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Applied to Cardiac Imaging and fMRI
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In several applications, MRI is used to monitor the time behavior

of the signal in an organ of interest; e.g., signal evolution
because of physiological motion, activation, or contrast-agent
accumulation. Dynamic applications involve acquiring data in a

k-t space, which contains both temporal and spatial informa-
tion. It is shown here that in some dynamic applications, the t
axis of k—t space is not densely filled with information. A method

is introduced that can transfer information from the k axesto the
t axis, allowing a denser, smaller  k—t space to be acquired, and
leading to significant reductions in the acquisition time of the
temporal frames.

Results are presented for cardiac-triggered imaging and func-
tional MRI (fMRI), and are compared with data obtained in a
conventional way. The temporal resolution was increased by
nearly a factor of two in the cardiac-triggered study, and by as
much as a factor of eight in the fMRI study. This increase
allowed the acquisition of fMRI activation maps, even when the
acquisition time for a single full time frame was actually longer
than the paradigm cycle period itself.

The new method can be used to significantly reduce the
acquisition time of the individual temporal frames in certain
dynamic studies. This can be used, for example, to increase the
temporal or spatial resolution, increase the spatial coverage,
decrease the total imaging time, or alter sequence parameters
e.g., repetition time (TR) and echo time (TE) and thereby alter
contrast. Magn Reson Med 42:813-828, 1999. © 1999 Wiley-
Liss, Inc.
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Several applications of MRI involve acquiring a time series
of images in order to resolve the variations experienced by
the imaged object. These dynamic studies include cardiac
imaging (1-6), functional MRI (fMRI) (7-9), time-resolved
angiography (10), and contrast agent uptake studies (6,11—
15). When dynamic objects are imaged, an ideal approach
would completely fill k—t space (16), thereby providing all
the desired spatial information at any moment in time.
Because the imaging process is often too slow to acquire all
this information, methods have been developed that ac-
quire only a part of the desired k-t space, the rest being
obtained through some model or approximation. Such
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methods include keyhole imaging (17-20), reduced-
encoding MR imaging with generalized-series reconstruc-
tion (RIGR) (21-23), data sharing (24—28), zero filling (29),
reduced field-of-view (FOV) methods, which assume that
much of the imaged object (with the exception of a
dynamic region) is static (30-33) or undergoing a cyclic
motion (33), and non-Fourier approaches such as singular
value decomposition (SVD) and wavelet methods (34-37).
With non-Fourier approaches, the acquired data does not
belong to the k—t space but is used in the calculation of a
full k—t space.

These earlier methods and the work presented here share
the same goal: to reduce the amount of data needed for a
given spatial and temporal resolution. UNaliasing by Fou-
rier-encoding the Overlaps using the temporal. Dimension
(UNFOLD) is a new, flexible way of encoding spatiotempo-
ral information with MRI. Inefficiencies in some dynamic
applications are identified, and the extra flexibility intro-
duced here makes it possible to partially avoid such
inefficiencies. The reductions in data requirements (up to
nearly a factor two with cardiac imaging, and as much as a
factor eight with fMRI) comes from a more efficient encod-
ing of the desired information.

Like other methods (30), one of the first steps in UNFOLD
involves a reduction of the dynamic FOV. This FOV
reduction diminishes the amount of spatial information
acquired along the k axes of k—t space. Because of aliasing,
spatially distinct points within the object are overlapped at
a same spatial position in the images. UNFOLD then uses
time to label the overlapped components, such that a
Fourier transform through time can resolve them. This use
of the time axis to encode some spatial information intro-
duces a certain freedom in deciding “what should be
encoded where” in k-t space. In some applications, k-t
space can be thought of as a partially filled box, having free
spaces in hard-to-reach areas. For example, in cardiac
imaging the most dynamic changes might be confined to
only a part of the FOV, while in fMRI signal variations are
expected only at temporal frequencies dictated by the
paradigm. In such cases, the ability to transfer some
information from a k axis to the t axis may be sufficient to
build a tighter, denser, and smaller k—t space allowing the
acquisition of fewer data points. As will be shown, such
reformatting of k—t space may lead to significant reductions
in data requirements.

The theory behind UNFOLD is presented as follows.
First, it is shown that time can be used to label aliased
spatial components. Different imaging methods give rise to
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different types of aliasing. For this reason, the theory is first
presented in the context of Cartesian FT imaging, where
aliasing consists of a simple overlap of what should be
distinct spatial points. Then, a more general approach is
presented where the spatial aliasing may be more compli-
cated. Specific applications, such as cardiac imaging and
fMRI, are then considered.

THEORY

UNFOLD provides a way of discriminating between spa-
tially aliased and nonaliased components in images. Ac-
cordingly, two or more object points can be deliberately
overlapped through aliasing, and separated afterward us-
ing the method described herein. In some circumstances,
described in detail later in this report, such a scheme leads
to efficient ways of encoding dynamic information, dimin-
ishing significantly the amount of data that is required to
achieve a given spatial and temporal resolution.

How to Differentiate Aliased from Non-Aliased Material by
Using Time Modulations

Data Sampled on a Cartesian Grid (Fourier Transform
Imaging Methods)

When an object is imaged, only certain points in k-space
have their value actually measured. The “sampling func-
tion” (S(k)) represents how k-space is sampled by a given
imaging method: it is a delta function at the k locations that
are sampled, and zero elsewhere. The relationship between
the object O(7), its image I(7), and the sampling function is
given by:

-

I7) = .7 (S(k)) * O(f) = PSF(7) * O(1) [1]
where 7 and k are position-vectors in, respectively, the
object domain and k-space, ‘7 represents a Fourier trans-
form (FT), # represents a convolution, and PSF(7) =
7 (S(k)) is the point-spread function (for simplicity, other
contributions to the PSF, like T, and T53, are left out). Figure
1a depicts a sampling function S(k,, k) as used by 2D DFT
imaging methods. With DFT methods, k-space data is
sampled directly on a Cartesian grid. (The k; lines in Fig. 1a
are depicted as continuous lines rather than as a series of
points for simplicity and because the sampling along k, is
assumed sufficient to avoid aliasing in the x direction.) The
PSF associated with Cartesian sampling, the FT of Fig. 1a,
is shown in Fig. 1b (its peaks are numbered for future
reference). Through the convolution in Eq. [1] the multiple
peaks of the PSF replicate the object O(x, y) in the y
direction. The result is shown in Fig. 1c. The two dashed
lines in Fig. 1c depict FOV,, the FOV in the y direction.
These lines are located half way between the 0th and the
+1st peak of the PSF shown in Fig. 1b. If the imaged object
is contained within these two lines, then no aliasing
occurs.

Figure 2 shows the result when the number of lines in
the sampling function is reduced by a factor two, given the
same object and spatial bandwidth as in Fig. 1. This change
in the sampling function reduces FOV, by a factor two,
resulting in the well-known problem of aliasing (38,39).
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FIG. 1. Graphical representation of Eq. [1]. The Cartesian sampling
function S(k,, k) shown in a gives rise, through an FT, to the PSF
shown in b. The multiple peaks of the PSF replicate an object (here a
circle) through the convolution in Eq. [1], as shown in ¢. Two points
are shown in c: P lies in the replica created by the Oth peak of the
PSF, whereas P, lies in the replica coming from the 1st peak. Py and
P, are separated by FOV,/2.

Object points overlap, as shown in Fig. 2c: the points P,
and P;, which were separated in Fig. 1c, are now over-
lapped into a single image point in Fig. 2c.

The idea behind UNFOLD is introduced in Fig. 3.
UNFOLD involves shifting the sampling function in the
phase-encoding direction. From the shift theorem (40), a
shift of S(k) by a fraction f of a line (as depicted in Fig. 3a)
results in a linear phase shift being applied to PSF(7), (as
depicted in Fig. 3b), altering the phase of all but the central
peak. Through the convolution in Eq. [1], the phase of each
PSF peak is passed to the corresponding replica of the
object as shown in Fig. 3c. For example, the point P,
remains unchanged by the shift (because it originates from
the central peak of the PSF), but the point P, is phase
shifted by an angle 27f (because it originates from the first
peak of the PSF). In a dynamic study, where several images
of an object are acquired, the shift in the sampling function
can be varied from image to image. This time-varying shift

Oth .

a b :

FIG. 2. Distance between the lines of the sampling function in a is
increased by a factor of two compared with Fig. 1. As a result, the
distance between adjacent peaks of the PSF is reduced by a factor of
two in b, and the replicas of the object overlap in c. Because of
aliasing, the points P, and P; that were distinct in Fig. 1c are
overlappedinc.
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FIG. 3. a: The sampling function shown in Fig. 2
is shifted along the phase-encoding direction.
Dashed and full lines represent, respectively, the

old and new location of the sampling function. shift by
Through the shift theorem, this shift generates a  "f" of
phase ramp in the PSF shown in b. Phase shifts a line
at the PSF peaks are passed to the replicas in ¢
through the convolution in Eq. [1].

a

can be used to “label,” and then resolve, the various
components that are overlapped, by modulating their
phase as a function of time in a controlled way.

Consider the following example. Assume that both P,
and P, are constant in time. A time series of images is
acquired, where every odd image in the series is obtained
using a sampling function shifted by half a line ( f= 0.5)
compared with that used for the even images. As a result,
the aliased components in the odd images are multiplied
by e?™ = —1 (Fig. 4a). More specifically, the value of the
image point where P, and P; overlap oscillates between

F(Py(1)
FF (1)

DC Nyquist
b Temporal frequency

F(Py(1)
F(P (1)

DC Nyquist
¢ Temporal frequency

FIG. 4. a: A shift of half a k, line changes the sign of every
odd-ordered replica (hatched circles). b: In a time series where f
(shown in Fig. 3) oscillates between 0 and 0.5 every second frame,
the point Py (shown in Figs. 1c and 3c) remains constant through time
while the point P; changes sign at the Nyquist frequency. c: If P, and
P; are time-dependent, their temporal frequency spectrum becomes
a distribution of frequencies instead of a delta function.
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P, + P, (even images) and P, — P; (odd images). This
is reminiscent of some ghost-removing methods de-
veloped for EPI (41,42), where certain problems at the
acquisition stage can generate inconsistencies between
even and odd lines. Reconstructing these separately may
help in finding parameters needed for accurate reconstruc-
tion. Here, the focus of interest is the dynamic nature of the
imaged object, rather than the effect of hardware imperfec-
tions.

Figure 4b shows the temporal frequency spectrum (the
FT in the time direction) of the signal at the image point
where Py and P; overlap. The spectrum contains a compo-
nent at the Nyquist frequency (the point P;) and a DC
component (the point P,). Notice that P, and P, in Fig. 4b
are no longer overlapped; they have been Fourier encoded
to different locations in the temporal frequency domain,
and they can be separated in Fig. 4b as surely as in Fig. 1c
(where Py and P, are Fourier encoded to different locations
in the spatial domain).

In Fig. 4c, the assumption that P, and P; are constant in
time is removed. The spectrum associated with the point
Py(t), .7 (Py(t)), now contains a range of frequencies instead
of a single (DC) component. The more “dynamic” a point
is, the wider is the frequency range required to describe its
time variations. The same can be said of P,(t) and its
spectrum .7 (Py(#)). As in Fig. 4b, the spectrum associated
with P; is shifted by half the temporal bandwidth and
centered at the Nyquist frequency. This is because of the
shifts applied to the sampling function, which change the
sign of P; every second frame. Since the spectra from P,
and P, are separated in Fig. 4c, the time dependence of one
point can be obtained by filtering out (i.e., removing) the
spectrum associated with the other point and applying a
Fourier transform to the result.

The example presented above can be further gener-
alized. Imagine n points overlapped into a single voxel
through spatial aliasing. These n points are referred to as P;,
where j is the order of the PSF peak from which a point
originates. The value of the resulting composite point is
given by

floor(n/2)

P(1) = Pt -
j=—floor((n—1/2))

eiZ‘n’ﬂt)j [2]

where floor( ) rounds a real number to the nearest lower
integer and f(t) is the k-space shift of the sampling function

N

S(k) employed at time . A useful special case to consider
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for f(t) is a linear function

) = [31

t
n
where the time variable ¢ is actually the image number in a
time series. Substituting Eq. [3] into Eq. [2] yields

floor(n/2)

P(t) = P(f) - ewin [4]
j=—floor((n—1/2))

The complex exponential in Eq. [4] is in fact a Fourier
basis function. The temporal frequency spectrum .7 (P(t))
contains n peaks, uniformly spaced across the bandwidth.
Each peak is associated with one of the n spatially over-
lapped points. The example in Fig. 4c represents the case
n=2(n = 2inEq. [3]leads to fbeing successively 0, 1/2, 1,
3/2, 2,...while in Fig. 4, the pattern was 0, 1/2, 0, 1/2,
0,...; the two patterns are equivalent, because of the
cyclic nature of angles and of the complex exponential.).

A larger measured temporal bandwidth may be required
if, instead of one spectrum, n spectra were to be placed side
by side in the bandwidth with a minimum of overlap.
Clearly, UNFOLD becomes useless if the only way to fit n
spectra without overlap involves increasing the bandwidth
by a factor n. The idea behind this report is that in certain
applications, forcing two or more points to share the same
temporal bandwidth leads to more efficient ways of encod-
ing information. Two such cases, (cardiac imaging and
fMRI), are presented later.

We have shown that spatial points that are overlapped
because of spatial aliasing can be resolved by applying
shifts to a Cartesian sampling function. As described next,
this method can also be used with non-Cartesian sampling
trajectories.

Data Sampled by Using an Arbitrary Trajectory

Consider a time series of images acquired using an arbi-
trary sampling trajectory in k-space. The chosen trajectory
is assumed to provide an adequate sampling for the desired
spatial resolution and FOV. Instead of acquiring all the
k-space samples for every time frame, only a fraction of the
samples is collected (e.g., a fraction of all the k, lines in a
Cartesian FT scan, or a fraction of the interleaves in a spiral
(43) scan). This partial coverage of k-space gives rise to
individual time frames that may be corrupted by spatial
aliasing. From one time frame to the next, a different set of
k-space points is acquired, such that a full k-space matrix is
collected in n time frames. The sampling functions used
for the n frames are then used again, in a periodic way, to
acquire the subsequent images in the time series.

Suppose that an object, assumed for now to be static in
time, is imaged using the scheme described above. A time
series of seemingly corrupted images is generated, where
the intensity at every image point is a periodic function of
time with a period of n time frames. As stated previously,
the sum of the sampling functions used for n consecutive
time frames is adequate for the desired spatial resolution
and FOV. Using the linearity of the Fourier transform, the
sum of n consecutive time frames is a noncorrupted image.
In other words, the signal in every voxel in every time
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FIG. 5. a: If the imaged object is static in time, the temporal
modulation generated at a given voxel by the use of three different
sampling functions gives rise to three delta functions in the temporal
frequency domain: one at DC, one at %3 Nyquist, and one at —%;
Nyquist. Component at DC contains the information about the
non-aliased object while the two others contain the signal that is
spatially aliased. b: If the imaged object is dynamic, a range of
temporal frequencies is required to describe the aliased and nona-
liased components.

frame consists of the correct value, plus an error compo-
nent coming from the insufficient sampling of k-space.
However, the temporal DC component of this error term is
zero. Indeed, the temporal average of the time frames is a
nonaliased image.

The Fourier transform of the time-varying intensity at a
given voxel has no more than n nonzero frequency compo-
nents, including a DC component. This is derived from the
fact that the voxel intensity varies with a period of n time
frames. An example is given in Fig. 5a for n = 3, where
three nonzero frequency components can be found uni-
formly spaced in the temporal frequency domain. The
UNFOLD approach is based on the fact that the desired and
aliased components are encoded at different locations in
the temporal frequency domain, so the desired component
can be recovered. As shown in Fig. 5b, if the imaged object
is dynamic, a range of temporal frequencies is required to
describe the aliased and the non-aliased components.

The situation depicted in Fig. 4 is a special case of the
method described here. The k-space sampling function is
Cartesian, the full sampling function is divided into n parts
by selecting a k, line very n lines, and the partial sampling
functions are simple translations of one another. This
simplicity gives rise to especially convenient behavior in
the spatial domain, as the aliasing simply consists of an
overlap of n object points at every image point. In more
general cases, the aliased components contained in the
non-DC peaks may come from a large number of object
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points. As will be shown in the following sections, the
cardiac application may require UNFOLD to have a simple
spatial behavior, but the fMRI application does not have
such a requirement. Accordingly, a Cartesian imaging
sequence was used to acquire the cardiac results, while a
non-Cartesian one (spiral imaging) was used to acquire the
fMRI results.

Applications for the UNFOLD Method

UNFOLD allows the time axis to be used to encode some
spatial information. In a case where every spatial point in
the FOV needs the full temporal bandwidth to be ad-
equately described, UNFOLD would provide no advantage.
However, if some spatial points do not require the full
bandwidth, then it may be possible to efficiently “stack” or
interleave more than one spatial point in what would
otherwise be the full bandwidth of a single image point.
The following paragraphs show how such an encoding
scheme can significantly reduce the data requirements in
cardiac-triggered imaging and fMRI.

Objects With Highly Dynamic and Less Dynamic Regions
(Example: Cardiac-Triggered Imaging)

In general, the signal at every point in the FOV could vary
as a function of time, because of cardiac or respiratory
motions, or the transit of a contrast agent. However, the
signal in some regions could be much more variable than
that in others. For example, in cardiac-gated imaging,
proper characterization of the signal in the heart could
require a much higher temporal bandwidth than is needed
for the chest wall. Some methods presented in the past are
successful when the imaged object is composed of a
portion that is static (or moving in a predictable way (33)),
and another portion which is dynamic (30-33). However,
these methods are not appropriate if the anatomy outside
the dynamic region of interest (ROI) is almost static, but
not static. UNFOLD has the ability to handle a situation
such as imaging of a dynamic heart surrounded by less
dynamic (but not static) material.

Because its complex intensity may vary rapidly in time,
the temporal frequency spectrum of a pixel in the highly
dynamic portion can be relatively wide, as depicted in Fig.
6a. On the other hand, pixels outside the heart might be
expected to have a narrower spectrum, as depicted in Fig.
6b. Notice that a large portion of the bandwidth BW, in Fig.
6b is left unused. Fig. 6¢ depicts the solution offered by the
present method to encode information more efficiently.
Each wide (highly dynamic) spectrum, as shown in Fig. 6a,
is coupled with a narrower (less dynamic) spectrum, as
shown in Fig. 6b. By using the method described previ-
ously, they are forced to share the same bandwidth (i.e., the
same image voxel). A bandwidth BW,, possibly larger than
BWj, is used to accommodate both spectra. These band-
widths BW,; and BW, refer to the variation in the signal at a
single image point and should not be confused with the
data acquisition bandwidth used during the measurement
of a single free induction decay (FID) or echo.

The following two examples give a more practical view
of how the present method could be used. Consider a given
application generating a time frame every T sec leading to a
temporal bandwidth BW;, = 1/T Hz. Because UNFOLD
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FIG. 6. a: Temporal frequency spectrum of a voxel containing
(dynamic) heart material. b: Spectrum of a less dynamic voxel.
UNFOLD achieves reductions in data requirements by avoiding the
acquisition of nearly empty spectra like the one in b. c: Approach
proposed here to encode data more efficiently. The two spectra
combined in c can be separated at the postprocessing stage using a
filter such as F(w), shown with a dashed line in c.

halves the amount of data (e.g., number of k, lines) required
to generate a time frame, one can double the number of
time frames per unit time (the bandwidth becomes
BW, = 2BW,) without changing the imaging parameters
(e.g., same TR). Because most of the bandwidth BW, can be
devoted to the wider spectrum, this approach nearly
doubles the temporal resolution for the dynamic signal.
Another way of using UNFOLD would consist in keeping
the number of frames per unit time constant (BW, = BWj;
the temporal resolution in the dynamic region remains
nearly the same), while acquiring more elaborate frames
(e.g., double the spatial resolution, or double TR). Any
advantage offered by UNFOLD (an increase in temporal
resolution (BW, = 2BW,), more elaborate time frames
(BW, = BW,) or a combination of the two (BW, = BW, =
2BW ,)) is obtained by encoding useful information into
areas that would otherwise be left empty, such as most of
the bandwidth in Fig. 6b.

Two wide temporal frequency spectra (like the one in
Fig. 6a) should not be coupled in the same bandwith. If all
of the most dynamic points are localized within a certain
area of the object (like the region of the heart), an acquisi-
tion FOV is selected that is at least as large as the dynamic
region. Although the object itself may be larger than the
acquisition FOV, having the dynamic region no bigger than
the acquisition FOV guarantees that no aliasing from a
dynamic point can overlap onto another dynamic point.
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The two spectra sharing the same bandwidth in Fig. 6c
can be separated from each other using a filter F(w), as
represented by a dashed line in Fig. 6c. This filter increases
the SNR, by a factor fsyg which depends on the filter, since
it removes the noise contained in part of the BW, band-
width

BW, (Vi
fszm = — [5]
F*(w) dw VinNT

BW,

The index 1 refers to a conventional acquisition in which
the whole (unaliased) FOV is imaged with a same temporal
resolution, whereas the index 2 refers to an UNFOLD
application. V and 1 represent, respectively, the volume of
a voxel and the time spent acquiring data for a time frame.
The term on the right hand side involving Vs and ts comes
from well-known relationships for the signal-to-noise ratio
(SNR) in MRI (44). The first term on the right hand side
accounts for the effect of the filter. Eq. [5] is not valid if
UNFOLD is used to change the imaging parameters (e.g.,
TR), because the effect on SNR would then be a function of
pulse sequence timing as well as relaxation times. To
preserve the peak at the Nyquist frequency and suppress
the one at DC (instead of the inverse), a filter [1 — F(w)] is
used instead of F(w). Because [1 — F(w)] is narrower than
F(w), it removes more noise and as a result, in any single
image, the SNR will be higher in the less dynamic region
than in the more dynamic one. This is exactly as was
observed and explained elsewhere for the case in which
the less dynamic region is fully static (30). In the case in
which UNFOLD would be used to increase the temporal
resolution in the dynamic part, we have BW, = 2BW,, V, =
Vi, and 7, = 7,/2 (only half the k, lines are acquired for any
given frame). If one of the two peaks is narrow, then the
filter used is equal to 1 over nearly the whole bandwidth
BW,, and Eq. [5] gives fsyg = 1/4/2. In such a case, UNFOLD
doubles the number of time frames while reducing by
about \2 the SNR in the dynamic portion of any individual
frame. If one of the peaks is so narrow that it can be
considered a delta function, the present method becomes
completely equivalent to the method described by Freder-
ickson and Pelc (30), with the same time savings and SNR
properties. Although the example used here is cardiac
imaging, the present method could be applied to other time
series of images where highly dynamic changes are local-
ized within only part of the imaged object.

Objects Undergoing Modulations at a Known Frequency
(Example: fMRI)

The temporal variations in fMRI have a very special
characteristic: they are periodic with a known frequency
(the frequency of the paradigm). Consider one spatial point
in an fMRI study in which n, on/off paradigm cycles are
imaged with a time resolution of n; time points per
paradigm cycle. The temporal frequency spectrum for this
point is depicted in Fig. 7a: n, peaks separated by n,
frequency points. If the signal is perfectly periodic, repeat-
ing exactly every n, time points, the corresponding spec-
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DC Nyquist
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FIG. 7. a: InanfMRI study, the time variations give rise to a spectrum
expected to be non-zero only at the paradigm frequency and its
harmonics. Notice the empty space between adjacent peaks. b: The
present method allows a more efficient use of the bandwidth, by
interleaving two or more (three in this drawing) spectra like the one
shown in a. Peaks of different spectra are given different colors
(white, gray, black) to facilitate visualization. ¢: Bad combinations of n
and n; lead to an overlap of spectra. Five spectra share the same
bandwidth in c, and a different shade of gray is associated to each
one. Because each spectrum is made of five peaks (as shown in a),
there are twenty-five peaks in c. However, these peaks are over-
lapped by groups of five, and only the central peak of each spectrum
can be clearly seeninc.

trum has only n; delta functions separated by 1/(n;T) Hz,
where T is the time between images (in seconds). It is
assumed here that the n; multiples of the fundamental
frequency 1/(n;T) are sufficient to characterize the signal
variations. If the signal is not perfectly periodic, each delta
function broadens to a width related to the variation in the
response during the study. Notice the empty areas between
the peaks in Fig. 7a, which appear if the bandwidth of the
variation in fMRI signal from cycle to cycle is narrow
compared to 1/(n;T). Time is spent acquiring these empty
areas, which contain only frequencies having no correla-
tion with the periodic paradigm. Using the method intro-
duced in the first part of the Theory section, two or more
spectra can be forced to share the same bandwidth, as
depicted in Fig. 7b. The next paragraphs explore more
carefully how n spectra can be interleaved in the same
bandwidth [separated by 1/(nT) Hz], reducing by a factor n
the amount of data required to achieve a given spatial and
temporal resolution.

The total number of points in the temporal frequency
domain is n,n,. The goal is to use these points to store as
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many spectra as possible, without overlap. As explained
above, the individual peaks in a spectrum may have some
width (A points), and cannot in general be considered as
delta functions. With n, points between adjacent peaks, no
more than n,/A spectra can be interleaved. The efficiency
of the encoding can be maximized by choosing n, to be a
multiple of A, and a number of interleaved spectra n =
n,/A. Poor combinations of n and n, lead to overlap of the
spectra, as shown in Fig. 7c. To avoid this, the frequency
difference between two spectra (N;/(nT) where N; is an
integer) must not be equal to a multiple of the paradigm
frequency (N,/(n;T) where N, is an integer)

NN
n

I

(6]

for all possible N; and N,, where N; < n and N, < n;
(to avoid the aliasing of N,/(nT) and N,/(n;T) beyond the
1/T bandwidth). For example, the case n = 3 and n, = 5
in Fig. 7b does not lead to overlap, unlike the case n = 5
and n; = 5 in Fig. 7c where Eq. [6] is violated with N; = 1
and N, = 1. (Technically, with some extra complications,
overlap like that shown in Fig. 7c can be avoided without
changing n or n,, if a Cartesian imaging method is used.
This involves choosing an increment for fin Fig. 3a that is
not 1/n of a line, so that the n spectra are not uniformly
spaced across the bandwidth. For the present work, only
the simpler case of n and ny, such that Eq. [6] is obeyed, is
considered.)

In Fig. 7b, the frequency components of both the black
and the white spectra are found at known locations: these
spectra are centered at respectively +1/(nT) and —1/(nT)
Hz, and they have peaks every 1/(n,;T) Hz. A filter can be
used to remove these two spectra, and preserve only the
one from nonaliased material (centered at DC in Fig. 7b).
This filter has A zeros centered at the frequency of each
peak to be removed, and is equal to one elsewhere. The
higher harmonics of the spectra to be removed may contain
mostly noise, with negligible signal, and one should con-
sider whether to remove such harmonics. Indeed, filtering
out frequency components filled only with noise would
actually decrease our knowledge of the noise characteris-
tics, making the determination of whether an observed
effect is likely to be true activation or random fluctuations
more difficult (45). While some frequency components
must be zeroed to eliminate the aliasing, the number of
frequency points zeroed should be kept to a minimum to
optimize the significance of activated regions.

In summary, UNFOLD allows one to encode some spatial
information along the t axis of k—t space. If all the points in
an object need a full bandwidth to be adequately repre-
sented, then such a transfer of information from the k to the
t axis is useless. However, if an object contains points
which require only a fraction of the available bandwidth
(like the spectra in Fig. 6b and 7a), it might be advanta-
geous to use the free parts of the spectra to encode
information about other spatial points. In the following
section, the UNFOLD method is used to speed up cardiac-
triggered imaging as well as fMRIL.
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RESULTS
Cardiac-Triggered Imaging
Evaluation of UNFOLD’s Behavior

A cardiac-triggered study (1,2) was performed on a 1.5-T
imager (Signa Echospeed, GE Medical Systems, Milwau-
kee, WI). Sixteen cardiac phases were acquired; the 8th is
shown in Fig. 8a. Using only the even k; lines for the even
time frames, and the odd k, lines for the odd frames, 16
time frames (corrupted by aliasing) were then recon-
structed. These images were used as input to the UNFOLD
method, which generated a series of images where the
aliasing was unwrapped back to its original position. The
8th time frame of the input and the output of UNFOLD are
shown, respectively, in Fig. 8b and c. The main goal of the
present section is to evaluate the behavior of UNFOLD by
comparing the resulting images (reconstructed using only
one half of the acquired data, e.g., Fig. 8c), to the true
images (reconstructed using all the data, e.g., Fig. 8a).

An ROI labeled A (height FOV,/2 along y) containing the
heart is shown in Fig. 8a. An aggregate temporal frequency
spectrum for region A (the sum of the magnitude of the
temporal frequency spectra at each point contained in A) is
shown in Fig. 9a. The aggregate temporal frequency spec-
trum for region B (shown in Fig. 8a) is presented in Fig. 9b.
As expected, the voxels in the region containing the heart
(Fig. 9a) tend to have a wider distribution of frequencies
than the voxels located outside the heart (Fig. 9b). In Fig.
8b, the ROIs A and B are overlapped through aliasing. The
aggregate temporal spectrum of the resulting (A + B) ROl is
shown in Fig. 9c. The component at DC in Fig. 9c is the
spectrum from region A (Fig. 9a) while that at the Nyquist
frequency is from the (aliased) region B (Fig. 9b). Aliased
and nonaliased components were separated using the
Fermi filter plotted in Fig. 9c. This filter was selected
(automatically) using an algorithm that separates the two
peaks of a spectrum such as Fig. 9c, while providing as
wide a bandwidth as possible to the central (dynamic)
component. The filter in Fig. 9c was

1
F(E) =

1+ exp

(7]

E_Ef ’
kT

with kT = 0.022 Ny and E; = 0.79 Ny, where Ny is the
Nyquist frequency. Figure 9 is in fact an experimental
equivalent to the stylized Fig. 6 (with BW;, = BW,). Once
aliased and non-aliased components are separated using
the filter, images can be generated in which the aliasing is
corrected (Fig. 8c). In the “more dynamic” half of Fig. 8c,
the SNR was measured to be 0.81 that of Fig. 8a (theoretical
value of 0.80 from Eq. [5]), while this factor was measured
to be 1.54 in the “less dynamic” area (theoretical value of
1.63).

Figure 8d presents one attempt at evaluating the quality
of UNFOLD’s results. It is the absolute value of the
difference between the magnitude images in Fig. 8a (“truth”)
and 8c (result), windowed to show clearly the noise level; a
given shade of gray corresponds to a magnitude that is ten
times lower in Fig. 8d than in 8a—c. Almost no anatomic
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features can be recognized in the difference image, indicat-
ing that UNFOLD successfully corrected the aliasing in this
frame. Figure 10 compares more quantitatively truth and
treated images by showing the mean magnitude of differ-
ence images (like Fig. 8d) over the region containing the
heart (ROI A in Fig. 8a) normalized by the mean magnitude
calculated over ROI A of the truth images (the average is
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FIG. 8. Eighth phase of a 16 phase
cardiac-triggered study (axial images,
2DFT gradient-echo sequence, respira-
tory compensation, through-slice flow-
compensation, TE = 6.0 msec, slice thick-
ness = 5mm, FOV = 32 X 16 cm, matrix
size = 256 X 128, phase-encoding along
A/P, surface coil, peripheral gating, ac-
quired over 128 heartbeats). a: A “truth”
is reconstructed in the conventional way
from the acquired data. ROI's Aand Bare
defined for future reference. b: Using half
of the acquired data (even k, lines for
even time frames and odd k, lines for odd
time frames) a series of images corrupted
by aliasing is reconstructed, and input
into UNFOLD. The regions A and B,
which were distinct in a, are overlapped
because of aliasing. c: In the output of
UNFOLD, the aliased component is “un-
folded” back to its original position. Small
ROls (3 X 3 pixels) are defined for future
reference (the ROIs are smaller that the
squares used to indicate their location).
One of the two ROls is also showninb. d:
Absolute value of the difference obtained
by subtracting ¢ from a. The windowing
used in d is 10 times narrower than the
windowing used ina, b, and c.

performed over the frame number as well as over the ROI),
as a function of the cardiac phase. The ‘truth’ and the
treated images differ by 5—6% in the region of the heart.
This difference comes partly from imperfect aliasing re-
moval, and partly from random noise. The dashed straight
line in Fig. 10 shows that the level expected due to noise is
around 3.8%. (This value is measured from an area of the
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FIG. 9. a: Aggregate temporal frequency spectrum for the material
found in the region A containing the heart (shown in Fig. 8a). b:
Aggregate temporal frequency spectrum for the material found in the
region B (shown in Fig. 8a). Heart material (region A) tends to have a
wider frequency spectrum than the less dynamic material outside the
heart (region B). ¢: Aggregate temporal frequency spectrum for the
material found in the region (A + B) (shown in Fig. 8b). Signal from
regions A and B can be separated by using the filter plotted with the
dashed line (which uses the linear vertical axis at the right of the plot).

image where no signal is present. With an SNR of 16 over
the heart (as measured in the reference data set), simula-
tions yield a similar value 0f 4.1%.)

The time behavior of two small ROIs (shown in Fig. 8c) is
given in Fig. 11 (for the full arrow in Fig. 8c) and Fig. 12 (for
the dashed arrow). In both cases, the solid and the long-
dashed curves represent, respectively, the truth and
UNFOLD’s output. The short-dashed curve represents im-
ages obtained using ‘“data sharing” (in which each time
frame is generated by combining a frame made of only odd
k lines with a neighboring frame, made of even k, lines) to
generate 16 nonaliased time frames from the 16 aliased
frames. Both figures use the same normalization for the
vertical axis. The ROI indicated by the full arrow in Fig. 8c
was chosen because wide magnitude variations occur as
the myocardium moves in and out of the small ROI, and
because a high level of aliasing was present at this location
(Fig. 8b). Notice in Fig. 11 that the solid and long-dashed
curves are very similar, indicating that UNFOLD has been
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FIG. 10. Mean (over the ROl A shown in Fig. 8a) of the absolute
value of the difference between the magnitudes of the ‘truth’ and the
treated images. The normalization factor is the mean (over the same
ROl A) of the (magnitude of the) truth, averaged over all the
cardiac phases. Notice that UNFOLD performs better (smaller
difference) for intermediate time frames than for the first and last
ones. This problem results from a magnitude discontinuity between
the last and first time frame (‘lighting artifact’), and can be alleviated
with postprocessing.

reasonably successful in representing the time behavior of
this ROI while using only half the acquired data. By
comparison, data sharing causes reduced temporal resolu-
tion. The dashed arrow ROI is adjacent to the descending
aorta, and the intensity varies as the aorta moves in and out
of the region. As can be seen in Fig. 8a, the aorta was in the
less dynamic region B and as a result, only a limited
temporal bandwidth was used by UNFOLD to describe the
time behavior. Accordingly, the method provides only a
smoothed representation of the actual variations in the ROI
(as can be seen in Fig. 12), and the aliased version of the
aorta is not completely removed from region A (i.e., a faint
artifact is generated in the more dynamic region). In region
B, the temporal resolution of UNFOLD is lower than that of

Mean in ROI

16
Frame number

FIG. 11. Mean in the ROl indicated by the solid arrow in Fig. 8b and c
as a function of cardiac phase. A comparison of the representation of
this ROl in the truth, the treated images and the images obtained
using data sharing is made in the text.
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FIG. 12. Meaninthe ROl indicated by the dashed arrow in Fig. 8c, as
a function of cardiac phase. The vertical axis has the same normaliza-
tion as in Fig. 11. This graph is used in the text to compare the truth,
the treated images and the images obtained by using data sharing.

data sharing. Ideally, the aorta should be part of the
dynamic region A instead of the less dynamic region B.
However, the dynamic region cannot be larger than FOV,/2
in the phase-encoding direction, and could not contain
both the beating heart and the aorta. The solution to this
problem would consist in increasing slightly FOV,. Note
that even though the assumption of UNFOLD was not fully
obeyed in this case, this violation did not produce disas-
trous artifacts. If the true temporal bandwidth in the less
dynamic region is wider than expected, only the higher
temporal frequency components will spatially alias, and
they will affect the higher temporal frequencies within the
dynamic region.

Unlike UNFOLD, which allows half the FOV to have a
higher temporal resolution than the other half, data sharing
yields a uniform, intermediate temporal resolution over
the whole FOV. In Fig. 11, the higher temporal resolution
in the dynamic region allows UNFOLD to depict rapid
variations more accurately than data sharing, while in Fig.
12, the intermediate time resolution of data sharing pro-
vides a better representation of the truth than the low
temporal resolution of UNFOLD in this region.

Application of UNFOLD

A cardiac-triggered study was performed using a seg-
mented gradient-echo sequence (46). As required by
UNFOLD, this sequence was modified such that the phase
encodings for every odd time frame were shifted by half a
ky line. Eight k; lines were acquired during each heart beat,
leading to a temporal resolution of 8 TR (TR = 8.6 msec)
and a scan time of 16 heartbeats for 128 k, lines. Fifteen
cardiac phases were obtained during the breath-held scan.
Figure 13a shows the conventional reconstruction of the
7th frame. UNFOLD expects a cyclical alternation between
shifted and nonshifted sampling functions, which cannot
be achieved with an odd number of cardiac phases. This
problem was solved by copying the 14th cardiac phase to a
(fictitious) 16th phase. After the UNFOLD processing, the
16th treated cardiac phase was discarded.
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Figure 13b shows the aggregate temporal frequency
spectrum calculated over the ROI shown in Fig. 13a, which
covers the heart. The peak at DC contains the signal from
the (non-aliased) heart, while the peak at the Nyquist
frequency contains aliased signal. The spectrum in Fig. 13b
was used to compute the Fermi filter (dashed line, E; = 0.76
N, and kT = 0.022 N,) in the manner mentioned previ-
ously. This filter was used to separate aliased and nona-
liased signal, generating a series of 15 treated images.
Figure 13c is one of these de-aliased images (7th frame) and
is a corrected version of Fig. 13a. The treated images
consist of a dynamic half (which was given about 76% of
the temporal bandwidth by the filter in Fig. 13b) and a
less-dynamic half (which used the remaining ~24% of the
bandwidth). The ROI of Fig. 13a (also shown in Fig. 13c) is
displayed in Fig. 13d for the 15 treated time frames.
Changes in the size and shape of the heart and aorta can be
seen as a function of cardiac phase. Segmented cardiac-
triggered sequences often use data sharing to increase the
number of time frames generated (47); with UNFOLD as
well, the number of time frames could be further increased
through time interpolation if so desired.

fMRI
Evaluation of UNFOLD’s Behavior

An fMRI study was performed using a six-interleave spiral
imaging sequence (43). Bilateral finger tapping was per-
formed for 27 seconds, and then stopped for 27 sec. Six
such paradigm cycles were imaged (n, = 6). The acquired
data was reconstructed in four distinct ways: a reference
data set was obtained using all six spiral interleaves at each
time frame, and the amount of information used in the
reconstruction was diminished by a factor n of 2, 3, and 6
using, respectively, only 3, 2, and 1 interleave(s) at each
time frame.

As required by UNFOLD, different interleaves must be
used from one time frame to the next. The acquisition and
reconstruction strategy is depicted in Fig. 14 for the
reference and the n = 6 cases. The six interleaves chosen
for the reference frames are indicated by straight line
segments, while the interleaves used in the n = 6 case (only
one per time frame) are shown in bold. After every group of
six interleaves, one interleaf is left unused to maintain a
consistent time interval between time frames. Although
not depicted, the strategy presented in Fig. 14 also ensures
a uniform time sampling for the cases n = 2 and 3. Clearly,
discarding data degrades the SNR; the strategy was only
used to provide a comparison between reference and
UNFOLD results that is as fair as possible. In an actual
UNFOLD application (as the one presented later) all the
acquired data would be used.

Seventy-eight time frames were reconstructed from the
acquired data (n; = 13 images per paradigm cycle). Figure
15a.1 shows one of the 78 images from the reference data
set. The temporal frequency spectrum for the voxel indi-
cated by the arrow in Fig. 15a.1 is shown in Fig. 15a.2.
Because the expected variations are co-periodic with the
paradigm, only the frequencies indicated by tick marks
should contain the activation signal. The arrows in Fig.
15a.2 point to the peaks located at the fundamental fre-
quency of the paradigm; the presence of such peaks
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FIG. 13. Results obtained with a segmented cardiac-triggered gradient-echo sequence modified to shift the sampling function of every odd
time frame by half a k, line, as required by UNFOLD (TR = 8.6 msec, TE = 3.6 msec, 20° flip angle, 5-mm slice thickness, 8 k, lines per
segment, 128 ky lines, 22 cm by 11 cm FOV, 15 cardiac phases, data acquired over 16 heartbeats while the volunteer holds her breath). a: The
15 acquired images are corrupted by spatial aliasing (7th cardiac phase is shown here). b: The aggregate temporal frequency spectrum over
the ROI shown in a consists of two peaks. These two peaks are separated using the Fermi filter shown with a dashed line. c: Treated images
are generated where the aliasing problem is corrected (the same cardiac phase as in a is shown here). d: The ROI shown in a and c is
displayed for all the 15 cardiac phases (3% scale compared with a and c). Order is from left to right. Windowing is the same for a, ¢, and d.
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FIG. 14. This figure depicts how spiral inter-

frame 1 frame 2 frame 3 frame 4 frame 5

frame 6 leaves are pooled to form time frames, in the

indicates that this voxel was activated by the paradigm.
Figure 15a.4 is the activation map obtained from the 78
reference images. The motor cortex for both hands (includ-
ing the pixel considered in Fig. 15a.2) has statistically
significant correlation. Figures 15b.1, c.1, and d.1 show
what happens to Fig. 15a.1 as the number of spiral inter-
leaves used in the reconstruction is diminished by two,
three, and six, respectively. The images are corrupted by

» reference andinthe n = 6 cases. See text for
time details.

aliasing of increasing severity. Figures 15b.2, c.2, and d.2
show the effect of UNFOLD on the temporal frequency
spectrum of the voxel highlighted in Fig. 15a.1. The
spectrum of Fig. 15b.2 has two components. One is the
spectrum of the desired voxel, centered at DC. The second,
centered at the Nyquist frequency, contains the contribu-
tion from object locations which are aliased onto this same
image point. In contrast to the case in FT encoding, this

A 2 3 4

N
Mgy
temporal frequency

temporal frequency

temporal frequency
/s ~

—— ————

\
[
|
!
!
|
)

temporal frequency \

7/

i

FIG. 15. Results coming from a bilateral finger tapping fMRI study [78 time frames, each one made of 6 spiral interleaves, axial images, matrix
size 128 X 128, 54 sec paradigm cycles (27 sec on followed by 27 sec off), 13 images per paradigm cycle, 10 slices, TR = 600 msec (10 times
60 msec), TE = 40 msec, 4-mm slice thickness, 24 cm FOV]. a, b, ¢, and d represent, respectively, the truth (where six spiral interleaves are
used to reconstruct each time frame) and cases where the number of interleaves per frame is reduced by a factor n of 2, 3, and 6. Images in
column .1 show one of the 78 time frames acquired. Column .2 gives the temporal frequency spectrum for the voxel whose location is shown in
image a.l (the square in a.1 is bigger than the voxel). Ticks on the horizontal axis indicate the frequency values where activation signal is
expected, and the dashed lines indicate the frequency components to be zeroed. Column .3 shows the same images as column .1, after they
are treated with UNFOLD. Column .4 gives the activation maps obtained from the images shown in column .3 (overlaid onto the time average).
Unlike b.4 and c.4, d.4 provides an SNR-equivalent comparison with a.4 (see text for details). Notice that the aliasing artifacts in images b.1,
c.1, and d.1 are removed in images b.3, ¢.3, and d.3, and that the activated motor cortex in a.4 can also be seen in b.4, c.4, and d.4. This
suggests that UNFOLD can remove the aliasing artifacts in fMRI while preserving most of the activation signal.
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aliasing does not come from a single point in the object.
However, assuming a proper choice of n and n, was made
(Eq. [6]), it is guaranteed to be zero (except for noise) at DC,
the fundamental activation frequency and its harmonics.
The aliasing can be removed by zeroing all the harmonics
of the spectrum centered at the Nyquist frequency; how-
ever, zeroing only the zeroth order peak with a width A
equal to one (only the point at the Nyquist frequency was
zeroed) proved sufficient. The result is shown in Fig.
15b.3, where the aliasing (clearly visible in Fig. 15b.1) has
been removed. The activation map of Fig. 15b.4 (cf. Fig.
15a.4) was obtained from the data set represented in Fig.
15b.3.

Similarly, reducing the number of interleaves per time
frame by a factor n of 3 and 6 forces n spectra to share the
same bandwidth (Fig. 15c.2 and d.2). By zeroing one
frequency point every 1/(nT) Hz (as indicated by dashed
vertical lines), images like Fig. 15¢.3 and d.3 were ob-
tained. The activation map of Fig. 15c.4 was obtained from
the data set in Fig. 15c.1. Notice that Fig. 15b.3, c.3,and d.3
are obtained using, respectively, two, three, and six times
less data than Fig. 15a.1. Accordingly, the activated regions
progressively decrease in statistical significance. The fol-
lowing strategy was used to provide an SNR-equivalent
comparison between reference and UNFOLD results. For
each value of n, there are n independent ways to choose
one nth of the interleaves. These were processed separately
to yield n sets of images like Fig. 15b.3, c.3, or d.3. These n
sets were then averaged before performing the correlation
process. This is appropriate in a demonstration of the
method’s behavior, but would not be possible in practice.
An example of the correlation maps obtained from aver-
aged data sets is shown in Fig. 15d.4 for the case n = 6 (cf.
Fig. 15a.4). The dashed line around Fig. 15d.4 emphasizes
that unlike the other images in column .4, d.4 is obtained
from an averaged data set (and therefore has better SNR
than b.4 or c.4). Note that any aliasing surviving the
filtering process would disappear through such averaging;
however, Fig. 15d.3 shows qualitatively that UNFOLD
worked well in removing the aliasing. Fig. 15d.4 is very
similar to the reference activation map a.4 (SNR-equivalent
comparison). Results nearly identical to both Fig. 15a.4
and d.4 have also been obtained for the cases n = 2 and 3
(not shown here). While column .3 in Fig. 15 shows that
UNFOLD removed the aliased components, the compari-
sons of Fig. 15a.4 with b.4, c.4, and d.4 show that activation
information is retained in the processed data sets.

Application of UNFOLD

An fMRI study was performed using a 3D “stack of spirals”
(48,49) imaging sequence with four spiral interleaves in the
k—k, plane, sixteen k, phase encodes, and TR = 250 msec
(acquisition time of 16 sec/time frame). Finger tapping was
performed while a 2 sec audio cue was on, and then
stopped for 12 sec for a paradigm period of 14 sec. Forty
paradigm cycles were imaged, for a total imaging time of 9
min 20 sec. Studies using a paradigm with such a short
activation period (50,51) are generally referred to as single-
event or single-trial fMRI and have a smaller signal than the
more conventional boxcar fMRI (52).

Note that the imaging time for a single time frame (16
sec) is longer than a paradigm cycle (14 sec). Convention-
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ally, such a situation would make little sense, as one must
resolve the time variations occurring within a paradigm
cycle to generate activation maps. However, UNFOLD was
used to generate (aliased) time frames using only two of
sixteen k, values. As a result, a time frame could be
generated in 2 sec, providing seven time frames per
paradigm cycle (n; = 7). All four spiral interleaves for a
given k, phase-encode value were acquired before chang-
ing k, The k, acquisition order was modified in the
following way. Let k, be an integer from 1 to 16. The first
time frame used k, of 1 and 9, the second frame used 2 and
10, up to the eighth time frame, which used 8 and 16. This
scheme was repeated with a period of eight frames. Conven-
tional reconstructions (e.g., Fig. 16a) are corrupted by an
eight-fold aliasing in the slice direction. (Note that with
only two phase-encodes per time frame, the ‘arbitrary
trajectory’ description in the Theory section might be more
appropriate than the simpler ‘Cartesian grid’ description).
The temporal frequency spectrum for the voxel highlighted
in Fig. 16a is shown in Fig. 16b. Eight spectra are inter-
leaved, but only signal from the non-aliased material is
expected at the frequencies indicated by tick marks. The
presence of peaks at the fundamental frequency of the
paradigm (arrows in Fig. 16b) indicates that the voxel
highlighted in Fig. 16a contains activation. All the fre-
quency terms (zeroth term, fundamentals, and harmonics)
corresponding to the spectra generated by aliased compo-
nents were zeroed, using a width A equal to five frequency
points per term to be erased. This filtering process gener-
ated images like Fig. 16¢, in which the aliasing seen in Fig.
16a has been removed. The correlation maps for four slices,
overlaid onto fast spin-echo (FSE) images, are shown in
Fig. 16d through g. Motor cortex activation is seen in Fig.
16d and e, while auditory activation (caused by the audio
cue) is seen in Fig. 16f and g. A simple correlation with a
sinusoidal function was used; correlation with an hemody-
namic response function might possibly have improved
the activation maps.

DISCUSSION

UNFOLD can enable a reduction in acquisition time for
individual temporal frames in a dynamic study. While
UNFOLD was implemented for cardiac-triggered imaging
and for fMRI, it is not applicable to all dynamic studies. For
UNFOLD to be useful, it first has to be compatible with the
imaging sequence used. Not all imaging sequences can
support UNFOLD: a notable example is retrospectively
interpolated cine (3,4) (the temporal interpolation appears
to be incompatible with the time-varying sampling func-
tion inherent in UNFOLD). Furthermore, for UNFOLD to
be useful in a given application, the geometry or time
behavior of the imaged anatomy has to meet some criteria.
Indeed, there are two important assumptions inherent to
the UNFOLD method. It is assumed that more than one
spatial point can share the same temporal bandwidth
without overlap. Second, it is assumed that enough is
known about the shape of the temporal spectra to separate
the contributions from these points. Failures of the
UNFOLD method are caused by violation of one or both of
these assumptions. Such violations give rise to a different
kind of aliasing, where some temporal frequencies at a



826

Madore et al.

d e

DC

9

FIG. 16. Results obtained for a single-trial fMRI experiment (4 spiral interleaves, 16 k, phase-encode values, axial images, matrix size
128 X 128, TR = 250 msec, TE = 40 msec, 5 mm resolution along z, 24 cm FOV). Bilateral finger tapping was performed while a 2 sec audio
cue was on, and then stopped for 12 sec. The acquisition time for a time frame (16 sec) is longer than a paradigm cycle (14 sec). UNFOLD is
used to reduce the acquisition time by a factor 8, providing 7 frames per paradigm cycle. a: The acquired frames are corrupted by an 8-fold
aliasing in the through slice direction. b: Temporal frequency spectrum for the highlighted image point in a. UNFOLD interleaves 8 spectra into
the same temporal bandwidth. Marks are placed on the axis at the locations of the DC, fundamental and harmonic frequencies for the
non-aliased material. Selecting only these frequencies, the aliasing seen in ais removed in c. The data set represented in c is used to generate
the correlation map in d (which is overlaid onto a corresponding FSE anatomical image). e, f, and g show the correlation maps for three other
slices. d and e (slices 5 and 6 out of 16) show motor cortex activation, whereas f and g (slices 13 and 14) show the auditory cortex activation

caused by the audio cue.

given spatial point are falsely attributed to another spatial
point. On the other hand, if these assumptions are rela-
tively robust for a given application. UNFOLD can depict
accurately the time-varying object while requiring only a
fraction of the data that would conventionally be needed.
In cardiac imaging and fMRI, these assumptions take the
form of seemingly reasonable statements: It should be
possible to describe the quasi-static material outside the
heart using only a limited bandwidth, and in fMRI, activa-
tion signal should be found only at temporal frequencies
related to the paradigm frequency. While UNFOLD is
expected to be directly applicable to myocardial perfusion
studies, it remains to be seen whether it will prove useful
in contrast enhanced studies of other parts of the body.
The following illustrates a problem that was encoun-
tered with the cardiac results presented in Fig. 8. Because
of T, relaxation and eddy currents, the signal magnitude in
the first time frame was 10-20% higher than in the last
frame (‘lighting flash artifact’), violating UNFOLD’s assump-
tion that the signal in the thoracic wall varied slowly as a
function of time (because it belongs to region B; see Fig. 8a).
As aresult, in the processed images, a few time frames are
required to recover from the sudden changes. Although the
difference images between ‘truth’ and UNFOLD’s output
showed almost no anatomic features for intermediate time
frames (e.g., Fig. 8d), this was not true for the first and last
time frames. This problem can be alleviated during the

processing if the time series is expanded by appending all
the frames except the first and last in reverse order, after
the last frame. With N being the number of collected
frames, the ordering of the resulting 2N — 2 frames is 1,
2,...,N—1,N,N—1,...,2. This new time series has no
discontinuity, and the need for an alternation of k-space
sampling patterns between adjacent frames is respected.
The cardiac data set presented in Fig. 13 was not affected
by a lighting flash artifact, owing to the use of continuous
RF (dummy excitations to preserve the steady state).

A conventional segmented cardiac-triggered sequence
would not have been able to obtain the same spatial and
temporal resolution over the heart in the same imaging
time as for the data set presented in Fig. 13. To maintain the
spatial resolution, twice as many k, lines would be re-
quired to avoid spatial aliasing, thereby doubling the scan
time and making breath-held scanning more challenging.
To maintain the data acquisition time, the number of k,
lines per segment would have to be increased from 8 to 16,
reducing the temporal resolution to 167R instead of
~10.5TR in the dynamic region (10.5 = 8/0.76; the 76% is
the full-width-at-half-maximum of the filter). A scan using
16 ky lines per segment would acquire the same amount of
data as the study displayed in Fig. 13; however, this data
would provide uniform temporal resolution over the FOV.
While this uniform temporal resolution is higher than the
resolution provided by UNFOLD over the “less dynamic”
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region, it is lower for the dynamic region containing the
heart (where better temporal resolution might be needed).

By increasing the temporal resolution, UNFOLD can
significantly increase the activation signal in fMRI applica-
tions where the acquisition time for a time frame is of the
same order as the paradigm cycle period, like the one
presented. In such a case, conventional fMRI provides only
negligible signal in the activation images. UNFOLD can be
seen as a way of enabling certain fMRI studies that would
otherwise not be possible due to an acquisition time too
long for the paradigm period. It might also be used to study
hemodynamic responses with an increased temporal reso-
lution.

UNFOLD reduces the data requirements for acquisition
of a temporal frame. This reduction can be converted into
decreased total imaging time, better spatial or temporal
resolution, or larger spatial coverage. It can also allow the
use of a slower pulse sequence; for example, an investiga-
tor without access to EPI or spiral imaging could achieve
adequate time resolution in fMRI with a normal 2DFT
gradient-echo sequence. Alternatively, a longer TR could
be used to increase the blood oxygenation level-dependent
(BOLD) SNR. The use of UNFOLD to increase the spatial
resolution, to increase the number of slices, or to decrease
the total imaging time is accompanied by a decrease in
SNR. However, use of UNFOLD to increase the spatial
coverage of a 3D scan, the in-plane FOV, or the time
resolution does not have an adverse effect on SNR (increas-
ing the time resolution would reduce the SNR of the
individual frames, but the SNR can be regained through a
correlation process (in fMRI), or by averaging frames if
necessary).

CONCLUSION

UNFOLD uses the t axis of k—t space to resolve information
normally encoded along the k axes. In some dynamic
applications in which the time axis is not efficiently
exploited by conventional encoding, such a reorganization
of k—t space can lead to a significant decrease in acquisition
time for the temporal frames. As shown, this can lead to an
increase in temporal resolution by nearly a factor of two in
cardiac-triggered imaging, and by as much as a factor of
eight in fMRI (making it possible to image activation even
when the acquisition time of a single time frame is actually
longer than the paradigm cycle period). Depending on the
situation, this reduction in the acquisition time of a
temporal frame can be translated into a reduction of the
total imaging time, into an improvement of the spatial or
temporal resolution, or into an increase in the spatial
coverage. The reduction can also be used to allow a faster
pulse sequence to be replaced by a slower one while
preserving the time resolution.
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