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1 Introduction

This paper is a contribution to the algebraic theory of recognizable lan-
guages. The main topic of this paper is the polynomial closure, an operation
that mixes together the operations of union and concatenation. Formally,
the polynomial closure of a class of languages L of A∗ is the set of languages
that are finite unions of marked products of the form L0a1L1 · · · anLn, where
the ai’s are letters and the Li’s are elements of L. The unambiguous poly-
nomial closure is the closure under disjoint union and unambiguous marked
product. One can also define, with a slight modification (see section 4)
similar operators for languages of A+.

Our main result is an algebraic characterization of the polynomial closure
of a variety of languages. There are several technical difficulties to achieve
this result. First, even if V is a variety of languages, its polynomial closure
is not, in general, a variety of languages. The solution to this problem was
given in a recent paper by the first author [18]. If the definition of a variety of
languages is slightly modified (instead of all boolean operations, only closure
under intersection and union are required in the definition), one still has an
Eilenberg type theorem. The new classes of languages are called positive
varieties, but of course, the algebraic counterpart has to be modified too:
they are the varieties of finite ordered semigroups or finite ordered monoids.
It turns out that the polynomial closure of a variety of languages is always
a positive variety. Now, the next question can be asked: given a variety of
monoids V corresponding to a variety of languages V, describe the variety of
ordered monoids corresponding to the polynomial closure of V. Our answer
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(statement (1)) fits surprisingly well with two other important results on
varieties (statements (2) and (3)):

(1) The algebraic operation corresponding to the polynomial closure is
the Mal’cev product W M©V, where W is the variety of finite ordered
semigroups (S,≤) in which ese ≤ e, for each idempotent e and each
element s in S.

(2) The algebraic operation corresponding to the unambiguous polynomial
closure is the Mal’cev product LI M©V, where LI is the variety of
semigroups S in which ese = e, for each idempotent e and each s in S
[20].

(3) The algebraic operation corresponding to the closure under boolean
operations and concatenation is the Mal’cev product A M©V, where A

is the variety of aperiodic semigroups (Straubing [30]).

The proof of our main result is non-trivial and relies on a deep theorem of
Simon [27] on factorization forests. Its importance can probably be better
understood on its far-reaching consequences. Due to the lack of place, we
indicate some of these consequences. Others can be found in the extended
version of this article. First, the polynomial closure leads to natural hier-
archies among recognizable languages. Define a boolean algebra as a set of
languages of A∗ (resp. A+) closed under finite union and complement. Now,
start with the trivial boolean algebra of recognizable languages, and call it
level 0. Thus the languages of level 0 are the empty language and A∗ (resp.
A+). Then define recursively the higher levels as follows: level n+1/2 is the
polynomial closure of level n and level n+ 1 is the boolean closure of level
n+ 1/2. This defines the Straubing (resp. dot-depth) hierarchy. The main
open problem is to know whether each level of these hierarchies is decidable.

Levels 0, 1/2 and 1 of the Straubing hierarchy were known to be de-
cidable. Level 3/2 was also known to be decidable but the proof was quite
involved and no practical algorithm was known. We give a simple proof of
this last result and show that, given a deterministic n-state automaton A
on the alphabet A, one can decide in time polynomial in 2|A|n whether the
language accepted by A is of level 3/2 in the Straubing hierarchy. Decid-
ability of level 2 is still an open question, but we make some progress on
this problem. First our main result gives a short proof of a result of Cowan
[8] characterizing the languages of level 2 whose syntactic monoid is inverse.
Second, we formulate a conjecture for the identities of the variety of monoids
corresponding to languages of level 2. More generally, we conjecture that
the variety of ordered monoids corresponding to the boolean closure of the
polynomial closure of V is the Mal’cev product B1 M©V, where B1 is the
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variety of finite semigroups corresponding to languages of dot-depth one.
For the dot-depth hierarchy, only levels 0 and 1 were known to be decid-

able. We show that level 1/2 is also decidable. There is some evidence that
level 3/2 is also decidable, but the proof of this result would require some
auxiliary algebraic results that will be studied in a future paper.

Another important consequence of our result is the fact that a language
L belongs to the unambiguous polynomial closure of a variety of languages
V if and only if both L and its complement belong to the polynomial closure
of V. This result has an interesting consequence in logic. Indeed, Thomas
[34] (see also [14, 17]) showed that Straubing’s hierarchy is in one-to-one
correspondence with a well known hierarchy of first order logic, the Σn hier-
archy, obtained by counting the alternative use of existential and universal
quantifiers in formulas in prenex normal form. We present analogous results
for the ∆n hierarchy of first order logic. We first show that each level of this
logical hierarchy defines a variety of languages. Next we give an effective de-
scription of the first levels. For the levels 0 and 1, the corresponding variety
is trivial. The variety corresponding to level 2 is the smallest variety of lan-
guages closed under non-ambiguous product, introduced by Schützenberger
[25].

2 Varieties

All semigroups and monoids considered in this paper are finite or free.

2.1 Varieties of semigroups and ordered semigroups

An ordered semigroup (S,≤) is a semigroup S equipped with an order re-
lation ≤ on S such that, for every u, v, x ∈ S, u ≤ v implies ux ≤ vx and
xu ≤ xv. An order ideal of (S,≤) is a subset I of S such that, if x ≤ y and
y ∈ I, then x ∈ I. A morphism of ordered semigroups ϕ : (S,≤) → (T,≤)
is a semigroup morphism from S into T such that, for every x, y ∈ S, x ≤ y
implies xϕ ≤ yϕ. A semigroup S can be considered as an ordered semigroup
by taking the equality as order relation. Ordered subsemigroups, quotients
and products are defined in the natural way.

A variety of semigroups (resp. ordered semigroups) is a class of (ordered)
semigroups closed under the taking of (ordered) subsemigroups, quotients
and finite products. Varieties of (ordered) monoids are defined in the same
wa y.
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2.2 Identities

Let A be a finite alphabet and let u, v be two words of A∗. A monoid M
separates u and v if there exists a monoid morphism ϕ : A∗ →M such that
uϕ 6= vϕ. One defines a distance on A∗ as follows: if u and v are elements of
A∗, let r(u, v) = min

{

|M | M separates u and v
}

and d(u, v) = 2−r(u,v).
By convention, min ∅ = ∞ and 2−∞ = 0. Thus r(u, v) measures the size of
the smallest monoid which separates u and v. It is not difficult to verify that
d is an ultrametric distance function. For this metric, multiplication in A∗

is uniformly continuous, so that A∗ is a topological monoid. The completion
of the metric space (A∗, d) is a monoid, denoted Â∗.

If we consider each finite monoid M as being equipped with the discrete
distance, every monoid morphism from A∗ onto M is uniformly continuous
and can be extended in a unique way into a continuous morphism from Â∗

onto M . Since Â∗ is a completion of A∗, its elements are limits of sequences
of words. An important such limit is the ω-power, which traditionally des-
ignates the idempotent power of an element of a finite monoid [9, 16].

Proposition 2.1 Let x ∈ Â∗. The sequence (xn!)n≥0 converges in Â∗ to
an idempotent denoted xω. Furthermore, if µ : Â∗ → M is a continuous
morphism into a finite monoid, then xωµ is the unique idempotent power of
xµ.

Another useful example is the following. The set 2A of subsets of A is a
semigroup under union and the function c : A∗ → 2A defined by c(a) = {a}
is a semigroup morphism. Thus c(u) is the set of letters occurring in u. Now
c extends into a continuous morphism from Â∗ onto 2A, also denoted c and
called the content mapping.

Let x, y be elements of Â∗. A monoid (resp. ordered monoid) M satisfies
the identity x = y (resp. x ≤ y) if, for every continuous morphism ϕ : Â∗ →
M , xϕ = yϕ (resp. xϕ ≤ yϕ). Given a set E of identities of the form
x = y (resp. x ≤ y), we denote by [[E]] the class of all monoids (resp.
ordered monoids) which satisfy all the identities of E. The following result
[22] extends two results of Reiterman [23] and Bloom [6].

Theorem 2.2 Let E be a set of identities of the form u = v (resp. u ≤ v).
Then the class [[E]] forms a variety of monoids (resp. ordered monoids).
Conversely, for each variety of monoids (resp. ordered monoids), there exists
a set E of identities such that V = [[E]].

A similar theory can be developed for varieties of semigroups, using
a distance on the free semigroup A+ instead of the free monoid A∗. Of
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particular importance for us is the variety LI of locally trivial semigroups,
defined by the identity [[xωyxω = xω]]. Thus a semigroup S is locally trivial
if, for all idempotent e of S and for every s ∈ S, ese = e. Similarly, the
variety A = [[xω = xω+1]] is the variety of aperiodic monoids [1, 16].

2.3 Relational morphisms and Mal’cev products

A relational morphism between semigroups S and T is a relation τ : S → T
such that:

(1) (sτ)(tτ) ⊆ (st)τ for all s, t ∈ S,

(2) (sτ) is non-empty for all s ∈ S,
If S and T are monoids, a third condition is required

(3) 1 ∈ 1τ

Let V be a variety of monoids (resp. semigroups) and let W be a variety
of semigroups. The Mal’cev product W M©V is the class of all monoids (resp.
semigroups)M such that there exists a relational morphism τ : M → V with
V ∈ V and eτ−1 ∈ W for each idempotent e of V . It is easily verified that
W M©V is a variety of monoids (resp. semigroups). The following theorem,
obtained by the authors [21], describes a set of identities defining LI M©V.

Theorem 2.3 Let V be a variety of monoids. Then LI M©V is defined by
the identities of the form xωyxω = xω, where x, y ∈ Â∗ for some finite set
A and V satisfies x = y = x2.

These results can be extended to varieties of ordered monoids as follows.
Let V be a variety of monoids and let W be a variety of ordered semigroups.
The Mal’cev product W M©V is the class of all ordered monoids (M,≤) such
that there exists a relational morphism τ : M → V with V ∈ V and eτ−1 ∈
W for each idempotent e of V . It is easily verified that W M©V is a variety
of ordered monoids. A defining set of identities for [[xωyxω ≤ xω]] M©V is
given in [21].

Theorem 2.4 Let V be a variety of monoids. Then [[xωyxω ≤ xω]] M©V is
defined by the identities of the form xωyxω ≤ xω, where x, y ∈ Â∗ for some
finite set A and V satisfies x = y = x2.

3 Recognizable languages

Recall that a variety of languages is a class of recognizable languages closed
under finite union, finite intersection, complement, left and right quotients
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and inverse morphisms between free semigroups. A positive variety of lan-
guages is a class of recognizable languages closed under finite union, finite
intersection, left and right quotients and inverse morphisms between free
semigroups.

Eilenberg’s variety theorem can be extended to positive varieties if one
replaces varieties of semigroups by varieties of ordered semigroups. Let
(S,≤) be an ordered semigroup and let η be a surjective semigroup morphism
from A+ onto S. A language L of A+ is said to be recognized by η if
L = Pη−1 for some order ideal P of S. By extension, L is said to be
recognized by (S,≤) if there exists a surjective morphism from A+ onto S
that recognizes L. One defines a stable quasiorder �L and a congruence
relation ∼L on A+ by setting u �L v if and only if, for every x, y ∈ A∗,
xvy ∈ L implies xuy ∈ L and u ∼L v if and only if u �L v and v �L u. The
congruence ∼L is called the syntactic congruence of L and the quasiorder
�L induces a stable order ≤L on S(L) = A+/∼L. The ordered semigroup
(S(L),≤L) is called the syntactic ordered semigroup of L, the relation ≤L is
called the syntactic order of L and the canonical morphism ηL from A+ onto
S(L) is called the syntactic morphism of L. The syntactic ordered semigroup
is the smallest ordered semigroup that recognizes L. More precisely, an
ordered semigroup (S,≤) recognizes L if and only if (S(L),≤L) is a quotient
of (S,≤).

If V is variety of ordered semigroups and A is a finite alphabet, we
denote by A+V the set of recognizable languages of A+ which are recognized
by an ordered semigroup of V. Equivalently, A+V is the set of recognizable
languages of A+ whose ordered syntactic semigroup belongs to V. It is
shown in [26] that the correspondence V → V is a bijective correspondence
between varieties of ordered semigroups and positive varieties of languages.
A similar result holds if languages are considered as subsets of the free
monoid A∗. Then one should consider monoids and varieties of ordered
monoids instead of semigroups and varieties of semigroups.

4 Polynomial closure and unambiguous polynomial

closure

There are in fact two slightly different notions of polynomial closure, one for
+-classes and one for ∗-classes.

The polynomial closure of a class of languages L of A+ is the set of lan-
guages of A+ that are finite unions of languages of the form u0L1u1 · · ·Lnun,
where n ≥ 0, the ui’s are words of A∗ and the Li’s are elements of L. If
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n = 0, one requires of course that u0 is not the empty word.
The polynomial closure of a class of languages L of A∗ is the set of

languages that are finite unions of languages of the form L0a1L1 · · · anLn,
where the ai’s are letters and the Li’s are elements of L.

By extension, if V is a +-variety (resp. ∗-variety), we denote by Pol V the
class of languages such that, for every alphabet A, A+Pol V (resp. A∗Pol V)
is the polynomial closure of A+V (resp. A∗V). We also denote by Co-Pol V
the class of languages whose complement is in Pol V and by BPol V the
boolean closure of Pol V.

Our main result describes the counterpart, on varieties of ordered semi-
groups, of the operation of polynomial closure on varieties of languages.

Theorem 4.1 Let V be a variety of semigroups (resp. monoids) and let V
be the corresponding +-variety (resp ∗-variety). Then Pol V is a positive +-
variety (resp ∗-variety) and the corresponding variety of semigroups (resp.
monoids) is the Mal’cev product [[xωyxω ≤ xω]] M©V.

In particular, for each alphabet A, A+Pol V and A+Co-Pol V are closed
under finite union and intersection, a result due to Arfi [2, 3].

The marked product L = u0L1u1 · · ·Lnun (resp. L0a1L1 · · · anLn) of
n languages L1, . . . , Ln of A+ (resp. A∗) is unambiguous if every word
u of L admits a unique factorization of the form u0v1u1 · · · vnun (resp.
u0a1u1 · · · anun) with v1 ∈ L1, . . . , vn ∈ Ln. The unambiguous polynomial
closure of a class of languages L of A+ (resp. A∗) is the set of languages that
are finite disjoint unions of (marked) unambiguous products of languages of
L.

By extension, if V is a variety of languages, we denote by UPol V the class
of languages such that, for every alphabet A, A+UPol V (resp. A∗UPol V)
is the unambiguous polynomial closure of A+V (resp. A∗V). The following
result was established in [15, 20] as a generalization of a result of Schützen-
berger [25].

Theorem 4.2 Let V be a variety of monoids (resp. semigroups) and let V
be the corresponding ∗-variety (resp. +-variety ). Then UPol V is a variety
of languages, and the associated variety of monoids (resp. semigroups) is
LI M©V.

We give a new characterization of UPol V.

Theorem 4.3 Let V be a variety of languages. Then Pol V ∩ Co-Pol V =
UPol V. In particular, Pol V ∩ Co-Pol V is a variety of languages.
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5 Concatenation hierarchies

Let V be a variety of languages. The concatenation hierarchy of basis V
is the sequence of varieties Vn and of positive varieties Vn+1/2 defined as
follows:

(1) V0 = V

(2) for every integer n ≥ 0, Vn+1/2 = Pol Vn,

(3) for every integer n ≥ 0, Vn+1 = BPol Vn.

The corresponding varieties of semigroups and ordered semigroups (resp.
monoids and ordered monoids) are denoted Vn and Vn+1/2. Theorem 4.1
gives an explicit relation between Vn and Vn+1/2.

Proposition 5.1 For every n ≥ 0, Vn+1/2 = [[xωyxω ≤ xω]] M©Vn.

5.1 Straubing’s hierarchy

This is the hierarchy of positive ∗-varieties whose level 0 is the trivial
variety. The sets of level 1/2 are the finite unions of sets of the form
A∗a1A

∗a2 · · · akA
∗, where the ai’s are letters. It is easy to see directly that

level 1/2 is decidable (see Arfi [2, 3]). One can also derive this result from
our syntactic characterization : a language is of level 1/2 if and only if its
ordered syntactic monoid satisfies the identity xωyxω ≤ xω.

This leads to a polynomial algorithm to decide whether the language
accepted by a complete deterministic n-state automaton is of level 1/2. This
algorithm relies on the notion of configuration. Recall that a subgraph of a
graph G = (E, V ) (where V ⊆ E ×E) is a graph G′ = (E′, V ′) whose set of
edges E′ is a subset of E. A graph G′ = (E′, V ′) is a quotient of G if there
exists a map π from G onto G′ such that E ′ = Eπ. Finally, a configuration
of G is a quotient of a subgraph of G.

Theorem 5.2 Let A = (Q,A,E, i, F ) be a complete deterministic automa-
ton recognizing a language L and let G be the reflexive and transitive closure
of the graph of A ×A. Then L is of level 1/2 if for every configuration of
G of the form

q2
q3

q1
q2

q4
q5
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where the qi’s are states of A, the condition q4 ∈ F implies q5 ∈ F . If A
is minimal, this condition is also sufficient. Therefore, one can decide in
polynomial time whether the language accepted by a deterministic n-state
automaton is of level 1/2.

The sets of level 1 are the finite boolean combinations of languages of
level 1/2, which were characterized by Simon [26] : a language of A∗ is of
level 1 if and only if its syntactic monoid satisfies the identities xω = xω+1

and (xy)ω = (yx)ω. Simon’s result yields an algorithm to decide whether
a given recognizable set is of level 1. Actually, it was shown by Stern [29]
that one can decide in polynomial time whether the language accepted by a
deterministic n-state automaton is of level 1.

The sets of level 3/2 also have a simple description, although this is not a
direct consequence of the definition. Indeed, Arfi [2, 3] proved that the sets
of level 3/2 of A∗ are the finite unions of sets of the form A∗

0a1A
∗
1a2 · · · akA

∗
k,

where the ai’s are letters and the Ai’s are subsets of A. We derive from our
main result the following syntactic charact erization.

Theorem 5.3 A language is of level 3/2 if and only if its ordered syntactic
monoid satisfies the identity xωyxω ≤ xω for every x, y such that c(x) =
c(y).

Arfi [2, 3] proved that level 3/2 is also decidable. But this result relies
on a deep result of Hashiguchi, and the corresponding algorithm reduces to
a finiteness problem on semigroups of matrices, for which only exponential
upper bounds are known. We give below a much more reasonable algorithm.
Let A = (Q,A, ·, i, F ) be a complete deterministic n-state automaton. Let
B be the automaton that computes the content of a word. Formally, B =
(2A, A, ·, ∅, 2A) where the transition function is defined, for every subset B
of A and every letter a ∈ A, by B · a = B ∪ {a}. Consider the product
automaton C = B ×A×A and let G′ be the reflexive and transitive closure
of its transition graph.

Theorem 5.4 Let A = (Q,A,E, i, F ) be a complete automaton recognizing
a language L. Then L is of level 3/2 if, for every configuration of G′ of the
form

B
q2
q3

∅
q1
q2

B
q1
q2

B′

q4
q5
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where B and B ′ are subsets of A and the qi’s are states of A, the condition
q4 ∈ F implies q5 ∈ F . This condition is also necessary if A is minimal.
Consequently, there is an algorithm, in time polynomial in 2|A|n, for testing
whether the language of A∗ accepted by a deterministic n-state automaton
is of level 3/2.

The decidability of level 2 is a challenging open problem, although much
progress has been made in recent years [4, 5, 8, 19, 31, 33, 35, 36]. In the case
of languages whose syntactic monoid is an inverse monoid, a complete char-
acterization was given by Cowan [8], completing partial results of Straubing
and the second author [33, 35, 36]. Our main result gives a much shorter
proof of Cowan’s result and it is proved in [35, 36] that Cowan’s result yields
the following important corollary.

Corollary 5.5 It is decidable whether an inverse monoid belongs to V2.

5.2 Dot-depth hierarchy

In this hierarchy, introduced by Brzozowski [7], the level 0 is the trivial +-
variety. The languages of level 1/2 are by definition finite unions of languages
of the form u0A

+u1A
+ · · · uk−1A

+uk, where k ≥ 0 and u0, . . . , uk ∈ A∗.
These languages can also be expressed as finite unions of languages of the
form u0A

∗u1A
∗ · · · uk−1A

∗uk. The syntactic characterization is a simple
application of our main result. It also yields to a polynomial algorithm

Proposition 5.6 A language of A+ is of dot-depth 1/2 if and only if its
ordered syntactic semigroup satisfies the identity xωyxω ≤ xω.

Theorem 5.7 One can decide in polynomial time whether the language ac-
cepted by a deterministic n-state automaton is of dot-depth 1/2.

The sets of dot-depth 1 are the finite boolean combinations of languages
of dot-depth 1/2. The syntactic characterization of these languages was
settled by Knast and relies on the notion of graph of a semigroup. Given a
semigroup S, form a graph G(S) as follows: the vertices are the idempotents
of S and the edges from e to f are the elements of the form esf .

Theorem 5.8 (Knast [10, 11]) A language of A+ is of dot-depth 1 if and
only if the graph of its syntactic semigroup satisfies the following condition :
if e and f are two vertices, p and r edges from e to f , and q and s edges
from f to e, then (pq)ωps(rs)ω = (pq)ω(rs)ω.
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Theorem 5.9 (Stern [29]) One can decide in polynomial time whether the
language accepted by a deterministic n-state automaton is of dot-depth 1.

The variety of semigroups satisfying Knast’s condition is usually denoted
B1.

6 The sequential calculus

Büchi’s sequential calculus is built up from a binary relation symbol < and,
for each letter a ∈ A, a unary predicate Ra. To each word u is associ-
ated a finite structure Mu =

(

{1, . . . , |u|}, (Ra)a∈A, <
)

where Ra = {i ∈
{1, . . . , |u|} | u(i) = a} is the set of positions of the letter a in u and < is the
usual order on {1, . . . , |u|}. For instance, if u = abbaab, then Ra = {1, 4, 5}
and Rb = {2, 3, 6}. Terms, atomic formulæ and first order formulæ are de-
fined in the usual way. A word u satisfies a sentence ϕ if ϕ is true when
interpreted on the structure Mu. There is a special convention for the empty
word: it satisfies all universal sentences (sentences of the form ∀xϕ(x)) and
no existential sentences. To each sentence ϕ, one associates the sets of words
L(ϕ) that satisfy ϕ. For instance, if ϕ = ∃i Rai, then L(ϕ) = A∗aA∗. The
reader is referred to the survey article [17] for more detail on this logic. The
first order definable languages were first characterized by McNaughton and
Papert [13] : a recognizable subset of A∗ is first-order definable if and only
if it is star-free. The correspondence between star-free languages and first
order logic is even tighter. Indeed, Thomas has shown that the Straubing
hierarchy coincides with the quantifier alternation hierarchy of first order
formulæ, defined as follows.

A formula ϕ is said to be a Σn-formula if it is equivalent to a formula
of the form ϕ = Q(x1, . . . , xk)ψ where ψ is quantifier free and Q(x1, . . . , xk)
is a sequence of n blocks of quantifiers such that the first block contains
only existential quantifiers (note that this first block may be empty), the
second block universal quantifiers, etc.. Similarly, if Q(x1, . . . , xk) is formed
of n alternating blocks of quantifiers beginning with a block of universal
quantifiers (which again might be empty), we say that ϕ is a Πn-formula.

Denote by Σn (resp. Πn) the class of languages which can be defined by
a Σn-formula (resp. a Πn-formula) and by BΣn the set of boolean combi-
nations of Σn-formulæ. Finally, set, for every n ≥ 0, ∆n = Σn ∩ Πn. The
connection with Straubing’s hierarchy can be stated as follows. Denote by
Vn the class of languages of level n. In particular, Vn+1/2 is equal to Pol Vn.

Theorem 6.1 (Thomas [34], Perrin and Pin [14])
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(1) A language is in BΣn if and only if it is in Vn

(2) A language is in Σn+1 if and only if it is in Pol Vn

(3) A language is in Πn+1 if and only if it is in Co-Pol Vn

We now complete this result by giving a characterization of the ∆n classes,
which follows immediately from Theorems 4.3 and 6.1.

Theorem 6.2 A language of A∗ is in ∆n+1 if and only if it is in UPol Vn.

Finally, our results on logic can be summarized in the following diagrams

Σ1 Σ2 Σ3
. . .

∆0 = Σ0 = Π0 = ∆1 = BΣ0 BΣ1 ∆2 BΣ2 ∆3

Π1 Π2 Π3
. . .

Figure 6.1: The logical hierarchy

Pol V1 Pol V2 Pol V3
. . .

V0 V1 UPol V2 V2 UPol V3

Co-Pol V1 Co-Pol V2 Co-Pol V3
. . .

Figure 6.2: The Straubing-Thérien hierarchy

7 Conclusion and open problems

Let V be a variety of semigroups and let V be the corresponding +-variety.
We have shown that the algebraic counterpart of the operation V → Pol V on
varieties of languages is the operation V → [[xωyxω ≤ xω]] M©V. Similarly,
the algebraic counterpart of the operation V → Co-Pol V is the operation
V → [[xω ≤ xωyxω]] M©V. We conjecture that the variety of semigroups
(resp. monoids) corresponding to BPol V is B1 M©V. The conjecture was
proved to be true if V is the trivial variety of monoids, the trivial variety
of semigroups or the variety of monoids consisting of all groups [32, 10, 12].
Note also that every language of BPol V is recognized by a semigroup of
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B1 M©V. Finally, it is proved in [21] that the identities of B1 M©V are

(xωpyωqxω)ωxωpyωsxω(xωryωsxω)ω = (xωpyωqxω)ω(xωryωsxω)ω

for all x, y, p, q, r, s ∈ Â∗ for some finite alphabet A such that V satisfies
x2 = x = y = p = q = r = s.
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