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Optical experiments on electric �eld tunable AlAs/GaAs coupled quantumwells clearly demonstrate
that the optical nature of these structures can be directly controlled by an applied electric �eld.
In this work we are concerned with calculation and analysis of the �rst electron and holOe states
in these structures. We take into account the e�ects of the heterostrucuture geometry and of the
external uniform electric �eld applied perpendicularly to the layers, which may lead to an anticross-
ing of low-lying electron levels in the system. Calculations are performed within the tight-binding
supercell formalism with interactions between atomic orbitals up to second nearest-neighbors. Our
results show that for GaAs layers less than ' 30 �A wide, application of electric �elds takes the
structures from type II to type I heteroestructure behavior. Our estimated value of the electric
�eld intensity needed to cause this transition is in good agreement with the experimental results
for comparable heteroestructures geometries .

Ingenious experimental studies in GaAs/AlAs het-
erostructures involve the electric-�eld induced change
in optical behavior of these systems. The typical sig-
nature of this change is a dramatic increase in the pho-
toluminescence intensity as the main gap of the system
changes from indirect to direct under the action of an
applied uniform electric �eld. Examples of investigated
structures are coupled quantum wells (CQW) [1, 2] and
superlattices [3]. Suggested applications for this e�ect
include optical switches, condensation of indirect exci-
tons, analysis of interface quality. Within the e�ective-
mass framework, this e�ect is qualitatively described by
a conduction-band crossing between a level of � sym-
metry, mainly localized within the GaAs region, and a
level of X symmetry, localized within the AlAs.

From the theoretical point of view, the treatment
of this problem in the envelope-function e�ective-mass
approximation requires inclusion of the four relevant k-
space points in the formalism, one � and the three X
points. [4, 5, 6]. These treatments naturally involve
an additional parameter, namely the � � X coupling,
which emerges from the broken 3-D translational sym-
metry of the zinc-blende heterostructure constituents.
This parameter is strongly dependent on the geometry
of the system [7]. Moreover, inclusion of an external
electric �eld also a�ects its value.

We present here a tight-binding (TB) treatment for
this problem, which includes the heteroestructure ge-
ometry and the external applied �eld. The only input
parameters involve the binary constituent components,
and couplings due to the reduced symmetry are natu-
rally incorporated in the treatment. An external uni-

form electric �eld, applied perpendicularly to the layers,
drives the anticrossing of the ��X levels in such struc-
tures. In the absence of the applied �eld, the Hamilto-
nian is written as

HTB = �
X

i;j;�;�

hi; �jh0jj; �ic
+

i;�cj;� ; (1)

where i; j denote atomic sites in a tetragonal supercell
with periodic boundary conditions, and �; � represent
the atomic orbitals. We adopt a fsp3s�g basis set and
the �rst- and second-nearest-neighbor TB parametriza-
tion proposed by Boykin [8]. This parametrization
yields realistic descriptions for the GaAs and AlAs band
structures, in particular around the relevant k-points �
and X . At each site, the parameters in (1) are taken
according to the atomic species occupation [9]. The ex-
ternal �eld F, applied along the heterostructure growth
direction z, is incorporated by modifying the on-site en-
ergies [10]

"
0

i;� = hi; �jh0ji; �i+ jejFz : (2)

We focus on the lowest electron and hole states in
electric-�eld tunable AlAs/GaAs CQW structures. Fol-
lowing Ref. [1], the active part of the structure con-
sists of 20�A(7ML) GaAs and 40�A(17ML) AlAs, sur-
rounded by wide AlxGa1�xAs barriers. The alloy re-
gion is treated within the virtual crystal approxima-
tion. Fig. 1(a) shows the ground and excited electron
states corresponding to this geometry in the absence of
applied �eld: Note that the ground state is predom-
inantly located in the AlAs region, while the excited
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state is in the GaAs layer. Fig. 1(b) shows the ground

electron state for zero �eld and under an applied �eld
of 70kV/cm. Comparison of the ground state under
applied �eld with the excited state shown in (a) shows
that the applied �eld inverts the ordering of the two
states presented there, thus indicating level crossing
takes place.
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Figure 1. (a) Tight-binding envelope function squared for
the electron ground (solid curve) and excited (dashed curve)
states, in a AlAs/GaAs CQW, in the absence of an electric
�eld. The ground state is predominantly localized in the
AlAs active layer of the heterostructure, whereas the ex-
cited state is predominantly localized in the GaAs layer.
(b) Tight-binding envelope function for the electron ground
state in the absence of an electric �eld (solid curve) and for
F=70 kV/cm (dashed curve). The vertical lines indicate the
boundaries of the active region of the heteroestructure.

In Fig. 2 we present the optical signature of this
crossing, through the calculated oscillator strength of

the transition between the �rst electron and hole states
as the applied �eld increases. Note that the value of the
�eld for which the optical behavior crosses over from
indirect to direct is in excellent agreement with the ex-
perimental value, � 45 kV/cm. This behavior di�ers
from the transition driven by applied pressure in GaAs
or by substitution of Ga by Al in AlxGa1�xAs alloys as
x increases, which are abrupt, leading to a discontinu-
ous change in the oscillator strength from zero to �nite
values [11].
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Figure 2. Oscillator Strength, f , normalized by the bulk
GaAs oscillator strength, f0, as function of the applied elec-
tric �eld. The vertical lines indicate the range of values of
the electric �elds for which a type II to type I hetroestruc-
ture transition takes place.

The smooth transition obtained here is typical of level
anti-crossing, and may be qualitatively understood
from the real space behavior of the electron and hole
states as the external �eld increases, presented in Fig. 3.

Summing up, the TB formalism provides a simple
and reliable tool for the treatment of heterostructures
under applied electric �elds. For GaAs/AlAs coupled
quantum wells, the electric �elds switches smoothly the
system from indirect (type II) to direct (type I) opti-
cal regime. The smooth transition, due to the � � X

coupling, is understood from the real space behavior of
electron and hole states as the electric �eld switches the
system between the two regimes. The calculated value
of the switching electric �eld is in good agreement with
experiments performed with the same heterostructure
geometry we have considered here.
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Figure 3. Evolution of the electronic (solid curves) and hole
(dashed curve) ground states, as a function of the applied
electric �eld. (a) F= 10 kV/cm, the electron ground state
is localized in the AlAs Layer; in (b) and (c), F=40 kV/cm
and F=50 kV/cm, respectively, the electron ground state is
split among the AlAs and GaAs layers; in (d), F=70 kV/cm,
the electronic state is predominantly localized in the GaAs
layer.
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