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In this paper a hybrid learning system that combines different fuzzy modeling techniques
is being investigated. In order to implement the different methods, we propose the use of
intelligent agents, which collaborate by means of a multiagent architecture. This ap-
proach, involving agents which embody the different problem solving methods, is a
potentially useful strategy for enhancing the power of fuzzy modeling systems. Q 1999
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I. INTRODUCTION

In recent years, fuzzy modeling, as a complement to the conventional
modeling techniques, has become an active research topic and found successful
applications in many areas. However, most fuzzy models are presently built
based only on operator’s experience and knowledge, but when a process is
complex there may not be an expert available.1 In this kind of situation the use
of unsupervised learning techniques is of fundamental importance. The problem
can be stated as follows. Given a set of data for which we presume some
functional dependency, the question arises whether there is a suitable methodol-

Ž .ogy to derive fuzzy rules from the data that characterize the unknown function
as precisely as possible. Recently, several approaches have been proposed for
automatically generating fuzzy if]then rules from numerical data without do-
main experts.2

As we attempt to solve real-world problems, we realize that they are
typically ill-defined systems, difficult to model and with large-scale solution
spaces. In these cases precise models are impractical, too expensive, or nonexis-
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tent. The relevant available information is usually in the form of empirical prior
knowledge and input]output data representing instances of the system’s behav-
ior. Therefore, we need approximate reasoning systems capable of handling such
imperfect information. The term soft computing describes the combination of
different emerging computing disciplines, within which we have fuzzy logic,
probabilistic reasoning, neural networks, and genetic algorithms. In many situa-
tions the use of only one of these multiple possible approximate techniques is
not practical. We need the collaboration between them and this is the approach
taken by hybrid systems. Over the past few years we have seen an increasing
number of hybrid algorithms, in which two or more soft computing technologies
have been integrated to improve the overall algorithm performance.3

Those hybrid systems are composed of several different and interchange-
able techniques. The best combination of such techniques may vary from
problem to problem. This leads us to the idea of a multiple loosely coupled
coprocessing distributed system. Each technique can be developed as a system
component and encapsulated to offer a homogeneous interface in a distributed
environment. Mechanisms apt for intelligent cooperation among these compo-

Ž .nents agents should be supported to allow the design and implementation of
cooperative distributed applications.

In this paper we propose the use of intelligent agents which collaborate by
means of a multiagent architecture, as a framework to investigate different
learning techniques in a fuzzy modeling context. This approach involving agents
which embody the different problem solving methods, is a potentially useful
strategy for enhancing the power of fuzzy modeling systems. Our objective is to
show how this framework let us experiment with different techniques in order to
select the combination that better approximated the system behavior.

In Section II we describe the fuzzy modeling process from the perspective
of intelligent agents and multiagent architectures, and a general perspective of
the architecture we propose. In Section III we present the techniques we have
implemented within our agents in the contexts of the fuzzy modeling process.
Next in Section IV we show the behavior of different combinations of agent’s
techniques in a simple but representative problem, where the focus of the test is
to show the possibilities of the architecture in order to allow different interrela-
tions between the learning techniques. Finally we present some conclusions and
indications of future trends.

II. FUZZY MODELING AND AGENTS

In recent times, several different techniques, which may be subsumed in the
frame of soft computing, have appeared in the literature related with fuzzy
modeling. Thus we find proposals that use fuzzy neural networks,4,5 fuzzy subset
theory combined with descent gradient techniques, or with clustering tech-
niques,7,6,8 etc . . . . Recently combinations, of those techniques have been used
to try to solve different problems related with systems modeling.1,9,10

Fuzzy modeling is an approach used to form a fuzzy systems model. In fuzzy
modeling, the most important problem is the identification method of a system.
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The identification of a fuzzy model using input]output data such as the ones we
are concerned with consists of two aspects: structure identification and parame-
ter identification.11 Fuzzy modeling is based on the idea of finding a set of local
input]output relations describing a process. So it is expected that the method of
fuzzy modeling can express a nonlinear process better than an ordinary method.
A fuzzy model consists of a number of fuzzy if]then rules. There are two parts
in a fuzzy rule: the premise and the consequent part. These parts are formed by
the combination of fuzzy sets defined in the different domains of the variables.
Each input]output relation is described by a fuzzy rule. The fuzzy rules are
formed by partitioning, in a fuzzy way, the input spaces and associating to each
of them a consequent expression that could be a fuzzy set, a linear relation, or a
singleton value. Therefore, the premise of a fuzzy rule indicates a fuzzy subspace
of the input variables to which a relation with the output variables can be
established.12

The structure identification consists of the premise structure identification
and the consequent structure identification. When we consider a multiple

Ž .inputs, single output MISO system, the structure identification of a system has
to find the input variables which affect the output from a collection of possible
variables. Once the variables are identified the structure identification is con-
cerned with the input]output relations identification. This is one of the most
crucial problems in the fuzzy modeling, and it is concerned with the identifica-
tion of an optimal number of fuzzy partitions of the input space, where the
number of fuzzy subspace corresponds to that of the number of fuzzy rules. The
parameter identification is concerned with the identification of the parameters
of the membership functions of the fuzzy sets that are used in the fuzzy rules. In
many cases some form of parameter identification is performed within the
structure identification, and then a tuning parameter identification is separately
performed after the structure identification.11

In the context of fuzzy modeling, the use of clustering based techniques has
had a great success. The objective of this clustering is to detect the behaviors
present in the data obtained in a system under observation with no other

Žadditional information to perform a process of fuzzy modeling through a set of
.fuzzy rules . Some different approximate and descriptive methods have been

proposed in Refs. 13]15. With the results described in those works, what we get
is a rule set that is only a first approach to the problem of fuzzy modeling of the
system we are studying. The next objective is to approach the problem of how to
optimize the rules generated using some of the proposed methods. To do so we
propose the use of tuning techniques based on the modification of some of the
parameters of the fuzzy rules obtained with the clustering techniques and give
sense to the creation of hybrid systems applied to fuzzy system modeling.

It is clear that to obtain a good fuzzy model, it is not possible to apply the
same kind of techniques to the different problems outlined in the fuzzy model-
ing process. The need of a combination of alternative and complementary
techniques during the structure and parameter identification has shown the
possibilities of the use of hybrid systems in fuzzy modeling, and particularly the
use of intelligent agents as the component of these hybrid systems.
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A. Intelligent Agents and Agents Architecture

In recent years there has been a growing interest in AI research toward the
distributed artificial intelligence, due to the growth of computer networks. In
distributed artificial intelligence the aim is to create multiple intelligent entities,
which may interact and communicate possibly by sharing a common knowledge
source, in order to provide additional problem solving facilities. Such entities are
known as intelligent agents.16

There is not a viable definition of what an agent is. Neither the research
community nor the software developers have a reasonable working definition of
what it takes for some particular program or artifact to be qualified as an
‘‘agent.’’ An intelligent agent may be considered to be any program or device
that has the capability of reasoning and decision making. Important properties
of an agent are autonomy, in the sense of the ability to operate without human
intervention, and rationality, in the sense of being able to maximize its perfor-
mance with respect to some objective. In any way an agent to be considered
intelligent must exhibit some form of intelligence behavior from the user point
of view.

By providing relatively small intelligent components that may be more
easily integrated into more general software products, we can try to solve
problems that could not be solved using a large and complex software system.
The provision of facilities for the inclusion of multiple fuzzy modeling problem
solving paradigms in a single software system has several advantages: different
strategies may be applied to solve different aspects of a problem, with the most
appropriate approach being selected for each aspect; different problem solving
functions may proceed in parallel, to speed up problem solution times; two or
more problem solving methods may concurrently be active in attempting to solve
the same problem, and then the best solution chosen. This last feature is
particularly relevant in the case of, for example, safety-critical systems, since if
one method fails, a solution may still be found; also solutions provided by
different methods may be compared, to provide an additional degree of safety
assurance.16

Agents of this kind can be inserted into a multiagent system. Several agents
can be created with different initial parameters. The agents can compete
between each other to determine the strongest or the most dominant. A
multiagent system is composed of largely autonomous and decentralized compo-
nents or agents, cooperating together in performing complex solving problem
tasks. The use of multiagent systems creates a framework, which allows the
interoperation of a vast set of heterogeneous solutions to carry out the complex
desired tasks. That is, offering black box interfaces, and thus high degrees of
encapsulation and modularity, and of course, supporting several interaction
schemes.

B. Multiagent Platform

It is necessary to pay attention to the components that compose the
backbone of the development of an intelligent system. Those pillars are the
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learning algorithms that are able to deal with the uncertainty and vagueness,
the technology that allows interaction among the agents that are going to com-
pose the system, the communication languages, and the multiagent architec-
tures.

Hence, we found two topics of interest:

Ž .a The interaction among agents.
Ž .b The integration of the intelligence in software agents.

In an agent based system the communication among agents is of paramount
importance. At the moment, several international research groups are proposing
several standards for agent communication. For example, with regard to the
communication among agents topic there are proposals such as KQML from
the ARPA KSE17,18 and the open agent architecture proposed by SRI. After
the evaluation of the proposals we opted to use KQML for this task. The

19,20 Ž .KQML language proposed by the ARPA knowledge sharing effort KSE ‡ is
becoming the standard language to exchange information among agents and
knowledge bases. Among its more relevant features it has a high level communi-
cation language to exchange syntax and ontology-independent information. It

Ž .allows encapsulating information and its set of performatives instructions is
extensible to allow a later extension.

To integrate intelligence there is no recent proposal broadly accepted so we
propose the creation of a multiagent system for learning in a fuzzy modeling
environment, focusing all this technology with an objective: to develop a dis-
tributed software agent group that can collaborate asynchronously among them-
selves in the most autonomous and efficient way possible.

1. Distributed Multiagent Architecture

Multiagent architectures investigate knowledge representation models like
communication and inference techniques to let an independent group of agents
solve problems together. Those agents form a multiagent system that can be
defined as ‘‘a loosely coupled network of problem solvers that work together to
solve problems that are beyond their individual capabilities.’’21 Agents are
autonomous entities capable of carrying out specific tasks by themselves or
through cooperation with other agents. Multiagent systems offer a decentralized
model of control and use the mechanisms of message passing for communica-
tion purposes.

Ž .We will use the approach of cooperative multiagent system CMAS where
the agents act to globally improve the system versus the self-interested multia-
gent systems where each agent acts looking for a self benefit and the system

‡The ARPA knowledge sharing effort is a consortium to develop conventions that
ease the reutilization of knowledge bases and knowledge based systems.
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benefit is derived of the individual benefit of its components. Our agents are
designed to cooperate and, in the case of a conflict among them, ask a decisor
agent that evaluates the proposals and choose.

One of the advantages of agent utilization is that those programs can be
specialized to very specific tasks and, later, communicate to solve more difficult

Žproblems in their entirety similar to the combination of several specialized
.parts of our brain to generate an answer to a problem . In this way, moreover,

we can add to the systems new features as new specialized agents without any
Ž .change in the system. This is the reason for as we comment earlier the division

of the different parts of the system in independent blocks, each one of those
specialized in a specific task.

Ž .The multiagent systems MAS should deal with three basic problems:
communication, coordination, and negotiation.

The agents not only have to be able to communicate among them to
transmit the information they process, but also have to be able to communicate
their existence to the others, offer them its services or ask for services to other
agents that exist in the system. So we need a collaboration architecture among

Ž .agents. A common representation language KQML is used by agents to
exchange messages.

The coordination is of paramount importance in a MAS. The agents have
to be coordinated to be able to combine their individual capabilities. In our
approximation we have agents very specialized to solve specific problems and
other agents that are in charge of dividing the problems into tasks that are
performed by those specialized agents. Most of the tasks have dependencies

Ž .among them some have to be performed before others , a fact that forces us to
have a coordination mechanism that indicates to each agent what to do and

Ž .when to do it and, as we mention later, what to do if it is unable to do it .
The negotiation arises when there exist goal conflicts among agents. As we

mentioned above we solve the problem through decisor agents that evaluate
Žsome measure about the proposals of the agents and select one or a combina-

.tion of them.
From an external perspective, agents are structured as a set of elements;

Ž . Ž .services functionality offered to other agents , goals self-imposed tasks , re-
Ž . Žsources external sources of information , internal objects data structures

. Žshared by all the processes launched by an agent , and control specification of
.how service requests are handled .

At the architecture level, coordination is achieved in the platform through
Ž .specialized agents facilitators, planners, decisors . . . . At birth, agents register

to a particular facilitator, informing about their net address, the services they
offer, the services they would need, etc.

Now we have defined the features we want for our agents, have solved the
Žproblem of communication among them, and have the learning techniques we

.will explain them later and algorithms to be applied in our systems, we propose
a kind of architecture for the system. The architecture we propose is a multi-
layer architecture. One that has at least two layers.
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Ž .1 An internal layer of task agents that will take the necessary steps to let the
information requests made by the interface agents be performed. This layer will
also take charge of the learning part of the system, processing the information
to improve the results as much as possible.

Ž .2 A layer of interface agents: These agents are in charge of dealing with human
operators. They adapt to them, request additional information or confirmation if
it is necessary, and present to them the information they request in a useful way,
etc.

As we mentioned above, we also have several service agents distributed
over the system. An example of a service agent is the facilitator agent. The
facilitator acts as a Yellow pages to other agents, indicating where to find agents
that perform specific tasks. If a task agent needs any service and it does not
know where to find it, it requests from the facilitator agent a list of agents that

Žcan help it. The facilitator returns that information if it does not have it, it will
.look for it and later, it is the task agent who is in charge of the activation of

those agents, and sending them the jobs, retrieving the results later.

2. Interface Layer

This layer is in charge of dealing with the world. It is composed of the
software in charge of getting the users requests and eliminating inconsistencies
and ambiguities. This layer is also in charge of showing the results and asking

Ž .the user about the quality of the service offered a basic feedback system . The
interface layer gives or retrieves all the information the system produces or
needs. It deals with the human users and presents the information to them in a
comprehensive way. It also deals with external databases or information re-
sources. It is composed of what we generally call an interface or information
agents.

3. Task Layer

This layer is responsible for planning and decomposition of the information
request into subtasks, as well as the activation of the agents in charge of

Ž .information retrieval. See Fig. 1. The learning software also composes the
layer. It consists of two parts. The agents that are in charge of knowledge
extraction from the information that the system has§ compose one of these
parts. To do so some agents exist that are in charge of the detection of groups of
data with similar behavior. With such data another agent tries to create a

Žcollection of fuzzy rules applying several learning techniques fuzzy clustering,
.gradient descent, genetic algorithms . The system will evolve depending on the

acceptance or not from the feedback system. This feedback can be from a
human user]expert or training data files. Due to the use of several learning
techniques, the system will tend to use those techniques that produce better

§It is supposed that the system acquires the information in some way. In particular,
we have a complete layer in charge of information acquisition and preprocessing.
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Figure 1. A schema of the Task layer.

results for each particular task. Our fuzzy modeling schema is based on:

v Variable identification
v Clustering generation on such features
v Creation of fuzzy rule systems
v Tuning of such rules
v Use of the rule systems for inference

For each of those steps there are several techniques. Each technique has
been implemented in a specialized agent. Those agents usually have only the
basic KQML communication interface to allow them to be activated, receive the
parameters and, in the case where the techniques allow it, give intermediate
results. This is useful if we have time restrictions. If we need a result immedi-

Ž .ately from a rule system even if it is not optimally tuned our tuning agent
allows us to give an intermediate result and continue tuning the rules while the
system gives an answer, not breaking the time limit imposed.

So we have a parallel application with different ways of processing informa-
tion. At the end, a decisor agent is in charge of choosing, among several options,
the one it considers the most interesting. It is also in charge of informing the
planners of the positive or negative result of the choice to allow, in the future,
choosing some techniques over others or to experiment with changes in the
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many parameters that each technique has. For example, in the case of the rule
tuning it can modify the learning rates, the number of iterations, etc.

4. Agents of Our Proposal

In this section we describe the agents that our system has. We classify them
Žby the role they have in the system, that is; services functionality offered to

. Ž . Žother agents , goals self-imposed tasks , resources external sources of informa-
. Žtion , internal objects data structures shared by all the processes launched by

. Ž .an agent , and control specification of how service requests are handled .

Ser¨ice Agents

Facilitator. This agent acts as a Yellow pages to others agents. Every new
agent in the system should register its existence to the facilitator and also the
services that the agent offers to the system. The facilitator will provide to any
agent information about the services offered by the system, and how to obtain
them.

Ž .Task Agents Goal Agents

We enumerate the different task agents our system has. In the next section
there is a complete explanation of its operation.

Clustering Agents. This kind of agent performs a clustering in a data set. It
will try to find the behavior tendencies of the data, grouping data into several
clusters. Each cluster will be used to generate one or more rules that model the
data.

Rule Generation Agents. This agent creates a fuzzy rule system. There are
several kinds of rule generation agents. They differ in the way they create them
and also the kind of information they take as input. The parameters they usually
have are the number of rules to be generated and the type of fuzzy number used
in the rule.

Tuning Agents. These agents tune the fuzzy rules systems and try to
optimize them using training data. This training data is provided by the system
in some way. There is a different agent for each different tuning method. This
way makes it easier to add to the system new features and methods simply by
registering them in the facilitator.

Evaluator Agent. The evaluator is an agent that given a particular fuzzy
rule system infers results on new data. Due the different kinds of fuzzy rule
systems there is also several evaluators.

Resource Agents

Information Agents. They provide information to the system. There are as
many of these agents as there are different information resources available.
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Internal Objects

Rule Systems Database. In this database we store all the fuzzy rule systems
we produce or have.

Information Database. This database mainly stores the training data the
system has.

Control Agents

Planner Agent. The planning agents are in charge of the activation and the
synchronization of the different agents. Those agents elaborate a work plan and
are in charge of ensuring that such a work plan is fulfilled. They receive the
assignments from the interface layer. They activate the information agents,
learning agents and, if something goes wrong, the error control agents.

Decisor Agent. When a planner agent decides to perform a task that can be
fulfilled in several ways it usually launches several agents to perform the same
task. When those agents finish the assigned task they return the results to a
special agent called the decisor. The decisor chooses one of the different results,
the one it considers to fit best. It can also perform a fusion of the different
results into a final one.

Error Control Agent. The error control agents are in charge of controlling
the possible malfunctions of the system. There is usually an error control
associated to each task agent that can fail. All the messages to the task agents
are then redirected to the error agent that filters them and also processes the

Ž .error control directives as time limits, sequentiality, etc. that the messages may
contain. The error control then takes charge of reporting the success or failure
of the task. They normally control these situations.

Ž .i Time limit restrictions. Many tasks have a time limit imposed on them. In the
tasks susceptible of being interrupted they request of the task agent an answer
when the limits are reached. In a task that can not be interrupted it informs of
the failure to the planners.

Ž .ii Unreachable conditions. Some tasks require that some conditions have to be
fulfilled to work properly. Sometimes those conditions can be unreachable by
the system. The error agent has to inform the planners that the task it controls
can not start or finish due to the condition that it is likely the system cannot
reach.

Ž .iii Sequential tasks. Some tasks have to be performed in a given order. The
planners have to ensure that the tasks are performed in the correct order.
Sometimes, the planners allow the error control agent to perform this action.

Ž .iv Information not a¨ailable. Before launching the agent it controls, the error
control agent has to verify that all the information the agent needs is available
in the system. It is the responsibility of the planners that the parameters are
ready, but the error agent will check the additional information the agent may
request.

Besides the error control assigned to each fallible agent there is a global
system error control agent in charge of avoiding the degradation of the condi-
tion of the system. It kills nonproductive agents, set limits on the workspace of
agents, set priorities, etc.
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III. FUZZY MODELING IN OUR MULTIAGENT
SYSTEMS ARCHITECTURE

Once we have defined the multiagent architecture we return our attention
to the learning techniques our agents implement.

ŽWe will consider, without losing generality, a MISO system multiple input,
.single output . We want to find a system that approaches the function w :

X p ª Y that models the system. We have a sample set of the behavior of the
Ž p . ŽŽ . .system in the space X = Y , V s x , x , K, x , y , t s 1, 2, K, n, wheret1 t 2 t p t

X , X , K, X are the domains of the inputs and Y is the domain of the output.1 2 p
Supposing we have a collection of data that represent the behavior tenden-

cies of the system, we want to obtain a characterization of such behavior using k
fuzzy rules that have this form,

R : If x is A then y is B h s 1, . . . , k 1Ž .h h h

where A and B are, respectively, the fuzzy sets in X p and Y. Once all ofh h
Žthose rules have been created in the next section we will show how we will

.create them an inference mechanism can be used for any new input, using
approximate reasoning.

A. Background Rules

When we try to obtain an approximation of a function w : X p ª Y by
means of a fuzzy rule system using a collection of input]output sample data, we
find an inherent problem of this kind of modeling. With a limited number of

Ž .rules and even in systems with many rules it is very difficult or even artificial to
completely cover the input space. When we create the rule systems we may force
it to cover all the input space making the rules sufficiently broad but this is not a
good strategy. The first thing that is tried when we create a rule system is to find
the function zones where the samples have a similar behavior, to cover such
zone with a rule. To find such zones a clustering technique is used. The rules
generated by the clustering will try to better cover the points that have a greater
membership value to such cluster. It is not very probable that the overlapping of
all such generated rules will completely cover the input space. Besides, even if
we force the system to cover all the input space, when we try to tune the system

Žby any tuning technique to try to model in a more precise way the underlying
.function the modification of the limits of the rules quickly leads us to a

situation in which there are some holes in the input space, what is called a
sparse rule system.

Ž .To solve this problem we use a background rule system BRS associated to
a fuzzy rules system. Our background rules behave in a similar way to a normal
fuzzy rule. The mechanism is a little bit different. When a sample does not
activate any rule of the normal fuzzy rules system what we do is to activate all
the background rules. Those rules may be from a single default output value up

Žto a complete system based on distance to background rules the membership is
.always greater than zero so it always has a value . Using the background rules
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we improve the system because we do not restrict the freedom of tuning of the
fuzzy rules of the normal system. Many background rule systems allow tuning,
for example, our gem background rules system.

Ž .Our gem global enveloping method background rules system is based in a
set of what we call gem rules. A point in the input space and a value for the
output space composes those rules, which means, as can be seen, a minimal
memory waste. If the normal fuzzy rule system does not cover a given point, that

Ž .is, when there is not any rule R that verifies x is A h s 1, 2, . . . , k for ah h
given x, we calculate the output value of the system using the gem rules. We
describe in each of the following sections how gem rules are created, tuned, and
how they infer.

1. Clustering Agents

Next we explain some of the different clustering agents our multiagent
architecture can integrate.

We consider that we know, in some way, the existence of k clusters in the
Ždata. We do not need to know any other information of the data structure for

.example, linearity or nonlinearity . We will use a clustering algorithm to find k
centroids. An important aspect to stand out is that the clustering process is
performed over the input and output product space. The objective of this
process is, as is shown in several works,22,23 to perform a better detection of the
clusters that exists in the data. This is because not only is the interactivity
between input product spaces taken into account but also the consequences
of its interrelation with the output space. So the clustering will be performed

Ž p .over the X = Y , that is, we will also take into account the output values
of the examples. In this way, we obtain k centroids C with this formh
Ž .c , c , . . . , c , c , h s 1, 2, . . . , k where c , c , . . . , c belong, respec-h h h h h h h1 2 p pq1 1 2 p

tively, to the domain X , X , K, X , and c belongs to the domain of Y.1 2 p h pq 1

Method CL1. This method gets as input a set of pairs of input and output
values. Our objective is to perform a data clustering, and be able to detect in
this way the associated centroids to the different detectable clusterings. We are
going to use a modified version of the classical Kohonen self-organizative
algorithm as proposed in Ref. 5. So in each loop it is not only the ‘‘winner’’
centroid or the closest to the learning sample that it is modified, but a set of
centroids of the vicinity, vicinity which decreases when the number of iterations
increases.

The method works in this way. We first generate k random centroids inside
Ž .the data space. Then, for each input sample x t we measure the Euclidean

Ž . Ž .distance between each center c t , i s 1, 2, . . . , k and that input sample x ti
Ž . 5 Ž . Ž .5and then select the closest winner center c t according to x t y c t sc c

�5 Ž . Ž .54 Ž .min x t y c t . The winner center c t and some centers belonging to thei c
Ž . Ž .set N t are moved toward the input sample x t according toc

c t q g t ? x t y c t ; i g N tŽ . Ž . Ž . Ž . Ž .i c i cc t q 1 s 2Ž . Ž .i ½ c t ; i f N tŽ . Ž .i c
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Ž . Ž Ž . .where g t is a monotonously decreasing learning rate 1 ) g t G 0 , and thec c
Ž . Ž .centers set N t is composed by the nth closest centers to c t , the winnerc c

center. This number n decreases with each iteration down to zero. After it
reaches zero only the winner center is modified. The parameters of this method
are the starting n, and the number of iterations it needs to reach the zero value.
The other parameters are the data set, the number of global iterations and the

Ž .starting and ending learning rate g t .c
Ž .Method CL2 Fuzzy Tabu Clustering . The tabu search is a heuristic that

can be used to solve combinatorial optimization problems. It is different from
the well known hill climbing local search techniques in the sense that it does not
become trapped in local optimal solutions, i.e., the tabu search allows moves out
of a current solution that makes the objective function worse in the hope that is
eventually will achieve a better solution.24

In Ref. 25 we have presented a tabu search-based algorithm for fuzzy
clustering. In this algorithm the objective function, the centroid and member-
ship calculation are similar to that of the fuzzy C-means algorithm,26 where the
parameter m is the fuzziness of the clustering. Thus,

k n
2 m5 5J s x y c ? m xŽ .Ý Ý j i c ji

i j

Ýn x mm xŽ .js1 j c jic si n mÝ m xŽ .js1 c jj

1
m x sŽ .c Ž .1r my1h 2 2n 5 5 5 5Ý x y c r x y cŽ .is1 h i

To simplify the explanation we will name as configuration a tuple composed
of a centroids vector and the corresponding degrees of membership matrix, and
it will be denoted as A . The following parameters are used: MTLS maximumk
tabu list size, P probability threshold, NTS number of trial solutions, ITMAX
maximum number of iterations, and TLL tabu list length.

The algorithm can be described, by means of four simple steps, as follows:

Ž .s1 Initialization step. Let A be an arbitrary solution and J be the corresponding0 0
Ž .objective function value computed using Eq. 1 . Let A s A and J s J .b 0 b 0

Select values for the following parameters: MTLS, P, NTS, and ITMAX. Let
Ž .k s 1, let TLL s 0, and go to step s2 .

Ž . 1 2 NTSs2 Generation step. Using A generate NTS trial solutions A , A , . . . , A , andb k k k
evaluate their corresponding objective function values J 1, J 2, . . . , J NTS, and gok k k

Ž .to step s3 .
Ž . 1 2 NTSs3 Selection step. Order J , J , . . . , J in ascending order and denote them byk k k

J w1x, J w2x, . . . , J wNTSx. If Aw1x is not tabu, or if it is tabu but J w1x - J then letk k k k k b
w1x w1x Ž . w L xA s A and J s J , and go to step s4 ; otherwise let A s A andc k c k c k

J s J w L x, where J w L x is the best objective function of J w1x, J w2x, . . . , J wNTSx that isc k k k k k
Ž . w1x w2x wNTSx Ž .not tabu and go to step s4 . If all J , J , . . . , J are tabu go to step s2 .k k k
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Ž .s4 Modification step. Insert A at the bottom of the tabu list and let TLL sc
ŽTLL q 1 if TLL s MTLS q 1, delete the first element in the tabu list and let

.TLL s TLL y 1 . If J ) J , let A s A and J s J . If k ) ITMAX, stopb c b 0 b c
Ž A is the best solution found and J is the corresponding best objectiveb b

. Ž .function value ; otherwise, let k s k q 1 and go to step s2 .

Different alternatives exist to generate the trial solutions, for example, to
move the centroids over the space and then to calculate the new memberships
matrix. For each centroid, if a random number is greater than P, the move is
performed.

2. Rule Generation Agents

For simplicity we have chosen the simplified fuzzy rule form27 where the
fuzzy set of the consequent for each rule is changed for a simple value or

Ž .singleton consequent being, in our case, a real number . So all our methods will
produce rules of this type,

R : If x is A then y is ¨ h s 1, . . . , k 3Ž .h h h

The membership value A is an interpretation of the expression of theh
antecedent of the rules. Particularly, the rules can be expressed as

R : If x is A and x is A and ??? and x is A then y is ¨h 1 1h 2 2 h p ph h

h s 1, . . . , k 4Ž .

Ž .Each one of the expressions x is A is interpreted as a membership degreej jh
Ž .m x of input value x to the fuzzy set A . Such membership degrees areA j j jhjh

defined by the membership function that depends of the kind of fuzzy number
used. Each rule also needs an initial ¨ output value. So, basically, each methodh
has to:

Ž .a Define the number of rules to be created.
Ž .b Set the centers of the A fuzzy numbers that constitute the antecedent of thejh

rules.
Ž . Ž .c Define the membership degree m x to be used.A jjhŽ . Ž .d Set the output value ¨ .h

Now we can explain how we create our gem background rules because they
are independent to the fuzzy rule system the gem is the background of. In our
case, we create as many gem rules as fuzzy rules above them, but this number
could be different. We also use as centers of the gem rules the centers of the

5fuzzy rules. As the output value we use the mean of the outputs of the training
Ž .data multiplied by a membership function that preserves Ý m x s 1, ; x. Inj ch

5There is no special reason to do this. We just use them to avoid calculating other
centers. In our conclusion and future trends section we propose other ways to find
centers for such gem rules, but we have not yet tested or formalized them.
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Ž .this way, any input data x not only the training data will have a gem rule that
Ž .covers it actually it is covered by all of them . So the output value is calculated

by

Ý m x ? yŽ .j c j jh¨ s 5Ž .h Ý m xŽ .j ch 1

and the membership function we use is

1
m x s 6Ž . Ž .c 2 2h n 5 5 5 5Ý x y c r x y cŽ .is1 h i

Independently of the gem rules, two methods to generate the fuzzy rules have
been implemented:

Ž .Method RG1 Pyramid . This method gets as input a set of centroids. It will
create a rule for each centroid, and it will use triangular fuzzy numbers. The
fuzzy sets of A are generated with center equal to the centroid. To calculateh

Žthe width we assign to each example a centroid particularly the centroid closest
.to the example and check, for each centroid, among the examples assigned to it,

which one is the farthest. The width of the fuzzy set generated by such a
centroid will always be greater than this distance. The reason to do so is to
ensure that all training data samples are members of at least one fuzzy set.¶ It

Žhas to be slightly greater to avoid having an element the one that is furthest
. Ž .away with a membership value of zero see the membership functions below ,

which is equivalent to a nonmembership. This will also ensure that at least one
rule will be fired for each example.

Ž .This method will use triangular fuzzy numbers. Two numbers, center c
Ž .and base b define such fuzzy numbers. Its membership function is

5 5¡ 2 ? x y cj jh
1 y c y b r2 F x F c q b r2jh jh j jh jh~m x s 7bŽ . Ž .A j jhjh ¢
0 otherwise

The output value is calculated as the mean of the outputs of the examples
that fire it, weighted by the membership value of such an example. If we have n

wŽ . Ž . Ž .xexamples of p dimensions in the form e s x , y , x , y , K, x , y with1 1 2 2 n n
x g X p and y g Y, the initial rule output value ¨ is expressed in this way,i i h

Ýn m x ? yŽ .js1 A j jh¨ s 8Ž .h nÝ m xŽ .js1 A jh

¶We should note here that this does not ensure that all of the input space is
covered, it only ensures that all the training data samples are covered. However, there is
no problem because the gaps are covered by the gem rules.
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Ž .where m x is the firing strength of the rule R for the example x . There areA j h jh

several ways to express such firing strength. It can be defined as a measure of
the global coincidence of each of the components of the example x , i si j

Ž1, 2, . . . , p with each one of the fuzzy numbers A that compose the rule as weih
.have shown before, such coincidence is measured by the membership value . In

Ž .our case we will use the t-norm product 9 for the firing strengths. Thus,
p

m s m x 9Ž . Ž .ŁA A i jh i h
is1

Ž .Method RG2 Matrix . This method is analogous to RG1 but the centers of
the rules are not extracted from a clustering. What we do is to divide the input

Žspace into a matrix each cell will be an hypercube of range equal to the
.dimension of the input and we define the centers of the hypercubes to be the

centers of the rules. This method creates an homogeneous distribution of
the rules. The width of the rules is slightly greater than the hypercubes to allow
a little overlapping of the rules. The rest of the parameters are calculated as in
RG1.

3. Rule Tuning Agents

The set of rules generated with any of the previous methods could be a
good approximation to the system to be modeled. We can calculate the error we
have when we use them. As we only know the outputs of the examples, we can
estimate the error we have when we approximate the function with them. We
will use the mean square error,

2UnÝ y y yŽ .js1 j j
E s 10Ž .

n

with yU being the real value of the jth example and y the fuzzy rule system’sj j
Žinferred value for the jth example. The inference process will be described

.below . Starting with those measures we can try to improve the fuzzy system
trying to tune the rules. In particular, we should try to get the inferred values to
be closer to the real ones. To do so we have created two approximations, one
based on output tunes, and the other on gradient descent.

We must note that the gem rules can be tuned in a similar way as the fuzzy
system, particularly the gem background rules are modified as follows. Each
method that modifies the output value of a rule can also tune the gem
background rules system. Instead of modifying the output value of a fuzzy rule
we modify the output of all gem rules in this way. Hence,

Ý m x ? mŽ .j c jh¨ t q 1 s ¨ t q 11Ž . Ž . Ž .h h Ý m xŽ .j c jh

where m is the modification we would use to adjust the output of the fuzzy rule,
as is shown next, and t is the iteration of the tuning process.
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Method RT1. The method RT1 is an algorithm that tries to improve the
global output by a set of individual improvements. This method modifies the ¨ h
of the rules to get a y closer to yU.j j

Ž U .To fulfill this objective we will use the examples e s x , y one by one.j j j
For each example we check how many rules are fired with the example and

� Ž . 4we obtain in this way a subset of them P s R rm x ) 0 . Among all thej h A jh

fired rules, we choose the one with the strongest firing strength R g P r¨ sk j h
Ž .Max ¨ g P . We tune the output of this rule to make the rule output value ¨i j k

U Ž .closer to the output value of the example y weighted by a learning rate g tj s
Ž . Ž .with 1 G g t G 0 and weighted also by the firing strength of the rule m t ,s A k

Ž . Ž . Ž . Ž . ? U vusing the following criteria ¨ t q 1 s ¨ t q g t ? m t ? y y y . In thisk k s A j jk

way the system global output, for the example will get closer to yU.j
Ž . u U vIf we use this method to tune the gem rules we use m s g t ? y y y .s j j

The strong point of this method is its simplicity, but it does not ensure that
the tune made by an example does not prejudice tunes made by other examples.

This method can be applied to any rule system with a singleton output
value. It can also give intermediate results. At each iteration we know the best
solution found so far, this means that the process can be interrupted without any
working problem, given this solution, and resume the tuning process later at the
same point.

Method RT2. This second method tries to improve the error using gradient
descent. Using the error expression we obtain expressions of the dependence of

Ž .y with regard to the output of the rules the ¨ and with regard to the fuzzyj h
numbers that fire them. So we can modify both the ¨ and the fuzzy sets of theh
antecedent of rules. In particular, a descent method seeks for the vector Z,

Ž .which minimizes an objective function E Z where Z is a p-dimensional vector
Ž .Z s z , z , K, z of the tuning parameters. In this method, the vector that1 2 p

Ž . Ždecreases the objective function E Z is expressed by y­ Er­ z , y­ Er­ z ,1 2
.K, y­ Er­ z , and the learning rule is expressed in the following way,q

­ E ZŽ .
z t q 1 s z t y K i s 1, 2, . . . , q 12Ž . Ž . Ž . Ž .i i ­ zi

where t is the tune process iteration and K is a constant. In our case, the
Ž .objective function to minimize is the error 2 of the fuzzy rule system.

In this method if we use triangular fuzzy numbers, as we described before,
we see that the system depends on three different groups of variables: the cen-

Ž . Ž .ters of the fuzzy numbers c , the base of the fuzzy numbers b , and thei j i j
Ž . Ž . Ž .consequents of the rules ¨ with i s 1, 2, . . . , k and j s 1, 2, . . . , p . So thei
Ž . Ž .vector Z has the form z , z , . . . , z s c , . . . , c , b , . . . , b , ¨ , . . . , ¨ .1 2 q 11 n p 11 n p 1 n

Developing we obtain

­ E
c t q 1 s c t y K ?Ž . Ž .i j i j c ­ ai j
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­ E
b t q 1 s b t y K ?Ž . Ž .i j i j b ­ bi j

­ E
¨ t q 1 s ¨ t y K ?Ž . Ž .i i ¨ ­ ¨ i

The rest of the process is to perform an iterative application of these three
expressions on the described variables. The process will finish when the reduc-
tion of the error between two iterations is less than a determined value. The
constants that appear in the expressions let us tune the sharpness of the
method.

In the gem rules system we use m s yK ? ­ Er­ ¨ .¨ i
This method can be developed for other kinds of fuzzy numbers. It can give

intermediate results.

4. Inference

Once all the rules of the system have been defined we can use them to
produce results with new examples. In the search for more accurate systems we
have developed several kinds of fuzzy rules systems. In particular we have added
a special feature called multiple fuzzy rule system with error that we describe in
the next section.

Also we must remember that in order to enhance our fuzzy rule systems we
have added to them background rules. The background rules solve the problem
of fully covering the input space.

Ž .Method IN1 Mizumoto Rule . One way to infer results is to use the
Mizumoto’s simplified reasoning method27 which is defined as the mean of the
singleton outputs of the rules fired by the point to be inferred weighted by
the firing strength of such a rule for such an example. That is

Ýk m ¨hs1 A hhy s 13Ž .kÝ mhs1 A h

Of course, as the firing strength is defined through the membership values,
if a different approach is used, the results can be different so it is very important
to keep the same criteria when creating, tuning, or performing inference with a
system.

If Ýk m is equal to zero then y is undetermined, which means that nohs1 A h

rule covers the point, so our gem background rule system is activated. We then
Žcalculate the output value using the same expression as above Mizumoto’s

.simplified reasoning method but with the firing strength of each gem rule, taken
not as the multiplication of the membership degrees to each fuzzy number in

Ž .the input space 9 , but as the fuzzy membership degree to the center of the gem
Ž .rule 6 . If we have s gem rules c with j s 1, 2, . . . , s, and each gem rule has anj

output value ¨ associated, the we will calculate the membership degrees withj
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Ž .the expression 6 . In addition, we will calculate the final output value with

s sÝ m ¨js1 c jjy s s m ¨ 14Ž .Ý c js jÝ mjs1 c js1j

With this method, our system covers all the input space because Ýs m s 1js1 c j

so there is always an output value.

5. Special Features

Ž .Multiple Fuzzy Rules System with Error MFRSWE . When we build our
fuzzy rules systems we try to find behavior lines from a data set. If we have a
data set that also includes the expected values for the data we can train our
system and get a tuning of such rules to minimize the error we make when we
approximate the underlying function. Due to the fact that the error we make
with such data is measurable, it seems interesting to create a new rule system
that model the error we make with the first rule system. If the system that
models the error is good enough we can expect that the addition of both systems
will produce a more accurate approximation to the original system. This process
can be repeated to decrease the estimated mean error of the system up to the
point where adding new error systems increases the mean error. The features of
this approach fit very well to a distributed agent system. Given a rule system,
and supposing that the agents system deduces that the estimated error of the
rule system can be decreased we can request that an agent create a new rule

Žsystem that models the error. When this agent finishes the work it may be
possible also that several agents may be concurrently modeling the same error
using different parameter combinations as number of rules, number of itera-

.tions, etc . . . , the original rule system may include the rule subsystem and will
incorporate it if the estimated mean error has in fact been decreased. The
process may be repeated to model the system in the best possible way.

So we have fuzzy rule system that models a function w : X p ª Y and a
Ž U . Utraining set of pairs of z , y with j s 1, 2, . . . , m, where y is the expectedj j j

Ž .output of the system for each x . Let us name the fuzzy rules system as f x s y.j
Ž . Ž . Ž . Ž .We can create a new fuzzy rules system f 9 x s f x q « x s y9 with « x s ef f

being a fuzzy rule system trying to model the function w9: X p ª Y with
Ž . Ž . Ž .w9 x s y y y* , that is, the difference between the output of f x and the real

Ž . Ž . Ž .value of the function y*. We can also create a new f 0 x s f 9 x q « x s y0f 9

Ž . Ž . Ž .with « x s e9 modeling w0 x s y9 y y* and repeat the process indefinitelyf 9
nŽ . ny1Ž . Ž . n Ž . ny1 nŽ .ny 1 ny1up to a f x s f x q « x s y with « x s e modeling w x sf f

Ž ny1 .y y y* , the point in which we have n y 1 error layers. We should stop the
process when we detect that the error value of w n is greater than the error

ny1 Ž .value of w where the error is calculated using 10 . When this happens it
means that the error we were producing with n y 2 error layers was less than
the error we produce with n layer so it means it is a good moment to stop.
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nŽ .We should note that this kind of system is additive, that is, that f x s
Ž . Ž . Ž . Ž . ny1 n

1 ny1f x q « x q « x q ??? q« x s y q e q e9 q ??? qe s y and eachf f f
e g is calculated independently due to the fact that each layer is an independent
fuzzy rule system so they can be calculated concurrently, hence it is paralleliz-
able. This means that the addition of new layers will not delay an answer. So
when we infer with this system we have an agent inferring at the same time for
each layer and the results are added together.

Due to the fact that the quality of the model of the function to approximate
Ž .depends a lot on some parameters as, for example, the number of rules used

Žthe system may be testing several combinations simultaneously while there
.exists resources to do so , with different agents specialized in different tech-

niques andror tuning methods. An agent may be in charge of supervising the
evolution of such tries, exploiting promising lines, and killing agents whose
preliminary results are not satisfactory.

IV. EXPERIMENTAL RESULTS

The example presented in this section has been selected just to show the
flexibility of the proposed architecture, not looking for accuracy of the function
modeled. Hence the objective is to experiment with different combinations of
our agents. We will show some results of our system. We use a single planner
trying to model a function, the nonlinear Sinc function,

Sin x Sin yŽ . Ž .
z s Sinc x , y s ?Ž .

x y

As training data we have 225 random samples from an area insider the
w x w xinterval y10, 10 = y10, 10 . Inside such an interval we have values of z,

w xwhich are inside the y0.210401, 0.991247 , as can be seen in Figure 2. The pairs
Ž .x, y are used as input examples and the z as output examples, so we have

Ž .e s x , y , z with j s 1, 2, . . . , 225.j j j j
Combining the use or not of gem rules, the clusterings CL1 and CL2, the

use of error layers, and the tuning methods RT1 and RT2 we have five different
fuzzy rules systems.

Figure 2. The method CL1 and CL2 was applied to create 10 clusters. We applied the
Ž .tuning method RT1 using g t from 0.005 up to 0.001. We applied the tuning methods

RT2 using the constrants K s K s K s 0.2. The error layers of FRS1 use the samec b ¨
characteristics as the base layer, that is, CL1, RG1, RT2, and IN1.
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Figure 3. Evolution of the error of FRS5 forcing the tuning method to go on even if
that worsens the error.

Figure 4. Comparison of the error obtained by FRS1 using from 0 to 5 error layers with
the training data and with the check data.
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We will now show several graphs of the results. Those results have been
obtained using a validation set of 650 data samples different to the training
sample.

Ž .In Figure 2 and Figure 5 a we can see the differences between all methods.
FRS5 uses RT1 which, as can be seen, decrease the error not as fast as RT2. It
stops abruptly in epoch 71, this does not mean that it cannot be adjusted better
but that is has been adjusted such that it became worse than epoch 70. As RT1
does not use gradient descent we do not ensure that the RT1 method continu-
ously decreases the error so there may exist some hills in the error evolution as
can be seen in Figure 3 where the same method has been forced to reach 1200
epochs.

Ž .Figure 5. a Comparison of the error obtained by the fuzzy rules systems and the
Ž .number of epochs needed in the tuning. b Three-dimensional representation of the

function Sinc.
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Figure 6. Function Sinc approximation using FRS5.

In Figure 4 we see how the error we obtain using error layers is less than
when we do not use them, so our error layers increases the performance of the
system.

In Figures 5]7 we appreciate the shape that has the real function and the
approximation using FRS5 and FRS1.

V. CONCLUSIONS AND FUTURE TRENDS

The multiagent architecture proposed in this paper has proved a flexible
tool to be used in the fuzzy modeling process. The possibility of adding new
agents that take care of either the learning, the inference, the creation, or the
tuning process gives us the possibility of testing different combinations of
soft-computing techniques without continuously modifying the system.

Within the different methods there are several improvements that could be
accomplished. The RT1 may be improved in two ways, modifying not only the
output of the rule but also the fuzzy numbers of the antecedents and also
avoiding the hills in the error. Buffering the best fuzzy rules group the tuning

Figure 7. Function Sinc approximation using FRS1.
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process has had and letting the process continue, even if it worsens the error,
can do the latter. Basically it is a hill ascendant method then. It will continue
giving intermediate results because it buffers the best one reached.

Another improvement that needs to be studied is how important the
situation of the centers of the gem rules are. In the proposed methods the
situation of the gem rules is not focused in the zones of the input space where
there is not a rule covering or where the fuzzy rules do not give a good
characterization of the system under study. We are studying a method that tries

Žto discover these zones that are not well described by the fuzzy system zones of
.high error , in order to be better covered by the gem rules.

We will also focus our research in the development of a hierarchical fuzzy
rule system. These systems start with a number of rules but they can, in the
tuning method, create new rules or eliminate them. They will expand the rules
with high error, dividing them, trying in this way to better model the influence
area of the rule. A natural improvement of this system will be the fusion of close
rules with similar behavior to simplify the system. These systems will try to find a

Ž .compromise between the number of rules trying to use the minimum possible
Ž .and the error we make trying to minimize it .
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