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Abstract

Nonlinear acoustic wave propagation through a stratified atmosphere is considered. The initial signal is taken to be an
isolatedN -wave, which is the disturbance that is generated some distance away from a supersonic body in horizontal flight.
The effect of cylindrical spreading and exponential density stratification on the propagation of the disturbance is considered,
with the shock structure controlled by molecular relaxation mechanisms and by thermoviscous diffusion. An augmented
Burgers equation is obtained and asymptotic solutions are derived based on the limit of small dissipation and dispersion. For a
single relaxation mode, the solution depends on whether relaxation alone can support the shock or whether a sub-shock arises
controlled by other mechanisms. The resulting shock structures are known as fully dispersed and partly dispersed shocks,
respectively. In this paper, the spatial location of the transition between fully dispersed and partly dispersed shocks is identified
for shocks propagating above and below the horizontal. This phenomenon is important in understanding the character of sonic
booms since the transition to a partly dispersed shock structure leads to the appearance of a shorter scale in the shock rise-time,
associated with the embedded sub-shock. © 2001 Published by Elsevier Science B.V.

1. Introduction

Accurate predictions of shock overpressure and shock rise-time are important in determining the subjective
annoyance of sonic booms produced by supersonic aircraft. To assess the problems associated with sonic booms
at ground level, the propagation of disturbances over long ranges must be investigated for a realistic atmosphere.
Account must be taken of nonlinearity, geometric effects, the effect of stratification and molecular mechanisms
leading to dissipation and dispersion.

The effect of nonlinearity on acoustic propagation was studied in detail by Lighthill [1]. In particular, the compe-
tition between nonlinearity and other effects was described. For typical acoustic waves, nonlinearity is locally small,
but the effect is cumulative, leading to significant deformation over long ranges. For one-dimensional propagation,
inclusion of thermoviscosity in addition to nonlinearity leads to the well-known Burgers equation, which can be
solved exactly using the Cole–Hopf linearising transformation [2,3]. For propagation in three-dimensional space,
wave evolution can be described by a nonlinear equation along ray paths. Inclusion of geometric effects due to
variation in wave-front area leads to a generalised Burgers equation [4,5] for which no linearising transformations
are available [6]. Progress is then only possible using numerical methods [7,8] or asymptotic analysis based on the
limit of small diffusivity [6].
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While most studies of finite-amplitude acoustic propagation have considered the effect of thermoviscosity in
controlling shock structure, in the atmosphere other physical effects are present which may influence shock structure.
Atmospheric turbulence is one mechanism which has an effect on the structure of a shock wave [9,10]. Molecular
relaxation associated with the internal vibration of polyatomic molecules also plays an important role in determining
the shock structure. Analysis of the interaction between relaxation and nonlinearity for one-dimensional propagation
through a uniform media [1,11–15] shows that for some range of parameter values, relaxation alone is insufficient to
support a shock. This leads to the appearance of a narrow sub-shock controlled by other mechanisms. For propagation
through the air, relaxation modes associated with the internal vibration of both O2 and N2 are significant.

All the theories described so far are based on propagation through uniform media. For propagation through
the atmosphere, the effect of variation with altitude must also be considered. Sirovich and Chong [16] derived a
governing equation for arbitrary density stratification, including the effect of thermoviscous diffusivity. Solutions
were then considered only in the inviscid case and hence there is no analysis of shock width. Rogers and Gardner
[17] considered propagation through an atmosphere in which the linear sound speed is taken to be constant up to
altitudes of 100 km. Comparison with measurements suggests that this is a good approximation. The advantage
of this approximation is that the ray paths are straight, hence simplifying the nonlinear evolution equation along
the rays. Although Rogers and Gardner included attenuation in their model, the resulting shock structure was not
considered. Crighton and Lee-Bapty [18] considered spherical wave motion with thermoviscous dissipation, for
an initially sinusoidal wave form. This study is not directly applicable to the propagation of sonic booms due to
the periodicity of the disturbance. In addition, symmetry about the flight path of the body creating the disturbance
causes sonic booms to spread cylindrically rather than spherically. However, the asymptotic treatment [18] takes
full account of the altitude variation of the dissipation parameter, and considers the resulting shock structure.

The propagation of the sonic boom generated by an axisymmetric supersonic body in a medium characterised
by a single relaxation mode was considered by Clarke and Sinai [19,20]. Their analysis takes full account of body
shape, describing the development of theN -wave structure in the near-field, followed by the evolution of the
shock structure over large ranges. However, the effect of density stratification was not considered. In this paper, we
consider the case of anN -wave propagating through a stratified atmosphere. The combined effect on the wave form
of nonlinearity, wave-front curvature and stratification of the atmosphere is analysed, together with the effect of
molecular relaxation and thermoviscosity. We consider the linear sound speed to be independent of altitude, which
is consistent with the mean density decreasing exponentially upwards. The variation with altitude of the relaxation
and thermoviscous parameters due to density stratification is also considered. General methods for the derivation
of model equations governing finite-amplitude acoustic disturbances are well described elsewhere [5]. In Section
2, we describe the salient points in deriving a model equation for this physical situation. We then obtain asymptotic
solutions based on the limit of small thermoviscosity and small relaxation, when molecular mechanisms balance
nonlinearity only in narrow shock regions.

2. Governing equation

For a disturbance generated by an axisymmetric body travelling through a uniform non-dissipative medium, linear
theory predicts a propagating disturbance of the form

u(r, t) = u0

( r0

r

)1/2
f

(
t − r − r0

a0

)
, (1)

whereu is the particle velocity,a0 the equilibrium sound speed,r the propagation distance andu0 the maximum
amplitude at some initial locationr = r0. At this level of approximation, the shape of the wave is unchanged with
propagation distance, while the amplitude decays liker−1/2 due to cylindrical spreading of the axisymmetric distur-
bance. For finite-amplitude disturbances, nonlinear effects must be considered. Typically the effect of nonlinearity
is locally small, but has a cumulative effect. Hence, the method of multiple scales can be used to derive an equation
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Fig. 1. An illustration of the physical situation of interest: solid lines show the position of the body and the resulting disturbance at some reference
time, while the dotted lines show the positions at some later time. The ray angleθ is measured from the vertical.

which determines the evolution of the waveform along a ray, including the correction term due to nonlinearity,

∂u

∂r
− γ + 1

2a2
0

u
∂u

∂φ
+ u

2r
= 0, (2)

whereγ is the ratio of specific heats andφ = t − (r − r0)/a0 the retarded time based on the equilibrium sound
speed. The nonlinearity leads to wave steepening as wave crests travel faster than wave troughs.

The disturbance generated by a supersonic body is illustrated in Fig. 1. For a body travelling at speedv > a0,
a head shock of positive amplitude is generated in the form of a Mach cone with half-angleθM = sin−1(1/M),
whereM = v/a0. Similarly a tail shock of equal and opposite amplitude is generated. Close to the body, the exact
form of the disturbance depends on the detailed geometry of the body, but over a number of wavelengths, the effect
of the quadratic nonlinearity is to form anN -wave. The evolution of the disturbance along ray paths normal to the
shock front can then be determined. We consider a ray which makes angleθ with the upward vertical.

Linear terms associated with dissipation and dispersion or other physical processes can then be added to (2), as
for a linear system, without repeating the multiple scales analysis. In the present work, we consider the effect of
density stratification, together with molecular effects of thermoviscous diffusion and relaxation.

If the linear sound speed,a0, is independent of altitude, the hydrostatic balance gives the density variation as

ρ = ρ0 exp

(−z

H

)
= ρ0 exp

(−r cosθ

H

)
, (3)

wherez = r cosθ is the vertical coordinate andH the height scale over which significant gravitational effects occur,
H = a2

0/γg. Hereγ is the ratio of specific heats andg the gravitational acceleration. Inclusion of density variation
also leads to an additional linear term in the evolution equation [16]. Thus we consider a governing equation of the
form

∂u

∂r
− γ + 1

2a2
0

u
∂u

∂φ
+ u

2r
− u cosθ

2H
= L(u), (4)



362 P.W. Hammerton / Wave Motion 33 (2001) 359–377

whereL is a linear differential (or integro-differential) operator describing the effects of molecular processes. The
form ofL for a wide range of physical processes is summarised in the review paper by Makarov and Ochmann [21].
Since the linear sound speed is constant, the ray paths are straight lines and so cosθ is constant along each ray.

Thermoviscous diffusion is the process most commonly included when studying the propagation of finite-amplitude
waves. The contribution to the right-hand side of (4) due to thermoviscous diffusivity is

LTV(u) = ∆

2a3
0

∂2u

∂φ2
, (5)

where∆ is the diffusivity of sound [1],

∆ = 1

ρ

(
4

3
µ + µB + (γ − 1)κ

cp

)
. (6)

Here the first term arises from the viscosity of the medium; the second term is the bulk viscosity, usually taken to
beµB = 0.6µ on the basis of experimental work; and the third term gives the thermal contribution to diffusivity,
with κ the coefficient of thermal conductivity andcp the coefficient of specific heat at constant temperature.

For acoustic propagation through the atmosphere, thermoviscous diffusion is inadequate in describing the complex
molecular processes present, and relaxation processes must be considered. The essential feature of a relaxing fluid
is that the partition of energy among the available modes does not respond instantaneously to changes imposed
by a time-dependent flow. Each physical relaxation mode has a characteristic timescale, and if the relaxation time
associated with a particular physical process is comparable to the disturbance timescale, then the effect of relaxation
must be accounted for in determining the evolution of the disturbance. For a gaseous medium, it is the partition of
internal vibration energy within polyatomic molecules that give rise to significant relaxation effects. For air, relaxing
modes associated with O2 and N2 are dominant. For linear propagation of a harmonic disturbance, with relaxation
effects included, the phase velocity increases monotonically with signal frequency froma0, the equilibrium or
low-frequency sound speed toa∞, which is known as the frozen sound speed. Thus each relaxation mode,ν, is
characterised by two parameters, the relaxation timeTν and the difference between the equilibrium and frozen sound
speeds,(1a)ν = a∞ − a0. Each relaxation mode gives a contribution to the governing nonlinear equation,

Lν(u) = (1a)ν

a2
0

e−φ/Tν

∫ φ

φ0

eφ′/Tν uφφ(φ′, r) dφ′, (7)

where the lower limit of integrationφ0 is determined by the boundary conditions onu(φ, r). As noted earlier, the
derivation of the governing equation rests on the assumption that all the effects included have a small effect on
the propagation over a distance of one wavelength. Assuming that a typical lengthscale for the disturbance isl, we
assume the following:

1. l/r � 1 for the effect of geometric spreading to be small;
2. u0/a0 � 1 for nonlinear effects to be small;
3. l/H � 1 for the stratification effects to be small;
4. ∆/a0l � 1 for thermoviscous effects to be small;
5. (1a)ν/a0 � 1 for the effect of theν relaxation mode to be small.

Hence the governing equation in dimensional form for a system with one relaxation mode is given by

∂u

∂r
− γ + 1

2a2
0

u
∂u

∂φ
+ u

2r
− u cosθ

2H
= ∆

2a3
0

∂2u

∂φ2
+ 1a

a2
0

e−φ/T

∫ φ

φ0

eY/T uYY(Y, r) dY, (8)

whereφ is the retarded time based on the equilibrium (low-frequency) sound speed.
The variation of the diffusivity and relaxation parameters with altitude must also be considered. From (6) it is clear

that if µ is independent of altitude, which is a good approximation for an isothermal atmosphere, then∆ ∝ ρ−1. In
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addition, it can be shown that the relaxation time for each mode is inversely proportional to density [22], whilst the
difference between equilibrium and frozen sound speeds is independent ofρ. Hence

∆ = ∆0 exp

(
(r − r0) cosθ

H

)
, Tν = (Tν)0 exp

(
(r − r0) cosθ

H

)
, (1a)ν = constant. (9)

It should be noted that the dependence of these parameters on altitude is mutually consistent, since for signal
frequencies much less than the relaxation frequency the effect of relaxation is purely diffusive with a diffusivity
coefficient

∆ν = a0(1a)νTν, (10)

which has the correct dependence on altitude.
In the present paper, we do not address the generation of the sonic boom by the body. Close to the body, cylindrical

spreading is insufficient to describe the geometric effect on the disturbance. However, as noted earlier, nonlinearity
leads to wave steepening and so at some distance from the source anN -wave has been formed. We then consider the
evolution of this wave as it propagates over long distances. Hence we consider as a boundary condition anN -wave
of durationt0 and amplitudeu0

u(r = r0, t) =
{

−u0
t

t0
, |t | < t0,

0, |t | > t0.
(11)

The governing equation is nondimensionalised, with the effect of stratification and geometric spreading scaled out
by setting

V =
(

r

r0

)1/2

exp

(
− (r − r0) cosθ

2H

)(
u

u0

)
, X =

(
(γ + 1)u0

2a2
0t0

)
r (12)

andτ = φ/t0. For the present time, we consider just one relaxation mode, in which case (8) gives

VX −
(

X0

X

)1/2

exp

(
α cosθ(X − X0)

2

)
VVτ

= ε0 exp(α cosθ(X − X0))Vττ + K e−τ/Ω

∫ τ

ey/ΩVyy(y, X) dy, (13)

whereΩ = Ω0 exp(α cosθ(X − X0)), with

α = 2a2
0t0

(γ + 1)u0H
, ε0 = ∆0

(γ + 1)t0u0a0
, Ω0 = T0

t0
, K = 2(1a)

(γ + 1)u0
(14)

and

X0 = (γ + 1)u0r0

2a2
0t0

.

This equation can then be converted to a more recognisable form by settingx = X/X0, λ = αX0 cosθ/2, and then
rescaling the spatial variable

Z = 1 + X0 e−λ

∫ x

1

eλx′

x′1/2
dx′ (15)

to give

VZ − VVτ = ε0Q1(Z)Vττ + KQ2(Z) e−τ/Ω

∫ τ

ey/ΩVyy dy. (16)



364 P.W. Hammerton / Wave Motion 33 (2001) 359–377

Here the range-dependent parameters characterising the effective diffusivity and relaxation terms are given implicitly
as

Q1(Z) = x1/2 eλ(x−1), Q2(Z) = x1/2 e−λ(x−1), Ω(Z) = Ω0 e2λ(x−1). (17)

Using the terminology of Pierce [22], Eq. (16) may be considered as an augmented Burgers equation. Clearly (16)
can be generalised to take account of multiple relaxation modes

VZ − VVτ = ε0Q1(Z)Vττ + Q2(Z)
∑
ν

KνLν(V ). (18)

Alternatively, for one relaxation mode the integro-differential equation can be converted to the form(
1 + Ω0E(Z)

∂

∂τ

)
(VZ − VVτ − ε0Q1(Z)Vττ ) = Γ0Q1(Z)Vττ , (19)

where

Γ0 = KΩ0, E(Z) = e2λ(x−1). (20)

The governing equations must then be solved subject to the boundary condition

V (Z = 1, τ ) =
{−τ, |τ | < 1,

0, |τ | > 1.
(21)

In deriving the model equation, assumptions were made about the relative sizes of certain parameters. However,
these assumptions place no restriction on the sizes of the dimensionless parametersΩ0 andΓ0 characterising each
relaxation mode, nor on the parameter∆0 describing the magnitude of the thermoviscous diffusivity. In Section
3, we assume thatΩ0 andΓ0 are small and comparable in magnitude, and that diffusivity may be neglected. The
waveform then evolves as a spreadingN -wave together with narrow relaxation dominated shock regions. The
asymptotic analysis is developed in Section 3.

3. Asymptotic theory

We now consider the case when a single relaxation mode is present, withΩ0 andΓ0 both O(δ), with diffusivity
o(δ). In this limit, the outer solution of (19) is given by

V (Z, τ) =
{

− τ

Z
, |τ | < Z1/2,

0, |τ | > Z1/2.
(22)

Shocks controlled by the relaxation mechanism must then be inserted atτ = ±Z1/2. Rescaling this shock region,
once the amplitude governed by nonlinear spreading is factored out, the leading-order solution is the familiar
steady-state relaxing shock profile [12–14], once the amplitude governed by nonlinear spreading is factored out.
Numerical solutions can be obtained for more than one relaxation mode [11]. Here we consider only one relaxation
mode since an analytic (albeit implicit) leading-order solution is available. We then focus on when this composite
description of lossless outer with inserted relaxation shocks breaks down as the leading-order wave solution. This
can come about in the following three ways:

1. the shock becomes relatively wide;
2. the relaxation shock is no longer the leading-order solution in the shock region;
3. the shock centre is displaced by an O(1) amount.



P.W. Hammerton / Wave Motion 33 (2001) 359–377 365

Hence the next order term in the shock description must be calculated. The analysis follows the methods of
Crighton and Scott [6], who consider a one-dimensional wave through a homogeneous medium. One difference in
the approach taken here is that new variables are introduced so that the lossless outer solution is independent of
time. This has the added advantage of making the numerical solution easier to obtain accurately. Defining

w = VZ1/2, y = τZ−1/2, (23)

(19) becomes(
1 + Ω0E

Z1/2

∂

∂y

)
(2ZwZ − 2wwy − w − ywy − 2ε0Q1wyy) = 2Γ0Q1wyy. (24)

Since we are concerned withΩ0 andΓ0 small, with the diffusive effects smaller than the relaxation effects, we set

Ω0EZ−1/2 = Aδ, Γ0Q1 = 1
2Bδ, ε0Q1 = 1

2Cε, (25)

with ε = o(δ). This gives(
1 + δA

∂

∂y

)
(2ZwZ − 2wwy − w − ywy − εCwyy) = δBwyy, (26)

where the range-dependent parameters are given implicitly as

A = A0Z
−1/2 e2λ(x−1), B = B0x

1/2 eλ(x−1), C = C0x
1/2 eλ(x−1). (27)

The outer solution is given by

w = −y + O(δn) for all n > 0 (28)

for |y| < 1, with shocks inserted aty = ±1. In the following analysis we consider the shock structure aty = −1,
the leading shock, though corresponding results for the other shock readily follow. Rescaling this shock,

Y = y + 1

δ
(29)

gives(
1 + A

∂

∂Y

)
(2wwY − wY ) + BwYY = δ

{(
1 + A

∂

∂Y

)(
2ZwZ − w − YwY − C

ε

δ2
wYY

)}
. (30)

Writing w = W + δw1 + O(δ2), matching conditions to the outer are given by

W, w1 → 0 as Y → −∞, W → 1, w1 → −Y as Y → ∞. (31)

3.1. Leading-order shock solution

Solving the leading-order equation, we obtain

WY = W(1 − W)

2AW+ (B − A)
(32)

and hence

Y − S(Z) = (B − A) logW − (A + B) log(1 − W). (33)

HereS(Z) gives the position of the shock centre and is undetermined at this order, instead being calculated from
solvability conditions at the next order. It follows from (33) that the relative width of the relaxation shock, i.e. the
actual shock width compared to the overall disturbance scale is O(δ max(A, B)).
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Fig. 2. Illustration of the leading-order shock profiles given by (33) forA = 1.0 and (a)B = 2.0; (b)B = 1.0; (c)B = 0.5.

The shock profileW(Y, Z) is shown in Fig. 2 forA = 1.0 and different values ofB in order to illustrate
the different types of shock structure possible. IfB > A, W(Y, Z) given by (33) satisfies the required matching
conditions to the outer shock. Thus the shock structure is entirely determined by a balance between relaxation
mechanisms and nonlinearity and is said to be fully dispersed [1,13]. The shock profile forA = 1.0, B = 2.0
is illustrated in Fig. 2a. WhenA = B, there is a discontinuity inWY at W = 0, which is illustrated in Fig. 2b.
However, ifB < A, the boundary condition asY → −∞ is not satisfied by (33). Hence, relaxation alone cannot
support the shock and a sub-shock controlled by other physical mechanisms must be inserted. This is discussed
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further in Section 3.4. Fig. 2c shows a partly dispersed shock profile forB = 0.5. The dotted line shows the position
of the inserted sub-shock using methods described later in this paper. At this stage all that should be noted is that
transition of the shock from fully dispersed to partly dispersed leads to the appearance of a narrower length scale,
or equivalently a shorter timescale, due to the sub-shock.

It may be noted that (33) does not match back to the initial condition (21) asZ → 1. Formally, an embryo-shock
region should be inserted which describes the evolution of the discontinuous initial condition to the relaxing shock
structure (33). However, this region is of purely academic interest since the initial discontinuous profile was chosen
as an approximation of the disturbance at the specified initial location. In practice, a finite-width shock develops
during the initial propagation away from the source when the current theory is not valid due to geometric effects
more complicated than cylindrical spreading.

Since the coefficientsA andB are known functions of propagation distanceX, the nature of the relaxation shock
at different ranges can be determined. Substituting the expressions forA andB, the condition for a fully dispersed
solution becomes

f (X) ≡ eλ(x−1)

x1/2Z1/2
<

B0

A0
= 2K0. (34)

Sincef (X = X0) = 1, if K0 < 1
2 the shock will initially be partly dispersed. For horizontal ray paths(λ = 0)

and rays below the horizontal (λ < 0), f (X) is a decreasing function and hence the shock will always become
fully dispersed. The large-X forms for the range-dependent parametersA, B andf are given in Appendix A.
Above the horizontal, the analysis is more complicated. At large-X, f (X) is an increasing function for allα, but if
λ < 1

2(1 + X0) thenf (X) initially decreases. This is true if

cosθ <
1 + X0

αX0
(35)

in which case we can show thatf (X) decreases to some minimumfm atXm, then increases monotonically for all
X > Xm. Otherwisef (X) is a monotonic function ofX. The variation off as a function ofx = X/X0 is illustrated
in Fig. 3 for different values ofλ. Thus if (35) is satisfied and the relaxation parameters satisfy

1 > 2K0 > fm (36)

from Fig. 3c it appears that the wave will be initially partly dispersed, then become fully dispersed, before becoming
partly dispersed again. Hence we expect to see a thin inner shock controlled by viscosity, which disappears at some
finite range, then reappears at some greater range. The change in the shock structure for the different parameter
ranges is summarised in Table 1. In Fig. 4, the value offm(λ) is plotted for 0< λ < 1

2(1 + X0). Thus it is seen
that for rays slightly above the horizontal(0 < λ � 1) there is a range of valuesK0 for which we see a transition
from partly dispersed to fully dispersed and back to partly dispersed, with the associated change in shock rise-time.
Moreover, for rays close to the horizontal, the fully dispersed phase extends to large ranges. The location,X = X2,
at which fully dispersed shocks become partly dispersed is given by

eλ(x2−1)

√
x2Z(x2)

= 2K0, x2 = X2

X0
. (37)

For rays just above the horizontal,λ → 0+, and it is clear thatx2 → ∞ with λx2 → ∞. Hence

Z(x2) → X0

λ1/2

eλx2

(λx2)1/2
, (38)

which leads to an implicit equation forx2(λ)

e2λx2

λx2
= 4K2

0X0
1

λ3
. (39)
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Fig. 3. Variation off as a function ofx for X0 = 1 with: (a)λ = 1.5; (b)λ = 1.0; (c)λ = 0.5; (d)λ = 0.0. Regions where the shock is fully
dispersed (F.D.) and partly dispersed (P.D.) are marked for various values ofK0.

Table 1
Classification of shock structure for all ray paths, dependent on initial conditionsa

Case I. Above horizontal with cosθ > (1 + X0)/αX0

K0 < 1
2 Partly dispersed

K0 > 1
2 Fully dispersed X < X2

Partly dispersed X > X2

Case II. Above horizontal with cosθ < (1 + X0)/αX0

K0 < 1
2fm Partly dispersed

1
2fm < K0 < 1

2 Partly dispersed X < X1

Fully dispersed X1 < X < X2

Partly dispersed X2 < X
1
2 < K0 Fully dispersed X < X2

Partly dispersed X2 < X

Case III. Horizontal rays and rays below the horizontal
K0 < 1

2 Partly dispersed X < X1

Fully dispersed X > X1

K0 > 1
2 Fully dispersed

a Here the rangesX1(λ) andX2(λ) denote the roots off (X) = 2K0.
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Fig. 4. The minimum value,fm, of the functionf (x), defined in (34), as a function ofλ.

Solving for smallλ gives the perturbation solution

X2 = 1

2
X0

1

λ

(
3 log

(
1

λ

)
+ log

(
log

(
1

λ

))
+ log(6K2

0X0) + o(1)

)
. (40)

The regions of occurrence of fully dispersed and partly dispersed shocks is illustrated more clearly in Section 4
when the shock structure in the vertical plane containing the ray path is analysed.

3.2. First-order correction term for fully dispersed shock

From (30), ignoring the thermoviscous term, the O(δ) correction in the shock region satisfies(
1 + A

∂

∂Y

)
((2W − 1)w1)Y + B(w1)YY =

(
1 + A

∂

∂Y

)
(2ZWZ − W − YWY ), (41)

whereW(Y, Z) is the leading-order shock solution defined by (33). Integrating once with respect toY gives(
1 + A

∂

∂Y

)
((2W − 1)w1) + B(w1)Y = 2ZIZ − YW+ A(2ZWZ − W − YWY ) + G(Z), (42)

whereI = ∫
W dY andG(Z) is a function which will ultimately be determined by matching to the outer solution. The

prospect of solving this equation looks unlikely, since although it is linear and first order, the coefficients are defined
implicitly. However, progress can be made. New functionsC1(Z) = A(Z)+B(Z) andC2(Z) = A(Z)−B(Z) are
introduced. With this notation, the leading-order solution is given by

Y − S = −C2 logW − C1 log(1 − W), (43)

with derivatives

WZ = W(1 − W)

2AW− C2
{C′

2 logW + C′
1 log(1 − W) − S′}, (44)

WY = W(1 − W)

2AW− C2
. (45)

Substituting these expressions into (42) gives

(2AW− C2)(w1)Y + (2AWY + 2W − 1)w1 = f (W, Z), (46)
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where

f = Q̄ + C1 log(1 − W) − (2Ā − A + S̄)W + Aq̄WY ,

Q̄ = C̄2W logW − C̄1(1 − W) log(1 − W), q̄ = C̄2 logW + C̄1 log(1 − W) − S̄. (47)

Here Ā = A(Z) + 2ZA′(Z), etc. The functionG(Z) has been substituted using the matching conditions that
W, w1 → 0 asY → −∞. The other matching condition is thatw1 → −Y andW → 1 asY → ∞, and this
condition fixesS(Z),

S(Z) = S0 − 2A −
∫

B

2Z
dZ. (48)

Solving (46) then gives

(2AW− C2)w1

W(1 − W)
=
∫

(2AW− C2)f

W2(1 − W)2
dW. (49)

Substituting forf (W, Y ), this finally givesw1 = w̃1 − WY T (Z), whereT (Z) is an undetermined function
and

(2AW− C2)w̃1 =
6∑

i=1

ai(Z)Ji(W). (50)

The functionsai(Z) andJi(W) are given in Appendix B. The functionT (Z) is fixed at the next order of the
asymptotic analysis (i.e. O(δ2)), but this is unnecessary for the present purposes since

w = W(Y − S) + δ(w̃1 − WY T (Z)) + O(δ2) = W(Y − S − δT ) + δw̃1 + O(δ2), (51)

and so the term involvingT (Z) corresponds to an O(δ) shift in the centre of the relaxation shock.

3.3. Breakdown of asymptotic structure for a fully dispersed shock

The reason for considering the O(δ) correction to the relaxation shock was in order to study the possible breakdown
of the composite asymptotic structure of outer solution with inserted relaxation shock. Restricting attention to rays
below the horizontal, when the shock is fully dispersed at large ranges, we can then consider whether the shock
remains relatively narrow, whether the displacement of the shock centre becomes large and whether (33) remains
valid as a leading-order approximation of the shock.

An estimate of the shock width is given by(
W

Wy

)
y=O(1)

= δ
C1 − 2AW

1 − W
∼ δx1/2 e−|λ|x as X → ∞, (52)

using the large-X form ofA(Z) andB(Z) given in Appendix A. Thus the shock does not become wide, but becomes
thinner at large ranges.

As X → ∞, the shock centreS ∼ e−2|λ|x and hence the displacement of the shock centre never becomes O(1)

on the outer scaling. Finally, using the large-X forms of the functionsai(Z) given in Appendix B,

δw̃1

W
∼ δX as X → ∞. (53)

Hence the leading-order shock solution (33) becomes invalid whenX = O(δ−1). To complete the asymptotic
analysis, the shock region should be rescaled at this range in order to obtain the new leading-order shock description.
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However, at this rangeB � A and hence the leading-order shock solution has approached the Taylor shock profile.
Thus the subsequent asymptotic analysis follows that for a stratified atmosphere with no relaxation mechanisms
present [6].

3.4. Embedded sub-shocks in partly dispersed relaxing shocks

WhenB < A, the leading-order solution (33) does not satisfy the required boundary condition asY → −∞. If
we assume that thermoviscosity controls the sub-shock, the governing equation in the shock region is

(
1 + A

∂

∂Y

)(
2wwY − wY − C

ε

δ
wYY

)
+ BwYY = 0. (54)

Here we assumeε � δ, otherwise the whole shock would be controlled by thermoviscous effects. Formally, we
also assume thatδ2 � ε, so that the first correction term to the shock solution is controlled by viscosity rather than
by the relaxation mode. However, our investigation of the O(δ) correction to a fully dispersed shock suggests that
inclusion of higher-order terms does not resolve the transition to a partly dispersed structure.

In Fig. 2c, we illustrated how forB < A, a sub-shock is embedded in the relaxation shock at some position
Y = Y1(Z), whereY1 is still to be determined. The partly dispersed shock solution is then given byW = 0 for
Y < Y1, while for Y > Y1, W is given implicitly by (33) with the solution branch chosen such thatW → 1 as
Y → ∞. A viscous sub-shock resolves the discontinuity inW at Y = Y1(Z). Rescaling this sub-shock by setting
Ỹ = (Y − Y1)δ/ε, gives

w̃ = A − B

2A

(
tanh

(
Ỹ

D

)
+ 1

)
, D(Z) = 2AC

A − B
. (55)

Thus the sub-shock has amplitudeWs = (A − B)/A, width εD(Z) (based on the originaly-scale) and the location
of the centre of the sub-shock is given by

Ys = S + (B − A) logWs − (A + B) log(1 − Ws). (56)

Finally the position of the centre of the relaxation shock must be calculated. Instead of applying a solvability
condition at higher order as in Section 3.2, it proves easier to calculateS(Z) by integral methods.

The asymptotic description of the relaxing shock previously determined can be written in composite form for
y < 0

w = µ(Y ){W − H(Y) + δ(w1 + YH(Y )) − yH(Y )}, (57)

whereH(Y) is the Heaviside function, andµ = 1 for a fully dispersed shock andµ = H(Y − Ys) for a partly
dispersed shock. This composite description is uniformly valid in(−∞, 0], except in the vicinity of the viscous
sub-shock, and can readily be checked. ForY = O(1), substituting fory givesw = µ(W +δw1), the inner solution;
while for Y → ∞, we obtainw → −y, the outer solution (28).

Integrating (26) with respect toy, between−∞ and 0, and using the conditionsw(0) = 0, wy(0) = −1 and
wyy(0) = 0 from (28), gives

2ZIZ = δB + εC, (58)

whereI = ∫ 0
−∞w dy. Using the composite description for a fully dispersed shock, and recalling thatY = (y+1)/δ,
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definingW1(Z) = W(Y = 0, Z), we have

I = −
∫ 0

−1
y dy + δ

(∫ 0

−∞
W dY +

∫ ∞

0
(W − 1) dY

)
+ O(δ2)

= 1

2
+ δ

(∫ W1

0

W

WY

dW +
∫ 1

W1

W − 1

WY

dW

)
+ O(δ2),

= 1

2
+ δ

(∫ W1

0

2AW+ (B − A)

1 − W
dW −

∫ 1

W1

2AW+ (B − A)

W
dW

)

= 1

2
+ δ(−2A + (B − A) logW1 − (B + A) log(1 − W1)) + O(δ2) = 1

2
+ δ(−2A − S) + O(δ2).

Hence, using (58) and lettingε/δ → 0, we obtain

S(Z) = S0 − 2A −
∫

B

2Z
dZ (59)

in agreement with (48), which was obtained using the O(δ) correction term to the shock structure.
For a partly dispersed shock, where the shock centre cannot easily be determined by considering higher-order

terms,

I = −
∫ 0

−1
y dy + δ

(∫ W1

Ws

W

WY

dW +
∫ 1

W1

W − 1

WY

dW

)
+ O(δ2)

= 1

2
+ δ

(
−2B − S + (B + A) log

(
B

A

))
+ O(δ2),

whereWs = (A − B)/A, the amplitude of the viscous sub-shock. Hence the location of the partly dispersed shock
is given by

S(Z) = S0 − 2B + (B + A) log

(
B

A

)
−
∫

B

2Z
dZ. (60)

LettingB/A → 1, the condition for the transition between fully dispersed and partly dispersed shock structure, we
see that (59) and (60) are consistent.

4. Summary

In Section 3, the asymptotic structure of relaxing shocks was determined along rays. The change in shock
structure can be seen more clearly if results are plotted in the vertical plane containing the ray. Definingẑ to be the
non-dimensional vertical coordinate andx̂ to be the non-dimensional horizontal coordinate in the plane of the ray,
the (x̂, ẑ) plane is divided into regions of partly dispersed and fully dispersed relaxing shocks. ChoosingX0 = 1
andα = 2

√
2, results are plotted forK0 = 0.4 and 0.8. In Fig. 5a, whereK0 < 1

2, it is seen that for 0≤ θ ≤ θc the
shock is partly dispersed at all ranges (ray I), while forθc < θ < π/2 the shock is partly dispersed, then becomes
fully dispersed before returning to have a partly dispersed structure (ray II). Hereθc satisfies

fm(1
2αX0 cosθc) = 2K0. (61)

On any ray above the horizontal the shock eventually becomes partly dispersed, though this will be at a large distance
from the source location for rays just above the horizontal. Using (39), the transition to partly dispersed structure
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Fig. 5. Illustration of the regions of space where the relaxation shock structure is partly dispersed and fully dispersed for (a)K0 < 1
2 and (b)

K0 > 1
2 . The marked ray-paths illustrate the different cases of wave evolution described in the text.

occurs at

x̂ ∼
(

αX0

2

)1/2
(

1

2K2
0X0α

)1/3

eαẑ/3ẑ2/3 (62)

as x̂ → ∞. This agrees with the numerical results presented in Fig. 5. Forπ/2 < θ the shock is initially partly
dispersed, but then becomes fully dispersed (ray III).

In Fig. 5b, whereK0 > 1
2, for ray paths above the horizontal the shock is fully dispersed before eventually

becoming partly dispersed (ray I), while all rays below the horizontal have fully dispersed shocks throughout their
evolution (ray II).

The asymptotic form of the solution at large ranges can also be deduced. Below the horizontal, the shock is
fully dispersed, but sinceA/B → 0 asX → ∞, the shock approaches a Taylor profile which narrows with range.
Subsequently the Taylor solution becomes invalid as a leading-order description of the shock region. However, since
the effect of the relaxation is purely viscous at this range, the subsequent asymptotic analysis follows theories for
media with only thermoviscosity present.

Above the horizontal, the shock is partly dispersed, but sinceA/B → ∞, the amplitude of the viscous sub-shock
Ws = (A − B)/A tends to unity, and hence the sub-shock subsumes the relaxation shock and viscosity controls the
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entire shock region. So, as for the case of propagation above the horizontal, the long-range asymptotic development
can be determined from an analysis of propagation in a medium without relaxation. From the results of Section 3.4,
using (55) we see that the sub-shock becomes relatively wide on the overall disturbance scale whenεB = O(1), i.e.

εx1/2 eλx = O(1), (63)

but becomes wide on the scale of the relaxing shock earlier, whenδB = O(1). Combining (56) and (60), the centre
of the viscous sub-shock is given by

Ys = S0 − 2B + (B − A) log

(
A − B

A

)
−
∫

B

2Z
dZ (64)

andYs = O(B) asX → ∞. Hence the displacement of the shock centre becomes O(1) at the same range as the
shock becomes relatively wide. However, in the present work we have not considered whether the Taylor solution
becomes invalid as a leading-order description before the shock becomes wide. This analysis would be covered by
the case when relaxation effects are omitted.

The main conclusion of this paper is that shock waves propagating through a stratified relaxing atmosphere can
undergo changes in their internal structure leading to rapid changes in shock width (or equivalently, shock rise-time).
Some numerical results for propagation of sonic booms through a stratified relaxing atmosphere are summarised
by Cleveland et al. [23]. However, the altitude dependence of the relaxation parameters used in these calculations
is not made clear. Also, change in the internal structure of the shocks as range increases is not reported. Hence the
asymptotic results of the present paper cannot be compared directly with existing numerical results.

Takingλ = 0, the conclusions of the present paper can be compared with the analysis of Clarke and Sinai [19,20]
for an unstratified medium. If the thickness to length ratio of the supersonic body isεCl � 1, andr0 � L, where
L is the length of the body, then the disturbance amplitude atr = r0 is

u0 = kε2
(

L

r0

)1/2

a0, (65)

wherek = O(1), a coefficient determined by the shape of the body. Assuming that(M2 − 1)1/2 is O(1), so the
motion of the body lies outside the transonic regime, it then follows that

X0

K
= O

(
ε4

Cl

δCl

)
, δCl = 1a

a0
, (66)

whereδCl � 1 from the conditions given in Section 2 for the validity of the model equation. Clarke and Sinai
identifiedδCl = O(ε4

Cl) as the scaling of most interest, noting that for this parameter range the shock structure is
either fully dispersed at all ranges or is initially partly dispersed and becomes fully dispersed at some critical range.
This is in agreement with the present analysis whereX0 is taken to be O(1) and the two cases described by Clarke
and Sinai occur depending on the order 1 value ofK.

A numerical investigation of (26) will be reported elsewhere. However, a sample calculation is included here
to illustrate the changes in shock structure predicted by asymptotic analysis. Using an implicit finite-difference
scheme, with mesh points concentrated in the shock regions, (26) was solved for

δ = 0.005, ε = 0.0001, A0 = 1, B0 = 2, λ = 1.5, (67)

with X0 = 1. HenceK0 = B0/2A0 = 1 andλ > 1
2(1 + X0), so asymptotic theory predicts that the relaxing shock

is initially fully dispersed, then becomes partly dispersed (see Fig. 3a). Two values of the diffusivity parameter were
chosen,C0 = 1 and 5, in order to clarify the appearance of viscous sub-shocks. The quantity

d(x) = min
y

(
1

|Wy |
)

(68)
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Fig. 6. Numerical results for shock width,d(x), along a ray above the horizontal, illustrating the transition from fully dispersed to partly dispersed
structure. Results for two values of thermoviscous diffusivity are plotted.

can be considered as a measure of shock width. In Fig. 6,d(x) is plotted for the parameter values given above. For
the parameters chosen, the ray is above the horizontal, and the asymptotic results obtained in Section 3 predict that
the shock will become partly dispersed atx = 2.09. Hence we expect the appearance of a narrower shock at this
range associated with the viscous sub-shock. WhenC0 = 5, little change in shock width is noted at this range. If the
diffusivity is reduced,C0 = 1, the shock width is almost unchanged forx < 2 when the shock is fully dispersed, but
a sharp reduction of shock width is seen forx > 2. Thus these numerical results appear to confirm the predictions
of the asymptotic analysis.

Appendix A

In Section 3, the large-X forms ofA, B andf are required. The asymptotic results are given here, in terms of
x = X/X0, with multiplicative constants omitted.

1. Above horizontal(λ > 0):

Z ∼ x−1/2 eλx, A ∼ x1/4 e3λx/2, B ∼ x1/2 eλx, f ∼ x−1/4 eλx/2.

2. Horizontal(λ = 0):

Z ∼ x1/2, A ∼ x−1/4, B ∼ x1/2, f ∼ x−3/4.

3. Below horizontal(λ < 0):

Z ∼ Z∞, A ∼ e−2|λ|x, B ∼ x1/2 e−|λ|x, f ∼ x−1/2 e−|λ|x.

Appendix B

The O(δ) correction to the relaxing shock solution takes the formw1 = w̃1 − WY T (Z), where

(2AW− C2)w̃1 =
7∑

i=1

ai(Z)Ji(W). (B.1)
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Here the functionsai(Z) are given by

a1 = C̄2C1, a2 = C̄1(A − C1) + C1(C1 − C2), a3 = C̄2(A − C2), a4 = C2(C̄1 − C1),

a5 = −C1S, a6 = C2(C2 + S) − AS̄, a7 = C2
1,

and the functionsJi(W) are given by

J1 = W((1 − W) log(1 − W) + W logW), J2 = −W(1 − W)(1
2(log(1 − W))2 + dilog(1 − W)),

J3 = W(1 − W)(1
2(logW)2 + dilog(W)), J4 = −(1 − W)(W logW + (1 − W) log(1 − W)),

J5 = W, J6 = W(1 − W)(logW − log(1 − W)), J7 = W log(1 − W),

where dilog is the dilogarithm function defined by [24]

dilog(x) =
∫ x

1

logy

1 − y
dy.

An alternative notation for the dilogarithm function is Li2(x) [25] with Li2(x) = dilog(1 − x).
In the limit W → 0, Ji → 0 for all i and hencew1 → 0 as required. ForW → 1, J1, J2, J3, J4, J6 → 0, with

J5 → 1 and

J7 ∼ log(1 − W) = S − Y

C1

using (43). Hence in this limit,w1 → −Y as required.

References

[1] M.J. Lighthill, Viscosity effects in sound waves of finite amplitude, in: G.K. Batchelor, R.M. Davies (Eds.), Surveys in Mechanics,
Cambridge University Press, Cambridge, 1956.

[2] J.D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9 (1951) 225–236.
[3] E. Hopf, The partial differential equationut + uux = uxx, Commun. Pure Appl. Math. 3 (1950) 201–230.
[4] S. Leibovich, A.R. Seebass (Eds.), Nonlinear Waves, Cornell University Press, Ithaca, NY, 1974.
[5] D.G. Crighton, Model equations of nonlinear acoustics, Annu. Rev. Fluid Mech. 11 (1979) 11–33.
[6] D.G. Crighton, J.F. Scott, Asymptotic solutions of model equations in nonlinear acoustics, Phil. Trans. R. Soc. Lond. A 292 (1979) 107–134.
[7] P.L. Sachdev, V.G. Tikekar, K.R.C. Nair, Evolution and decay of spherical and cylindricalN -waves, J. Fluid Mech. 172 (1986) 347–371.
[8] P.W. Hammerton, D.G. Crighton, Old-age behaviour of cylindrical and spherical nonlinear waves: numerical and asymptotic results, Proc.

R. Soc. Lond. A 422 (1989) 387–405.
[9] S.C. Crow, Distortion of sonic bangs by atmospheric turbulence, J. Fluid Mech. 37 (1969) 529–563.

[10] P. Boulanger, R. Raspet, H.E. Bass, Sonic-boom propagation through a realistic turbulent atmosphere, J. Acoust. Soc. Am. 98 (1995)
3412–3417.

[11] A.D. Pierce, J. Kang, Molecular relaxation effects on sonic boom waveforms, in: M.F. Hamilton, D.T. Blackstock (Eds.), Proceedings of
the 12th ISNA on Frontiers of Nonlinear Acoustics, Elsevier, Amsterdam, 1990.

[12] A.L. Polyakova, S.I. Soluyan, R.V. Khokhlov, Propagation of finite disturbances in a relaxing medium, Sov. Phys. Acoust. 8 (1962) 78–82.
[13] H. Ockendon, D.A. Spence, Nonlinear wave propagation in a relaxing gas, J. Fluid Mech. 39 (1969) 329–345.
[14] P.A. Blythe, Nonlinear wave propagation in a relaxing gas, J. Fluid Mech. 37 (1969) 31–50.
[15] P.W. Hammerton, D.G. Crighton, Overturning of nonlinear acoustic waves. Part 2. Relaxing gas dynamics, J. Fluid Mech. 252 (1993)

601–615.
[16] L. Sirovich, T.H. Chong, Supersonic flight in a stratified sheared atmosphere, Phys. Fluids 17 (1974) 310–320.
[17] P.H. Rogers, J.H. Gardner, Propagation of sonic booms in the thermosphere, J. Acoust. Soc. Am. 67 (1980) 78–91.
[18] D.G. Crighton, I.P. Lee-Bapty, Spherical nonlinear wave propagation in a dissipative stratified atmosphere, Wave Motion 15 (1992) 315–331.
[19] J.F. Clarke, Y.L. Sinai, The wave system attached to a slender body in a supersonic relaxing gas stream. Basic results: the cone, J. Fluid

Mech. 79 (1977) 499–524.
[20] Y.L. Sinai, J.F. Clarke, The wave system attached to a slender body in a supersonic relaxing gas stream, J. Fluid Mech. 84 (1978) 717–741.
[21] S. Makarov, M. Ochmann, Nonlinear and thermoviscous phenomena in acoustics. Part II, Acustica 83 (1997) 197–222.



P.W. Hammerton / Wave Motion 33 (2001) 359–377 377

[22] A.D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications, McGraw-Hill, New York, 1981.
[23] R.O. Cleveland, J.P. Chambers, H.E. Bass, R. Raspet, D.T. Blackstock, M.F. Hamilton, Comparison of computer codes for the propagation

of sonic-boom waveforms through isothermal atmospheres, J. Acoust. Soc. Am. 100 (1996) 3017–3027.
[24] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
[25] L. Lewin, Dilogarithms and Associated Functions, Macdonald, 1958.


