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Abstract 

 The employment of Small Unmanned Aerial Systems (SUAS) for reconnaissance and 

surveillance missions is a vital capability of the United States military. Cooperative control 

algorithms for SUAS can enable tactical multi-vehicle configurations for communications 

extension, intelligent navigation, and a multitude of other applications. Past research at AFIT 

has designed and simulated a cooperative rover-relay algorithm for extended communications 

and has investigated its implementation through various modem configurations. This research 

explores aerial networking options for implementing cooperative control and applies them to 

an actual SUAS.  Using Commercial Off-The-Shelf (COTS) hardware, a system was 

designed and flight tested to implement the rover-relay algorithm and provide a test bed 

system for future research in cooperative control. 

Two different modem configurations were designed and tested. The first modem 

configuration was demonstrated through a series of ground and flight tests to successfully 

relay autopilot commands and telemetry between a ground station and a rover aircraft 

through a relay aircraft. This configuration effectively doubles the effective range of the 

rover system to 1.2 miles, together with an algorithm that autonomously navigates the relay 

aircraft to an optimal location. Secondly, a mesh network was configured and tested. This 

configuration successfully relayed aircraft telemetry to the ground station from each vehicle 

in the network.  However, the network suffered from low throughput, which limited autopilot 

functionality, such as updating navigation waypoints to each aircraft. The results suggest the 

system be updated with more capable modems in a mesh configuration to broaden the 

possibilities for future research in cooperative applications.  
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AERIAL NETWORKING FOR THE IMPLEMENTATION OF COOPERATIVE 

CONTROL ON SMALL UNMANNED AERIAL SYSTEMS 

 

I.  Introduction 

 

1.1 Background 

Small Unmanned Aerial Systems (SUAS) have become integral to surveillance 

and reconnaissance missions in DoD Overseas Contingency Operations.  SUAS, 

compared with larger UAVs (Unmanned Aerial Vehicles) like the MQ-1 Predator and 

MQ-9 Raptor, are cheaper and more readily deployable within mobile ground units.  

SUAS such as the RQ-11 Raven are hand-launched and used for immediate short range 

surveillance.  The current configuration for these hand-launched SUAS is for a single 

operator to control waypoints and monitor real-time video relayed from the aircraft at a 

ground station – usually with a device resembling a laptop computer.  

 Cooperative control algorithms could be applied in these systems to employ 

multiple aircraft to accomplish more extensive surveillance missions without multiplying 

the number of ground stations and operators required.  In other words, a single operator 

could launch multiple aircraft and toggle between various cooperative settings such as 

flock, loiter, survey, relay, and so on.  These cooperative configurations could extend 

range, accomplish broader or more complex surveillance in less time, or provide multiple 

sensing capabilities to a single target.  The simplest of such cooperative control 

configurations is that of the rover-relay.  A relay aircraft can be employed to extend the 
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communication range of a rover vehicle while auto-navigating based on the location of 

the rover.  Figure 1 displays the employment of a rover-relay system to extend 

communications range to surveil a distant target. 

 

 

Figure 1: Rover-Relay Cooperative Algorithm [1] 

 

Unfortunately, current SUAS platforms do not have the systems architecture to 

accommodate such capabilities; they lack cross-UAV aerial networking and onboard data 

processing functions.  Meanwhile, the roles of SUAS and other UAVs are constantly 

expanding, and the potential benefits for extended range, enhanced communications 

capability, and cooperative control function are ever increasing.   

This chapter will discuss the problem the research intends to solve, the scope of 

the research, the assumptions made in approaching the research, and lastly, an overview 

of the rest of the thesis’ content.  
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1.2 Problem Statement 

This research will investigate a SUAS architecture that supports the 

implementation of cooperative control algorithms.  Past efforts at the Air Force Institute 

of Technology (AFIT) have already been accomplished toward exploring and designing 

cooperative control algorithms, as well as developing a communications relay using two 

UAVs.  This past research has been conducted using modified RQ-11 Raven aircraft, 

known as OWLs (Overhead Watch and Loiter), as a platform for design and test.  

However, as previously mentioned, the current OWL SUAS does not support a wireless 

aerial network, nor does it support onboard data processing or storage capability.  

Currently, all algorithms except the basic autopilot functions must be stored and executed 

at the ground station, which communicates directly with a single UAV.  This simple 

configuration limits the scope of what can accomplished with cooperative control, thus 

previous research has demonstrated cooperative control algorithms only through 

simulation.   

The primary research question of this thesis is the following: what small 

unmanned airborne system communications architecture supports cooperative control 

through a COTS hardware and software configuration?  The following questions support 

this larger question.   

 What autopilot chipset facilitates more design choices?  

 What autopilot and modem configuration supports a functional communications 

relay?   
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 What modem configuration provides an airborne mesh network with OWLs as 

nodes in the network?  

  If a mesh network can be established, what cooperative control algorithms can be 

employed operationally on the SUAS?  

It is likely that a wireless mesh networking architecture and onboard 

microprocessor would expand the current system to accommodate existing and 

unforeseen cooperative control capabilities, and that is precisely what this thesis is 

intended to explore. 

1.3 Scope 

The overall objective of this research is to demonstrate a system that supports a 

functioning communications relay between two aircraft and a ground station.  The 

secondary objectives are to establish a wireless mesh network between UAVs, as well as 

an onboard microprocessing capability.  This system would serve as an architecture to 

facilitate the future employment of cooperative control algorithms.  Therefore, it is not 

within the scope of this research to design cooperative control algorithms, but to explore 

a configuration that supports them.  The first step is to establish a functioning 

communication relay with two UAVs, in which a UAV closer to the ground station can 

relay commands to a more distant vehicle without interpreting the commands itself.  This 

objective is defined as the relay of command and telemetry communications between the 

autopilot system and the ground station, not to include video.  The second priority is to 

employ an existing rover-relay algorithm, which will result in an auto-positioning of the 

relay UAV based on the position of the rover, relay, and ground station, allowing the 
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pilot to control only the rover UAV and benefit from an extended range of the relayed 

signal through the relay aircraft.  The third priority is to transfer the rover-relay algorithm 

from the ground station onto a UAV-borne microprocessor. An on-aircraft 

microprocessing capability provides an architecture that supports expandability of 

different cooperative control algorithms.  The final research objective is to establish a 

functioning mesh network of UAVs that relays commands to particular aircraft, 

automatically relaying between aircraft with available communications.  Each of these 

objectives will be completed with either flight testing or ground testing to verify the 

design before progressing to the next objective.  Also, the system design will be recorded 

and updated with each change to map the overarching system and its many interfaces and 

functions. 

1.4 Assumptions 

The research of this thesis will be mostly conducted on the AFIT campus with 

hardware and software owned by the AFIT/ENV, the Department of Systems 

Engineering and Management.  A number of different autopilot chips, modems, 

airframes, and software applications have been used over the years by other students that 

remain at the disposal of the current OWL team.  The details of this hardware will be 

discussed in later chapters.  There also exists a limited budget for the purchase of new 

equipment.  An assumption of this research is that a configuration will be achieved using 

existing Commercial off the Shelf (COTS) hardware (autopilots, modems, and 

airframes).  The intent of this research is not to design a modem or an autopilot, but to 

configure a system capable of the functions previously mentioned.  Microprocessor 
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configuration, network design, and systems architecting are the skills to be utilized to 

achieve the research objectives. 

 Flight testing is a crucial part of the methodology for verifying the research 

objectives.  All flight testing was accomplished at Camp Atterbury, a small Army Post in 

Indiana, with the support of CESI (Cooperative Engineering Services, Incorporated), a 

contractor hired by AFIT to provide certified UAV pilots and hardware support necessary 

for flight testing.  Flight testing will be conducted professionally and methodically; flight 

plans will be written, approved, and followed to achieve test objectives and evaluate 

measures of effectiveness.  A Test Review Board/Safety Review Board (TRB/SRB) 

meeting will be conducted before each flight test to gain approval of the test objectives as 

well as safety procedures.  Each research objective will be verified with an operational 

flight test to validate the functionality of the design through quantitative mission 

objectives.  Once flight testing has been concluded, the success of the research can be 

measured by which objectives were successfully flown, as will be discussed further in 

Chapter 3.  However, flight testing is also a potential limitation of this research.  Camp 

Atterbury is notorious for scheduling complications, and it is particularly hard to fly 

during the late fall and winter seasons due to temperature, wind, and precipitation.  

Therefore, all flight testing should be concluded prior to the end of November.  This 

scheduling limitation condenses the initial research and design portion of this thesis.  The 

main limitation of the research in the initial design phase is COTS hardware availability 

and the lead time associated with purchasing new equipment. 
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1.5 Overview 

This thesis is comprised of background information, a systems approach to solve 

the problem, an evaluation of test data and quantitative findings, and finally, conclusions 

and recommendations for future research.  Chapter 2 provides the background 

information of the OWL SUAS architecture and hardware as well as a review of relevant 

operational topics, networking, and cooperative control literature.  Chapter 3 describes 

the analytical process, utilizing a systems architecture approach toward design and 

demonstration of the system.  Chapter 4 reviews the findings of the research and flight 

testing presented in Chapter 3.  The last section, Chapter 5, provides conclusions and 

possibilities for future research based on the overall results and accomplishments of the 

research.    
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II. Background 

2 TEST 

2.1 Chapter Overview 

Chapter 2 examines the problem in context with Air Force doctrine, reviews past 

OWL research at AFIT, and investigates both current technology and relevant theory.  

Section 2.2 discusses the motivation for this thesis in context with Air Force operational 

doctrine and current UAS programs and capabilities.  Section 2.3 discusses the 

objectives, accomplishments, and applied hardware configurations of previous OWL 

teams at AFIT, as well as the lessons learned and path forward for progressing OWL 

research in context with this thesis.  Section 2.4 explores alternative autopilot 

configurations for the research, and lastly, Section 2.5 examines past research relevant to 

the application of aerial and mesh networking in SUAS applications. 

2.2 Air Force SUAS Doctrine and Need 

The Air Force Doctrine Document 1 serves as the fundamental statement of basic 

doctrine for the USAF, and is maintained under the direction of the USAF Chief of Staff 

[2].  This document defines the first principal of war as “unity of command,” which 

carries the primary objective of “directing military operations toward a defined and 

attainable objective that contributes to strategic, operational, and tactical aims” [2].  This 

high level doctrinal statement defines strategic and tactical objectives as key factors to 

unity of command.  Surveillance and reconnaissance directly contribute to strategic and 

tactical objectives.  The document goes on to define surveillance and reconnaissance as 

one of the seventeen “key operational functions.”  It is also stated that doctrine is “about 



 

9 

effects…not platforms” and that “airmen should be concerned with the best means of 

employing intelligence, surveillance, and reconnaissance (ISR) capabilities, not whether a 

particular ISR platform is airborne or in orbit” [2].  Simply stated, there are many means 

within the USAF of accomplishing ISR, but different situations warrant different 

platforms.  ISR satellites and larger reconnaissance aircraft platforms are under constant 

demand and have limited availability in a time of war; therefore, 

“UAS have experienced explosive growth in recent history, providing one 

of the most in demand capabilities the USAF presents to the Joint Force. 

The attributes of persistence, efficiency, flexibility of mission, information 

collection … have repeatedly proven to be force multipliers 

across the spectrum of global Joint military operations” [3]. 

 

There are several SUAS employed by the United States armed forces to provide ISR, the 

most common platform being the RQ-11 Raven [4]. “Small UAS represent a profound 

technological advance in air warfare by providing situational awareness; the need for 

situational awareness and full-motion video dominates urgent requests from the field” 

[3].   

 The Office of Naval Research conducted a survey on accomplishments in UAV 

cooperative control, identifying aerial surveillance as the first of five major areas of 

active research.  They found that “a major un-resolved issue for collaborative unmanned 

aircraft is wireless communication with other cooperating aircraft. The aircraft to ground 

problem generally involves out of line-of-sight, long range communications” [5].  This 

deficiency is precisely the topic of this research. 
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2.3 The Overhead Watch and Loiter (OWL) SUAS 

The OWL was developed at AFIT as a test bed vehicle for research in 

surveillance and reconnaissance missions for SUAS.  The OWL vehicle is a 

deconstructed RQ-11 Raven airframe retrofitted with COTS internal components 

including an autopilot chipset, modem, GPS (Global Positioning Satellite) receiver, a DC 

motor, video transmitter, and lithium polymer batteries [1].  The OWL vehicle is 

displayed in Figure 2 below. 

 

 

Figure 2: OWL Testbed Aircraft 

 

The nose of the aircraft is detachable, and there are several nose configurations 

containing different cameras and sensors.  The aircraft has a wing span of 55 inches and a 

flight endurance of 20-25 minutes, powered by two 3-cell 2200mAh lithium polymer 

batteries.  The internal avionics bay of the OWL is pictured in Figure 3.  This past OWL 

configuration includes a Kestrel autopilot chipset and a Microhard modem. 
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Figure 3: OWL Avionics Bay [1] 

 

The airframe itself, including servo motors and control surfaces, is the only 

original Raven component remaining in the OWL.   

 Past research relevant to this thesis began with the development of a 

communications relay architecture by Lieutenant Matthew Seibert, which was intended to 

facilitate extended line of sight (LOS) communications [1].   In addition to the 

communications relay architecture, Seibert also examined theoretical network 

configurations for SUAS.  Following Seibert’s work, Captain Jeremy Boire developed a 

rover-relay algorithm to achieve autonomous routing of unmanned aerial vehicle relays to 

mimic optimal trajectories in real time.  Boire’s algorithm was validated in simulation, 

but never incorporated into a hardware implementation utilizing a communications relay 

configuration.  Boire wrote, “the research seeks to provide a foundation for further study 

and implementation of automated relay routing in future systems” [6]. 
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 The operational concept for the rover-relay OWL system developed in past 

research is displayed in the Figure 4 below. 

 

 

Figure 4: OWL Operational Concept, DODAF OV-1 [1] 

 

This figure depicts a single operator flying a rover-relay pair as well as an 

additional independent OWL rover, which are controlled from the flight test trailer. The 

trailer is equipped with communications equipment as well as a ground station laptop 

computer.  Prior OWL systems employ the Kestrel autopilot system and Virtual Cockpit 

software, which are products of Procerus Technologies [7].  The Kestrel autopilot 

requires a modem configuration in which the commbox (communications box, also 

referred to as a ground station) sends communications packets using a User Datagram 

Protocol (UDP) broadcast modem setting; the packets are then parsed by Kestrel 

autopilots within range to determine the packets’ intended agent [7].  The UDP packets 
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broadcasted by the Commbox are encrypted and use spread spectrum transmission 

(900MHz-920MHz).  The Kestrel autopilot firmware includes a proprietary decryption 

process to interpret incoming communications packets.  Therefore, it is not within the 

researcher’s capacity to decipher or generate communications data at any point in the 

system between the Commbox and the autopilot [7].  

 In the Kestrel communications configuration, the modem behaves simply as a 

relay to transmit and receive the encrypted serial stream of data [7].  Previous OWL 

researchers utilized a Digi XTend 900 modem in the aircraft and ground station [8].  

Seibert identified limitations of the Digi modem, and used Microhard modems during his 

research to design and test a communications relay configuration.  Seibert wrote that Digi 

modems set in repeater mode are not capable of forwarding and interpreting data 

simultaneously, whereas Microhard modems in relay mode are, in fact, capable of 

sending and receiving data simultaneously [1].  Seibert was able to demonstrate extended 

range of communications by utilizing two Microhard modems with one set in relay mode.  

However, later OWL researchers have been unable to successfully employ the Microhard 

relay in conjunction with the Kestrel autopilot system due to the encrypted addressing 

design used between Virtual Cockpit and the Kestrel autopilot.  The research recorded by 

Seibert and Boire in their theses, in theory, is directly relevant to this research, but the 

Kestrel-centered hardware configuration is not expandable into an operationally 

functioning rover-relay or mesh network due to the nature of Kestrel’s encrypted 

communications. The next section of this chapter discusses alternative configurations that 

better accommodate a relay configuration. 
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 In addition to the OWL platform, the researchers will be adding the Sig Rascal 

platform to the system.  The Sig Rascal is a commercially available aircraft with a 110in 

wingspan.  The aircraft can be flown with either a gas-powered or electric motor, and 

comes without servos, radio, or autopilot [9].  The Sig Rascal will be configured with 

identical autopilot and RC (Radio Controlled) hardware as the OWLs.  The gas-powered 

Sig Rascal aircraft is displayed in Figure 5. 

 

 

Figure 5: Gas-Powered Sig Rascal Aircraft 

 

The advantage to the Sig Rascal is a much longer flight endurance with a gas 

engine and also increased payload space for equipment.  The endurance of the gas-

powered Sig Rascal with 5v nickel-metal hydride batteries powering the electronic 

systems is estimated at 45 minutes. 
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2.4 Alternative Autopilot Systems 

The Ardupilot autopilot, manufactured by Sparkfun Electronics, is an open-source 

implementation of the Arduino microprocessor, fully user-programmable through the 

Arduino integrated development environment (IDE).  Where the Kestrel autopilot is 

driven by the Virtual Cockpit software application, the Ardupilot can be controlled by 

different software applications such as Mission Planner, HappyKillmore GCS, and 

QGroundControl, which are all independent software developments that utilize Google 

Earth for geo-positioning and graphical presentation. 

 The advantage of the Ardupilot for this research is the open design, 

programmable onboard microprocessor, unencrypted communications, and low cost; the 

Ardupilot card costs less than one fifth the cost of a Kestrel autopilot, and also has a 

much more widespread hobbyist community supporting it.  The Ardupilot has been 

proven to function with countless commercial and custom air vehicles as well as in 

harmony with different modems and RC equipment. 

 A traditional UAV command architecture fundamentally ties each aircraft to a 

ground station, with limited communication between aircraft, and with all computation 

(aside from autopilot functions) occurring at the ground station.  For multi-UAS 

missions, this means each UAS has its own corresponding ground station and operator.  

For multi-UAS missions, a networking capability combined with an on-aircraft 

microprocessing capability would provide expanded capability.   

 QGroundControl provides the capability of controlling and monitoring multiple 

aircraft through a single software application.  Also, QGroundControl has a fully open-
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source and build-from-source development package available for download on the 

internet.  QGroundControl uses the Qt framework for its development, which allows full 

customization of widgets and commands to the existing build [10]. 

2.5 Aerial Networking 

 Ad hoc air-to-air mesh networks have been discussed in past research, primarily 

with MUAV (micro unmanned aerial vehicle) aerial sensor networks [11] [12] [13] [14].  

In the article “Cognitive Agent Mobility for Aerial Sensor Networks,” Kai Daniel and 

others propose air-to-air links in an aerial network to “compensate connection losses of 

A2G (air to ground) links by means of relaying” [11].  These authors study the 

combination of sensor placement strategy with reliable communication networks, i.e. 

communication-aware mobility of an aerial network.  Networks of this nature can be 

analyzed by three key performance measures: spatial 3D coverage, receive signal strength 

indicator (RSSI), and the rate of connectivity loss [11].  The notion of communication-

aware aerial networks is a cross-discipline concept that merges control theory and 

network design. 

 For the purposes of this research, an ad-hoc aerial network is optimal to relay 

communications between the ground station and airborne vehicles.  Specifically, a mesh 

network topology supports the autonomous relay of data through any node in a network 

to its destination node.  For instance, in a general network a communication packet may 

originate at Node A with the destination of Node D as depicted in Figure 6. 
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Figure 6: Relay-Assisted Point to Point Communication Diagram [1] 

 

 In an ad-hoc or “mesh network” each node is a peer, rather than some being 

designated as repeater or end nodes.  When a communication packet is sent, it 

automatically relays across the network until it arrives at its destination node, as depicted 

in Figures 7-9 with a transmission originated at Node A and the destination at Node D. 

 

 

Figure 7: Mesh Network Transmission from Node A to Node D – Step 1 [1] 
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Figure 8: Mesh Network Transmission from Node A to Node D – Step 2 [1] 

 

 

Figure 9: Mesh Network Transmission from Node A to Node D – Step 3 [1] 
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In the history of mesh networking, there have been countless protocols developed 

to implement the routing process of traversing data across the network.  However, 

wireless mesh networking inherently creates limitations in data throughput and overall 

network capacity.  In their seminal article “The Capacity of Wireless Networks,” P. 

Gupta and P. R. Kumar state that one of the main deficiencies of multi-hop wireless 

networks is a reduction in total network capacity due to the interference between multiple 

simultaneous transmissions [13].  As the number of hops increases across a mesh 

network, performance sharply degrades.  When each node has an identical 

omnidirectional radio range, a two-hop transmission halves the throughput of a single-

hop transmission simply because only one of the two hops can be active at a time to 

avoid wireless interference [14].  Gupta and Kumar demonstrate that in a mesh network 

of n identical nodes, each with a data rate of W bits per second, the throughput per node, 

λ(n) is  

λ(n)=  
 

        
  

 bits per second.  This function assumes random communication pattern and node 

placement [13].  Furthermore, M.I.T. researchers in the article “Capacity of Ad Hoc 

Wireless Networks” write that “a common observation in analyses of ad hoc routing 

protocols is that capacity is the limiting factor; that is, the symptom of failure under stress 

is congestion losses” [12].  Jinyang Li and others expand on Gupta’s formula by testing 

actual 802.11 networks to measure the degradation in throughput as the number of nodes 
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in the mesh network is increased.  Unfortunately, the network capacity decreases sharply 

for a few nodes; the degradation levels off for about 10 nodes and greater. 

 

 

Figure 10: “Total Network Throughput Achieved as a Function of the Number of Competing Nodes. All 

Nodes are Within Each Others’ Radio Ranges, and all Nodes Send as Fast as 802.11 Allows” [12].  

 

Figure 10 exhibits that throughput degrades as the number of nodes is increased, 

with each node placed within range of each other.  Figure 11 is more applicable to this 

research, as it shows the throughput degradation of a mesh as nodes are increased, but 

arranged in a chain. 

Regarding the network configuration of the plot in Figure 11, Li and others note 

that the network approaches a utilization of 0.25 Mbps, which is 1/7 the maximum 

bandwidth, substantially less than the predicted 1/4 [12].   
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Figure 11: “Throughput Achieved Along a Chain of Nodes, as Function of the Chain Length. The Nodes 

are 200 Meters Apart. The First Node Originates Packets as Fast as 802.11 Allows, to be Forwarded Along 

the Chain to the Last Node. The Throughputs for Chains of 20 and 50 Nodes are the Same as for 10 Nodes” 

[12].  

 

This supports the fact that the degradation of bandwidth in a mesh network is 

potentially greater in implementation than simulation.  This effect is attributed to uneven 

bandwidth allocation between nodes by the chain scheduling logic of the network 

protocol and also to hopping interference between neighboring RTS (ready-to-send) and 

CTS (clear-to-send) packet transmissions [12]. 

With the low data rate (a maximum of 156 kbps) 900MHz radios used in this 

research, this problem of capacity loss in a mesh network configuration may prove 

problematic in routing aircraft telemetry and parameters between airborne vehicles and 

the ground station [15].   
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III. Methodology 

3 test 

3.1 Chapter Overview 

The methodology of this research consists of an iterative sequence of design and 

test to accomplish the research objectives.  Testing will directly validate each design 

objective, while analyzing the system performance.  Chapter 3 is divided into two main 

sections accordingly: Design and Test.  Section 3.2 describes the requirements of the 

system, the sequence of design, and how each phase is accomplished, to include a review 

of major design decisions.  Section 3.3 describes the test plan for the research, a test 

matrix that incorporates test objectives and parameters toward design validation, and a 

methodology of data collection and analysis.   

3.2 Design 

The basic requirements of the system to be designed and tested are the following: 

1. The system must be capable of navigating multiple aircraft through both autopilot 

commands and through radio control. 

2. The system must execute and track planned waypoint flight paths and be able to 

change the course of the flight path through wireless autopilot command. 

3. The system must be capable of relaying autopilot commands from one aircraft to 

another beyond direct LOS. 

4. The system must be able to accommodate the implementation of a rover-relay 

command algorithm, which will autonomously navigate the relay aircraft.   
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The design sequence of the research directly correlates to the research objectives of 

this thesis and the requirements derived from the objectives.  Specifically, the design 

sequence is as follows: 

1. Equip OWLs and Sig Rascal with Ardupilot autopilot and modem. 

2. Establish relay configuration between two modems. 

3. Implement rover-relay algorithm from ground station. 

4. Configure aircraft-to-aircraft mesh network between multiple systems (three or 

more). 

3.2.1 Step 1 

The first step of the design directly follows the decision to replace the Kestrel 

autopilot system of the OWL with the Ardupilot autopilot that was reviewed in the 

previous chapter.  Inserting the Ardupilot into the OWL system consists of hardware 

reconfiguration, establishing new autopilot control gains for the OWL, installing an 

alternative RC control system, and employing a new ground station software application 

at the ground station.  QGroundControl is the best suited ground station application for 

the research because it supports simultaneous control of multiple aircraft through a single 

ground station, where Mission Planner and HappyKillmore GCS do not.  However, 

Mission Planner is the most mature and functionally stable software application for 

Ardupilot.  At the time of this research, the 915MHz 3DR modem is the most popular 

option for hobbyists flying Ardupilot 2.0 configured vehicles through Mission Planner.  

Therefore, for the purposes of establishing a baseline Ardupilot-equipped system, the 

3DR modem will be used. 
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3.2.2 Step 2 

Step two of the design sequence involves selecting the optimal modem for the 

application of aerial networking and configuring multiple modems to provide a functional 

rover-relay relationship between two aircraft.  The ground station must be capable of 

controlling and monitoring the rover vehicle beyond direct LOS communications range, 

with the relay vehicle automatically forwarding communications packets between the 

rover and ground station, thus increasing the range of the system. 

3.2.3 Step 3 

The implementation of Capt Boire’s rover-relay algorithm at the ground station 

requires rewriting his code to receive telemetry data from two OWLs real-time, while 

calculating and transmitting new waypoints back to the relay OWL.  The computational 

core of the algorithm will be preserved, thus retaining coherence with his research.  This 

part of the research is to be accomplished in parallel with Lieutenant Timothy Shuck, a 

fellow AFIT/ENV Masters student.  Lieutenant Shuck has a Controls focus in his studies 

at AFIT, and has the primary research objective of implementing Capt Boire’s algorithm 

with the facilitation of the communications relay configured through the efforts of this 

thesis’ research. 

3.2.4 Step 4 

Step four is the most challenging design step; it involves configuring a mesh network 

between aircraft using the modems selected in Step 2.  The mesh network configuration 

must be capable of automatically relaying data between aircraft to an intended receiver.  

The addressee of relayed data can either be a particular aircraft or the ground station 
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itself.  In context to the rover-relay cooperative algorithm, the mesh network supports 

each aircraft as a potential relay or rover depending on their distance from the ground 

station.  The network will echo communications through the network in order to 

ultimately transmit communication to the intended recipient, which may or may not be 

outside the direct range of the ground station itself.  The routing protocol of the network 

may either be selected based on the optimal path for the small number of nodes and 

characteristics of this particular system, or it may be entirely determined by the modem 

selected. 

3.3 Test 

The test phase of the research validates and analyzes the design of the new OWL 

and Sig Rascal configurations.  Tests are to be accomplished through ground testing as 

well as flight testing.  The flight testing will occur at Camp Atterbury airfield with the 

support of CESI.  Each flight test will be preceded by a TRB/SRB in order to gain 

approval of safety procedures as well as the test objectives to be accomplished.  Ground 

testing will serve as validation of different design implementations to reduce risk of 

failure at flight test events.   

 

3.3.1 Flight Test 

The following test matrix summarizes the pass/fail objectives of each flight test 

mission. 
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Table 1: Flight Test Matrix 

Flight Test Test Objectives 

Flight Test #1 

1. Establish control gains for Ardupilot Mega in OWL and verify stable flight of 

vehicle 

2. Validate functionality of Mission Planner for single and multi-vehicle operation 

Flight Test #2 

1. Establish control gains for Ardupilot Mega in Sig Rascal and verify stable flight 

of vehicle 

2. Verify operability of QGroundControl 

3. Verify operability of communications relay in flight 

4. Determine direct communications range of autopilot system with current 

modems 

5. Verify operability of rover-relay algorithm implementation at the ground station 

Flight Test #3 1. Verify operability of rover-relay with mesh modem configuration 

 

 Flight test #1 has the primary objective of establishing control gains for the 

Ardupilot installed into the OWL airframe, and verifying stable flight with the 

programmed gains and parameters.  These gains can only be fully mapped during a live 

test flight by optimizing existing generic gains of a similar airframe.  Secondly, Flight 

test #1 has the objective of verifying the operation of Mission Planner in conjunction with 

the Ardupilot-configured OWLs.  This objective is meant to familiarize the researchers 

with the system as well as to unveil any limitations that may impede progress with the 

research objectives leading into Flight Test #2.  As such, this second objective also 

includes verifying the capability to fly two Ardupilot-equipped OWLs simultaneously 

using Mission Planner.  The flight test will first establish and verify gains with a single 
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aircraft, and then verify the functionality of Mission Planner with multiple aircraft in 

flight, using two ground stations. 

 Flight Test #2 has the first objective of establishing gains for the Ardupilot-

equipped Sig Rascal vehicle.  Secondly, QGroundControl will be tested with a single 

ground station and aircraft to verify the operability of the system using QGroundControl 

rather than Mission Planner.  Thirdly, Flight Test #2 verifies the operation of the 

communications relay in flight.  This will be verified by simply addressing commands for 

a specific OWL or Sig Rascal at the ground station and relaying them through a different 

relay vehicle, and then verifying that the rover vehicle responds to commands in flight 

without having direct communication with the ground station.  This flight test objective 

also serves as a means of collecting telemetry on the performance of the modems on the 

OWLs and the ground station as an initial characterization of the aerial network 

capability.  The fourth flight test objective is to determine the range of the system with a 

single ground station and a single vehicle in flight with the current modem configuration 

that is selected at this point in the design.  Lastly, the rover-relay algorithm at the ground 

station will be tested by flying two aircraft with the communications relay configuration 

to verify the operation of the autonomous rover-relay implementation.  This objective is 

successful if the relay vehicle auto-positions based on commands generated by the 

algorithm at the ground station, which determines the midpoint between the rover and the 

ground station. 

 Flight test #3 is the final flight test, which has the only objective of verifying the 

operation of the mesh network configuration, and testing its ability to accommodate the 
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rover-relay ground station implementation.  This objective will be flown exactly like the 

final objective of Flight Test #2; the mesh configuration should be a transparent 

replacement of the communications relay configuration. 

 

3.3.2 Ground Test 

 Ground tests conducted between each flight test validate the design before each 

flight test and also serve as a means for data collection.  The ground test objectives will 

be determined based on the course of progress in the design.   In other words, the ground 

tests will verify the operability of the specific design features of the system before each 

flight test.   

 The ground tests’ success is prerequisite to conducting the corresponding flight 

tests.  Thus, the ground test objectives shall mirror the flight test objectives.  The ground 

tests also serve as a means for additional data collection.  A ground test matrix will be 

documented in Chapter 4 with objectives that address the specific design preceding and 

following each flight test. 

 The data collected in the ground tests shall consist of the communications quality 

of each aircraft and ground station modem, the communication loss rate of each modem 

pair, and the data throughput of the network.  These data will be used in the next chapter 

to characterize the capabilities of the aerial communications relay as well as the mesh 

network in terms of range and bandwidth capabilities, and will also be used to analyze the 

performance capabilities of the rover-relay and future algorithms in the context of the 

network. 
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IV. Results 

4 Test 

4.1 Chapter Overview 

Chapter 4 of this research is divided chronologically following the sequence of 

design, ground testing, and flight testing that was accomplished during the course of the 

research.  Each section will discuss the qualitative findings of the corresponding phase of 

the research as well as document quantitative design and test results.  Figure 12 outlines 

the organization of Chapter 4. 

 

Section 4.6Section 4.5Section 4.4Section 4.3Section 4.2

Design Stage 1
Ground 
Testing

Flight Test #1 Design Stage 2 Flight Test #2 Design Stage 3

Sep 24-25 2012 Nov 5-7 2012

Ground 
Testing

Ground 
Testing

 

Figure 12: Organizational Flow of Chapter 4 

 

Section 4.6 concludes the Design and Testing phase of the results and captures the 

final design schematic.  Section 4.7 provides a summary of the overall testing results as 

discussed in the Methodology. 

4.2 Design Stage 1 and Ground Testing 

The baseline Ardupilot-equipped OWL design was accomplished after the initial 

design decisions were made to change from the Kestrel autopilot system to Ardupilot.  

This decision and design stage correspond with Step 1 of the Methodology.  The 
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researchers acquired COTS hardware to accomplish Step 1, including the Ardupilot Mega 

2.0 autopilots, 2200mAh 3-cell lithium polymer batteries, 3DR modems, FrSky RC 

receivers and Turnigy 9x controllers.  Two Sig Rascal aircraft, one electric and one gas-

powered, which were already available, were equipped with Ardupilot autopilot boards, 

but were not fully configured for flight prior to Flight Test #1 due to parts and contractor 

personnel availability.   The FrSky components make up the safety-pilot RC system, 

operating at 2.4 GHz. 

 

4.2.1 Owl Design 

The baseline Ardupilot-equipped OWL design is displayed in Figure 13 below. 
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Figure 13: Baseline Ardupilot OWL Vehicle Design 
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 Two 2200mAh 11.1v lithium polymer batteries wired in series provide power to 

the system.  On a fresh charge, the batteries operate at over 12v and discharge down to 

11v.  The batteries provide 24v to the speed controller, which powers the DC motor.  

Two different 5v voltage regulators in parallel provide 5v to the autopilot board, which 

powers the FrSky receiver, 3DR modem, GPS receiver, and servo motors. The 3DR 

modem is used for command of the autopilot through the ground station laptop.  The 

FrSky receiver provides a separate RC controlled safety pilot system, operating at 2.4 

GHz.  For the RC controller, the Turnigy 9x controller was modified to communicate 

through an FrSky 2.4 GHz module and was loaded with ER9x firmware.  Figure 14 

displays the customized safety pilot RC controller equipped with a 2.4GHz bi-directional 

antenna. 

 

 

Figure 14: Turnigy 9x RC Controller with FrSky Radio Module 
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4.2.2 Ground Station Design 

Lenovo Thinkpad laptops with Windows 7 64-bit operating system were used for 

the ground station using USB 3DR modems with 915MHz RPSMA antennas. Figure 15 

displays the design of the ground station, including all the interfaces and software 

protocols involved.   

 

Ground Station Laptop

3DR Modem

Ground Station Software
-Mission  Planner 

or
-QGroundControl

RS232 InterfaceUSB 2.0MAVLink 1.0

Aircraft

MAVLink 1.0

 

Figure 15: Ground Station Design with 3DR Modem 

 

4.2.3 Ground Testing 

The ground testing following Design Stage 1 consisted of firstly verifying the 

operability of the control surfaces of the OWLs after programming the RC control system 

to the appropriate servo motors of the aircraft.  Then, waypoints were loaded to the 

Ardupilot boards using Mission Planner and the OWLs were carried along the flight 

circuit on the ground to verify that the waypoints were being followed by the autopilot 

system.  The only way to verify this was to monitor the control surfaces of the aircraft to 
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confirm that the direction of the rudder was steering towards the next waypoint after the 

current waypoint was reached.  These ground tests were meant to simulate an actual 

flight as closely as possible without launching the vehicles and verify the operation of the 

RC and autopilot systems.  

4.3 Flight Test #1 

The first flight test at Camp Atterbury, Indiana was conducted on 24-25 

September, 2012.  The flight test objectives were to establish control gains for the 

Ardupilot equipped OWL, and to verify the feasibility of flying two OWLs 

simultaneously with two ground station computers running Mission Planner.  The flight 

test procedures that were approved during the TRB/SRB preceding Flight Test #1 are in 

Appendix A. 

Using the Ardupilot Mega suggested procedure for establishing and tuning gains, 

the gain parameters were established over the course of two days of flights.  However, 

weather prevented the second objective from being accomplished.  No safety-related 

incidents or vehicle crashes occurred. During the flight test, the researchers became 

familiarized with nuances of the Mission Planner ground station application.  The most 

important lesson learned from the trip was how to correctly program a loop of repeating 

waypoints in Mission Planner. 
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Figure 16: Programming a Repeating Circuit of Waypoints in Mission Planner 

 

 Figure 16 displays the method for programming a repeating circuit of waypoints 

in Mission Planner.  The intended flight path data is carried in waypoints 1-6.  Waypoint 

7 is a DO_JUMP waypoint with the values 1 and -1 in the first two value fields.  

Waypoint 8 is a dummy waypoint.  With this set of waypoints, the aircraft will fly 

directly from waypoint 6 to waypoint 1. 

4.4 Design Stage 2 and Ground Testing 

Design Stage 2 corresponds with Step 2 and Step 3 of the methodology; therefore, 

the goal of Design Stage 2 was to establish a communications relay and to implement the 
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rover-relay algorithm at the ground station.  The 3DR modems selected in Design Stage 1 

proved operational in the first flight test, but lack a repeater mode configurability to 

provide a communications relay.  Digi XBee 900 modems were purchased to replace the 

3DR modems to accomplish step two of the design phase.  The XBee modems have 

multiple firmware packages they can accommodate, including Digi Pro 900 and 

DigiMesh 900 firmware.  The Digi Pro firmware provides customization options in serial 

routing while the DigiMesh firmware provides the capability of configuring a mesh 

network.  With the cheap unit cost of approximately $50 combined with the extent of 

firmware configurability, the Digi XBee modems were the best choice to accomplish the 

remaining design objectives.  

Lieutenant Timothy Shuck developed a custom software deployment of 

QGroundControl using the Qt development environment to implement the rover-relay 

algorithm at the ground station.  The code was designed to autonomously generate 

waypoints for the relay vehicle based on the location of the ground station and rover 

vehicle and upload them to the aircraft during flight [16]. 

  

4.4.1 Sig Rascal Relay Design 

During this design stage, the gas-powered Sig Rascal vehicle was fully prepared 

for flight and was configured as the relay vehicle due to its long flight endurance of 45 

minutes.  The aircraft was configured with a 2-stroke CCRPRO GP26R 26.0cc two-

stroke engine with a Walbro carburetor.  An Ardupilot Mega 2.0 and FrSky RC receiver 

were already installed before Flight Test #1.  A voltage sensor was added to monitor the 
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battery voltage of the aircraft through the RC controller during flight.  The sensor data is 

transmitted to the safety pilot’s FrSky module mounted on the Turnigy ER9x controller. 

Two XBee modems wired back-to-back on different hopping channels using the 

Digi Pro firmware provided the basis for the communications relay design.  Figure 17 

displays the design schematic that was installed on an Ardupilot-equipped Sig Rascal 

vehicle. 
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Figure 17: XBee Pro 900 Communications Relay Schematic 

 

 An XBee 900 modem programmed to channel 1 is wired to an identical modem 

programmed to channel 2, which communicates with the OWL rover vehicle.  This 

wiring scheme allocates each modem as a repeater of the other so that each packet of data 

received by one is transmitted by the other, and vice versa.  Every packet sent from the 

ground station must pass through the relay vehicle in order to transmit to the rover, and 

each packet sent from the rover must also pass through before being received at the 

ground station. 

The gas-powered Sig Rascal relay vehicle design is depicted in Figure 18. 
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Figure 18: Sig Rascal Relay Vehicle Design 

 

The Sig Rascal design includes three XBee modems: the two for the relay, and 

one for the command of the vehicle.  The relay modems are programmed to channels 1 

and 2, while the Ardupilot’s modem is programmed to channel 1.  Since channel 1 is used 

for the Sig Rascal’s autopilot and half of the communications relay, a procedural 

sequence of establishing modem connections must be practiced to ensure the correct 

employment of the rover-relay system; this procedure is documented in Appendix A – 

Flight Test #2.8.  Instead of using two 11.1v 2200mAh lithium polymer batteries in 
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series, the Sig Rascal design employs two 5v nickel-metal hydride batteries, which power 

each side of the Ardupilot board separately.  

4.4.2 OWL Redesign 

Besides the replacement of the 3DR modem with the XBee 900 modem, the OWL 

was fitted with several other design modifications.  An FrSky sensor hub was installed in 

order to monitor the Lithium Polymer battery voltage in flight like on the Sig Rascal 

vehicle.   The sensor hub is capable of utilizing many different sensors to provide 

feedback to the safety pilot through the FrSky module; these sensors include voltage 

sensors, accelerometers, thermometers, etc. [17].  A 5.8 GHz video modem was also 

installed in order to transmit video from the nose camera to a Yellow Jacket 5.8 GHz 

receiver on the ground, which was connected to a monitor and DVD recorder.  The 

second iteration of the OWL vehicle configuration is captured in Figure 19. 
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Figure 19: OWL Rover Vehicle Design 
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Figure 20 shows a photograph of the internal avionics bay of the OWL, which 

displays one of the 2200mAh Lithium Polymer batteries, the Ardupilot Mega 2.0 board, 

the video modem, and the FrSky receiver behind it. 

 

 

Figure 20: Reconfigured OWL with Ardupilot Mega 2.0, FrSky RC Receiver, and Video Modem 

  

4.4.3 Ground Station Design 

For Design Stage 2, the same Lenovo laptops were employed for the ground 

station; however, the 3DR USB modems were replaced with XBee 900 modems attached 

to XBee USB explorer boards, which include a USB-RS232 chipset.  915MHz RPSMA 

antennas were attached to the XBee 900 modems.  There were three different XBee 

ground station modems used:  two modems programmed to channel 1 for communication 

with the rover OWL through the relay and with the Sig Rascal, and one programmed to 
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channel 2 for direct communication with the OWL.  Depending on the flight test mission, 

these modems were used with either one or both laptops.  In the rover-relay 

configuration, both laptops were used, each with a single modem programmed to channel 

1;  one laptop was used to control the relay vehicle (the Sig Rascal), and the other was 

used to control the rover vehicle (the OWL).  Also, Lieutenant Shuck’s customized 

QGroundControl build was added to the ground station laptops.  Figure 21 depicts the 

redesigned ground station. 
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Figure 21: Ground Station Design with XBee Modem 

 

4.4.4 Ground Testing 

 Prior to Flight Test #2, ground testing was achieved to validate the operation of 

the communication relay as well as the functionality of Lieutenant Shuck’s rover-relay 

QGroundControl implementation.   

 The communications relay test involved the Sig Rascal, OWL, and ground station 

using Mission Planner.  To verify the operation of the communications relay, waypoints 
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and parameters were uploaded to the OWL using an XBee 900 modem at the ground 

station programmed to channel 1, forcing a bridged connection through the Sig Rascal’s 

relay modems.  The OWL was walked around outdoors to verify the telemetry was 

received at the ground station.  The rover OWL was observed to be fully operational 

using the communications relay onboard the Sig Rascal.  Also, the operation of the Sig 

Rascal was verified using an XBee 900 modem programmed to channel 1.   

To validate the operation of the rover-relay QGroundControl implementation, two 

ground station laptops were employed as they would be configured during Flight Test #2.  

Instead of controlling both the relay and rover aircraft from a single laptop running 

QGroundControl, two separate laptops were used.  The rover was controlled using a 

laptop running Mission Planner, and the relay was controlled using the custom build of 

QGroundControl, which employed the rover-relay algorithm to autonomously generate 

waypoints and upload them to the relay vehicle.  Figure 22 illustrates the overall ground 

control station architecture for a rover-relay flight. 

 

 

Figure 22: Flight Test #2 Ground Station Architecture 
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 The Sig Rascal and OWL vehicles were walked around outdoors to simulate a 

flight pattern where the relay was positioned between the rover and ground station.  It 

was validated that the custom QGroundControl application generated waypoints for the 

relay aircraft based on the midpoint between the rover aircraft and ground station, 

updating as the rover position changed in real-time. 

4.5 Flight Test #2 

The second flight test was accomplished at Camp Atterbury, Indiana on 5-7 

November, 2012.  The flight test objectives were to tune gain for the Ardupilot-equipped 

Sig Rascal, verify the operability of QGroundControl, characterize the range of the XBee 

modems, verify the operability of the communications relay, and to verify the operability 

of the autonomous waypoint navigation of the rover-relay custom QGroundControl 

application.  The flight test procedures that were approved during the TRB/SRB 

preceding Flight Test #2 are in Appendix A. 

The Sig Rascal was successfully tuned during the first day of flight testing.  Also, 

the OWL control gains were modified to maintain a more consistent throttle setting in 

flight.  The final gain parameters are captured in Figure 23 and 24. 
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Figure 23: Gain Parameters for OWL Platform 

 

 

Figure 24: Gain Parameters for Sig Rascal Platform 
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 The basic operability of QGroundControl was verified in a simple flight test using 

a single ground station and a single OWL. Waypoints could be uploaded to the aircraft 

using QGroundControl and the preloaded flight path was followed by the autopilot. Next 

a test to change the waypoints in flight using QGroundControl was attempted; however, 

instead of flying the in-flight updated waypoints the aircraft would “return to launch” and 

loiter. “Return to launch” means the UAV will fly to the preloaded waypoint 0. This 

waypoint is the default rally point for the Ardupilot to navigate toward if communication 

is lost, a failsafe condition is triggered, or if the return to launch flight mode is selected. It 

was discovered during day two of flight testing that the problem was due to a 

misunderstanding of the proper order of events necessary to confirm new waypoints on 

the Ardupilot. In order for Ardupilot to accept a new set of waypoints, the new waypoints 

must be written to the UAV, read from the UAV to confirm the waypoints were 

transmitted correctly, and written once more to activate the new waypoints. 

QGroundControl was designed to fly a path of pre-loaded waypoints without changing 

them mid-flight so the update waypoints process is cumbersome. Mission Planner was 

designed to more easily enable updating waypoints in flight. Mission Planner 

programmers developed a specialized command, not contained in standard MAVLink 

protocol that sets any user specified waypoint uploaded to the UAV to be the current 

navigation objective of the autopilot. 

The range of the XBee 900 modems was measured at 0.6 miles from ground 

station to aircraft with the OWL flying at a 300ft altitude.  Intermittent communications 
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link was demonstrated between 0.6 and 0.88 miles.  Beyond 0.88 miles, communication 

was never recovered, and inside 0.6 miles, communication was never lost.   

The operation of the communication relay was only partially validated.  The 

communication link exhibited severe packet loss in flight, which restricted the operability 

of updating waypoints and parameters to the rover vehicle mid-flight.  Telemetry data 

from the rover, however, was received at the ground station without interference.  

Between test flights, one of the relay modems on the Sig Rascal was changed from a ¼ 

wave wire antenna to an RPSMA antenna to increase gain.  This configuration change 

resulted in better functionality of parameter uploads during flight, but still did not provide 

communication quality great enough to upload waypoints to the rover aircraft in flight. 

The last flight test objective was to verify the operation of the custom 

QGroundControl rover-relay implementation, which was unsuccessful due to the 

aforementioned deficiency discovered in QGroundControl.  The custom code was 

capable of generating relay waypoints based on the rover-relay algorithm, and was 

successful in uploading them to the relay aircraft, but the waypoints were not followed by 

the vehicle. 

4.6 Design Stage 3 and Ground Testing 

During the Flight Test #2, it became apparent that the OWL power bus wiring 

design was faulty and causing anomalies in the behavior of the autopilot.  This 

anomalous behavior included sudden power cycles in the autopilot, causing the system to 

restart spontaneously during pre-flight preparations.  In the field, the design was modified 

to remove a 5v switching regulator, which had been wired in parallel with the Castle 
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speed controller’s 5v regulator.  Instead of powering either side of the Ardupilot Mega 

2.0 board independently, a jumper was installed so that the power was shared on both 

sides from the regulated 5v of the speed controller.  This final design of the OWL is 

displayed in Figure 25. 
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Figure 25: OWL Design with Redesigned Power Bus 

 

 This redesign of the OWL proved more robust than before.  The single regulated 

5v power source eliminated anomalous behavior in the OWL’s autopilot system 

restarting spontaneously.  This configuration was flown during the end of the second day 

of flight testing, and also during the third day without any observed power anomalies. 

After the flight test, ground testing was accomplished to identify the cause of 

packet loss through the communications relay.  The process of elimination was used by 

simply unplugging each electrical component of the Sig Rascal one by one, while 

observing the communications quality in Mission Planner to the OWL through the relay 
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modems.  It was revealed that it was not a single component generating RF noise, but the 

proximity of the three modems in the Sig Rascal that was causing packet loss.  The 

original layout of the relay modems resulted in RF saturation in the 900MHz region and 

packet loss.  The modem antennas were spaced out to the right, left, and bottom of the 

vehicle, replacing the ¼ wave wire antennas with RPSMA antennas. 

 

 

Figure 26: RPSMA Antenna Placement on Sig Rascal Relay Vehicle 

 

Figure 26 shows the redesigned layout of the XBee 900 antennas on the Sig 

Rascal relay vehicle.  To achieve this spacing, XBee 900 modems with an U.FL antenna 

connector were used.  Figure 27 displays the internal Sig Rascal layout.   
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Figure 27: Sig Rascal Avionics and Relay Modems 

 

The Ardupilot Mega 2.0 board, FrSky receiver, and XBee 900 relay modems can 

be seen.  The XBee 900 modem programmed to channel 1 for autopilot control is 

stationed in the below inner fuselage area out of frame of the photograph.  The U.FL 

coaxial cables are wired to the RPSMA mounts on the sides and bottom of the aircraft as 

displayed in Figure 26. 

The next step of Design Stage 3 was to configure the XBee modems with the 

DigiMesh 900 firmware and test the functionality of a relayed link from the ground 

station to a rover aircraft, which corresponds with Step 4 of the methodology.  This step 

was accomplished by simply removing the modems already installed in the OWLs and 

flashing them with DigiMesh 900 firmware, verifying the correct baud rate of 57,600 

kbps.  The results of the DigiMesh modem framework are further discussed in the next 

section. 
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4.6.1 Ground Testing 

The ground testing objectives following Design Stage 3 were to verify the 

operation of the redesigned communications relay, measure the effective communications 

extension to the rover through the redesigned relay, and to verify the operation of relayed 

communications with the DigiMesh modems. 

The signal quality of the relayed rover signal through the original 

communications relay was measured to vary from 60-80% with the ground station at a 

distance of 3 meters from the Sig Rascal and the rover OWL vehicle placed 2 meters 

from the Sig Rascal.  The signal quality was increased to 90-100% after installing the 

U.FL modems with RPSMA antennas mounted to the outside of the Sig Rascal.  This 

communications quality displayed in Mission Planner is simply an average of the ratio of 

successfully transmitted packets to dropped packets.  The average is trailed for the 

duration of an established connection.  A communications quality of 90-100% in the 

indoors environment where the test was held is as good as a direct modem-to-modem link 

at the same distance; therefore, the redesigned antenna layout of the communications 

relay was no longer degrading the link quality to the rover from the ground station. 

 The next test objective was to measure the effective extension of the redesigned 

communications relay on the ground.  This test was accomplished by seating the ground 

station laptop outdoors on a table with the antenna approximately 1 meter off the ground, 

programmed to channel 1.  The Sig Rascal was powered on near the ground station and a 

connection was established between the ground station and the Sig Rascal.  Next, the Sig 
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Rascal was walked away from the ground station until the modem link was broken.  

Then, the Sig Rascal was walked back within range about 20 feet to allow the connection 

to recover.  Next, the OWL was powered on near the Sig Rascal and a new link was 

established between the ground station and the OWL, using a modem programmed to 

channel 1 at the ground station.  Then, the OWL was walked back towards the ground 

station while the link quality was monitored.  The link to the OWL was broken exactly as 

the OWL crossed the ground station’s position, meaning an exact 1:1, or 100% 

communications extension was achieved.  Figure 28 offers a visual depiction of this 

ground test.  With the demonstrated 100% communications extension, it can be projected 

that the operational communications extension is 0.6 miles from the relay to rover aircraft 

in flight, based on the measurements of Flight Test #2.  This extension would provide a 

range of 1.2 miles from the ground station to the rover vehicle in a rover-relay flight. 
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Channel 2

Sig Rascal
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Figure 28: Communications Extension Ground Test 
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The last ground test objective for Design Stage 3 was to verify rover-relay 

communications through the DigiMesh modem framework.  For these tests, 

QGroundControl was utilized due to its ability to control multiple aircraft simultaneously 

[10].  The first test verified the self-healing capability of the DigiMesh modem firmware.  

An OWL aircraft was walked out of range of the ground station, all modems programmed 

to the same hopping channel (channel 1).  Then, an OWL was powered on between the 

ground station and the out-of-range rover OWL to act as a relay; both aircraft acquired a 

connection in QGroundControl, thus verifying the bridged connection across the relay 

node.  Telemetry was visible for both aircraft, but waypoints could not be successfully 

passed to the rover OWL. 

The next step was to find a configuration that would accommodate a complete 

connection between the ground station and rover OWL.  Multiple adjustments were made 

to the DigiMesh firmware parameters to optimize the network configuration for the 

rover-relay employment with three chained modems (ground station-relay-rover).  The 

actual routing protocol of the DigiMesh firmware is inaccessible to the researcher for 

redesigning or adjusting the algorithm [18].  Therefore, the configurability options are 

limited to adjusting the number of retransmissions allowed after a failed packet 

transmission, the number of network hops allowed, and similar parameters, which are 

visible in Figure 29.  These options were adjusted to maximize the signal quality to the 

rover vehicle in the chained ground station-relay-rover network.  The best signal quality 

accomplished was 60% between the ground station and the rover, which was 
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accomplished with all three modems programmed with the parameters displayed in 

Figure 29. 

 

 

Figure 29: Optimal DigiMesh Parameters for Rover-Relay in X-CTU application 

 

The nature of the Ardupilot system is that the aircraft telemetry is constantly 

passed back to the ground station.  It became apparent to the researcher that the center 

node, the relay, was burdened by constantly transmitting the relay aircraft telemetry as 

well as the rover aircraft telemetry back to the ground station.  When waypoints were 

attempted to be sent to the rover aircraft, QGroundControl would attempt to retransmit 

five times before timing out.  To check if the waypoint transmission was successful, the 

rover waypoint data would be refreshed from the ground station, which synchronizes the 

waypoint list from the aircraft Ardupilot board.  The process of updating waypoints from 
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the ground station to the rover aircraft in a chained network is displayed in Figure 30.  

This figure compares this procedure with the DigiMesh framework to the previously 

established Digi Pro communications relay.  With the previous Digi Pro design, each 

modem is less burdened at any given point.  With DigiMesh, the relay aircraft’s modem 

(the middle node) is constantly receiving and transmitting data from both end nodes. 
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Figure 30: Comparison of Digi Pro and DigiMesh Modem Frameworks when Transmitting Rover 

Waypoints and Relay and Rover Telemetry to Ground Station 
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Even with the optimized DigiMesh parameters, the waypoints were never 

properly updated from the ground station waypoint list with the DigiMesh network.  The 

telemetry feed was never suspended during ground testing, but updates to the aircraft 

from the ground station in the form of parameters or waypoints were unsuccessful.  This 

could likely be due to the confusion of CTS and RTS packets being transmitted through 

the relay node from the two end nodes (rover and ground station), as described by Li and 

others in their research with 802.11 modems [12].  In any case, the root problem is 

limited network capacity for the Ardupilot application of chaining aircraft in a rover-relay 

implementation of the mesh network.  Modems with higher network throughput in a 

mesh setting are required to completely implement an ad-hoc framework for Ardupilot. 

 

4.7 Summary of Flight and Ground Test Results 

The overall flight test results can be summarized in the Table 2, which 

corresponds with the flight test objectives established in the Methodology.  Flight Test #3 

was never accomplished due to the overall research schedule slipping into the winter 

months.  The aircraft cannot be flown in sub-freezing temperatures.  The mesh network 

modem configuration for the system was not successfully implemented in preparation for 

the flight test even if the schedule allowed for Flight Test #3. 
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Table 2: Flight Test Results Matrix – Summary of Test Objectives and Results. 

Flight Test Test Objectives Result 

Flight Test #1 

Establish control gains for Ardupilot Mega in OWL and verify 

stable flight of vehicle 

Success 

Validate functionality of Mission Planner for single and multi-

vehicle operation 

Success 

Flight Test #2 

Establish control gains for Ardupilot Mega in Sig Rascal and verify 

stable flight of vehicle 

Success 

Verify operability of QGroundControl Partial 

Verify operability of communications relay in flight Success 

Determine direct communications range of autopilot system with 

current modems 

Success 

(0.60-0.88 miles) 

Verify operability of rover-relay algorithm implementation at the 

ground station 

Partial 

Flight Test #3 Verify operability of rover-relay with mesh modem configuration Incomplete 

 

 

 The ground test objectives were developed in preparation for each flight test as 

described in the Methodology.  The flight test objectives were based on the design 

objectives of the Methodology, and the ground test objectives were based on proving the 

system capability to fulfill each flight test objective.    
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Table 3: Ground Test Results Matrix – Summary of Test Objectives and Results. 

Ground Test Test Objectives Result 

Ground Test #1 Verify operation of RC controller and autopilot system Success 

Ground Test #2 Verify operation of communications relay Success 

Ground Test #3 

Verify operation of autonomous waypoint generation with custom 

QGroundControl code 

Success 

Ground Test #4 

Verify operation of reconfigured communications relay with RPSMA 

antennas 

Success 

Ground Test #5 

Determine operational distance of communications extension through 

relay 

Success 

Ground Test #6 

Verify self-healing quality of DigiMesh modem configuration for 

rover-relay 

Success 

Ground Test #7 

Verify operation of rover-relay communications with mesh network 

configuration to include ground station-rover link 

Failure 

 

  

 Although the rover-relay QGroundControl implementation was never flight 

tested, Lieutenant Shuck verified its operation through hardware-in-the-loop (HIL) 

simulation after modifying the code after Flight Test #2 [16].  Therefore, all requirements 

described in the Methodology were satisfied by the design and demonstrated in flight and 

ground testing.  However, the mesh network communications framework was not able to 

satisfy the design requirements. 
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V. Conclusions and Recommendations 

5  

5.1 Chapter Overview 

Chapter 5 discusses the conclusions of the research accomplished as well as the 

researcher’s recommendations for future work on the OWL system.  Section 5.2 

discusses the research accomplishments in context with the initial research questions, and 

also revisits the challenges faced in accomplishing the research.  Section 5.3 provides 

recommendations for future research to further the OWL capability as a SUAS test bed at 

AFIT.  Lastly, Section 5.4 summarizes the thesis and examines the highest level 

accomplishments framed by the problem statement discussed in Chapter 1. 

5.2 Retrospective and Challenges 

 The primary research question presented in Chapter 1 was: what small unmanned 

airborne system communications architecture supports cooperative control through a 

COTS hardware and software configuration?  With the constraints of the research, both in 

cost and availability of hardware, a system was designed using the RQ-11 Raven and Sig 

Rascal airframes combined with Ardupilot Mega 2.0 autopilots, FrSky RC receivers, and 

Digi XBee 900 modems that was demonstrated to be capable of operating in a rover-relay 

configuration with autonomous relay navigation.   

 The challenges and limitations discussed in Chapter 1 proved to be influential to 

the progress of the research.  As with any experimental research, hardware purchasing 

and availability, airspace scheduling, and weather all constrained progress. 
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There were two unforeseen limitations that impacted the research: unimplemented 

MAVLink commands in QGroundControl and the proprietary routing protocol of the 

DigiMesh 900 mesh networking firmware.  The first of these impacted Lt Shuck’s 

portion of the research and resulted in the custom QGroundControl build failing to auto-

navigate the relay aircraft during Flight Test #2.  The code was later modified so that the 

aircraft would fly to the appropriate auto-generated waypoint, but was never proven in 

flight test [16].  The network throughput capability of the XBee 900 modems with 

DigiMesh firmware proved insufficient for the Ardupilot system.  Within a mesh network 

of only two aircraft with a single ground station, the telemetry of a rover aircraft (beyond 

LOS from the ground station) was received at the ground station, but parameters and 

waypoints could not successfully be uploaded to the aircraft.   

5.3 Recommendations for Future Research 

Now that an Ardupilot-based system has been successfully designed with a 

functioning communications relay and a rover-relay algorithm implemented at the ground 

station, there are two immediate goals to be suggested for future research.  The first is to 

establish a functioning mesh network onboard the existing aircraft.  Purchasing more 

capable hardware would be the most risk-free and expedient method for accomplishing 

this.  There are several 2.4 GHz networking solutions with much higher throughput and 

range capabilities than the XBee 900s.  An example is the Persistent Systems Wave 

Relay™ system pictured below in Figure 31. 
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Figure 31: Wave Relay Sector Antenna Array Router [19] 

 

The Wave Relay has already been utilized and flown by researchers at the Naval 

Postgraduate School who are also using a customized deployment of QGroundControl to 

implement their custom cooperative control algorithms.  This system boasts a range of 10 

miles, a throughput of 37 Mbps, and can be used with any 802.11 2.4 GHz receiver [19].  

This system would be more than capable of sustaining a multi-aircraft mesh network, and 

also carrying video data within the same network as the autopilot data, which would limit 

the number of modems onboard the aircraft and vastly simplify the system. 

The second suggested goal for future research is to delve into the Arduino 

development environment to utilize the onboard microprocessing capabilities of the 

Ardupilot Mega board to implement algorithms and/or custom commands directly from 

the aircraft.  The accomplishment of baselining an Ardupilot-based SUAS for cooperative 
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control provides the capability to utilize onboard microprocessing that the previous 

Kestrel system did not. 

A third suggested research topic that has much potential with this system is the 

concept of communications-aware autonomous navigation.  This idea is the topic of the 

article “Cognitive Agent Mobility for Aerial Sensor Networks” by Kai Daniel et al.  

Daniel, which was discussed in Chapter 2 [11].  In the rover-relay cooperative 

application, communication awareness would be very useful to incorporate into the 

control algorithm.  If a single operator was to launch two aircraft in the rover-relay 

configuration to extend communication LOS, he or she would have to constantly monitor 

the range of the aircraft to avoid flying out of LOS.  If communications awareness was 

included in the algorithm, the autopilot system would be capable of preventing the 

aircraft from leaving communications range and potentially realign each aircraft to 

maximize communications range beyond the simple rover-ground station midpoint.  

Furthermore, this layer of control in the system could be broadened into the 

implementation of many other cooperative control applications such as flocking. 

5.4 Summary 

This research concluded that a SUAS using the Ardupilot autopilot system is a 

capable test bed system for implementing cooperative control algorithms.  The rover-

relay is perhaps the simplest cooperative control implementation between multiple 

aircraft, but it responds to the problem statement that frames this research:  the necessity 

for beyond LOS communications for small hand-launched UAS.  Future research will 
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expand on the system to implement other cooperative control algorithms that fill other 

capability gaps for SUAS in the United States Air Force. 
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Appendix A.  Flight Test Procedures 

 

Flight Test #1 (24-25 September 2012) 

1. Preflight testing (completed at AFIT and in field) 

a. Communication check (initial) 

b. Control Surface check 

c. Trim Radio and save settings 

d. Communication check (distance) 

2. In Flight Testing With Mission Planner 

a. OWL_A1 & OWL_A2 

i. Zero Sensors 

ii. Set Fail Safe Parameters 

iii. Trim Radio 

iv. Load Waypoints 

v. Launch OWL_A* 

vi. RC Pilot Flight 

1. Adjust Trim 

vii. Engage Autopilot 

1. Adjust Gains (as necessary) 

viii. RC Pilot Landing 

ix. Group Discussion Observations 

b. Sig Rascal_P1 (Petrol) & Sig Rascal_E1 (Electric) 

i. Zero Sensors 

ii. Set Fail Safe Parameters 

iii. Trim Radio 

iv. Load Waypoints 

v. Launch Rascal_* 

vi. RC Pilot Flight 

1. Adjust Trim 

vii. Engage Autopilot 

1. Adjust Gains (as necessary) 

viii. RC Pilot Landing 

ix. Group Discussion Observations 

3. In Flight Testing With QGroundControl 

a. Communication check (initial) 

b. Control Surface check 

c. OWL_A1 Flight 

i. Zero Sensors 

ii. Set Fail Safe Parameters 

iii. Trim Radio 

iv. Load Waypoints 
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v. Launch OWL_A1 

vi. RC Pilot Flight To Elevation 

vii. Engage Autopilot (observe QGroundControl) 

1. Try update of race track in flight 

2. Observe data logging capabilities 

viii. Land OWL_A1 

ix. Group Discussion Observations 

d. OWL_A2 Flight 

i. Zero Sensors 

ii. Set Fail Safe Parameters 

iii. Trim Radio 

iv. Load Waypoints 

v. Launch OWL_A2 

vi. RC Pilot Flight To Elevation 

vii. Engage Autopilot 

viii. Land OWL_A2 

4. Multi-Aircraft Simultaneous Flight 1 With QGroundControl 

a. Replace batteries in OWL_A1 & OWL_A2 

b. Zero Sensors in OWL_A1 & OWL_A2 

c. Set Fail Safe Parameters in OWL_A1 & OWL_A2 

d. Load Waypoints for OWL_A1(elevation 350ft) & OWL_A2 (elevation 

200ft) 

e. Launch OWL_A1 

f. RC Pilot Flight To Elevation 

g. Engage Autopilot Observe Lap 

h. Launch OWL_A2 

i. RC Pilot Flight To Elevation 

j. Engage Autopilot Observe Lap 

k. Update Waypoints OWL_A1 

l. Update Waypoints OWL_A2 

m. Land OWL_A1 

n. Land OWL_A2 

o. Group Discussion Observations 

5. Multi-Aircraft Simultaneous Flight 1 With QGroundControl 

a. Replace batteries in OWL_A1 & Refill Petrol in Sig Rascal_P1 

b. Zero Sensors in OWL_A1 & Sig Rascal_P1 

c. Set Fail Safe Parameters in OWL_A1 & Sig Rascal_P1 

d. Load Waypoints for OWL_A1(elevation 250ft) & Sig Rascal_P1 

(elevation 400ft) 

e. Launch Sig Rascal_P1 

f. RC Pilot Flight To Elevation 

g. Engage Autopilot Observe Lap 

h. Launch OWL_A1 

i. RC Pilot Flight To Elevation 
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j. Engage Autopilot Observe Lap 

k. Update Waypoints Sig Rascal_P1 

l. Update Waypoints OWL_A1 

m. Land OWL_A1 

n. Land Sig Rascal_P1 

o. Group Discussion Observations 

 

Flight Test #2 (5-7 November 2012) 

1. Initial communications check out 

a. Video feed check (5.4 GHz) 

i. Initial Operation 

1. Is Video feed working? 

b. RC Safety Pilot check (2.4 GHz) 

i. Initial Operation 

1. Is RC Communications working? 

ii. Distance check 

1. On the ground place the FrSky transmitter in range check 

mode and walk the MAV down the flight line until 

communications are lost. Do conversion for approximated 

RC range. Record here _________________ 

c. Auto Pilot check (914 MHz) 

i. Initial Operation 

1. Is RC Communications working? 

ii. Distance check 

1. Walk the MAV down the flight line until communications 

are lost. Record distance here _________________ 

d. Record and Measure time spent fixing, recovering, launching, turning, 

flight time, wind speed, battery endurance 

2. Verify MAVs  are flying properly  (In Flight Testing With Mission Planner) 

a. Power on RC controllers for OWL_A1 and OWL_A2 

b. For Each OWL_A1, OWL_A2 and Sig_AP 

i. Open Mission Planner  

ii. Connect to MAV at baud rate of 57600 

iii. On the Flight Data tab select the Actions tab and click Set Home 

Alt 
iv. Verify that the altitude read out on the right of the flight data 

screen reads 0 

v. Repeat iii-iv as necessary until successful 
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vi. Trim Radio 

vii. Load Waypoints 

viii. Launch MAV 

ix. RC Pilot Flight 

1. Adjust Trim 

x. Engage Autopilot 

1. Adjust Gains (as necessary) SEE  APPENDIX 

xi. RC Pilot Landing 

c. Group Discussion Observations 

d. Record and Measure time spent fixing, recovering, launching, turning, 

flight time, wind speed, battery endurance 

3. Single MAV flight using QGroundControl (First test OWL_A2 , repeat procedure 

for Sig_AP ) 

a. Power on RC controllers OWL_A2 and Sig_AP 

b. Zero Sensors 

i. Open Mission Planner  

ii. Connect to MAV at baud rate of 57600 

iii. On the Flight Data tab select the Actions tab and click Set Home 

Alt 
iv. Verify that the altitude read out on the right of the flight data 

screen reads 0 

v. Repeat as necessary until successful 

vi. Close Mission Planner but do NOT power off MAV 
c. Trim Radio 

d. Open UNMODIFIED qgroundcontrol 
e. Connect to MAV at baud rate of 57600 

f. Wait for GPS to find location 
g. Load Waypoints using waypoint widget 

h. Verify Waypoints by going to the onboard tab of the waypoint widget 

and clicking refresh 

i. Launch 

j. RC Pilot Flight To Elevation 

k. Engage Autopilot 

i. Try update of race track in flight 

ii. Observe data logging capabilities 

l. Land 

m. Group Discussion Observations 

n. Record and Measure time spent fixing, recovering, launching, turning, 

flight time, wind speed, battery endurance 

4. Single MAV Distance Flight to Loss of Communications 

a. Power on RC controllers for OWL_A2 

b. Zero Sensors 

i. Open Mission Planner  

ii. Connect to OWL_A2 at baud rate of 57600 
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iii. On the Flight Data tab select the Actions tab and click Set Home 

Alt 
iv. Verify that the altitude read out on the right of the flight data 

screen reads 0 

v. Repeat as necessary until successful 

c. Trim Radio 

d. Wait for GPS to find location 
e. Load Waypoints using waypoint widget 

f. Verify Waypoints by going to the onboard tab of the waypoint widget 

and clicking refresh 

g. Send Safety pilot and Observers to remote location (Must have range 

radio) 

i. Observer will have map of flight pattern 

h. Verify both teams are ready and we are clear for launch 

i. Launch 

j. RC Pilot Flight To Elevation 

k. RC Pilot flies OWL_A2 toward primary ground station 

l. Ground control operator is continually attempting to connect 

m. Monitor telemetry to observe when 914 MHz communications are 

established 

n. Ground control operator notes distance on map where communications 

were established 

o. Observe if after 30 seconds of flight OWL_A2  beings to navigate toward 

RTL 

p. Operator then notifies RC pilot to land OWL_A2 

q. Record and Measure time spent fixing, recovering, launching, turning, 

flight time, wind speed, battery endurance 

5. Multi-MAV Multi-Ground Station Familiarity Test (Direct LOS) Non-

autonomous Relay Navigation 

a. Power on RC controllers for OWL_A1 and OWL_A2 

b. On two separate Laptops connect two Digi modems (one to each laptop) 

c. Open X-CTU and verify that each computer is talking to the attached 

modem successfully 

i. Select the test/query button. The computer is successfully 

connected if the type and model information is not garbled text 

d. On laptop one (L1) open Mission Planner 

i. Power on OWL_A1 while holding the MAV level and steady 

ii. Connect to OWL_A1 at baud rate of 57600 

iii. On the Flight Data tab select the Actions tab and click Set Home 

Alt 
iv. Verify that the altitude read out on the right of the flight data 

screen reads 0 

v. Repeat iii-iv as necessary until successful 
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vi. Trim Radio 

vii. Load Waypoints 

e. On laptop two (L2) open Mission Planner 

i. Zero Sensors 

1. Open Mission Planner  

2. Connect to OWL_A2 at baud rate of 57600 

3. On the Flight Data tab select the Actions tab and click Set 

Home Alt 
4. Verify that the altitude read out on the right of the flight 

data screen reads 0 

5. Repeat as necessary until successful 

6. Close Mission Planner but do NOT power off MAV 
ii. Trim Radio 

iii. Open UNMODIFIED qgroundcontrol 
iv. Connect to MAV at baud rate of 57600 

v. Wait for GPS to find location 
vi. Load Waypoints using waypoint widget 

vii. Verify Waypoints by going to the onboard tab of the waypoint 

widget and clicking refresh 

f. Launch OWL_A1 

i. RC Pilot Flight To Elevation 

ii. Engage Autopilot 

iii. Verify Operation Status (if oddities are observed, land and trouble 

shoot) else 

g. Launch OWL_A2 

i. RC Pilot Flight To Elevation 

ii. Engage Autopilot 

iii. Verify Operation Status (if oddities are observed, land and trouble 

shoot) else 

h. Maximize flight time of OWL_A1 to 15 minutes of flight without 

exceeding time limit 

i. Record and Measure time spent fixing, recovering, launching, turning, 

flight time, wind speed, battery endurance 

6. Multi-MAV Multi-Ground Station Familiarity Test (Direct LOS) Autonomous 

Relay Navigation 

a. Power on RC controllers for OWL_A1 and OWL_A2 

b. On two separate Laptops connect two Digi modems (one to each laptop) 

c. Open X-CTU and verify that the computer is talking to the modem 

successfully 

i. Select the test/query button. The computer is successfully 

connected if the type and model information is not garbled text 

d. On laptop one (L1) open Mission Planner 
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i. Power on OWL_A1 while holding the MAV level and steady 

ii. Connect to OWL_A1 at baud rate of 57600 

iii. On the Flight Data tab select the Actions tab and click Set Home 

Alt 
iv. Verify that the altitude read out on the right of the flight data 

screen reads 0 

v. Repeat iii-iv as necessary until successful 

vi. Trim Radio 

vii. Load Waypoints at altitude of 550 ft 

e. On laptop two (L2) open Mission Planner 

i. Zero Sensors 

1. Open Mission Planner  

2. Connect to OWL_A2 at baud rate of 57600 

3. On the Flight Data tab select the Actions tab and click Set 

Home Alt 
4. Verify that the altitude read out on the right of the flight 

data screen reads 0 

5. Repeat as necessary until successful 

6. Close Mission Planner but do NOT power off OWL_A2 
ii. Trim Radio 

iii. Open MODIFIED qgroundcontrol 
iv. Connect to both MAVs at baud rate of 57600 (do not enable 

multiplexing) 

v. Wait for GPS to find location 
vi. Click on map as close as possible to the location of the ground 

station as possible 

f. Launch OWL_A1 

i. RC Pilot Flight To Elevation 

ii. Engage Autopilot 

iii. Verify Operation Status (if oddities are observed, land and trouble 

shoot) else 

g. Launch OWL_A2 

i. RC Pilot Flight To Elevation 

ii. Engage Autopilot 

iii. Every 5 seconds click anywhere on the map 

iv. Verify Operation Status (if oddities are observed, land and trouble 

shoot) else 

h. Maximize flight time of first MAV to 15 minutes of flight without 

exceeding time limit 

i. Take manual control of MAV OWL_A2 and land it 

ii. Take manual control of MAV OWL_A1 and land it 
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          i. Record and Measure time spent fixing, recovering, launching, turning, 

flight time, wind speed, battery endurance 

7. Multi-MAV Multi-Ground Station Familiarity Test (Direct LOS) Autonomous 

Relay Navigation with SIG_AP in place of OWL_A2 

a. Power on RC controllers for OWL_A1 and OWL_A2 

b. Switch Sig_AP Aircraft ON (leave Autopilot switch OFF) 

c. Power on OWL_A1 while holding the MAV level and steady 

d. On laptop one (L1) open Mission Planner 

i. Plug in Ch1-Relay modem to laptop L1 

ii. Connect to OWL_A1 at baud rate of 57600 

iii. On the Flight Data tab select the Actions tab and click Set Home 

Alt 
iv. Verify that the altitude read out on the right of the flight data 

screen reads 0 

v. Repeat iii-iv as necessary until successful 

vi. Trim Radio 

vii. Load Waypoints 

e. Switch Sig_AP Autopilot ON 

f. On laptop two (L2) open Mission Planner 

i. Plug in Ch1-Sig modem to laptop L2 

ii. Zero Sensors 

1. Open Mission Planner  

2. Connect to Sig_AP at baud rate of 57600 

3. On the Flight Data tab select the Actions tab and click Set 

Home Alt 
4. Verify that the altitude read out on the right of the flight 

data screen reads 0 

5. Repeat as necessary until successful 

6. Hold Sig_AP level 

7. Under the configuration tab click on the calibrate level 

8. Verify on the flight data tab that the HUD is showing level 

flight 

9. Close Mission Planner but do NOT power off MAV 
iii. Trim Radio 

iv. Open MODIFIED qgroundcontrol 
v. Connect to Sig_AP at baud rate of 57600 

vi. Wait for GPS to find location 
vii. Select MAV001 (Sig) for control 

viii. Load Waypoints using waypoint widget 

ix. Verify Waypoints by going to the onboard tab of the waypoint 

widget and clicking refresh 
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g. Launch OWL_A1 

i. RC Pilot Flight To Elevation 

ii. Engage Autopilot 

iii. Verify Operation Status (if oddities are observed, land and trouble 

shoot) else 

h. Launch Sig_AP 

i. RC Pilot Flight To Elevation 

ii. Engage Autopilot 

iii. Verify Operation Status (if oddities are observed, land and trouble 

shoot) else 

i. Maximize flight time of OWL_A1 to 15 minutes of flight without 

exceeding time limit 

i. Take manual control of MAV Sig_AP and land it 

ii. Take manual control of MAV OWL_A1 and land it 

j. Record and Measure time spent fixing, recovering, launching, turning, 

flight time, wind speed, battery endurance 

8. Beyond Communications  Line Of Sight (BCLOS) Flight Test 

a. Power on RC controllers for OWL_A1 and OWL_A2 

b. Switch Sig_AP Aircraft ON (leave Autopilot switch OFF) 

c. Power on OWL_A1 while holding the MAV level and steady 

d. On laptop one (L1) open Mission Planner 

i. Plug in Ch1-Relay modem to laptop L1 

ii. Connect to OWL_A1 at baud rate of 57600 

iii. On the Flight Data tab select the Actions tab and click Set Home 

Alt 
iv. Verify that the altitude read out on the right of the flight data 

screen reads 0 

v. Repeat iii-iv as necessary until successful 

vi. Trim Radio 

vii. Load Waypoints 

e. Switch Sig_AP Autopilot ON 

f. On laptop two (L2) open Mission Planner 

i. Plug in Ch1-Sig modem to laptop L2 

ii. Zero Sensors 

1. Open Mission Planner  

2. Connect to Sig_AP at baud rate of 57600 

3. On the Flight Data tab select the Actions tab and click Set 

Home Alt 
4. Verify that the altitude read out on the right of the flight 

data screen reads 0 

5. Repeat as necessary until successful 

6. Hold Sig_AP level 
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7. Under the configuration tab click on the calibrate level 

8. Verify on the flight data tab that the HUD is showing level 

flight 

9. Close Mission Planner but do NOT power off MAV 
iii. Trim Radio 

iv. Open MODIFIED qgroundcontrol 
v. Connect to Sig_AP at baud rate of 57600 

vi. Wait for GPS to find location 
vii. Select MAV001 (Sig) for control 

viii. Load Waypoints using waypoint widget 

ix. Verify Waypoints by going to the onboard tab of the waypoint 

widget and clicking refresh 

g. Send out RC pilot and distant area observer with map of flight path, cell 

phone and range radio 

h. Launch SIG_AP 

i. RC Pilot Flight To Elevation and approximate relay position 

i. Launch OWL_A1 

i. RC Pilot Flight To Elevation 

ii. Engage Autopilot 

iii. Verify Operation Status (if oddities are observed, land and trouble 

shoot) else 

j. Ground Control Operator verifies that relay of communications is 

operational 

i. Is telemetry data displaying in the ground control software? 

ii. Can information be written to the rover MAV? 

iii. If yes proceed. If no fly OWL_A1 closer to Sig_AP. 

k. On Sig_AP  
i. Engage Autopilot 

ii. Every 5 seconds click anywhere on the map 

iii. Verify Operation Status (if oddities are observed, land and trouble 

shoot) 

l. Maximize flight time of OWL_A1 to 15 minutes of flight without 

exceeding time limit 

m. On ground control operator’s queue both RC pilots take control of their 

respective MAVs and land the MAVs 

n. Record and Measure time spent fixing, recovering, launching, turning, 

flight time, wind speed, battery endurance 

9. Stationary Target Flight Test 

a. Emplace stationary target 

b. Set waypoint pattern to loiter over target 

c. Launch OWL and monitor to ensure proper flight path 
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d. Record and Measure loiter time and target observed time 

10. Road Surveillance Flight Test 

a. Designate linear zone of observation 

b. Set waypoint pattern to observe linear zone of observation 

c. Launch OWL and monitor to ensure proper flight path 

d. Record and Measure loiter time and target observed time 
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