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SPATIAL CRITICAL POINTS OF SOLUTIONS

OF A ONE-DIMENSIONAL NONLINEAR PARABOLIC PROBLEM

LAWRENCE TURYN

(Communicated by Walter Littman)

Abstract. The number of spatial critical points is nonincreasing in time, for

positive, analytic solutions of a scalar, nonlinear, parabolic partial differential

equation in one space dimension. While proving this, we answer the question:

What happens to a critical point which loses simplicity?

1. Introduction

In recent years there has been a revival of interest in qualitative properties

of solutions of nonlinear parabolic partial differential equations on bounded

spatial domains. In some sense, for equations modeling diffusion one expects

that as one moves forward in time the complexity of the spatial dependence

of solutions should decrease. The first, and most fundamental, of such results

is the minimum principle, as in Cannon [3] or Protter and Weinberger [10].

Using the minimum principle, further qualitative results have been proven in

one space dimension: Nickel [9], as well as others mentioned in Walter [12],

proved that the number of spatial extrema is nonincreasing in time, and Matano

[7] considered roughly the same concept defined by his "lap number". These

results have been useful in proving that the stable and unstable manifolds of

two hyperbolic stationary states must intersect transversally, as in Henry [6]

and Angenent [1], as well as for proving that critical points are generically (in

time) simple, as in Brunovsky and Fiedler [2]. Also, Ni and Sacks [8] have given

additional conditions which assure the decrease in the number of spatial critical

points of radially symmetric solutions, for any number of space dimensions.

In this note we prove a result with the conclusion that for positive solutions

the number of spatial critical points, in one space dimension, is nonincreas-

ing in time. Along the way we consider a question which naturally follows

from Brunovsky and Fiedler [2]: What happens to critical points which lose

simplicity?
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1004 LAWRENCE TURYN

Three examples are given. The first shows that a critical point can lose sim-

plicity but remain in existence, fixed in space. The second shows that four

critical points can coalesce and then disappear, as time increases. The third

shows that the main argument, found in Lemma 2 below, could not generalize

to more than one space dimension.

2. The problem

Consider the parabolic partial differential equation initial-boundary value

problem

(2.1) ut = f(x,t,u,ux,uxx),       0<x<l,i>0,

(2.2) u + A(x,t)du/dn = 0,       * G {0,1},/> 0,

(2.3) u = u0(x),       0<x<l,t = 0.

Here, subscripts denote partial differentiation, and the derivative outward

normal to the interval [0,1] is (du/dn)(x,t) — -(-\)xux(x,t) for x E

{0,1}, which is the boundary of [0,1]. Assume

(HO) f(x,t,u,ux,uxx) = a(x,t)uxx + F(x,t,u,ux).

Denote D = (0,1) x (0,oo). Assume

(HI) a is real analytic and positive on D ;

(H2) F = Fx(x,t,u,ux)ux + F2(t,u), where Fx is real analytic on DxR ,

F2 is real analytic on (0, oo) x R, and F is nonnegative on D x R ;

(H3) A(x, t) is real analytic and nonnegative for t E (0, oo), x E {0,1} ;

(H4) u0 is real analytic, nonnegative, and not identically zero on [0,1];

(H5) u0 is a Morse function on [0,1], i.e. has only simple critical points,

i.e. values of X with (du0/dx)(x) = 0, and only finitely many of them;

(H6) u0 has no critical points on the boundary of [0,1], i.e. (du0/dx)(x) /

0 for xg{0,1}.

If <j>: [0,1] —► R define #<£(•) to be the number of critical points of </>, if

finite. For any given «0, [0, T) will be an interval of existence of the classical

solution u(x,-) of (2.1)—(2.3) .

Theorem. Assume (H0)-(H6) and u(x,t) solves (2.1)—(2.3). Then #u(-,t) is

nonincreasing in t E [0, T).

Lemma 1. Assume (H0)-(H4) and u(x,t) solves (2.1)—(2.3). Then

(i)   u(x,t)>0 for (x,t)E(0,l)x(0,T),

(ii)   du/dx(x,t)¿0 for (x,t)E{0,l}x(0,T).

Proof, (i) follows from the minimum principle, as in [3, 10]. For (ii), suppose

not, i.e. that a critical point appears on the boundary of (0,1) at some time

t > 0. Then (du/dx)(X,t) = 0 and (2.2) imply u(x,t) = 0, hence u has

an absolute minimum at (x ,t). From the Hopf boundary point lemma [10,

p. 170], (du/dn)(x,t) < 0, giving a contradiction.   D

Lemma 2. Assume (H0)-(H4) and u(x, t) solves (2.1 )-(2.3) on (0,1) x (0, T).

If ux(x,t) = uxx(x ,t) = 0 for some (x,t) in (0,1) x (0, T), then for some
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ô > 0 the number of solutions x in (x - ô ,x + S) of 0 = ux (x, t) remains

constant or decreases by a multiple of two for t in (t,t+ô) versus t in (t-S,t).

Proof. Let n + 1 be the least positive integer such that D"+ u(x, t) ^ 0. Note

that n exists and is greater than one, by the hypotheses, which imply [5] that

u(x, t) is real analytic on (0,1 ) x (0, T) and, furthermore, that ux(-, t) is not

identically zero on (0,1), for 0 < / < T. Throughout, denote a = a(X ,t),

£ = x — x, n = t-t. The proof distinguishes the cases n even and n odd and

uses the Newton polygon [4] to analyze the Taylor series

(2.6) o = ux(x,t) = Y.DiDktu^x>WJnkIW ■
j,k

Note D]x+Xu(x,t) = 0 for 0 < j < n. Differentiate (2.1) n - 1 times with

respect to x, after each differentiation evaluate at (x, t), and use (Hl), (H2),

and DJx+xu(x,t) = 0 for 0 < ; < n to conclude that DJX+XDtu(x,t) = 0 for

0 < j < n-2 and Dn~xDtu(x,t) = aDx+xu(x,T) ^0. Let m = [n/2], the

integer part of n/2. Similarly, for 0 < k < m,

Dix+xDktu(x, t) = 0   for 0 <;'<«- 2m,

and

Dx Dt u(x, t) = a  Dx   u(x, t) £ 0 .

For all integers n > 1 , define qn(v) = Yl^if vk/(n - 2k)\k\, which are related

to the heat polynomials of Rosenbloom and Widder [11]. Motivated by [11],

one observes the facts that for all n > 2

(2-4) (n + l)qn+x(v) - 2vqn_x(v) = qn(v)

and

(2.5) Qn+,(v) = qn_x(v) .

One can establish that, for all n > 2, q can have only simple zeros. This claim

is true for n = 2. If N + 1 were the least integer for which the claim is false,

saY ^at+i^o) - q'n+\(vo) - 0- From the definition, v0 ^ 0. Then (2.4) and

(2.5) would imply qN(v0) = 0, whence q'N(v0) ̂  0 and (2.5) would contradict

(2.4) 2v0qN_2(v0) = NqN(v0) - qN_x(vQ).

First, suppose n is even. After dividing through by D"+ u(x, t), (2.6) takes

the form

(2.7) 0= ir+a-^-^.-£ + .••+a™ ^-r+h.o.t.,
n\       (n-2)\   1! m\

where h.o.t. stands for higher order terms which can be neglected, according

to the method of the Newton polygon. The latter shows that all solutions of

(2.7) are found by the scaling r\ = aÇ v , since qn can have only simple zeros.

Because a — a(x,t) > 0, there are no solutions of (2.7) for n > 0 but, for
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n < 0 sufficiently small, if there are solutions t\ then there are an even number

of such solutions.

Second, suppose n is odd. Let m + I be the least positive integer such that

DxD™+lu(x,t) ¿ 0, if such / exists. Note that if / exists it is greater than or

equal to one, by the previous inductive calculations. After dividing through by

D"+x u(x, 0 , (2.6) takes the form

gn k/i—2 c        m m+l

(2.8) 0=^- + a7^-—--^ + -- + am^-ti-1 + ßit1    ,.,+h.o.t.
«!       («-2)!    1! 1!   ml        (m + l)\

for some ß, possibly zero. Once again, the method of the Newton polygon

and the fact that qn can have only simple zeros justifies this truncation and

the result that all solutions of (2.8) are found by the scalings n = ac¡ v and, if

ß t¿ 0, £ = n w . For the first scaling, as was the case for n even, there is a

possible decrease of solutions t\ by an even number as n passes through 0; but,

in addition, there can be a solution locally of the form ¿j = 0(\r¡\ ). For the

second scaling, the number of solutions £ does not change as r\ passes through

0.   G

For both n even and n odd, as n passes through 0 the number of solutions

£ will decrease by twice the number of real zeros of qn . Based on small n

Sturm sequences we conjecture that all [n/2] distinct zeros of qn are real.

Proof of the theorem. In general, if ux(x,f) — 0 ^ uxx(X,t) then the implicit

function theorem implies that locally, near (x, t) = (X, t), the solutions of the

equation 0 = ux(x, t) consist of an analytic curve x - X = c(t -1) + 0(\t - t\2)

for some constant c. Thus, (H6) implies that, for some S > 0, #u(-,t) is

constant for 0 < t < ô. Continuations of these analytic curves for t > S,

along with the conclusion from Lemma 1 (ii) that no critical points appear on

the boundary {0,1}, show that #«(•, r) could increase only if, for some (X, t),

ux(X,t) = 0 = uxx(x,t). Lemma 2 shows that loss of simplicity of a critical

point cannot lead to increase of #u(-, t).   o

Remark. The conclusion of the theorem, without the more detailed conclu-

sions found in Lemma 2, could be obtained by slightly different hypotheses:

Weaken the analyticity assumptions of (H1)-(H4) to mere C1 smoothness

and substantially strengthen (H2) to include the assumptions F2(t,u) = 0 and

(dFx/dx)(x,t,u,0) = 0. Then, differentiate (2.1) with respect to x and ob-

tain a parabolic partial differential equation, for v = u , for which the result

[12, p. 207, Theorem III] on the number of "0-points", along with Lemma

1 (ii), yields the conclusion of present theorem.

Example 1. This example from Derek Westwood shows that one of the more

complicated conclusions of the proof of Lemma 2 can occur: u = 3e~l sin x +

e~ ' sin 3x solves ut = uxx , w(0, t) = u(n, t) = 0, u(x, 0) - 3 sin x + sin 3x .

Hypotheses (H0)-(H6) are all satisfied. There are three spatial critical points,
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Figure 1

defn

including at x - n/2, for 0 < t < (In3)/S ~ t*, and exactly one critical point,

at x — n/2, for t > t*. This example is one of the possibilities of the second

case of the proof of the lemma, and the critical points are shown in Figure 1.

Example 2. This example, from the anonymous referee of a previous version

of this paper, shows that two other of the conclusions of the proof of Lemma

2 can occur:

M = M4T+2!Ï! + 2T \ 5!      3! 1!      1! 2!

solves ut = uxx for all p, X.

For p = 0, A = 1, we have the first case of the proof, and the critical points

are shown in Figure 2(a). For fi = 1, X ¿ 0, we have the second case of the

proof, and the critical points are shown in Figure 2(b). Note that ux is a linear

combination of heat polynomials.

Figure 2
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Example 3. This modification from Nickel [9, p. 93] shows that the Taylor

series analysis found in Lemma 2 does not generalize to more than one space

dimension:  u = 10 - 2t - 4x2 - 2y2 - 4* + 2ty2 solves ut = [(1 - y2)/(2(3 +

12y - t))](uxx + u ) in the region {(x ,y)\ \x\ < 1, \y\ < 1} . The equation is

parabolic for 0 < t < 3 . There is one critical point, at (0,0), for 0 < r < 1, and

there are three critical points, at (0,0) and (0, ± (t - l)1/2/2), for 1 < / < 3 .

While this example also fails to satisfy (H3), that hypothesis was used in the

proof of Lemma 2 (in one space dimension) only to get real-analyticity and

nonconstancy of u for t > 0.

Addendum

The referee has called our attention to "The dynamics of rotating waves in

scalar reaction equations", by S. B. Angenent and B. Fiedler, Trans. Amer.

Math. Soc. (to appear). In that paper's §5, the authors analyze the zeros of

solutions u(-, t) of linear heat equations in the same way, using the same tools:

Taylor series and the Newton polygon. In fact, our independent work fell short

on one detail. The zeros of qn are, besides simple, in fact real, by relating the

heat polynomials to the Hermite polynomials. So, the conclusion of our Lemma

2 can be strengthened. Our Lemma 1, on nonexistence of critical points on the

boundary of the interval (0,1), is not needed for work on the circle S by

Angenent and Fiedler. Lemma 1 extends to any number of space dimensions,

which we intended to work on until we encountered Example 3, due to Nickel.
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