure 32: Averaged Run - Difference Plot

The MAD and the MSE values for Case 3 are listed in Tables 10 and 11. In some

of the runs, the errors for xj,t,MEAN did not exceed the α threshold. NO CHANGE

indicates this. Also NA indicates the purposely unmodified runs, mentioned in Table

7. Among all of the runs, we saw a decrease in values from DST True to DST Mean

or DST Mean Mod. Also in most of the runs, the MAD and the MSE values for the

final DST method were closer to the Kalman values than to the DST True values. In

Run 1, the MSE was even less than the Kalman.

For the Averaged Run, notice the values were significantly smaller than those

in Case 1. The increased number of runs improved the results for every approach.

Because of the problem runs, the MSE for the DST Mean increased from 0.2459 to

0.2483, but the MAD did not. It slightly changed from 0.4359 to 0.4348. However,
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both values for DST Mean Mod did decrease to 0.3877 for MAD and 0.2010 for

MSE. Again neither were smaller than the Kalman, but all the values were very close

together.

Table 10: Case 3-MAD/MSE Values

DST

RUN # MEASURE KALMAN TRUE MEAN MEAN MOD.

1
MAD 1.7850 2.5984 1.7638 NA
MSE 4.0879 8.2231 3.9217 NA

2
MAD 1.8706 2.5647 2.2813 NO CHANGE
MSE 4.6031 8.2004 6.6323 NO CHANGE

3
MAD 1.9331 2.5808 2.2881 NO CHANGE
MSE 4.9441 8.5165 6.8480 NO CHANGE

4
MAD 1.7958 2.4871 2.3151 NO CHANGE
MSE 4.3172 7.8514 6.7731 NO CHANGE

5
MAD 2.0169 2.6353 2.0201 1.9950
MSE 5.2295 8.7032 5.2345 5.0822

6
MAD 1.6727 2.3711 2.1356 NO CHANGE
MSE 3.6806 7.2079 5.7310 NO CHANGE

7
MAD 1.7860 2.6309 1.8884 NA
MSE 4.3772 8.8052 4.7483 NA

8
MAD 1.6664 2.4112 2.1155 NO CHANGE
MSE 3.7657 7.3619 5.6868 NO CHANGE

9
MAD 1.8194 2.4351 2.1569 NO CHANGE
MSE 4.5143 7.5526 6.2350 NO CHANGE

10
MAD 1.7694 2.5281 2.1650 NA
MSE 4.2507 8.0447 5.8663 NA

11
MAD 1.8412 2.5286 2.0452 2.0416
MSE 4.4500 8.0086 5.4763 5.4514

12
MAD 1.6759 2.5074 2.0604 NA
MSE 3.8710 8.1109 5.8232 NA

13
MAD 1.9058 2.5617 2.0890 2.0881
MSE 4.5364 7.9886 5.7343 5.7335

14
MAD 1.9772 2.7190 2.2578 NO CHANGE
MSE 5.2073 9.2093 6.3594 NO CHANGE

15
MAD 1.7020 2.4510 1.8247 NA
MSE 3.9159 7.5972 4.5661 NA

16
MAD 2.0715 2.6832 2.2116 NA
MSE 5.3821 8.9582 6.2883 NA
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Table 11: Case 3-MAD/MSE Values (cont.)

DST

RUN # MEASURE KALMAN TRUE MEAN MEAN MOD.

17
MAD 1.5899 2.3413 2.1451 2.1176
MSE 3.3426 6.9255 5.8034 5.5190

18
MAD 1.8501 2.4634 2.0980 2.0940
MSE 4.5027 7.6928 5.6886 5.6812

19
MAD 1.6473 2.3342 2.0461 NO CHANGE
MSE 3.6045 6.9024 5.3230 NO CHANGE

20
MAD 1.8575 2.4802 2.0307 NO CHANGE
MSE 4.6257 7.9737 5.8447 NO CHANGE

21
MAD 1.8365 2.6406 2.0850 NO CHANGE
MSE 4.4394 8.4232 5.5977 NO CHANGE

22
MAD 1.8027 2.4729 2.2021 NO CHANGE
MSE 4.1508 7.5592 6.1950 NO CHANGE

23
MAD 1.7165 2.3004 1.9272 1.9245
MSE 3.9523 6.6892 5.0595 5.0316

24
MAD 1.8942 2.6901 2.2858 NO CHANGE
MSE 4.6789 8.8159 6.7208 NO CHANGE

25
MAD 1.7664 2.4821 2.0776 1.9769
MSE 3.8955 7.5207 5.5010 5.0341

26
MAD 1.9931 2.7201 2.3724 NA
MSE 5.0843 8.9256 6.7993 NA

27
MAD 1.9526 2.5849 2.2164 NO CHANGE
MSE 4.9460 8.2385 6.2563 NO CHANGE

28
MAD 1.8958 2.5238 2.0674 NO CHANGE
MSE 4.4195 7.6982 5.3690 NO CHANGE

29
MAD 1.6550 2.2806 2.1223 NO CHANGE
MSE 3.6214 6.5452 5.8159 NO CHANGE

30
MAD 1.6803 2.4535 3.2294 2.1222
MSE 3.5930 7.2419 13.9755 5.8125

AVG
MAD 0.3284 0.4359 0.4348 0.3877
MSE 0.1426 0.2459 0.2483 0.2010

3.5.4 Case 4. For Case 4, the errors, σi, for both Sensor 1 and Sensor 2 were

set to 2. Then thirty runs were completed. This was done as a comparison to Case 2.

Figure 33 shows the position measurements, xt,i, for a sample of the runs. Because

the sensors had the same error, their outputs were similar. One’s measurements did

not appear further from the true position, xt,i,ACTUAL, than the other’s. Figure 34

shows the measurements for the Averaged Run.
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Figure 33: Case 4 Sensor Measurements
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Figure 34: Case 4 Averaged Sensor Measurements

For Case 4, there was an increase in problematic runs. Runs 1, 5, 9, 11, 14,

27, and 28 produced poor results from DST Mean. Thus, all four approaches were

used. Unless specified in Table 7, α = 2. Again depending on the run, xt,MEAN MOD

may have been equal to xt,MEAN. The problem runs are explained after the Difference

Plots.
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Figure 35 shows the Point Plots for Runs 3 and 12. Clearly xt,MEAN MOD for

Run 3 showed better results than for Run 12. In Run 3, the DST Mean Mod points

were very similar to the Kalman points, and many of these were closer to the actual,

xt,ACTUAL. In Run 12 all of the points were more spread out. We see the DST Mean

Mod were again close to but not as good as the Kalman points. The remaining runs

in Case 4 had similar plots to these two.
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Figure 35: Case 4 Point Plots

The Difference Plots are shown in Figures 36 and 37. For both plots, we had the

same patterns as with the other cases. The three approaches showed similar trends.

Again Run 3 had slightly better results for DST Mean Mod. Runs 12 did not have as

strong of results. For the most part, the differences for DST Mean Mod were larger

than the Kalman but smaller than those for DST True. Also all of the approaches

seemed to have large spikes at the same times t. The remaining runs had similar

results to Runs 3 and 12.

Runs 1, 5, 9, 11, 14, 27, and 28 were problematic runs. This is clear in the

Before Plots in Figures 38 - 41. Note that Run 9 is evaluated later. Because of the

similarities between the plots of Runs 1, 5, 11, 14, and 28, only Run 1 is shown. For

these runs, the xt,MEAN values leveled off around x2 = 9, and in the Difference Plots,

the DST Mean values increasingly diverged as time t increased. Then Run 27 was

very similar to Case 2 Run 5. Instead of following the true aircraft path, xt,MEAN cut
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Figure 36: Run 3 - Difference Plots
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Figure 37: Run 12 - Difference Plots

through the middle. This is also indicated in the Difference Plot where DST Mean

arced between t = 10 and 20. For Runs 5 and 27, the MAD and MSE values actually

decreased from DST True to DST Mean despite the indications on their plots. Runs

14 and 28 showed a slight increase, but the DST Mean MSE values in Runs 1 and

11 were more than double those from the DST True. The MSE for Run 1 increased

from 6.1524 to 13.0258. Table 12 shows the other values.

42



5 10 15 20 25 30 35
-5

0

5

10

15

20

X1 position (m)

X
2 

po
si

tio
n 

(m
)

 

 

True
DST Mean
Kalman

Before

5 10 15 20 25 30 35
-5

0

5

10

15

20

25

X1 position (m)

X
2 

po
si

tio
n 

(m
)

 

 

True
DST Mean Mod
Kalman

After

Figure 38: Run 1 - Point Plot
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Figure 39: Run 1 - Difference Plot
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Figure 40: Run 27 - Point Plot
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Figure 41: Run 27 - Difference Plot

The Error Plots are shown in Figures 42 and 43. All of the runs, except Run

9, had large errors for x2, which was excepted from the Point Plots. Run 9 had

large x1 errors. Based these plots, α = 2 for all of the runs, excluding 27 and 28.

For these, α = 1. After implementing the DST Mean Mod approach, the After

Plots showed the results that we anticipated. Note these results exclude Run 9. So

xt,MEAN MOD followed the actual trajectory closer, as well as the Kalman results. Also

the differences for DST Mean Mod no longer had large jumps but instead stayed level.

As seen in Table 12, the MAD and the MSE for all of the runs decreased below the

DST True values. For example, Run 14’s MAD value decreased from 1.9378 to 1.8011

and MSE value from 4.7513 to 4.0236. Also Runs 1 and 27 also produced values closer

to the Kalman than the DST True values.
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Figure 42: Case 4 - Error Plots
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Figure 43: Case 4 - Error Plots (cont.)

Next, Run 9 was evaluated. Figures 44 and 45 show the different results. This

run’s points seemed to be all over the place. Both Kalman and DST Mean were

widely scattered, lacking any trends. However, the differences for DST Mean showed

large increases after t = 14. Kalman remained fairly level. Then unlike the other

runs, DST Mean Mod did not improve Run 9. Its points were still scattered, and

the differences did not decrease. Yet the DST True differences for this run were also

large as seen in the Figure 45 After Difference Plot. The After Point Plots in Figure

44 shows the Kalman, the DST True, and the DST Mean Mod points. The DST

True points were just as, if not more, scattered as the DST Mean Mod. The main

distinction between DST Mean Mod and the others lies after x1 = 35. To get better

results, the probability mass function for Run 9 has to be redefined or modified again.

As this run was a stand alone, this new function lies in future work. See Section 6.2.
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Figure 44: Run 9 - Point Plot
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Figure 45: Run 9 - Difference Plot

The results from all of the improved runs were reflected in the positive changes

in the Averaged Run. In Figure 46, there was a large group of the DST Mean

points below the true path starting at t = 7 in the Before Point Plot. In the After,

these points followed the true path and were very similar to the Kalman points.

The Before Difference Plot in Figure 47 shows a similar trend as the problem runs’

Difference Plots, particularly the major jump after t = 20. In the After Plot, the

jump disappeared. The differences for Kalman and DST Mean Mod then became

almost identical, and at many times t, the DST Mean Mod was smaller. Note that

the scales of the Before and the After Difference Plots are not the same. Therefore

from both plots, we saw significant improvement from the DST Mean Mod approach.
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Figure 46: Averaged Run - Point Plot
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Figure 47: Averaged Run - Difference Plot

All of the MAD and the MSE values for Case 4 are listed in Tables 12 and 13.

For all of the non-problematic runs, applying the DST Mean Mod approach did not

change the outcome as indicated by NO CHANGE. In other words, the errors for

xj,t,MEAN did not exceed the α threshold. For these runs, the MAD and the MSE

decreased from DST True to DST Mean. For example, the MAD for Run 24 decreased

from 1.8262 to 1.5541. Also in many runs, the MAD and the MSE values for the DST

Mean approach were closer to the Kalman values than the DST True values.

With the improvements in each run, especially in the problem runs, the Aver-

aged Run had excellent results. The MAD and the MSE for DST Mean Mod were

0.2757 and 0.0991, compared to the Kalman values of 0.2657 and 0.0906. Notice the

large increase from DST True to DST Mean. This was due to the problematic runs;

otherwise, these values would have decreased. Also similar to Case 3, all of the values

were smaller than those in Case 2. The increased runs improved the results for every

approach.
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Table 12: Case 4-MAD/MSE Values

DST

RUN # MEASURE KALMAN TRUE MEAN MEAN MOD.

1
MAD 1.6228 2.2094 2.9006 1.7601
MSE 3.4388 6.1524 13.0258 3.9811

2
MAD 1.5166 2.0852 1.7049 NO CHANGE
MSE 2.8601 5.2662 3.7820 NO CHANGE

3
MAD 1.4600 2.0047 1.5741 NO CHANGE
MSE 2.6959 4.9037 3.0122 NO CHANGE

4
MAD 1.3656 1.9026 1.7074 NO CHANGE
MSE 2.3612 4.5025 3.6389 NO CHANGE

5
MAD 1.3607 1.8875 1.8464 1.7001
MSE 2.3674 4.4175 4.2757 3.6144

6
MAD 1.5050 2.0710 1.9223 NO CHANGE
MSE 2.9299 5.3643 4.6380 NO CHANGE

7
MAD 1.5023 2.0448 1.7892 NO CHANGE
MSE 2.9888 5.3266 4.2019 NO CHANGE

8
MAD 1.3531 1.8649 1.7682 NO CHANGE
MSE 2.5728 4.6967 4.1540 NO CHANGE

9
MAD 1.5160 2.0685 2.3685 2.3633
MSE 2.9792 5.3550 6.6978 6.6851

10
MAD 1.3826 1.9112 1.8458 NO CHANGE
MSE 2.4010 4.4577 4.2303 NO CHANGE

11
MAD 1.3279 1.8290 2.4867 1.6534
MSE 2.3409 4.2467 9.8899 3.4182

12
MAD 1.4738 2.0082 1.9470 NO CHANGE
MSE 2.8660 5.1413 4.8222 NO CHANGE

13
MAD 1.4401 1.9754 1.8491 NO CHANGE
MSE 2.7493 4.9562 4.2551 NO CHANGE

14
MAD 1.4151 1.9378 2.4033 1.8011
MSE 2.6357 4.7513 7.0219 4.0236

15
MAD 1.4579 1.9980 1.8255 NO CHANGE
MSE 2.7126 4.8629 4.1388 NO CHANGE

16
MAD 1.4736 2.0220 1.9453 NO CHANGE
MSE 2.8466 5.1400 4.8573 NO CHANGE

17
MAD 1.4806 2.0094 1.9190 NO CHANGE
MSE 2.9759 5.2083 4.6159 NO CHANGE

18
MAD 1.4047 1.9263 1.6329 NO CHANGE
MSE 2.6431 4.7643 3.4820 NO CHANGE
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Table 13: Case 4-MAD/MSE Values (cont.)

DST

RUN # MEASURE KALMAN TRUE MEAN MEAN MOD.

19
MAD 1.4439 2.0012 1.5451 NO CHANGE
MSE 2.8441 5.2250 3.1244 NO CHANGE

20
MAD 1.3844 1.9222 1.7764 NO CHANGE
MSE 2.3393 4.3956 3.8865 NO CHANGE

21
MAD 1.3358 1.8332 1.7282 NO CHANGE
MSE 2.3992 4.3677 3.8972 NO CHANGE

22
MAD 1.4297 1.9464 1.7353 NO CHANGE
MSE 2.7039 4.8305 3.7407 NO CHANGE

23
MAD 1.4726 2.0103 1.6019 NO CHANGE
MSE 2.9641 5.2810 3.5446 NO CHANGE

24
MAD 1.3367 1.8264 1.5541 NO CHANGE
MSE 2.5201 4.4855 3.2814 NO CHANGE

25
MAD 1.5298 2.0777 1.9288 NO CHANGE
MSE 3.0534 5.4237 4.6373 NO CHANGE

26
MAD 1.4145 1.9509 1.6970 NO CHANGE
MSE 2.5826 4.7893 3.6524 NO CHANGE

27
MAD 1.3935 1.9092 1.6916 1.5920
MSE 2.5283 4.5735 3.4400 3.1492

28
MAD 1.4958 2.0542 2.5149 1.7151
MSE 2.8245 5.1694 7.6955 3.6748

29
MAD 1.5555 2.1291 1.6577 NO CHANGE
MSE 3.1898 5.7224 3.6021 NO CHANGE

30
MAD 1.4025 1.9350 1.6739 NO CHANGE
MSE 2.6040 4.7734 3.6926 NO CHANGE

AVG
MAD 0.2657 0.3560 0.4349 0.2757
MSE 0.0906 0.1626 0.2766 0.0991

3.5.5 Case 5. For Case 5, the errors, σi, for Sensor 1 and Sensor 2 were

set to 2 and 8, respectively. Then thirty runs were completed. Figure 48 shows the

position measurements, xt,i, for a sample of these runs. Because Sensor 2 had a much

larger error, its output was more spread out and clearly further from the true position,

xt,ACTUAL. Figure 49 shows the measurements for the Averaged Run.

For this case, Run 30 was the only problematic run. We again applied the DST

Mean Mod approach, in addition to the other three, and α is set to 2. Also Runs 2,

5, 9, 15, 20, 21, 25, 26, 27, and 28 (one third of the runs) remained unmodified since

49



-20 -10 0 10 20 30 40
-20

-10

0

10

20

30

40

X1 position (m)

X
2 

po
si

tio
n 

(m
)

 

 

True
Sensor 1
Sensor 2

Run 5

-10 -5 0 5 10 15 20 25 30 35
-30

-20

-10

0

10

20

30

X1 position (m)

X
2 

po
si

tio
n 

(m
)

 

 

True
Sensor 1
Sensor 2

Run 8

-5 0 5 10 15 20 25 30 35
-35

-30

-25

-20

-15

-10

-5

0

5

10

X1 position (m)

X
2 

po
si

tio
n 

(m
)

 

 

True
Sensor 1
Sensor 2

Run 14

-20 -10 0 10 20 30 40 50
-15

-10

-5

0

5

10

15

20

25

30

X1 position (m)

X
2 

po
si

tio
n 

(m
)

 

 

True
Sensor 1
Sensor 2

Run 15

-20 -10 0 10 20 30 40
-30

-25

-20

-15

-10

-5

0

5

10

15

20

X1 position (m)

X
2 

po
si

tio
n 

(m
)

 

 

True
Sensor 1
Sensor 2

Run 23

-20 -10 0 10 20 30 40
-15

-10

-5

0

5

10

15

20

25

30

35

X1 position (m)

X
2 

po
si

tio
n 

(m
)

 

 

True
Sensor 1
Sensor 2

Run 30

Figure 48: Case 5 Sensor Measurements
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Figure 49: Case 5 Averaged Sensor Measurements

they had better results from DST Mean. Recall the final results were still denoted

xj,t,MEAN MOD for the unmodified runs. Run 30 is examined after the Difference Plots.

Figure 50 shows the Point Plots for Runs 24 and 27. While the DST Mean

Mod points in Run 24 followed the aircraft’s trajectory, they were fairly wide spread.

Notice the more points tend to be above the True line than below. However, the

Kalman and the DST True points showed the same patterns. Clearly Run 27 had
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better results than Run 24. The DST Mean Mod points followed very closely along

the true trajectory. Most of these points were an improvement to the Kalman points.

However, notice the points at x2 ∈ [0, 5]. The DST Mean Mod points here had a

wider spread, but the Kalman and the DST True did, as well. The other runs had

similar results to these two.
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Figure 50: Case 5 Point Plots

In Figures 51 and 52, the Difference Plots show the same trends as the previous

cases. In Run 24 the majority of the Kalman differences were smaller than DST Mean

Mod, and the DST True differences were greater. All three approaches had spikes at

the same time t. Specifically at t = 21, there were large spikes. Here DST Mean Mod

was less than the other two. Also, as always there were other times t where DST

Mean Mod had better results than Kalman. In Run 27, the differences were much

smaller as expected from the Point Plot results. For t > 15, most differences for DST

Mean Mod were smaller than Kalman. Against DST True, DST Mean Mod showed

major improvement. Notice the large spikes at t ∈ [0, 8], these correspond to points

at x2 ∈ [0, 5] on the Point Plots. Overall, these same general trends existed for all

runs. However, note that the differences for each run were larger than those in the

previous cases. This was a result of error associated with Sensor 2.

As the Before Plots in Figures 53 and 54 show, Run 30 did not have good results

from DST Mean. Similar to some previous cases, xt,MEAN leveled out around x2 = 15,

51



0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

Time (sec)

D
iff

er
en

ce
 (

m
)

 

 
Kalman
DST Mean Mod

Kalman

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

Time (sec)

D
iff

er
en

ce
 (

m
)

 

 
DST True
DST Mean Mod

DST True

Figure 51: Run 24 - Difference Plots

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time (sec)

D
iff

er
en

ce
 (

m
)

 

 
Kalman
DST Mean Mod

Kalman

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time (sec)

D
iff

er
en

ce
 (

m
)

 

 
DST True
DST Mean Mod

DST True

Figure 52: Run 27 - Difference Plots

and the differences for DST Mean increased significantly after t = 22. However, the

MAD and the MSE values actually slightly decreased from 2.7380 and 9.4291 for DST

True to 2.7018 and 9.2491 for DST Mean, respectively.

In the Error Plot in Figure 55, both x1 and x2 had large errors. From this plot,

α was set equal to 2. Then m∗j,t,i,MEAN MOD was calculated. The improvement is

clear in the After Plots. So xt,MEAN MOD followed closer to the true trajectory, and

the differences decreased for t ≥ 22. The MAD and the MSE also decreased further

to 2.4719 and 7.8613.

Other than the unmodified runs, the DST Mean Mod approach improved the

results for each run. The Averaged Run had subtle changes based on these improve-
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Figure 53: Run 30 - Point Plot
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Figure 54: Run 30 - Difference Plot
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Figure 55: Case 5 Run 30 - Error Plot

ments. In the Figure 56 After Plot, the combined data for DST Mean Mod formed a

tighter grouping around the True line. The large scatter of the points in the Before

Plot below the True line disappeared in the After Plot. In Figure 57, the differences

decreased across the whole range of times. Note that the scale is not the same for
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both plots. The large spikes at t = 1 and t = 21 decreased from 2 to less than 1.5.

The grouping at t ≥ 22 decreased to below 1.

-5 0 5 10 15 20 25
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

X1 position (m)

X
2 

po
si

tio
n 

(m
)

 

 

True
Kalman
DST Mean

Before

0 5 10 15 20 25
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

X1 position (m)

X
2 

po
si

tio
n 

(m
)

 

 

True
Kalman
DST Mean Mod

After

Figure 56: Averaged Run - Point Plot
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Figure 57: Averaged Run - Difference Plot

Tables 14 and 15 list the MAD and the MSE values. NA indicates the unmodi-

fied runs. All of the MAD and the MSE values decreased from the DST True to DST

Mean or DST Mean Mod (depending on the run). Also in some runs, the MAD and

MSE values for the final DST method were closer to the Kalman values than the DST

True value. For example in Run 6, the MSE was 10.0780 for DST True and 7.7938

for DST Mean Mod. The Kalman in this run was 6.0987, clearly closer to DST Mean

Mod than DST True was.
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Table 14: Case 5-MAD/MSE Values

DST

RUN # MEASURE KALMAN TRUE MEAN MEAN MOD.

1
MAD 1.7351 2.5784 2.1669 2.0787
MSE 4.1094 8.5675 6.3376 5.7665

2
MAD 1.6849 2.4066 2.1532 NA
MSE 3.7559 7.4342 6.1327 NA

3
MAD 1.9175 2.6007 2.4064 2.2822
MSE 4.7888 8.5240 7.4171 6.5956

4
MAD 2.2154 3.0159 2.8029 2.5231
MSE 6.2660 11.2969 10.2475 8.4342

5
MAD 1.8306 2.7605 2.4238 NA
MSE 4.3692 9.7344 7.7059 NA

6
MAD 2.1734 2.8131 2.5395 2.4487
MSE 6.0987 10.0780 8.2156 7.7938

7
MAD 2.0813 2.6691 2.3284 2.2385
MSE 5.4348 8.8441 6.6799 6.2949

8
MAD 1.9007 2.5840 2.5167 2.3474
MSE 4.5889 8.2697 7.8933 7.2370

9
MAD 1.9221 2.8283 2.1954 NA
MSE 4.8221 9.7675 5.9870 NA

10
MAD 1.9325 2.7169 2.5007 2.3125
MSE 4.9370 8.8082 7.6496 6.7334

11
MAD 2.0141 2.7417 2.5351 2.3656
MSE 4.9776 8.9757 7.7724 6.8048

12
MAD 1.9275 2.6878 2.4963 2.2760
MSE 4.5439 8.5838 7.3707 6.1420

13
MAD 2.1016 2.6452 2.2968 2.2156
MSE 5.7061 8.9497 7.0753 6.4442

14
MAD 2.3410 2.7130 2.5124 2.4405
MSE 7.2519 9.6424 8.3120 8.0199

15
MAD 1.9898 2.9551 2.4684 NA
MSE 5.3188 10.7198 7.8199 NA

16
MAD 2.0869 2.6598 2.3040 2.3040
MSE 5.4452 8.8718 6.9133 6.7895

17
MAD 1.9232 2.7965 2.6094 2.4943
MSE 4.8826 9.6046 8.6018 7.8762

18
MAD 1.9518 2.8060 2.3915 2.3786
MSE 5.0840 9.8231 7.7111 7.3762

19
MAD 1.8740 2.6918 2.5747 2.2689
MSE 4.3211 8.8655 8.4925 6.4818
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Table 15: Case 5-MAD/MSE Values (cont.)

DST

RUN # MEASURE KALMAN TRUE MEAN MEAN MOD.

20
MAD 2.0292 2.7770 2.2586 NA
MSE 5.4295 9.7369 6.8166 NA

21
MAD 1.8833 2.8206 2.1294 NA
MSE 4.6096 9.6816 5.7530 NA

22
MAD 2.0010 2.7784 2.4465 2.2933
MSE 5.2506 9.6116 7.8275 6.8441

23
MAD 2.0890 2.7956 2.5864 2.4086
MSE 5.7387 9.9960 8.8095 7.8017

24
MAD 1.9097 2.7003 2.5631 2.4203
MSE 4.9370 9.2593 8.5248 7.4622

25
MAD 2.2283 2.8545 2.3939 NA
MSE 6.3954 10.2175 7.3635 NA

26
MAD 1.7730 2.5730 2.2850 NA
MSE 4.1921 8.4888 6.7740 NA

27
MAD 1.8053 2.8491 2.0255 NA
MSE 4.5272 10.3421 5.7256 NA

28
MAD 1.7505 2.6124 2.4100 NA
MSE 4.1766 8.6498 7.4647 NA

29
MAD 2.0123 2.6363 2.4271 2.2413
MSE 5.5099 8.8515 7.8092 6.5385

30
MAD 1.9103 2.7380 2.7018 2.4719
MSE 4.9898 9.4291 9.2491 7.8613

AVG
MAD 0.3622 0.4883 0.7958 0.6661
MSE 0.1683 0.3018 0.8045 0.5712

Unlike the other cases, the Averaged Run did not have as much improvement

as expected. While the MAD and the MSE decreased from DST Mean to DST Mean

Mod, the values for DST Mean Mod were not less than the DST True values. The

MSE values for DST True, DST Mean, and DST Mean Mod were 0.3018, 0.8045, and

0.5712. The MAD values were 0.4883, 0.7958, and 0.6661. Figure 58 shows the Point

Plot with DST True. Note the DST Mean Mod points for x2 ∈ [−2,−3.1] that are

further from the True line than the DST True points. Also for x1 ∈ [0, 13], there

are groupings of DST Mean Mod points above the True line that again are further

than the DST True. These points are why the MAD and the MSE were larger than

expected. However, it’s unclear why the DST Mean Mod points turned out like they

56



did. In the individual runs, all of the plots showed improvements, and for both DST

Mean and DST Mean Mod, the MAD and the MSE values were smaller than the

DST True. Also the Averaged Runs in the other 4 cases had improvements from DST

True. Thus, it is unlikely there was a problem with the DST Mean Mod approach,

but rather this was an isolated occurrence.
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Figure 58: Averaged Run - Point Plot

3.6 Summary

Recall the scenario described in Section 3.2. We had two sensors tracking a single

aircraft across a field. Using MATLAB code, we generated the sensor data for multiple

runs with varying errors. Taking this data, we applied two different fusion methods:

the Kalman filter and the DST. From the Dempster-Shafer Method, three approaches

were developed, each having slightly different probability mass assignments. DST

True relied on knowing the true position of the aircraft. DST Mean and DST Mean

Mod used only the sensor data from each run. As the name indicates, DST Mean Mod

is a modified approach to DST Mean. It was applied when the error from (17) exceed

a set α value. With these three DST approaches and the Kalman filter approach, we

combined the sensor data to obtain better positioning results for the aircraft that we

were tracking.

With the four combined results in each case, we had three comparison techniques

to determine how each approach did. Section 3.4 outlined these techniques and what
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we expected from each. For the five cases, the Point Plots, Difference Plots, and the

MAD and MSE values showed the results we were expecting for the most part. The

exceptions were Case 4 Run 9 and Case 5 Averaged Run. Run 9 had poor results

from both DST Mean and DST Mean Mod. In the Case 5 Averaged Run, the MAD

and the MSE values for DST Mean Mod were larger than those for DST True.

In all the cases except Case 1, problematic runs were present. In these runs, the

combined points from DST Mean tended to level off at a particular point, producing

poor positioning results. The DST Mean Mod approach was applied to fix these runs.

Again the exception was Case 4 Run 9. In addition to the problem runs, this approach

also improved several other runs.

Notice Cases 1 and 3 and Cases 2 and 4 had the same sensor errors. However,

one case had a different number of runs than the other. These cases were run to show

the improvement in the Averaged Runs as the number of runs increased. Comparing

the Point Plots, Cases 3 and 4 showed the results in a tighter grouping along the true

trajectories. Also in the Difference Plots, the values were smaller. In Case 2, most

of the differences were between 0 and 1, but in Case 4, they were between 0 and 0.6.

Finally, the MAD and the MSE values decreased for all of the approaches. In Run

1, the DST Mean values were 0.8205 and 0.8653. In Run 3, these values dropped to

0.3877 and 0.2010. Thus, between the three comparisons, the Averaged Run improved

with more runs.

In all of the cases, the Dempster-Shafer Method produced good results. Both the

DST Mean and the DST Mean Mod approaches then showed significant improvement

over the DST True. While the Kalman filter was more accurate, the Dempster-Shafer

Method had very comparable results. Given that the sensor noise was actually from

a normal distribution, this was somewhat anticipated. However, in many situations,

the noise is not necessarily or known to be Gaussian, rendering the Kalman filter

unusable. Therefore without making any assumptions about the error, we were able

to accurately combine the sensor data using the DST.
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IV. Local Navigation

4.1 Introduction

In this chapter, we applied the Dempster-Shafer Method to fuse data from a

multi-sensor unit for precise local navigation. For navigation it is imperative to have

extremely accurate position measurements at any given time. However, no sensor

is perfect. Each has limitations, but each may have advantages too. By fusing the

information from each sensor, we can reduce the uncertainty and increase the accuracy

[1].

This multi-sensor unit is comprised of a Global Positioning System (GPS) sen-

sor, a Tactical Grade Inertial Measurement Unit (IMU), and an optical imaging cam-

era. The GPS provides very precise position data but at larger time intervals than the

other sensors mentioned. For this GPS sensor, the time intervals were 0.10 sec. Also,

because the GPS is dependent on satellite updates, there are often outages. The IMU

is a strictly internal component with no dependence on outside systems. It provides

measurements more frequently with a time interval equal to 0.01 sec. The IMU does

not output the actual position. It consists of an accelerometer and a gyroscope which

provide the specific force and the angular rate at a specific time [43]. Finally, the

camera takes a series of still images. In each image, it measures the directions of dif-

ferent features [45]. However, multiple cameras and significantly more preprocessing

are required. Converting all of these sensors’ data into a common measurement, we

can combine them and more accurately determine location.

Because the optical camera outputs measurements in relation to a feature, it

only provides a two-dimensional measurement. As a result, it is very difficult to

navigate with. Techniques do exist to determine distances; however, a second camera

is needed [54]. For this reason, the camera was not used for sensor fusion.

The sensor data used in this chapter was provided by Major Fisher and the

AFIT ANT Center. Each sensor was fixed to the body frame of a motor cart. The

start location of the body frame was 0.694323082282726 rad, -1.46750437073683 rad,

and 276.9 m in latitude, longitude, and altitude. The start time for data collection
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was 417702.055286 GPS week seconds. The cart was then driven in a U-shaped

path. Along this path, the cart entered and exited a building where a GPS outage

occurred. Figure 59 shows a map of the path taken. The data collection lasted for

4.7691 minutes. The variances associated with each measurement were estimated and

provided with the rest of the sensor data.

Building Interior Building Exterior 

28.95 m 

35.35 m 
8.53 m 

6.55 m 

55.52 m 

ASPN Sample Data Set Rough  Reference Trajectory 

Figure 59: Cart Path

Note that each measurement is the true value plus some measurement noise,

or, for the IMU, noise and scale factor error. According to the Interface Control

Document (ICD) for each sensor, the noise errors, as well as other IMU errors, are

modeled as Gaussian distribution. Yet, as noted in the GPS ICD, the actual mea-

surements do not always fit the Gaussian model [44]. This is where it is advantageous

to use the Dempster-Shafer Method. Specifically, we do not have to assume the prior

distributions.

4.2 Sensors

In this section we describe the GPS and the IMU sensors in more detail, includ-

ing what each outputs and the estimated variances.

The GPS sensor outputs three position measurements in World Geodetic System

(WGS)-84 ellipsoidal coordinates: geodetic latitude, longitude, and altitude. The

measured latitude and longitude are in radians, and the measured altitude is in meters
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above the WGS-84 ellipsoid [44]. WGS-84 is the latest version of the World Geodetic

System. It is a standard coordinate frame for Earth and the reference coordinate

system for GPS [56]. The time between measurements, ∆tGPS, was 0.10 sec. A total

of 1545 measurements were outputted, and the first measurement was at 417702.1

GPS week seconds.

Two outages occurred for this data set. The first outage lasted for 130.9 sec

as the cart went through the building. The other was only for 1 sec. During these

outages, the navigation position was solely based on the IMU data.

The position measurements for the GPS are combinations of the true positions

and noise from the sensor. The error standard deviation for latitude, longitude,

and altitude were estimated to be 4
R
rad, 4

R∗cos(lat) rad, and 8 m, respectively. The

approximate Earth’s radius, R, used for this data was 6377936 m [44]. Notice the

variance for longitude is dependent on latitude and is different at each measurement.

However, because change in latitude was very small, the changes in the variance were

also minuscule. These variances for latitude, longitude, and altitude are denoted

σ2
GPS1, σ

2
GPS2,n, and σ2

GPS3, where n is the measurement number.

The IMU outputs the integrated specific force, ∆V , and the integrated angular

rate, ∆θ, over a specific time interval in the three orthogonal axes. These measure-

ments were all taken relative to the sensor frame, which was connected to the cart

body frame [46]. ∆V is measured in meters per second and ∆θ in radians [43]. The

time between measurements, ∆tIMU , was approximately 0.01 sec for a total of 28614

measurements. Its first measurement was taken at 417702.065286 GPS week seconds.

The IMU measurements are modeled as the following:

Measured = True ∗ (1 + SF ) + b+ w

where SF is the scale factor error, b is the time-correlated bias, and w is the noise

[43]. The estimated standard deviations for each were provided with the data. So the

sample standard deviations, σ, for the factor error, bias, and noise were approximately
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0.0003, 9.800 ∗ 10−7, and 9.025 ∗ 10−7, respectively. Then the combined variance was

estimated by

σ2 = (True ∗ σSF )2 + σ2
b + σ2

w. (19)

Since the True values were unknown, the Measured values were used instead.

With ∆tIMU , the change in distance can be determined from the IMU. Because

it does not provide the actual position on the sensor, a starting location must be

known. Combining the two gives the location of the vehicle according to the IMU.

4.3 Approach

With a better understanding of the two sensors, we applied the Dempster-Shafer

Method to combine the two location measurements. For this data, we considered

two sets of results. The first was real-time results. As the cart was moving, we

determined its location based on what the sensors were immediately reporting. The

second results were calculated after all of the data was collected. Knowing the GPS

had a large outage, we filled in the missing GPS data. These results would be desirable

if a repeat of this route was necessary, to further refine the calculations, or even to

modify the sensors. However, before we could actually use our fusion method, several

more steps were needed.

First, some transformations were required. Recall the GPS data was expressed

in WGS-84 ellipsoidal coordinates, and the IMU data was in the sensor reference

frame. Because the GPS and the IMU outputs were in difference reference frames,

we needed to convert the IMU measurements to the ellipsoidal coordinates. The

transformed data was provided by Dr. John Raquet of the AFIT ANT Center. The

locations are denoted locn,i = (latn,i, lonn,i, altn,i), where n is the measurement num-

ber, and i is the index denoting the sensor, GPS or IMU.

The IMU variance from (19) also had to be converted. The new variances are

denoted σ2
IMU1,n, σ2

IMU2,n, and σ2
IMU3,n, which correspond to the latn,IMU , lonn,IMU ,

and altn,IMU , respectively. Comparing the variances for latitude and longitude, the
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IMU had significantly larger values than the GPS. However, for altitude the GPS had

a larger variance. This had an impact on the probability masses.

Note that the outputs of the sensors can be referenced by both their measure-

ment number and their measured time. Starting near 417702 GPS week seconds,

the IMU measured times were evaluated to one millionth of a second, and the GPS

measured times were increased to one tenth of a second. Thus, it was simpler to ref-

erence the measurement numbers. However, the sensors’ measurement numbers did

not occur at the same measured time. Recall the IMU had 28,614 measurements, and

the GPS had 1,545. For example, the measured time for loc1,GPS is approximately

equal to loc4,IMU . Therefore, the n is directly related to the i.

When GPS outputs were not available, the cart location was determined solely

by the IMU. When both were known, the location measurements were combined via

the Dempster-Shafer Method for a more precise location. These measurements are

denoted locn,DST . So at the 1,545 GPS outputs, this method was applied. Then for

the remaining 27,069 measurements, locn,DST is equal locn,IMU . So the n in locn,DST

is the same n as in locn,IMU .

Next, to combine the GPS and the IMU data, common measured times were

required. The first measurement for the GPS, loc1,GPS, was taken at 417702.1 GPS

week seconds. The remaining followed at 0.1 sec intervals. The first measurement for

the IMU, loc1,IMU , was at 417702.065286 GPS week seconds. The ∆tIMU is closely

approximated by 0.010000000009313. As such, none of the measured times between

the two sensors occurred at the same instance. To fix this problem, the IMU times

were rounded up to the nearest 1
100
th of a second. This created a common measured

time which occurred approximately every 10 IMU measurements starting at loc4,IMU .

Recall the IMU outputs the integrated specific force, ∆V , so a starting lo-

cation must be known. The first position of the IMU in ellipsoidal coordinates was

loc1,IMU =(0.6943230822827 rad, -1.4675043707373 rad, 276.9000005569446 m). Then
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the location determined by the IMU sensor was

locn,IMU = locn−1,IMU + ∆Vn ∗∆t = locn−1,IMU + ∆locn,IMU . (20)

Figure 60 shows the position measurements for the GPS and IMU in longitude and

latitude. This figure should look similar to that in Figure 59. Note the large gap in the

latitude where no GPS readings occurred. According to the IMU, instead of making

a 90o turn, the cart only turned approximately 45o. Thus, the IMU measurements

did not agree with the GPS measurements as the connection was reacquired. Again

the IMU is dependent on the previous position, locn−1,IMU . If the previous is off, the

rest will be, too.
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Figure 60: GPS & IMU Measurements

To fix this problem, the IMU position was updated at each combined location,

locn,DST . The locn−1,IMU in (20) was set equal to locn,DST . For example, loc24,IMU

and loc3,GPS had the same measured time of 417702.3 GPS week seconds. So they

were combined to get loc24,DST . Then

loc25,IMU = loc24,IMU + ∆loc25,IMU = loc24,DST + ∆loc25,IMU . (21)

This provided more accurate locations for the IMU when fused with the GPS and

when the GPS was not available. However, the original IMU locations were still used

in some of the calculations. They are denoted locn,IMUb.
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Knowing the cart entered and exited the building, we determined when the GPS

receiver’s connection began to fade, when the signal was lost, and when the connection

was reacquired. The signal was completely lost from 417782.8 to 417913.7 seconds

since there were no GPS outputs. These times correspond to the IMU n at 8075 and

21162. However, where a weak connection existed was determined from Figures 61 -

63. The probability masses were modified at these points for more accurate results.

In these figures, only measurements where both GPS and IMU were available

were plotted. This IMU value shown is the original value, locn,IMUb, not the updated

one. The top plots show the location measurements before the cart entered the

building, and the bottom plots show after the cart exited. Note that the side axes on

the two plots are not necessarily the same values. In all of the bottom plots, there

is a gap between 417938 and 417939 seconds. This corresponds to the second GPS

outage.

In Figure 61, we see that latn,GPS did not remain continuous for the first 80

seconds. The GPS measurements slightly increased with time and then jumped down

close to latn,IMUb before increasing again. Around t = 417780, latn,GPS had a large

jump before the signal was lost. Thus, we determined that a weak signal existed if

the difference between the GPS and the IMU was greater than 10−7 radians.

For the last 80 seconds, the first several points jumped around as the GPS signal

was reacquired. After less than a second, though, latn,GPS settled. There were some

slight fluctuations between t = 417924 and 417934. However, latn,GPS leveled out

again. Thus, only the first five locations were determined to have a weak signal.

A similar pattern exists for the longitude, shown in Figure 62. At the same

times as latn,GPS, lonn,GPS had jumps in the first 80 seconds. Then the values slowly

decreased. Again at the same time t, lonn,GPS had a large jump before the signal was

lost. Thus, a weak signal existed if the difference between the GPS and the IMU was

greater than 10−7 radians.
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Figure 61: GPS & IMU Latitude

For the last 80 seconds, the first several points jumped around as the GPS

signal was reacquired. Less than a second later lonn,GPS settled. Thus, these first five

locations were determined to have a weak signal.

417700 417710 417720 417730 417740 417750 417760 417770 417780 417790 417800 
-1.467512 

-1.467510 

-1.467508 

-1.467506 

-1.467504 

-1.467502 

LO
N

G
IT

U
D

E
 (

ra
d)

 

 

417900 417910 417920 417930 417940 417950 417960 417970 417980 417990 418000 
-1.467515 

-1.467510 

-1.467505 

-1.467500 

-1.467495 

TIME (sec)

LO
N

G
IT

U
D

E
 (

ra
d)

IMU
GPS

Figure 62: GPS & IMU Longitude

The altitude from the GPS output was quite different than the other two lo-

cations, as seen in Figure 63. The IMU and the GPS remained similar until t =

417750. After which, altn,GPS began to consistently jump around. So the signal was

weak if the difference between the GPS and the IMU was greater than 0.2 meters.
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If the difference was greater than 0.8, altn,GPS was determined unreliable, and, thus,

altn,DST was set by the IMU only.

For the last 80 seconds, there were many fluctuations and jumps until altn,GPS

settled around t = 417935. It was determined that if the difference between altn,GPS

and altn,IMUb was more than 2.5 meters, then there was a weak signal with the GPS.
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Figure 63: GPS & IMU Altitude

For the post-collection results, we interpolated in the missing GPS data for the

first outage using only the data collected. We assumed the path seen in Figure 59 was

unknown. To create the missing data, we took the last and first reliable GPS points

before and after the outage. These points were again determined by the locn,GPS plots.

Recall for latitude and longitude, the first several points after the outage fluctuated

before smoothing out. So for these coordinates, the last point was at IMU n = 8074,

and the first point was at n = 21243. These correspond to t = 417782.8 and 417914.5.

Because the altitude readings were not as consistent as the others, the last and the

first were much earlier and later in time. In this case, n = 4794 and 22793, which were

at t = 417750 and 417930. With these two points, we created a linear path between

them and calculated locn,GPS at 0.1 sec intervals. For these results, the number of

GPS measurements increased to 2853. All other calculations, such as the common

measured times and updated IMU locations, were completed the same way.
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With the locations in the same reference frame, common measurement times

established, and times that had weak or no GPS connection identified, the locn,IMU

and the locn,GPS were combined. For the probability masses, two propositions exist:

location known (L) and location not known (N). Thus, the frame of discernment

is θ = {L,N}, and the power set is 2θ = {∅, L,N, L ∪ N}. Then we defined the

probability mass functions as the following:

mn,i(L) =
1√

2πσ∗n
exp

(
−(locn,i − µ∗n)2

2(σ∗n)2

)
, (22)

mn,i(N) = 1−mn,i(L). (23)

So the total probability masses become:

mn,DST (L) = K ∗ [mn,IMU(L) ∗mn,GPS(L)], (24)

mn,DST (N) = K ∗ [mn,IMU(N) ∗mn,GPS(N)], (25)

where K, the normalizing constant, was calculated by (7). Because no mass was

assigned to θ, the degrees of belief are equal to their probability masses. Note each

mass above consists of three values for latitude, longitude, and altitude. The same is

true for σ∗n and µ∗n. So σ∗n = (σn,lat, σn,lon, σn,alt), and µ∗n = (µn,lat, µn,lon, µn,alt).

For the real-time results, the parameter σ∗n for the mass functions varied de-

pending on the coordinate and the IMU n. In both mn,IMU(L) and mn,GPS(L), σn,lat

and σn,lon were set equal to σIMU1,n and σIMU2,n, respectively. For the GPS mass,

σn,alt was equal to σGPS3,n. Then σn,alt for the IMU mass changed depending on the

IMU n. These values are shown in Table 16. Recall the GPS variance for altitude was

much larger than the IMU. Since altn,GPS and altn,GPS differed more for n ≥ 22793,

a larger value was required.

68



Table 16: σn,alt

n mn,IMU

n < 21163 σIMU3,n

21163 ≤ n < 22793 100 ∗ σIMU3,n

n ≥ 22793 σGPS3

Then σ∗n for mn,DST was calculated by (10) from Chapter III. For latitude, the

two inputs were σIMU1,n and σGPS1, and for longitude, the inputs were σIMU2,n and

σGPS2,n. For altitude, the inputs were the values for mn,IMU from Table 16 and σGPS3.

Next µ∗n for the real-time results was determined by locn,GPS and locn,IMU .

Each µ∗n was the same in all three probability masses: mn,IMU , mn,GPS, and mn,DST .

Recall µ∗n = (µn,lat, µn,lon, µn,alt). Then µn,j = A ∗ jn,IMU + B ∗ jn,GPS, where j is the

coordinate. Table 17 shows the values for A and B. Notice that when the GPS signal

was determined to be weak, µn,j was adjusted to give a greater weight on the IMU

location.

Table 17: A & B for µn,j

n ≤ 8074 n > 8074

j GPS signal A B A B

lat
normal 0.5 0.5 0.5 0.5
weak 0.8∗ 0.2 0.7 0.3

lon
normal 0.5 0.5 0.5 0.5
weak 0.8∗ 0.2 0.7 0.3

alt
normal 0.5 0.5 0.6 0.4
weak 0.7 0.3 0.7 0.3

There are several things to note about these calculations. In Table 17, 0.8∗

indicates that the IMU location is not the updated one but rather latn,IMUb and

lonn,IMUb. Also after reacquiring GPS connection, first five ‘weak’ points were between

IMU n = 21163 and n = 21203. Finally, for the weak signals where n > 8074, the

altn,IMU was not updated. So if |altn,IMUb − altn,GPS| > 2.5, altn,IMU was calculated

by

altn,IMU = altn−1,IMUb + ∆altn,IMU
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not by (21).

The post-collection results had similar values for σ∗n and µ∗n to the previous. Yet

because many locn,GPS that had poor readings were eliminated, less changes in these

parameters were needed. Still σn,lat and σn,lon remained the same as before. For the

altitude when n < 22793, the IMU’s σn,alt equaled 10 ∗ σIMU3,n, and all others for

both GPS and IMU equaled σGPS3. The final mass’s σ∗n was again calculated by (10)

with the inputs of the GPS and the IMU variances. Then µ∗n was the average of the

GPS and the updated IMU measurements except for n ≤ 8074. Here µn,lat and µn,lon

were calculated the same as the real-time results.

Like the total probability masses in Chapter III, several mn,DST (L) were equal

to zero or one. So like (16), mn,DST (L) was again modified by adding or subtracting

10−16 if it equaled zero or one, respectively. This modification fixed any locn,DST that

were infinite or undefined.

Finally, after determining locn−1,DST , locn,IMU was updated. The results are

shown in Section 4.4. Note that the true latitude, longitude, and altitude of the cart

path are unknown. So there was no way to determine the accuracy of these results.

The map in Figure 59 did, however, provide a rough estimate.

4.4 Results

The following figures show the results of applying the Dempster-Shafer Method

to the data from the GPS and the IMU sensors. Again the true location is unknown.

We first examined the real-time results and then the post-collection results. Last we

looked at the results where the second GPS outage occurred.

Note that the IMU indicated in the figures is locn,IMUb. The updated IMU was

very similar to locn,DST and, thus, not shown in the plots. Also where locn,DST (green

line) on the plots cannot be seen, it is almost equal to locn,GPS (red line). At these

points, the green line is under the red.
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Figure 64 shows the latitude for the two sensors and the combined given the

real-time fusion. In the first part, the DST locations were continuous, instead of

jumping like the GPS did. Then latn,DST was slightly greater than latn,IMUb because

latn,GPS was taken into account. Around t = 417780, latn,DST had another small

increase above latn,IMUb. Notice the last GPS outputs had a large jump at the end.

This caused the increase in latn,DST . The effect can be seen better in Figure 66,

discussed later. Then once the GPS signal is lost, the DST locations ran parallel to

the IMU. As the signal was reacquired, latn,DST jumped around similar to but not

as extreme as latn,GPS. Next latn,DST smoothed out as the GPS signal did. Finally

at the end, the latitude for the DST was slightly less than the GPS as latn,IMU was

accounted for, as well.
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Figure 64: Latitude

The longitude results are shown in Figure 65. Since lonn,GPS and lonn,IMUb had

similar trends as the latitude, the results for the longitude did, too. Again where the

GPS signal was weak, lonn,DST did not show large jumps. The combined locations

were between lonn,IMUb and lonn,GPS. However, where lonn,GPS drifted further and

jumped around, lonn,DST was slightly closer to lonn,IMUb. Then at the same t that

the latitude had a small increase, lonn,DST had a small decrease. Again lonn,GPS had

two large decreases, making the DST value smaller. Next, lonn,DST ran parallel to
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lonn,IMUb until the GPS signal was reacquired. At this time, we saw the same series of

jumps for the DST as before. Once the GPS locations settled, lonn,DST and lonn,GPS

followed very closely to one another. However, lonn,DST is smaller. Notice unlike the

latitude, the GPS and the IMU were almost exactly parallel. Had the IMU not angled

up, the two would have likely overlapped. This can also be seen in Figure 66.
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Figure 65: Longitude

In Figure 66, we saw the same results as the previous plots, just now in relation

to the cart path. Recall around t = 417780 where latn,DST had an increase and

lonn,DST had a decrease. These coincide with the bottom left of the plot. Notice

the DST results extended past the IMU. This placed them closer to the actual path.

Then if the IMU had produced a 90o angle instead of a 45o, the DST results would

have likely connected at the left end of the values as the GPS signal was reacquired.

This would be similar to what we saw in the post-collection results.

Finally, Figure 67 shows the altitude for the two sensors and the DST. Clearly

at most of the n’s, altn,GPS did not produce good locations and had significant jumps.

However before t = 147750, both sensors had usable results. Here altn,DST was be-

tween the GPS and the IMU and then slightly above. As altn,GPS made large jumps,

and the signal was completely lost, altn,DST was solely determined by altn,IMU . Thus,

like the other coordinates, altn,DST ran parallel to the IMU outputs. Again for the
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Figure 66: Longitude vs. Latitude

latter part, altn,GPS jumped around before settling. The first five points had fairly

large jumps. These were the same points that did so in the latitude and longitude.

After these points, altn,DST fell between the GPS and the IMU. Instead of the pattern

of the GPS output, the DST results were reasonably continuous. Finally, after t =

417935, altn,GPS smoothed out, and altn,DST was similar but slightly less than the

GPS measurement. Notice how the GPS and IMU began to converge at the end. Had

the data collection continued, these values may had aligned.
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Figure 67: Altitude
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Figures 68 - 71 show the results for the post-collection. Because we had esti-

mated GPS data, we were able to apply the DST over the large outage. Also locn,IMU

was updated where previously it was not. For the latitude and the longitude, changes

only occurred over this outage. So instead of running parallel to locn,IMUb, the com-

bined made nearly continuous and direct path to locations as the cart exited the

building. In both coordinates, there was a slightly jump at the beginning. This is

best seen in Figure 70. Recall from Figure 66 the DST values extended past the

IMU once combined with the last GPS measurement before the outage. This jump

was a result of having new GPS measurements. Although it’s difficult to see in the

plots, locn,DST was not equal to locn,GPS over the outage. The combined latitude was

slightly less than the GPS, and the combined longitude was slightly more.
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Figure 68: Post - Latitude
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Figure 69: Post - Longitude
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Figure 70: Post - Longitude vs. Latitude

Because of the greater fluctuations in its measurements, the results for the alti-

tude differed more than the other coordinates. As about half of the GPS data before

and after the outage was rather unreliable, the post-collection results disregarded

these measurements. In this result, altn,DST followed more closely to altn,GPS at the

beginning. Then when altn,GPS was estimated, altn,DST ran slightly above the esti-

mates. Notice the small changes in altn,DST that correspond to the changes in the

IMU. The remaining altn,DST at the end were the same as before.
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Figure 71: Post - Altitude

Figures 72 - 74 show the results of the DST when the GPS had a short outage.

Between t = 417943 and 417944, the GPS briefly lost its connection. So locn,DST was

determined solely by locn,IMU . Note that in each figure the side axes for the two plots

are not the same. For all of the coordinates, the slope of locn,DST obvious matched

that of the IMU. Then as soon as the GPS signal returned, and the IMU was updated

with more accurate data, the points were again closely aligned with locn,GPS. Since

the slopes of lonn,GPS and lonn,IMU were practically identical, it was almost impossible

to tell if an outage occurred. Unfortunately the same was not true for latitude and

altitude. For these, there was a slight jump as the GPS outputs returned.
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Figure 72: Latitude Outage
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Figure 73: Longitude Outage
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Figure 74: Altitude Outage

4.5 Summary

With data from the GPS and the IMU sensors, we obtained the cart’s location

first in real-time and then after all the data was collected. For the real-time, the

Dempster-Shafer Method produced positive results. Even during the outages we had

slight improvements over the measurements of the single sensor. Then by completing

the post-collection analysis, we were able to more accurately determine the true path

that the cart traveled. Again these results can be used to repeat the same route if

necessary, to further refine the calculations, or to modify the sensors.
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Therefore by not making any assumptions about the two sensor models and with

no prior information, we were able to combine the location data from a multi-sensor

unit for a more precise determination of the cart’s location. The Dempster-Shafer

Method allowed us to assign evidence to probability mass functions. Then for different

situations, such as a weak GPS signal, we were able to easily make modifications to

these functions for better results. Because there was no true data, it was difficult to

determine the accuracy of these results. However, with Figure 59 we saw improved

results from locn,DST , thus, indicating another area where the DST was effectively

applied.
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V. Gait Analysis

5.1 Introduction

Gait means “a manner of walking or moving on foot” [16]. Gait analysis is the

“evaluation of the manner or style of walking, usually done by observing the individual

walking naturally in a straight line” [17]. Figure 75 shows the gait cycle, also known

as a stride [18]. Everyone has a slightly different gait; however, a person’s gait can still

tell you a lot about him. For medical purposes, it can indicate an illness or injury. In

athletics, people are able to improve their running by studying their gait[11]. Recently

gait analysis has been used for identification purposes. The gait characteristics of a

suspect can be compared to that of an unrecognizable criminal caught on camera [38].

Gait analysis is also being used to identify people with concealed weapons, such as

potential suicide bombers. A person who appears to be heavy but is not will have a

different gait than a person who is actually heavy [15].

Figure 75: Gait Cycle

Many different factors and parameters are involved in gait analysis. They in-

clude cadence, stride length, step length, joint angles (hip, knee, ankle), speed, and

ground contact time [11; 27]. These measurements are easy to obtain because they

can be made through observational analysis, either by a camera or an observer.

In the following two examples, the DST and gait analysis combined will be

used to make decisions about individuals. Because this theory does not require prior

knowledge, it is an advantage to use. By merely observing individuals, we can come

to conclusions without having to obtain or assume any other information about them.

We do, however, rely on the expertise of the observer to make the probability mass

functions. The first example has two specialists determining if a runner will match
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his previous run time after an injury. In the other, observers decide on the source of

a patient’s pain.

These examples focused on four factors: speed, step length, ground contact

time, and ankle angle. Note that while many of these factors work in conjunction, we

choose to only focus on their individual impacts. Speed is distance divided by time

with the focus on cadence. Step length is “the distance from the initial contact of one

foot to initial contact of the opposite foot” [11, 9]. An illustration of step length is

shown in Figure 76 [20]. The average adult has a step length of 2.3 feet [42]; however,

person running can have a step length upwards of 3.85 feet [32]. Ground contact time

Figure 76: Step Length

is the amount of time that foot is in contact with the ground from heel strike to toe

lift off, shown in Figure 77 [12]. By decreasing contact time, runners can increase

their cadence and, thus, speed. Sprinters have ground contact times as small as 0.09

sec [64], but most runners are between 0.09-0.22 sec [32]. Finally, the ankle angle is

Figure 77: Ground Contact Time

the measure of degrees when the ankle is rotated up and down. When standing with

legs perpendicular, 90◦, to the floor, the ankle angle is at zero. Figure 78 illustrates

this measurement [36]. When the foot strikes the ground, the ankle is extended down

and then rotates up until the foot lifts off. When running the ankle will usually rotate
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from -4◦ to 20◦; walking from -8◦ to 14◦ [27]. The proper angles of strike and lift off

allow the body to better absorb the force of impact [11].

Figure 78: Ankle Angle

5.2 Injured Runners

Two athletic specialists were trying to determine if a runner, who recently had

a knee injury, would match his 1.5 mile run time from the previous year. The propo-

sitions are then Yes (Y) and No (N). Thus, the frame of discernment is θ = {Y,N},

and the power set is 2θ = {∅, Y,N, Y ∪N}. The specialists decided to consider three

factors: step length, ground contact time, and ankle angle. For the last two, mea-

surements were only taken on the same leg that the knee injury occurred. For each

factor, they calculated the percent change from the previous year. Let l1, t1, (a1,s, a1,l)

be last year’s measurements for length, time, and angle and l2, t2, (a2,s, a2,l) be this

year’s, where ai,s is the angle at strike and ai,l at lift. Then the percent changes were

calculated by the following:

∆l =
l1 − l2
l1

,

∆t =
|t1 − t2|
t1

, &

∆a =

√
(a1,s − a2,s)2 + (a1,l − a2,l)2

a21,s + a21,l
.
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Based on their expertise, they assigned evidence to each proposition. Because

they were not 100% certain, some of the evidence was assigned to θ, i.e. ignorance.

For step length, they gave the following the probability masses:

mA,l(Y,N, θ) =



(0.90, 0.05, 0.05), if ∆l ≤ 0

(0.80, 0.15, 0.05), if 0 < ∆l ≤ 0.20

(0.50, 0.45, 0.05), if 0.20 < ∆l ≤ 0.40

(0.40, 0.55, 0.05), if ∆l > 0.40

&

mB,l(Y,N, θ) =



(0.90, 0.04, 0.06), if ∆l ≤ 0

(0.70, 0.24, 0.06), if 0 < ∆l ≤ 0.20

(0.45, 0.49, 0.06), if 0.20 < ∆l ≤ 0.40

(0.30, 0.64, 0.06), if ∆l > 0.40.

For ground contact time, the probability masses are

mA,t(Y,N, θ) =



(0.85, 0.05, 0.10), if if ∆t = 0

(0.65, 0.25, 0.10), if 0 < ∆t ≤ 0.25

(0.50, 0.40, 0.10), if 0.25 < ∆t ≤ 0.50

(0.35, 0.55, 0.10), if ∆t > 0.50

&

mB,t(Y,N, θ) =



(0.90, 0.02, 0.08), if ∆t = 0

(0.70, 0.22, 0.08), if 0 < ∆t ≤ 0.25

(0.45, 0.47, 0.08), if 0.25 < ∆t ≤ 0.50

(0.30, 0.62, 0.08), if ∆t > 0.50.
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Finally for ankle angle, the probability masses are

mA,a(Y,N, θ) =


(0.92, 0.04, 0.04), if ∆a ≤ 0.05

(0.70, 0.26, 0.04), if 0.05 < ∆a ≤ 0.15

(0.48, 0.48, 0.04), if ∆a > 0.15

&

mB,a(Y,N, θ) =


(0.90, 0.03, 0.07), if ∆ ≤ 0.05

(0.75, 0.18, 0.07), if 0.05 < ∆a ≤ 0.15

(0.45, 0.48, 0.07), if ∆a > 0.15.

Note these probability mass assignments were determined based on information from

[25; 27; 33].

Again the expertise of the specialists is not prior knowledge. However, anything

known about the runners beyond the percent changes is. For instance, Specialist A

has prior knowledge if he knows that Runner X injured his knee several years before

and then did not met his previous run time.

Using MATLAB, we generated random values between 0 and 1 for the length’s

and the contact time’s percent changes for 15 runners. For the ankle angle’s change,

values were generated between 0 and 0.50 since the ankle can only rotate a set number

of degrees. The percent changes are shown in Figure 18.

With these percent changes, we first determined whether the runner would at

least match his time based on the individual factors. In other words, we combined

the evidence from each specialist for step length, contact time, and ankle angle. Then

we combined these three results for a final decision whether the runner’s time would

decrease based on all of the factors. Each decision was made by selecting the proposi-

tion with the largest probability mass (degree of belief). The results are in Table 19.

‘Combined’ indicates the combination of the three factors and, thus, the final result.
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Table 18: % Changes

FACTOR

RUNNER Length Time Angle

1 0.8147 0.9058 0.1270

2 0.9134 0.6324 0.0975

3 0.2785 0.5469 0.1576

4 0.9706 0.9572 0.3854

5 0.8003 0.1419 0.2218

6 0.9157 0.7922 0.0357

7 0.8491 0.9340 0.1922

8 0.6555 0.1712 0.0318

9 0.2769 0.0462 0.0971

10 0.8235 0.6948 0.1171

11 0.9502 0.0344 0.4387

12 0.3816 0.7655 0.1369

13 0.4898 0.4456 0.2760

14 0.6797 0.6551 0.1626

15 0.1190 0.4984 0.1404

Table 19: Will the Runner Match His Time?

FACTOR

RUNNER Length Time Angle Combined

1 NO NO YES YES

2 NO NO YES YES

3 YES NO NO NO

4 NO NO NO NO

5 NO YES NO YES

6 NO NO YES YES

7 NO NO NO NO

8 NO YES YES YES

9 YES YES YES YES

10 NO NO YES YES

11 NO YES NO YES

12 YES NO YES YES

13 NO YES NO NO

14 NO NO NO NO

15 YES YES YES YES

Figures 79 and 80 show the probability masses for the four results. Because the

probability masses were based on a range of percentages, some of the runners had
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the same probability mass for one or more of the factors. Notice some of the masses

clearly indicated Yes or No. Runner 8’s mt(Y ) was greater than 0.80. However, others

were less conclusive. These masses for Yes and No were almost equal. For instance,

ma(Y ) = 0.49 and ma(N) = 0.51 for Runner 4.
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Figure 79: Probability Masses

Notice the Combined conclusions for runners 1, 2, 5, 6, 10, and 11 in Table

19. Although two of the three factors indicated that they would not match their run

times, the Combined results showed that they would. Looking at their probability

masses, we can see why. For Runners 1, 2, and 10, the ankle angle mass for Yes was
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Figure 80: Probability Masses (cont.)

very high, approximately 0.90. Yet the length and time masses for No were only near

0.70. Then the final decisions came out very close with m(Y,N) ≈ (0.60, 0.40). For

Runners 5 and 11, the Combined masses were not as close but still close. In this case,

ma(N) was slightly greater than ma(Y ). Then we had the length’s mass strongly

concluding No and the time’s strongly concluding Yes. Since mt(Y ) > ml(Y ), the

Combined concluded Yes. Finally, Runner 6’s Combined probability mass was very

conclusive for Yes, m(Y ) = 0.95. Clearly this result was heavily impacted by the

ankle angle. As the chart shows, ma(Y ) ≈ 0.99. The masses for the other factors

were around 0.30. Thus, in combining the three, the probability mass for Yes came

out much stronger than for the previous runners.

As outlined in Section 2.1, degrees of belief and plausibility define uncertainty

intervals. Because evidence was assigned to ignorance, the length of this interval was

not zero. We had a small “freedom of motion.” Then for each factor and the Com-

bined, Belx(bi) = mx(bi) and Plx(bi) = mx(bi) +mx(θ) for bi ∈ 2θ. Thus mx(θ) is the

length. For example, mt(Y, θ) = (0.8185, 0.014815) for Runner 5. So its uncertainty
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interval was [Belt(Y ), P lt(Y )] = [0.8185, 0.833315]. Similarly the Combined interval

for No was [Bel(N), P l(N)] = [0.3739, 0.373902]. The ignorance or the length of each

interval is shown in Table 20. Notice as more evidence was combined, the ignorance

decreased. In other words, mx(θ) was smaller than mA,x(θ) and mB,x(θ), but m(θ)

was the smallest.

Table 20: Ignorance

RUNNER ml (θ) mt(θ) ma(θ) m(θ)

1 0.005181 0.016260 0.004124 0.00000253

2 0.005181 0.016260 0.004124 0.00000253

3 0.005430 0.016260 0.005058 0.00000173

4 0.005181 0.016260 0.005058 0.00000141

5 0.005181 0.014815 0.005058 0.00000213

6 0.005181 0.016260 0.002990 0.00000263

7 0.005181 0.016260 0.005058 0.00000141

8 0.005181 0.014815 0.002990 0.00000099

9 0.005430 0.014815 0.004124 0.00000085

10 0.005181 0.016260 0.004124 0.00000253

11 0.005181 0.014815 0.005058 0.00000213

12 0.005430 0.016260 0.004124 0.00000195

13 0.005181 0.016667 0.005058 0.00000183

14 0.005181 0.016260 0.005058 0.00000141

15 0.004267 0.016667 0.004124 0.00000059

Discussed in Section 2.3, when the degrees of conflict are high, Dempster’s Rule

can produce the wrong conclusion. To make sure this did not occur, we shifted focus

onto the degrees of conflict for each runner. Figure 81 shows the degrees for each

factor and the Combined. Since the probability mass for the Combined was the result

of combining three masses (ml ,mt,ma), Dempster’s Rule was applied twice. Thus,

its degree of conflict was the average of the degrees from the two applications. For

the individual factors, the degrees were all below 0.50. The Combined degrees were

all below 0.61, also an acceptable value. For the six runners previously mentioned,

their degrees of conflict were slightly larger than the others, but nothing extreme that

would lead to the wrong result. For instance, Runner 10 had a Combined degree of
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conflict of 0.59 while Run 3’s degree was 0.49. Therefore, there is no concern that the

degrees of conflict adversely affected the final conclusions.
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Figure 81: Degrees of Conflict

Thus without concern for problems with the degrees of conflict, we have an

accurate method to combine the evidence given by the specialists. Through mere

observation and not relying on other information about the runners, we were able to

conclude whether these runners would meet their previous run times.
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5.3 Diagnosis & Degrees of Conflict

Two observers decided to use gait analysis to diagnose the source of a physical

pain. Each observer had two different basic probability assignments. The first version

is denoted LOW, and the second HIGH. One resulted in an accurate conclusion; the

other incorrect. Using these two assignments, we illustrate the major criticism of the

DST, discussed in Section 2.3. As the degree of conflict increases, there’s a greater

chance that Dempster’s Rule will produce an incorrect result.

After watching a group of people over a certain time period, two observers

were attempting to diagnosis whether a person is having back (B), knee (K), or

ankle (A) pain. So the frame of discernment is θ = {B,K,A}, and the power set is

2θ = {∅, B,K,A,B ∪K,B ∪ A,K ∪ A,B ∪K ∪ A}. Because a problem with one of

these usually affects the other two, the observers were looking for the root cause and

excluded any interactions. That is, each pain was treated as mutually exclusive.

The observers considered the following factors: walking speed, step length,

ground contact time, and ankle angle. The latter two were again measured on the

problem leg. Unlike in Section 5.2, the observers were only looking for any change

that occurred by more than 10% within these factors, not how much it changed.

In the LOW version, Observer A assigned each factor the following probability

masses:

mA(B,K,A, θ) =



(0.33, 0.33, 0.33, 0.01), if speed changes

(0.85, 0, 0.05, 0.10), if length changes

(0.15, 0.75, 0, 0.10), if time changes

(0, 0.10, 0.80, 0.10), if angle changes.
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Observer B disagreed slightly to the other observer’s masses and used the following

assignments:

mB(B,K,A, θ) =



(0.34, 0.32, 0.33, 0.01), if speed changes

(0.85, 0.10, 0, 0.05), if length changes

(0, 0.80, 0.10, 0.10), if time changes

(0.15, 0, 0.80, 0.05), if angle changes.

Note both observers assigned evidence to ignorance. Also the four masses from each

observer do not have much agreement, but there is more agreement between the

observers. This impacted the degrees of conflict, discussed later.

The probability masses were based on personal experience and slightly manip-

ulated to fix the context of the example. With more expertise, these masses can be

improved.

As noted in Section 5.2, no prior knowledge is required for these probability

masses. For example, one of the observers knowing that a patient has reoccurring

back problems is prior knowledge. We assumed that the observers’ contact with the

patients was limited to watching them walk.

Requiring at least two types of changes to occur, there are eleven different

combinations possible to make a diagnosis. For these combinations, (X1, X2, X3, X4)

means a change in (speed, length, time, angle) when Xi = 1 and no change when Xi

= 0. Figure 82 shows probability masses for the diagnoses from each observer and

the Combined. ‘Combined’ refers to the orthogonal sum of the probability masses of

Observers A and B. The diagnosis was determined by selecting the proposition with

the largest probability mass (degree of belief).
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Figure 82: LOW Probability Masses

Each observer was strongly in favor of one source in almost every case. In

other words for each observer, the largest probability mass was greater than 0.50 and
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was at least 0.10 higher than the other two masses. In (0,1,0,1), mA(B,K,A) ≈

(0.38, 0.04, 0.53). The exceptions were (0,1,1,1) and (1,1,1,1). For these, mA(B) was

still greater than mA(K) and mA(A) by more than 0.10, but it was not greater than

0.50. These two cases made having the second observer more important.

However, in more than half of the combinations, the observers’ conclusions did

not agree. In (0,0,1,1), Observer A concluded Knee as the source of pain, but Observer

B concluded Ankle. Notice, in these cases, the proposition with the largest mass for

one observer was the proposition with the second largest for the other. Then this

second largest mass was at least 0.30 if this largest mass was greater than the other

largest mass. This is best illustrated in an example. In (1,1,1,0), mA(B) = 0.70 >

mB(K) = 0.56, but mB(B) = 0.40. Because of these two factors, the Combined

resulted in the source of pain that had the largest overall mass between the two

observers. In (1,1,1,0), mA(B) = 0.70 was the largest between the observers, so in

the Combined, m(B) = 0.66 was largest. Therefore, while one observer did not agree

with the conclusion of the other, he still gave approximately one third of the evidence

in support of the other’s conclusion. Also this other gave more evidence in support

of his conclusion than the first.

Finally, much like each observer, the Combined probability masses showed

strong evidence in favor of only one proposition. In every combination, the largest

mass was greater than 0.65. In three cases, the largest mass was above 0.90. Based on

all of these conclusions, the resulting sources of pain seemed to have strong evidence

in favor of them, and there was little to suggest that conflict was an issue. Still we

looked into the degrees of conflict later in this section.

Then the observers decided to modify their probability assignments. In this

version, there were similar disagreements between the four masses, but there was

much less agreement between the observers. However, each was still confident in his

decision, and both observers assigned the same amount of evidence to ignorance. So
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for HIGH, Observer A’s basic probability assignment became:

mA(B,K,A, θ) =



(0.33, 0.33, 0.33, 0.01), if speed changes

(0.05, 0, 0.85, 0.10), if length changes

(0.75, 0.15, 0, 0.10), if time changes

(0, 0.80, 0.10, 0.10), if angle changes.

And Observer B’s was then the following:

mB(B,K,A, θ) =



(0.34, 0.32, 0.33, 0.01), if speed changes

(0.10, 0.85, 0, 0.05), if length changes

(0, 0.10, 0.80, 0.10), if time changes

(0.80, 0, 0.15, 0.05), if angle changes.

Again requiring at least two types of changes to occur, there are eleven different

combinations possible to make a diagnosis. Figures 83 and 84 show the probability

masses for the diagnoses from each observer and the Combined.

Observer A Observer B COMBINED
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
R

O
B

A
B

IL
IT

Y
 M

A
S

S

 

 

BACK
KNEE
ANKLE

(0,0,1,1)

Observer A Observer B COMBINED
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
R

O
B

A
B

IL
IT

Y
 M

A
S

S

 

 

BACK
KNEE
ANKLE

(0,1,0,1)

Observer A Observer B COMBINED
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
R

O
B

A
B

IL
IT

Y
 M

A
S

S

 

 

BACK
KNEE
ANKLE

(0,1,1,0)

Figure 83: HIGH Probability Masses

Like the LOW version, each observer had strong evidence in favor of one source

in every case except in (0,1,1,1) and (1,1,1,1). The largest probability mass was

greater than 0.50 and was at least 0.10 higher than the other two masses. In (0,1,1,0),

mA(B,K,A) ≈ (0.51, 0.07, 0.38). However, in (0,1,1,1) and (1,1,1,1), the probability
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Figure 84: HIGH Probability Masses (cont.)

masses for both observers were closer together. While one mass was clearly larger than

the others, it was not greater than 0.50. Again having the second observer became

more important. Note that these were the same combinations that had this problem

in the LOW version.

A major change from LOW was that none of the observers’ conclusions agreed.

If A thought it was back pain, then B concluded knee or ankle. Also the propositions

with the second largest probability masses were always the same. For example in

(1,1,1,0), ankle pain had the second largest mass for Observers A and B, but the
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largest for Observers A and B was back and knee, respectively. Because of these two

factors, the Combined result had much less evidence in support of it and possibly

contradicted both observers’ conclusions.

For every case in the Combined results, the largest probability mass was at

most 0.55. In five of the eleven cases, the results were fairly inconclusive. In (0,1,1,0),

(1,0,1,0), and (1,1,1,0), the two largest masses were almost equal. For example in

(0,1,1,0), m(K,A) = (0.41, 0.40). In the other two, (0,1,1,1) and (1,1,1,1), each mass

was approximately one third of the total evidence.

In another four of the cases, the Combined results contradicted the observers’.

The concluded source of pain for the Combined was not the same as those of the

observers. In (0,0,1,1) Observer A concluded Knee, and Observer B concluded An-

kle. Yet the Combined concluded Back. Also the largest probability masses were

greater than 0.50 with the 2 smaller masses less than 0.30. For example in (0,1,0,1),

m(B,K,A) = (0.22, 0.51, 0.22).

In the last two cases, (1,0,0,1) and (1,1,0,0), the Combined conclusion came

out the same as Observer B’s with a mass greater than 0.50. However, Observer A

strongly concluded a different diagnosis with a mass greater than 0.75. Thus one

would assume that the Combined would come out fairly inconclusive, but obviously

from the figures it did not. Because of all of these results, we examined the degrees

of conflict.

In both versions, evidence was assigned to ignorance. So we again had uncer-

tainty intervals. Like Section 5.2, Belx(bi) = mx(bi), and Plx(bi) = mx(bi) + mx(θ)

for bi ∈ 2θ. For example, mA(A, θ) = (0.7512, 0.002463) for LOW (1,0,0,1). Then its

interval was [BelA(A), P lA(A)] = [0.7512, 0.753663]. Also the Combined interval for

Knee was [Bel(K), P l(K)] = [0.0122, 0.012205]. Table 21 shows the ignorance for

each case.

Notice some of the values are larger than others. For HIGH (0,1,0,1), mA(θ) =

0.036364 and for HIGH (1,1,1,0), mA(θ) = 0.001191. Also for LOW (0,1,1,0), m(θ) =
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Table 21: Ignorance

CASE VERSION mA(θ) mB(θ) m(θ)

(0, 0, 1, 1)
LOW 0.037736 0.022222 0.00214133
HIGH 0.032258 0.018868 0.00385356

(0, 1, 0, 1)
LOW 0.043478 0.011111 0.00108992
HIGH 0.036364 0.014085 0.00320000

(0, 1, 1, 0)
LOW 0.031496 0.022222 0.00151976
HIGH 0.043956 0.021739 0.00472255

(1, 0, 0, 1)
LOW 0.002463 0.001335 0.00000544
HIGH 0.002463 0.001312 0.00002527

(1, 0, 1, 0)
LOW 0.002463 0.002513 0.00001097
HIGH 0.002463 0.002469 0.00003827

(1, 1, 0, 0)
LOW 0.002463 0.001314 0.00000479
HIGH 0.002463 0.001368 0.00002737

(0, 1, 1, 1)
LOW 0.019139 0.007634 0.00038081
HIGH 0.019139 0.008264 0.00046680

(1, 0, 1, 1)
LOW 0.001034 0.000629 0.00000186
HIGH 0.000893 0.000531 0.00000327

(1, 1, 0, 1)
LOW 0.001179 0.000313 0.00000092
HIGH 0.000999 0.000398 0.00000277

(1, 1, 1, 0)
LOW 0.000873 0.000630 0.00000130
HIGH 0.001191 0.000626 0.00000408

(1, 1, 1, 1)
LOW 0.000543 0.000219 0.00000032
HIGH 0.000543 0.000238 0.00000040

0.00151976, but for LOW (1,1,1,1), m(θ) = 0.00000032. This was the result of two

factors. First, as more probability masses were combined, we reduced the uncertainty

from our data. Compare (0,0,1,1) and (0,1,1,1). For both the LOW and the HIGH

versions, mx(θ) decreased in (0,1,1,1). The other factor was the amount of ignorance.

If the speed changed, mx(θ) = 0.01. This mass combined with any other significantly

reduced the overall ignorance.

The degrees of conflict are shown in Figure 85. The degrees for the last five

combinations for Observers A and B were averages of the degrees from each application

of Dempster’s Rule. Again LOW indicates the first version and HIGH the second.

Notice that the degrees of conflict for Observers A and B were relatively the

same between LOW and HIGH. In both versions, 32 of the 44 degrees of conflict for
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Figure 85: Degrees of Conflict

both observers were greater than 0.70, but only three of 32 were above 0.80. The

remaining twelve were around 0.60. These values were somewhat expected as a result
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of probability mass assignments. Excluding the assignments for speed changes, the

others gave the majority of evidence to one proposition and a small amount to another.

Then for each type of change (length, time, and angle), the propositions that had

evidence also changed. For instance in the LOW version mA(B,K,A) = (0.85, 0, 0.05)

if the step length changed, but mA(B,K,A) = (0.15, 0.75, 0) if the ground contact

time changed. So the results we obtained were anticipated.

The degrees of conflict for the Combined were quite different. For the LOW

version, most of the degrees were below 0.60, but the largest was only 0.65. Recall,

though, all of the results had strong supporting evidence. For HIGH, the degrees of

conflict were much greater. In eight of eleven cases, the degrees were greater than

0.80, and in every case, the degrees were greater than those from LOW. In almost

all cases, the differences between LOW and HIGH were at least 0.20 but in (1,1,0,0)

the difference was 0.50. Yet in (0,1,1,1) and (1,1,1,1) the difference between the

degrees was less than 0.05. Recall for the HIGH version, these cases were somewhat

inconclusive; the probability masses for each pain were almost equal. Hence, as the

HIGH version illustrated, high degrees of conflict between probability masses result

in less supporting evidence and even incorrect conclusions.

Therefore the agreement between sources on how evidence is assigned clearly

has a significant impact on the final conclusions. When the sources output conflicting

information, Dempster’s Rule is more likely to result in incorrect decisions. This was

shown in the HIGH version. However, in cases where there’s slightly more agreement,

such as LOW, we can still obtain fast and accurate results through the Dempster-

Shafer fusion process.

5.4 Summary

The examples in this chapter illustrated how the DST can be used in conjunction

with gait analysis to make decisions about individuals. Through observation only we

concluded how a runner would performed after an injury compared to the previous

98



year and on a person’s source of pain by the change in his walk. Also because there

was some uncertainty, evidence was assigned to ignorance. Thus, uncertainty intervals

were produced, and we had “freedom of motion” for the probabilities. However, given

higher conflict, we had problems obtaining accurate results.
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VI. Conclusions

6.1 Summary

The Dempster-Shafer Theory is a data fusion method that assigns evidence

based on belief. With this idea, ignorance is not an issue. We can represent ignorance

by assigning evidence to m(θ) and can work with incomplete information. We are not

required to know prior information about the data we obtain. Also, no assumptions

have to be made, and the final results of the data fusion are not negatively influenced.

Using probability mass functions, evidence is assigned to belief. There is a lot

of latitude with these functions. As seen in this research, equations, such as (13), can

be used for large continuous or discrete data sets, where the parameters are change

to get the desired outcome. Simple assignments, such as those in Chapter V, work,

as well.

The DST does have problems as the degree of conflict approaches one. In some

cases, Dempster’s Rule produces incorrect results. Examples of this were shown in

Sections 2.3 and 5.3.

The Dempster-Shafer Method has applications in many fields with excellent

results. These include detection, recognition, classification, and decision-making. We

used this method to determine an object’s location and to make a conclusion about

the status of an individual. Both areas of application showed promising results.

In Chapter III, we generated sensor data to track an aircraft’s trajectory. Using

four approaches, we fused the position measurements from the two sensors. Then in

comparison to the Kalman filter, we had favorable results from the Dempster-Shafer

Method.

In Chapter IV, real sensor data from a GPS and an IMU was combined to find

the coordinates of a moving cart. By applying this method, we were able to more

accurately determine the cart’s path even when the GPS had outages.

Finally, after making a series of observations about individuals, evidence was

assigned to probability masses in Chapter V. Then Dempster’s Rule was used to
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combine multiple masses. From the results, we made decisions about whether injured

runners would meet their previous run times and the source of a patient’s pain. Also

because evidence was assigned to ignorance, we obtained uncertainty intervals. Thus,

the probability that each proposition was true was not exact but lied within a range.

Again in the second example, we showed what can happen with a high degree of

conflict.

Without making assumptions and without prior knowledge, we applied the DST

to combine evidence from multiple sources. Through this research we demonstrated

that the Dempster-Shafer Method provides a solid approach for multi-sensor fusion.

6.2 Future Work

The research presented here showed many encouraging results for the application

of the Dempster-Shafer Method. However, these results are still preliminary. Future

work is required. Recall the basic probability assignments are user-defined. Thus

with further research they can be modified to produce better results. Particularly

this is applicable to Case 4 Run 9 in Section 3.5.4 where this method did not provide

good positioning data. Further refinement on (11) is needed. Also Chapters IV and V

only have results from applying the DST. Additional fusion methods should be used

to determine how well the Dempster-Shafer Method performed. Next, in Chapter IV

due to the long outage of the GPS, determining the exact location of the cart was

difficult. Obtaining data from a third sensor, such as the imaging camera, would

allow a more in-depth analysis of this method’s performance. Finally, no real sensor

data was obtained for Chapter V. It is possible to place a single camera or multiple

cameras at different angles in a high traffic area and to gather a series of images for

analysis.
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