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Abstract

Regime switching models have been assuming a central role in financial applications because of their

well-known ability to capture the presence of rich non-linear patterns in the joint distribution of asset

returns. This paper examines how the presence of regimes in means, variances, and correlations of asset

returns translates into explicit dynamics of the Markowitz mean-variance frontier. In particular, the

paper shows both theoretically and through an application to international equity portfolio diversifica-

tion that substantial differences exist between bull and bear regime-specific frontiers, both in statistical

and in economic terms. Using Morgan Stanley Capital International (MSCI) investable indices for five

countries/macro-regions, it is possible to characterize the mean-variance frontiers and optimal portfolio

strategies in bull periods, in bear periods, and in periods where high uncertainty exists on the nature

of the current regime. A recursive back-testing exercise shows that between 1998 and 2010, adopting

a switching mean-variance strategy may have yielded considerable risk-adjusted payoffs, which are the

largest in correspondence to the 2007-2009 financial crisis.

JEL codes: C53, G12, C32..

Keywords: Multivariate Markov Switching, Mean-Variance Optimization, Asset Allocation, Inter-

national Portfolio Diversification.

1. Introduction

Do investors rationally perceive a different trade-off between risk and (expected) returns during periods of

financial crisis? If so, how do these perceptions affect optimal diversification even in times in which market

conditions do not warrant the suspicion of an incipient crisis, especially when investors are characterized

by long investment horizons? Can we find any models in the standard toolbox of financial econometricians

that would be able to capture these recurrent switches between good (bull) and bear times and allow us

to estimate the probabilities of such regime shifts occurring? One class of models that has gained growing

attention in the financial econometrics and asset pricing literatures relies on multivariate extensions of the

seminal work by Hamilton (1989) in macroeconomics and by Turner et al. (1989) in financial economics
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on the presence of Markov regimes in many important time series, including asset returns. This paper

provides a short primer to the structure, estimation issues, and potential applications of multivariate

Markov switching models. An illustrative application to an international equity portfolio diversification

problem is provided with reference to standard Morgan Stanley Capital International (MSCI) indices.

Although our brief review of methods for and technical issues with multivariate Markov switching

models competes with a number of alternative reference articles and books, our paper also addresses one

question that has been receiving growing attention in the empirical finance literature:1 How important and

economically valuable can it be for an investor to use information on the current and predicted “state” of

the capital markets when planning of her optimal diversification strategies? Clearly, if international equity

returns are disconnected from the underlying economic regimes and as such tend to be display statistical

properties (such as their moments, such as expected returns, variances, and covariances) that are not

predictable over time, then the answer is trivial: because such states either fail to exist or they are irrelevant

to the risk-reward opportunities offered by the equity markets, a rational investor may safely ignore the

issue. This means that the now classical, Markowitz-style mean-variance recipes offered in most textbooks

(such as Fabozzi, Focardi, and Kolm, 2006) would be correct and the investor ought to chose optimal

portfolio weights on the basis of simple, naive historical estimates of means, variance, and covariances. If

on the contrary, such regimes exist and may be identified, estimated, and predicted, then it is an open

question whether an investor should take notice of them, and go through the relatively sophisticated

econometric techniques — the subject of Section 2 in this paper — required by her acknowledging this

state-dependence.

On the one hand, it is now well known that applications of classical mean-variance frontier (MVF)

technology to dynamic asset allocation problems in which the MVF is allowed to depend on one more

variables capturing the state of market investment opportunities, suffer from a number of issues (e.g.,

see Schöttle and Werner, 2006). For instance, the shape of the MVF together with the location of the

efficient portfolios has been observed to change drastically as market data are progressively updated and

expanded. Moreover, it is typical to observe that MVFs often occupy rather unrealistic regions of the

mean-standard deviation space as a result of optimization based on error-prone estimates, resulting in

large deviations between the ex-ante, in-sample and the ex-post, out-of-sample Sharpe ratios. For these

reasons, a literature has been developing on the robustification of the MVF concept. Among many others,

resampling approaches have been proposed that essentially bootstraps from the data the location and

properties of the MVF (see e.g., Scherer, 2002). A number of papers have also stressed the advantages of

using robust estimation and/or programming methods when computing the MVF (see e.g., Tütüncü and

Koenig, 2004). One can see our paper as an attempt to produce more robust estimates of the MVF and

hence–after appropriate mean-variance preferences have been assumed–more robust optimal portfolios

not by changing methods of estimation or by resampling the data, but instead by exploring the implications

of a simple and yet powerful parametric approach that explicitly tracks the time variation in the features

of the investment opportunity sets (means, variances, and correlations) as depending from a latent Markov

1For instance, a Reader is invited to consult Fruhwirth-Schnatter (2006), Hamilton (1994), Kim and Nelson (1999), or

Krolzig (1997).
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state variable.

On the other hand, the issue of whether non-linear predictability patterns may be exploitable for

dynamic asset allocation purposes is an important and increasingly researched one. There is an early

applied portfolio management literature that has noticed that making portfolio choices state-dependent

may deliver important ex ante performance improvements. For instance, Clarke and de Silva (1998) note

that no static mix to be applied to standard mean-variance portfolios can be used to achieve a point along

a state-dependent efficient frontier. The more efficient and desirable risk-reward combinations on the

state-dependent frontier may be achieved only by systematically altering portfolio allocations in response

to changes in the investment opportunities as the economy switches back and forth among different states.2

Chow, Jacquier, Kritzman, and Lowry (1999) implicitly introduce the idea that even scarcely persistent,

infrequent regimes may play an important role in portfolio choice, especially when it comes to estimate risk.

They think about the issue by distinguishing between time-measured observations from event-measured

observations. They notice that in some periods, the absence of any significant events will bring stock

returns to reflect noise only, while in other periods there may be a number of discrete events that impress

predictable patterns to realized stock returns. They propose to estimate risk parameters not from time-

measured, but instead from event-measured data and conjecture that such an alternative approach may

provide a better representation of the density from which portfolio returns may be drawn during turbulent

market periods. In practice, their approach boils down to allow the investor to estimate and use a regime

switching model with two separate covariance matrices, one for the quiet regime and the other for the

turbulent one, although the probabilities are then not inferred from the data (as we do in this paper) but

on the opposite simply “assigned”. Another paper that carries out an interesting international portfolio

choice application in some respects similar to ours, and that also resorts to some notion of “regime”

(although only in an informal sense) is Butler and Joaquin (2002) who characterize the consequences

of asymmetric correlations in international bear and bull markets to show that risk averse investor may

want to tilt portfolio weights away from stock markets characterized by the highest correlations during

downturns.

More recently, the literature has shifted towards writing and solving portfolio problems under the

assumption of statistical frameworks in which asset returns follow a switching dynamics. Ramchand and

Susmel (1998) examine the relationship between correlation and variance in a regime-switching ARCH

model estimated on weekly stock returns data for the US and a few other major markets. They find

that correlations between US and other world markers are 2 to 3.5 times higher when the US market

is in a high variance state. They also calculate mean-variance portfolios and find that their switching

framework leads to high Sharpe ratios. Ang and Bekaert (2002a) consider bivariate and tri-variate regime

switching models that capture asymmetric correlations in volatile and stable markets and characterize a

US investor’s optimal asset allocation under constant relative risk aversion. Das and Uppal (2004) study

the effects of infrequent price changes on international equity portfolios. Equity returns are generated by

2The reason is that in the presence of state-dependence (say, when two states with probabilities ̄ and 1− ̄ are possible), a
mixture of Gaussian (more generally, elliptical) densities is never the same as a Gaussian density that has means and variances

which are probability-weighted (with weights ̄ and 1− ̄) averages of the state-dependent means and variances.
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a multivariate jump diffusion process where jumps are simultaneous and perfectly correlated across assets.

Guidolin and Timmermann (2008b) use an international portfolio diversification application to propose a

new tractable approach to solving asset allocation problems under Markov switching with a large number

of assets. Investor preferences are assumed to be defined over moments of the wealth distribution such

as its mean, variance, skew and kurtosis. They develop analytical methods that only require solving a

small set of difference equations and can be applied even in the presence of large numbers of risky assets.

Guidolin and Hyde (2008) apply these methods to investigate the time-varying linkages among the Irish

stock market, one of the top world performers of the 1990s, and the US and UK stock markets. They also

find that two regimes, characterized as bear and bull states, are required to characterize the dynamics of

excess equity returns both at the univariate and multivariate level. This implies that the regimes driving

the small open economy stock market are largely synchronous with those typical of the major markets.

However, despite the existence of a persistent bull state in which the correlations among Irish and UK and

US excess returns are low, they find that state co-movements involving the three markets are so relevant to

reduce the optimal mean-variance weight carried by Irish stocks to at most one-quarter of the overall equity

portfolio. Guidolin and Nicodano (2009) is a related application that shares with the current paper similar

data and objectives, although their focus is mostly on the effects of higher-order moments (co-skewness and

co-kurtosis with returns on the world market portfolio) on optimal international diversification decisions.

The rest of the paper is organized in the following way. Section 2 provides a brief introduction to

the econometrics of multivariate Markov regime switching models. Section 3 describes our application to

international portfolio diversification, introduces the concept of Markov switching MFV, and reports a

number of empirical results that we take — in the light of the literature cited above — to be representative

of the typical results one may find when approaching and solving asset allocation problems with equity

return data. Section 4 examines the recursive, realized out-of-sample performance of classical vs. regime

switching mean-variance portfolio strategies. Section 5 concludes.

2. Multivariate Markov Switching Models

Suppose that the ×1 random vector y follows a -regime Markov switching (MS)  () process with

heteroskedastic component, compactly ( ):

y = μ +

X
=1

Ay− +Σ² (1)

with ² ∼ (0 I).  is a latent state variable driving all the matrices of parameters appearing in

(1). μ is a  × 1 vector that collects the  regime-dependent intercepts, while the  ×  matrix Σ

represents the factor applicable to state  in a state-dependent Choleski factorization of the variance

covariance matrix of the variables of interest, Ω . Obviously, a non-diagonal Σ makes the  variables

simultaneously cross-correlated. For instance, in Guidolin and Ono (2006) and Guidolin and Timmermann

(2007)  is broken down in 1 asset returns and 2 macroeconomic predictors, with 1+2 =  Then a non-

diagonalΣ captures simultaneous co-movements between asset returns and macro factors, while dynamic

(lagged) linkages across both different asset markets and between financial markets and macroeconomic
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influences are captured by the VAR() component. We assume the absence of roots outside the unit circle,

thus making the process stationary.3 In fact, conditionally on the unobservable state  (1) defines a

standard Gaussian reduced form VAR() model. On the other hand, when   1, alternative hidden states

are possible and they will influence both the conditional mean and the volatility/correlation structures

characterizing the multivariate process in (1),  = 1 2   ∀. These unobservable states are generate
by a discrete-state, homogeneous, irreducible and ergodic first-order Markov chain:4

Pr( = |{}−1=1 {y}−1=1) = Pr ( = |−1 = ) =   (2)

where  is the generic [ ] element of the × transition matrix P. Ergodicity implies the existence of a

stationary vector of probabilities ξ̄ satisfying ξ̄ = P
0
ξ̄ Irreducibility implies that ξ̄  0 meaning that all

unobservable states are possible. In practice, P is unknown and hence ξ̄ can be at most estimated given

knowledge on P extracted from the information set = = {y}=1 For simplicity, we will also denote as ξ̄
such an estimated vector of ergodic (unconditional) state probabilities.

When  is large, model (1) implies the estimation of a large number of parameters, [+ 2+ (+

1)2 + ( − 1)] For instance, for  = 2  = 8 and  = 1 (the parameters characterizing the application

in Guidolin and Ono, 2006), this implies the estimation of 2× [8 + 82 + 4× 9 + 1] = 218 parameters!5 (1)
nests a number of simpler models in which either some of the parameter matrices are not needed or some

of these matrices are independent of the regime. These simpler models may greatly reduce the number of

parameters to be estimated. Among them, the financial econometrics literature (see e.g., Ang and Bekaert,

2002a, and Guidolin and Nicodano, 2009) has devoted special attention to () models,

y = μ +Σ²

in which  = 0, to ( ) homoskedastic models,

y = μ +

X
=1

Ay− +Σ²

in which the covariance matrix is constant over time, and to ( 0)- () models (see Guidolin

and Ono, 2006),

y = μ +

X
=1

Ay− +Σ² (3)

which are a special case of (1) in which while intercepts and covariance matrices are regime-dependent, the

3Ang and Bekaert (2002) have shown that formally, it is just sufficient for such a condition to be verified in at least one

of the  alternative regimes, for covariance stationarity to obtain. NID stands for ‘normal and identically distributed’.
4The assumption of a first-order Markov process is not restrictive, since a higher order Markov chain can always be

reparameterized as a higher dimensional first-order Markov chain, i.e., substitutability exists between the order of the Markov

chain driving  and the number of regimes . Diebold et al. (1994) have generalized Markov switching models to the case

of time-varying transition probabilities. Foley (2001) is an application to financial data.
5This is the sense in which Marron and Wand (1992) conclude that mixtures of normal distributions provide a flexible

family that can be used to approximate many distributions. Mixtures of normals can also be viewed as a nonparametric

approach to modeling the return distribution if the number of states, , is allowed to grow with the sample size.
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VAR() coefficients are not.6 For instance, model (3) implies the estimation of ‘only’ [+ (+ 1)2 +

(−1)]+2 parameters. For the same configuration mentioned above, this means 2× [8+4×9+1]+82 =
154  218. Of course, a limit case of (1) is obtained when  = 1:

y = μ+

X
=1

Ay− +Σ² (4)

This is a standard multivariate Gaussian VAR() model, a benchmark in a large portion of the existing

empirical macroeconomics and finance literature.

Certain applications in the literature (e.g., the seminal paper by Hamilton, 1989) have also entertain

the following variation on (1),

(y − ν) =
X

=1

A(y− − ν− ) +Σ² (5)

Krolzig (1997) shows that the dynamic implications of (1) and (5) are markedly different. First of all,

notice that the definition of (5) directly implies that the conditional mean function is now governed by

a ( + 1)-th order Markov chain as the terms (y− − ν− ) make the entire sequence {− −+1 ...,
−1 } relevant.7

2.1. Estimation and Inference

The first step towards estimation and prediction of a MSIAH model is to put the model in state-space

form. Collect the information on the time  realization of the Markov chain in a random vector

ξ = [( = 1) ( = 2) ... ( = )]0

where ( = ) is a standard indicator variable. In practice the sample realizations of ξ will always

consist of unit “versors” e characterized by a 1 in the -th position and by zeros everywhere else. Another

important property is that [ξ|ξ−1] = P0ξ−1. The state-space form is composed of two equations:

y = XΨ (ξ ⊗ ι) +Σ∗ (ξ ⊗ I) ² (measurement equation)

ξ+1 = Fξ + u+1 (transition equation) (6)

where X is a  × ( + 1) vector of predetermined variables with structure [1 y0−1y0−] ⊗ ι Ψ is a

(+1)× matrix collecting the VAR parameters, both matrices of means and autoregressive coefficients,

Ψ =

⎡⎢⎢⎢⎢⎣
μ
0
1 · · · μ

0


A11 · · · A1
...

. . .
...

A1 · · · A

⎤⎥⎥⎥⎥⎦ 
6Of course, also () models in which  = 0 and the covariance matrix is constant over time — in short, where only the

intercepts depend on the hidden state  and y =  +Σ — are estimable, although they appear less frequently in the

finance literature, given the ample evidence of conditional heteroskedastic asset returns.
7Since a (5) specification implies an actual of number of regimes much higher than  (5) is advised only when there are

solid theoretical reasons for such a model to be investigated.
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Σ∗ is a  ×  matrix collecting all the possible  “square root” (Choleski decomposition) factors [Σ1

Σ2 ... Σ] such that ∀, Σ∗ (ξ ⊗ I) (ξ ⊗ I)0 (Σ∗)0 = Ω  the -regime covariance matrix of the asset

return innovations ². Moreover, ² ∼ (0 I) and in the transition equation u+1 is a zero-mean

discrete random vector that can be shown to be a martingale difference sequence. Also, the elements of

u+1 are uncorrelated with ²+1 as well as ξ−  ²−  y−  andX− ∀ ≥ 0 To operationalize the dynamic
state-space system (6), assume that the multivariate process (1) started with a random draw from the

unconditional probability distribution defined by the vector of state probabilities ξ̄. Finally, from the

definition of transition probability matrix (2) it follows that since [u+1|ξ] = 0 by assumption, then

[ξ+1|ξ] = Fξ
implies that F corresponds to the transposed transition probability matrix P0.8

The state-space representation of (5) is quite different. As already observed, the conditional mean is

now governed by a ( + 1)-th order Markov chain, so that it is now useful to collect the information on

the realization of the Markov chain in a +1 × 1 random vector

ξ
(+1)
 = ξ ⊗ ξ−1 ⊗ ⊗ ξ− =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

( = 1 −1 = 1  − = 1)
( = 1 −1 = 1  − = 2)

...

( = 1 −1 =   − = )

( =  −1 =   − = )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
so that [ξ

(+1)
 |ξ(+1)−1 ] = P0

(+1)
ξ
(+1)
−1 where P(+1) =  ⊗ ⊗ ⊗ is the +1×+1 transition matrix

for the transformed set of regimes.9 Therefore the transition equation will be now characterized by an F

matrix that corresponds to P0
(+1)

ξ
(+1)
+1 = Fξ

(+1)
 + ε+1 or

ξ
(+1)
+1 − ξ̄ = F(ξ

(+1)
 − ξ̄) + ε+1

from the ergodic property that Fξ̄ = ξ̄ while the measurement equation becomes:

y = XBξ
(+1)
 +Σ∗

³
ξ
(1)
 ⊗ I

´
u

= XBξ
(+1)
 +Σ∗

³
((I ⊗ ι0)ξ(+1) )⊗ I

´
u

where ξ
(1)
 is the standard  × 1 vector collecting state information for period  such that ξ

(1)
 = (I ⊗

ι0)ξ
(+1)
 , and the (+ 1)× +1 coefficient matrix B has structure:

B = Ψ(I⊗ι0⊗ι)−

⎡⎢⎣
P

=1A
(1)


ν 0

(1)

−
· · · P

=1A
0


(+1−1)


ν0

(+1−1)
−

P
=1A

0


(+1)


ν 0

(+1)
−

O
((−1)+1)×+1

⎤⎥⎦ 
8In general, the dynamic state-space model in (6) is neither linear (as the state vector  also influences the covariance

matrix of the process) nor Gaussian, as the innovations driving the transition equation are non-Gaussian random variables.
9Krolzig (1997, pp. 38-39) shows that (+1) has structure:

P(+1) =

P
0 ⊗ −1

0
+1

¯  ⊗ I ⊗ 
0



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Multivariate Markov switching models are estimated by maximum likelihood. In particular, estimation

and inferences are based on the EM (Expectation-Maximization) algorithm proposed by Dempster et al.

(1977) and Hamilton (1989), a filter that allows the iterative calculation of the one-step ahead forecast of

the state vector ξ+1| given the information set = and the consequent construction of the log-likelihood

function of the data.10 Appendix A gives a few additional details on the EM algorithm. Maximization

of the log-likelihood function within the M-step is made faster by the fact that the first-order conditions

defining the MLE may often be written down in closed form. Appendix B details the general form of such

conditions. In particular, notice that the first-order conditions (20)-(21) in Appendix B (exact definitions

of all symbols are introduced in the Appendix),

X
=1

ξ̂| (θρ)
 lnη(θ)

θ0
= 00Ã

X
=1

³
ξ̂
(2)

|
´!

®
Ã
ι ⊗

Ã
X
=1

ξ̂|

!!
= ρ

all depend on the smoothed probabilities ξ̂| ≡ Pr (ξ|= ;θρ) (i.e., the state probabilities estimated

on the basis of the full sample of data) and therefore they all present a high degree of non-linearity

in the parameters γ ≡[θ ρ]0. As a result, these first-order conditions have to be solved numerically,

although convenient iterative methods exist. In fact, the expectation and maximization steps can be

used in iterative fashion. Starting with arbitrary initial values θ̃
0
and ρ̃0, the expectation step is applied

first, thus obtaining a sequence of smoothed probability distributions {ξ̂1|}=1 Given these smoothed
probabilities, (21) is then used to calculate ρ̂1, and (20) to derive θ̃

1
. Based on θ̃

1
and ρ̃1, the expectation

step can be applied again to find a new sequence of smoothed probability distributions {ξ̂2|}=1. This
starts the second iteration of the algorithm. The algorithm keeps being iterated until convergence, i.e.

until [θ̃

ρ̃]0 ' [θ̃

−1
ρ̃−1]0. Importantly, the likelihood function increases at each step and reaches an

approximate maximum in correspondence to convergence (see Baum et al., 1970).

As for the properties of the resulting ML estimators, under standard regularity conditions (such as

identifiability, stability and the fact that the true parameter vector does not fall on the boundaries)

Hamilton (1989, 1993) and Leroux (1993) have proven consistency and asymptotic normality of the ML

estimator γ̃ = [θ̃ ̃]0: √
 (γ̃ − γ) → 

¡
0 I(γ)−1

¢


where I(γ) is the asymptotic information matrix,

I(γ) ≡ lim
→∞

− −1

"
2 ln

Q
=1 (y|γ)

γγ0

#


Although other choices exist — i.e., either to use the conditional scores or a numerical evaluation of the

second partial derivative of the log-likelihood function with respect to γ̃ — in applications it has become

10Some assumptions have to be imposed to guarantee at least the local identifiability of the parameters under estimation.

One possibility relies on the results in Leroux (1992) to show that under the assumption of multivariate Gaussian shocks to

the measurement equation, MSIAH models are identifiable up to any arbitrary re-labeling of unobservable states.
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typical to employ a White-style ‘sandwich’ sample estimator of I(γ) which yields the estimate

g (γ̃) = −1
h
I2(γ̃) (I1(γ̃))−1 I2(γ̃)

i


where

I1(γ̃) = −1
X
=1

[h(γ̃)] [h(γ̃)]
0 h(γ̃) =

 ln (y|=−1; γ̃)
γ

and

I2(γ̃) = −−1
X
=1

∙
2 ln (y|=−1; γ̃)

γγ0

¸


As a consequence, and with one important exception, standard inferential procedures are available to

test statistical hypothesis. In particular, call  : R → R a (smooth) function that imposes  − 

restrictions on the -dimensional parameter vector θ We want to test 0 : (γ) = 0 vs. 1 : (γ) 6= 0
under the assumption that under both hypothesis the number of regimes  is identical.11 Define θ̃ as the

restricted estimator, obtained under the null hypothesis. Lagrange Multiplier (LM) tests are undoubtedly

the preferred tests as they only require the estimation of the restricted model. While the scores of an

unrestricted model,

s(γ̃) ≡
X

=1

h (γ̃) =

X
=1

"
diag(η ((γ)) (γ)

γ0

¯̄̄̄
=̃

#0
ξ̂ |,

have zero mean vector by construction,12 the scores of the restricted model obtained by MLE and imposing

(θ) = 0 can be used to obtain the standard test statistic:

 ≡ s (θ̃)0
hg (θ̃)i−1 s (θ̃) → 2

where  = rank
³
()

0

´
and θ̃ denotes the restricted estimator. For instance, a test of the hypothesis of

homoskedasticity (0 : (Σ) = (Σ)  = 1 2 ) implies  = ( − 1)(+1)
2

restrictions and

can be formulated as a linear restriction on the matrix Σ∗. As an alternative, the Likelihood Ratio (LR)

test might be employed:

 ≡ 2
h
ln(θ̃)− ln(θ̃)

i
→ 2

Although very simple, this test requires the estimation of both the restricted and the unrestricted models,

which for  high enough may be quite cumbersome and require a host of diagnostic checks on the perfor-

mance of the EM algorithm in locating a truly global maximum of the likelihood function. The empirical

application of this paper in Section 3 shows how the LR test is employed in practice.

11Notice though that hypothesis involving elements of  (the vec of the estimable elements of the transition matrix P) set

to equal zero cannot be entartained as they fall on the boundaries of the parameter space and imply a change in the number of

actual regimes. However other hypothesis involving  can be tested without restrictions, for instance the important statistical

hypothesis of independent regime switching (i.e. P has rank one).

12This is because s (̃) ≡


=1 h(̃) =


=1


diag( (()) ()

0


=̃

0
̂| = 0

0, from the MLE first-order conditions.
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Finally, standard  and  statistics can be calculated in the form of a Wald test. Under asymptotic

normality of the unrestricted ML estimator θ̃ it follows that

√

h
(θ̃)− (θ)

i
→ 

µ
0

(θ)

θ0

¯̄̄̄
=̃

g (θ̃) 0(θ)
θ0

¯̄̄̄
=̃

¶
and

 ≡ 0(θ̃)
∙
(θ)

θ0

¯̄̄̄
=̃

g (θ̃) 0(θ)
θ0

¯̄̄̄
=̃

¸−1
(θ̃)

→ 2

For instance, the hypothesis that in (1) the matrices of autoregressive coefficients are regime independent

can be written as:

⎡⎢⎢⎢⎢⎣
O O · · · I −I O · · · O

O O · · · O I −I · · · O

...
...

. . .
...

...
...

. . .
...

O O · · · O O O · · · O

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν1

ν2
...

A011e1
...

A01e
...

A0e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= R(A) = 0

and implies the (F) test statistic:

 θ̃
0
R0
h
Rg (θ̃)R0i−1Rθ̃

The exception to standard inferential procedures mentioned above concerns the number of non-zero

rows of the transition matrix P, i.e. the number of regimes . In this case, even under the assumption of

asymptotic normality of the estimator γ̃, standard testing procedures suffer from non-standard asymptotic

distributions of the likelihood ratio test statistic due to the existence of nuisance parameters under the

null hypothesis. We specifically discuss this problem in Section 2.3.

2.2. Forecasting

Under a mean squared prediction error (MSFE) criterion, the algorithms required to implement standard

forecasting are relatively simple in spite of the nonlinearity of the MSIAH class and naturally derive from

(6). Ignoring for the time being the issue of parameter uncertainty, i.e. the fact that the parameters of

the multivariate Markov switching process are unknown and must therefore be estimated, the function

minimizing the MSFE is the standard conditional expectation function. For instance, for a one-step ahead

forecast we have:

[y+1|=] = X+1Ψ
³
ξ̂+1| ⊗ ι

´
where X+1 = [1 y

0
y

0
−+1]⊗ ι, Ψ collects the estimated conditional mean parameters, and ξ̂+1| is the

one-step ahead, predicted latent state vector to be filtered out of the available information set = according

to transition equation

ξ̂+1| = P
0ξ̂|

10



where also the transition matrix P will have to be estimated. It follows that

[y+1|=] = X+1Ψ
³
P0ξ̂| ⊗ ι+

´
 (7)

For   1-step ahead forecasts the task is much more challenging as: (1) X+ is unknown and must be

predicted itself; (2) [X+ |=] involves sequences of predictions {[y+1|=]  [y+−1|=+−2]} and
as such {ξ̂+1|  ξ̂+−1|} which are likely to impress patterns of cross-correlation to the unconditional
values of the parameters to be used, because of the presence of regime switching. For instance, for  = 2

 = 1 and ignoring the presence of an intercept term, we have

[y+2|=] = 
£¡
y0+1 ⊗ ι

¢
Ψ
¡
ξ+2 ⊗ ι

¢ |=

¤
= 

£¡¡
y0 ⊗ ι

¢
Ψ
¡
ξ+1 ⊗ ι

¢⊗ ι0 +Σ∗ ¡ξ+1 ⊗ I¢u ⊗ ι0¢Ψ ¡ξ+2 ⊗ ι¢ |=

¤
= 

£¡¡
y0 ⊗ ι

¢
Ψ
¡
ξ+1 ⊗ ι

¢⊗ ι0¢Ψ ¡ξ+2 ⊗ ι¢ |=

¤
which is not the product of the conditional expectations of

¡
(y0 ⊗ ι)Ψ

¡
ξ+1 ⊗ ι

¢⊗ ι0¢ andΨ ¡ξ+2 ⊗ ι¢
as the future state vectors ξ+1 and ξ+2 are correlated, from ξ+2 = Fξ+1 + ε+2. However, in applied

work it is customary to follow the suggestion of Doan et al. (1984) and to substitute the sequence of

predicted values of {y+1 y+2  y+−1} (as of time ) — i.e., {̂[y+1|=] ̂[y+2|=],  ̂[y+−1|=]}
for {[y+1|=] [y+2|=+1],  [y+−1|=+−2]}. In this case (7) generalizes to generic   2-step

ahead predictions:

[y+ |=] = [X+ |=]Ψ
h¡
P0
¢
ξ̂| ⊗ ι

i


which in practice gives a recursive formula since [X+ |=] forces one to forecast a sequence of future

y+ values,  = 1 2   − 1. Similar problems apply to multi-step forecasts from the MSMVARH model

(5). Using Doan et al.’s suggestion to recover linearity of the predictor in the last  observations and the

regime inference, we obtain

[y+ |=] = [X+ |=]Bξ̄+[X+ |=]B

∙³
P0(+1)

´
(ξ̂
(+1)

| − ξ̄)
¸


2.3. Model Selection and Diagnostic Checks

In the absence of Markov switching dynamics in the matrices of autoregressive coefficients and in the covari-

ance matrix of the vector process — i.e., for simple MSI( 0) and MSI()-VAR() processes, it is possible to

show that general multivariate Markov switching models possess a standard VARMA representation that

helps define a somewhat precise mapping between nonlinear Markov switching processes and their linear

counterparts. In particular, under a few regularity conditions, (1) possesses a VARMA( +  − 1  − 1)
representation, where + − 1 is the autoregressive order and − 1 is the moving average order. On the
other hand, the MSMVAR(p) process (5) has a VARMA( + − 1  + − 2) representation. In both
cases, notice that the  ( ) representation implies  ≥ . These results give a useful starting

point in a simple-to-general specification approach:

1. A researcher may start out by conducting a standard Box-Jenkins’ style model selection procedure

applied to the class of VARMA models. The reason is that given the existence of  ( )
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representations for MSM processes, it is then possible to solve a simple bivariate system of linear

equations to recover  and  from the selected values for  and . Because in multivariate contexts,

VARMA-style model selection is anyway quite difficult, noting that +− 1 ≥  and +− 1 ≥ 

suggests that the autoregressive order in the VARMA is never lower than the autoregressive order

in the MSM model. Thus a standard VAR lag-selection procedure anyway provides a sensible upper

bound to the correct value of  to employed in the MSM specification.

2. Given such a ∗, the focus shifts on the number of regimes  Krolzig (1997) has suggested the

analysis of each component of the vector y in isolation to detect the appropriate number of regimes

for each of them, say  for   = 1 2   In this case the (V)ARMA equivalence results can

be fully exploited. For each time series, the best fitting ARMA model could be selected using Box-

Jenkins or any other ARMA specification criteria. Taking into account that the AR order ∗ has

been pre-selected, the optimal number of regimes ∗ will simply correspond to the MA order plus

one (plus two minus ∗ in the (5) case). Call {∗ }=1 the sequence of resulting number of states for
each univariate variable under study.

3. Given {∗ }=1 the total number of regimes characterizing the multivariate process might be in
principle as high as

Q
=1 

∗
 if the regimes are not simultaneously perfectly correlated with each

other, i.e. if it does not occur that at least a subset of variables are governed by the same hidden

Markov chain. This latter hypothesis is usually testable using standard inferential procedures.

4. Once the number of MSIAH (MSMAH) regimes ∗ (∗) has been selected, it is useful to test for the

presence of regime-dependent heteroskedasticity and/or for the presence of regimes in the autore-

gressive component of the Markov switching model. For instance, an LM test might be employed.

Or the MSM model might be estimated with and without heteroskedastic component and the LR

test used to improve the specification.

As illustrated in our application in Section 3 as well as in a number of papers in the recent literature

(see e.g., Guidolin and Timmermann, 2007), an alternative set of methods to perform data-driven model

selection relies on information criteria, such the Schwartz, Hannan-Quinn, and Akaike criteria (see e.g.,

Sin and White, 1996, for evidence on information criteria performance in non-linear models). Interest-

ingly, very few papers have addressed the issue of the small-sample and asymptotic performance of these

information criteria specifically for the case of Markov switching models.

Once a restricted set of MSM models has been estimated, the need of further improvements could

arise as the result of diagnostic checks.13 Although the EM algorithm naturally delivers estimates of the

parameters γ̃ and ξ̂
1

1|0 besides the smoothed sequence of probability distributions {ξ̂|}=1 and would
therefore lead to define the (smoothed) residuals as

ũ ≡ y −XB̂ξ̂| 

13In what follows we focus for simplicity on MSMAH models because they are logically and computationally more compli-

cated than MSIAH models. However, all of our remarks apply once one replaces ũ ≡ y−XB̂̂| with ũ ≡ y−XΨ̂̂| .

and the number of regimes ∗ with ∗.
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these are not well suited to the use in diagnostic checks as they are full-sample random statistics and hence

they structurally overestimate the explanatory power of the MSM model. On the contrary the one-step

predictions errors

ẽ|−1 ≡ y −XB̂Fξ̂−1|−1

are limited information statistics (being based on filtered probabilities) and uncorrelated with the infor-

mation set =−1 because [y|=−1] = XB̂Fξ̂−1|−1 and therefore form a martingale difference sequence

[ẽ|−1|=−1] = 0. Therefore standard tests of this hypothesis (such as Portmanteau tests of no serial

correlation) could be used.14 In the presence of Markov switching heteroskedastic components (i.e., the

covariance matrices of shocks fail to depend on regimes), researchers in empirical finance (e.g., Kim and

Nelson, 1999) have also suggested to check whether the smoothed, standardized residuals contain any

residual ARCH effects. Standard LM-type as well as Ljiung-Box tests can be applied. This is a way to

check whether Markov switching variances and covariances may be sufficient to capture most of the dy-

namics in volatility, else explicit ARCH-type modeling (even of a Markov switching nature, as in Hamilton

and Susmel, 1994, or Guidolin, 2009) may be required.15

Another important type of diagnostic check concerns the number of regimes  . The problem is that

under any number of regimes smaller than  there are a few structural parameters of the unrestricted

model – the elements of the transition probability matrix associated with the rows that correspond to

“disappearing states” – that can take any values without influencing the resulting likelihood function.

We say that these parameters become a nuisance to the estimation. The result is that the presence of

these nuisance parameters gives the likelihood surface so many degrees of freedom that computationally

one can never reject the null that the nonnegative values of those parameters were purely due to sampling

variation.16 Different alternative ways have been proposed to develop sound inferential procedures con-

cerning the number of regimes in multivariate Markov switching models. Hansen (1992) proposes to see

the likelihood as a function of the unknown and non estimable nuisance parameters so that the asymptotic

distribution is generated in each case numerically from a grid of transition and regime-dependent nuisance

parameters. The test statistic becomes then

 ≤ sup

 (ρ)

where the right hand side converges in distribution to a function of a Brownian bridge. In most of the cases

a closed form expression cannot be found and the bound must be calculated by simulation and becomes

data-dependent. Also Davies (1977) bounds the LR test but avoids the problem of estimating the nuisance

14With the caveat that that the one-step prediction errors do not have a Gaussian density and hence the approximate

validity of standard tests can only be guessed. For instance, Turner et al. (1989) devise similar tests in which the filtered

probabilities are used as predictors of future variance and test the absence of serial correlation in the resulting regression

residuals.
15Under an incorrect null of no Markov regimes, it is easy to show that asset returns may easily turn out to display non-linear

stochastic structures that may show up as significant ARCH-type effects even in the absence of true ARCH in a correctly

specified Markov switching generating process.
16Mathematically, the presence of unidentified nuisance parameters implies that the scores become identically zero and that

the covariance matrix is singular.
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parameters and derives instead an upper bound for the significance level of the LR test under nuisance

parameters:

Pr (  ) ≤ Pr ¡21  
¢
+
√
2 exp

³
−
2

´ ∙
Γ

µ
1

2

¶¸−1


The bound holds if the likelihood has a single peak. A related test is proposed by Wolfe (1971) and applied

by Turner et al. (1989). The modified LR test is:

 = − 2

( − 3) [ln(γ̃)− ln(γ̃)] → 2

where γ̃ is obtained under the null of simple multivariate normality and  = ( − 1) because in the
absence of regime switching there are ( − 1) which cannot be estimated. Davidson and MacKinnon’s
(1981)  test for non-nested models can be also applied, because Markov switching models with  and

 − 1 regimes are logically nested but cannot be treated as such on a statistical basis. To implement a
 test one has to estimate the model with  and  − 1 states and calculate their full information fitted
values, ỹ

()
 = XB̂

()ξ̂
()

| ; then estimate the (multivariate) regression

y = (I −∆)XB̂ξ̂
(−1)
 +∆ỹ

()
 + ε

The p-value of an F-test for the matrix of coefficients ∆ gives the p-value for the null of  regimes.

Finally, common sense suggests that correct specification of a Markov switching model should give

smoothed probability distributions {ξ̂|}=1 that consistently signal switching among states with only
limited periods in which the associated distribution is flatly spread out over the entire support and uncer-

tainty dominates. Regime Classification Measures have been popularized as a way to assess whether the

number of regimes  is adequate. In simple two-regime frameworks, the early work by Hamilton (1988)

offered a rather intuitive regime classification measure:

1 = 100
2



X
=1

Y
=1

Pr ( = |y1y2 y ; γ̃) 

i.e., the sample average of the products of the smoothed state probabilities. Clearly, when a Markov

switching model offers precise indications on the nature of the regime at each time  the implication is that

for at least one value of  = 1  Pr ( = |y1y2 y ; γ̃) ' 1 so that
P

=1 Pr( = |y1y2
y ; γ̃)' 0 because most other smoothed probabilities are zero. Therefore a good switching model

will imply 1 ' 017 However, when applied to models such that   2 1 has one obvious

disadvantage: a model can imply an enormous degree of uncertainty on the current regime, but still haveP
=1 Pr ( = |y1y2 y ; γ̃) ' 0 for most values of  For instance, when = 3 it is easy to see that

if Pr ( = 1|y1y2 y ; γ̃) = 12 Pr ( = 2|y1y2 y ; γ̃) = 12 and Pr ( = 3|y1y2 y ; γ̃) = 0
∀ then 1 = 0 even though this remains a rather uninformative switching model to use in practice.

As a result, it is rather common to witness that as  exceeds 2, almost all switching models (good and

17On the opposite, the worst possible Markov switching model implies Pr ( = 1|y1y2 y ; ̃) =  =

Pr ( = |y1y2 y ; ̃) = 1 so that


=1
Pr ( = |y1y2 y ; ̃) = 12 and 1 = 100 Therefore

1 ∈ [0 100] and lower values are to be preferred to higher ones.
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bad) will automatically imply values of 1 that decline towards 0. Guidolin (2009) proposes a number

of alternative measures that may shield against this type of problems, for instance using:

2 = 100

(
1− 2

( − 1)2
1



X
=1

Y
=1

∙
Pr ( = |y1y2 y ; γ̃)− 1



¸2)


3. One Application: Regimes in International Stock Returns

In this Section we report one illustrative example of how multivariate Markov switching models may be

used to capture the key dynamic features of large-scale, complicated financial phenomena and how they

can be used to support sophisticated financial decision making. For reasons of space, we illustrate only the

key points of our model specification search and of its asset management implications. Although the data

are particular to this paper, methods and qualitative results may be considered a special case (extension)

of results in related papers by Guidolin and Na (2009), Guidolin and Nicodano (2009), and Guidolin and

Timmermann (2007, 2008b) to which a Reader is referred for additional applications and details. Our

empirical analysis is also related to Ang and Bekaert (2004), who solve a large-scale international portfolio

choice problem in which a version of the zero-beta CAPM is assumed ex-ante, i.e., 

 = 



+



 +



  and the world market portfolio (indexed as  ) follows a two-state Markov switching model in its

mean,  
18 Similarly to our paper, they consider a simple mean-variance portfolio framework. Using

monthly MSCI net returns (expressed in US dollars) data for the period 1975:02-2000:12 and 20 national

stock markets organized in 6 macro-regions (North America, UK, Japan, Europe ex-UK large countries,

Europe ex-UK small countries, and Pacific ex-Japan), they document that Markov switching efficient

frontiers and portfolio choices may be considerably different from classical, mean-variance asset allocation

results.

3.1. Data

We examine MSCI international monthly equity index data for the sample 1988:01-2010:09, for a total of

273 observations. In this application we investigate the regime switching properties of the 5 major devel-

oped country/area value-weighted indices published by MSCI, i.e. (in order of declining capitalization),

North America (US and Canada), Japan, Europe ex-UK, Pacific ex-Japan, and United Kingdom. The

five indices are all expressed in US dollars. This means that we adopt the point of view of a US investor

that is considering un-hedged international pure equity portfolio diversification decisions. The 1988-2010

sample period is a plausible estimation interval of time for many investors that could be interesting in

performing econometric analysis on relatively recent equity data, while the fact that the sample extends

well into 2008-2009 allows us to reach conclusions that are not only robust, but in fact fully affected by

the recent turmoil in international equity markets.

Table 1 reports standard descriptive statistics. The table gives only one surprising indication: over

a 23-year time span, the Japanese stock market has yielded on average a mean return that is close to

18Here  stands for excess return, 

 and 


 are both IID (0 1) and  is the idiosynchratic variance component.  indices

the different markets under investigation.
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zero (0.2% in annualized term) and therefore a negative Sharpe ratio. Otherwise, means, volatilities and

realized Sharpe ratios (computed using as a reference the US 1-month T-bill rate) are all within expected

ranges, i.e., annualized means are between 9.2 and 12.5% per year, volatilities are between 15 and 22% per

year, and the monthly Sharpe ratios are between 0.09 and 0.12. Pacific, continental European, UK, and

North American stocks all displayed significant deviations from a single-state IID Gaussian benchmark, as

evidenced by the statistically significant Jarque-Bera statistics. All the four indices are characterized by

negative skewness and kurtosis in excess of the Gaussian benchmark (three). However, only the continental

European and North American skewness coefficients are significantly negative, while only the Pacific ex-

Japan index returns have an excess kurtosis that is significantly positive. Yet, in overall terms, the Jarque-

Bera test rejects normality for the four index return series. Interestingly, this occurs also in the case of

Japanese stock returns, even though these display very modest excess kurtosis and positive skewness; it

is therefore the sum of these modest deviations to cause a rejection of the null hypothesis of normality.

Although none of the indices appears to be predictable based on its (linear) correlation structure, all the

five indices present evidence of conditional heteroskedasticity, as shown by the Ljiung-Box portmanteau

tests applied on squared returns.

3.2. Model Selection

Table 2 shows the results of a few model selection criteria applied to our 5 × 1 vector of international
stock returns. Clearly, we have estimated a range of alternative MSIAH models, including simple single-

state (i.e., Gaussian IID and Gaussian VAR) ones.19 Significantly, with a total of 1,365 observations, one

encounters difficulties at obtaining reliable estimates of richly parameterized models in which the number

of parameters largely exceeds 100 so that the saturation ratio (i.e., the number of observations available to

estimate each parameter, on average) is below 10. This is the case of the MSIAH(4,1) model, that would

imply estimating almost 200 parameters.

The table shows that the Davies’ approximate p-value for a test of the null of  = 1 regimes vs. the

alternative hypothesis of  ≥ 2 (the specific value for  depends then on each of the models considered)
is always essentially zero for all Markov switching frameworks considered, independently on their specific

structure in terms of choice of  and of whether variance and covariances ought to be allowed to be a

function of the Markov state. The associated LR statistics are in fact so large that the same conclusion

is likely to emerge regardless of the nuisance parameter correction applied to compute the p-values in the

table. For instance, Wolfe’s test statistic delivers p-values which are also essentially zero. Therefore, it is

clear that the data seem to require the specification of Markov switching dynamics, which is consistent with

earlier findings by Ramchand and Susmel (1998), Ang and Bekaert (2002a), and Guidolin and Timmermann

(2008b).

Next, we employ three standard information criteria to select among multi-state regime switching

models. For each of three criteria (Bayesian-Schwartz, Hannan-Quinn, and Akaike), Table 2 boldfaces the

19In financial applications it is atypical to find an interest in the fit of MSMAH models, given their complexity and the

general finding of low-order VAR structures. Accordinly, in what follows we use  to denote the number of regimes.
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three best models. Here, one has to recall that by construction (as they reward fit represented by the

negative of the maximized average log-likelihood function and penalize over-parameterization by adding

a positive term), information criteria illustrate an increasingly good trade-off between fit and parsimony

as their values decline. As one would expect in the light of their relative penalties for model size, the

BIC tends to favor small models, in this case with 2 or at most 3 regimes, while the single-state Gaussian

IID model gives scores close to those of the three best models. On the contrary, AIC shows a bias in

favor of relatively large, possibly over-parameterized models like the MSIH(4,0) model which enters the

AIC’s best-three set in spite of its modest saturation ratio of 14.8.20 Hannan-Quinn is usually in an

intermediate position when compared to BIC and AIC, although in our application it yields indications

which are identical to BIC. However, in spite of these differences, Table 2 also stresses the existence of

one and only model that receives “good scores” from all the information criteria deployed, and that is a

relatively simply and parsimonious (42 parameters for a saturation ratio of 32.5) MSIH(2,0), i.e., a model

with two regimes, regime-dependent covariance matrices, and no vector autoregressive component.21

In fact, the very last column of Table 2 also proceeds to test — using standard likelihood ratio tests

— whether any expansion over the MSIH(2,0) may be required by the data. In particular, the null of a

MSIH(2,0) against the alternative of a richer MSIAH(2,1) with  = 1 can be rejected with a p-value close

to zero. At the same time, the null of a simpler MSI(2,0) model vs. the MSIH(2,0) (i.e., no regime-

switching heteroskedasticity) can rejected with a p-value of zero; the null of a MSH(2,0) model vs. the

MSIH(2,0) (i.e., no regime switching in conditional means) is also rejected with a p-value of zero. It is

only the information criteria that have advised us to select MSIH(2,0) over a more complex and richly

parameterized MSIAH(2,1). We have also tried to use Krolzig’s (1997) VARMA-MSIA mapping method:

because we find that a VARMA(2,1) seems to be required by the 5 × 1 vector at hand, we obtain that
 +  − 1 = 2 and  − 1 = 1 Solving for  and  this gives ∗ = 2 and ∗ = 1 However, both LR tests

and information criteria advise us to select instead  = 2 and  = 0 augmented by a regime-dependent

heteroskedastic component.

3.3. A Two-State Model

Table 3 shows the ML estimates for the two-state MSIH(2,0) model:

y = =1μ1 + (1− =1)μ2 + [=1Σ1 + (1− =1)Σ2]² (8)

where y denotes a 5 × 1 vector of (US-dollar denominated) returns and =1 is a standard indicator

variable that takes unit value when the system in the first regime. Table 3 reports estimates of the two-

state model and, as a benchmark, of a matching single-state model — in this case a simple Gaussian IID

model that implies constant means, variance, and covariances (means and variances are the same as in

Table 1). Starting with the single-state model, it is clear that all pairs of stock indices are characterized

by positive and highly statistically significant correlation coefficients, ranging between 0.48 and 0.82.

20In the non-linear literature, all models with saturation ratios below 20 are normally regarded with suspicion.
21The MSIH(2,0) model also yields a good 1 of 15.1 and a 2 of 16.9 which are relatively low. For instance, a

MSIH(3,0) model returns a 2 of 93.2, which is largely disappointing.
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Although these correlations are high, from standard mean-variance diversification theory we know that

not even 0.82 would be able to deprive a mean-variance investor from considerable gains from portfolio

diversification.

The second panel of Table 3 reports instead the estimates of the Markov switching model. With one

exception, for four of the five indices, the first regime is a bear state with low (not statistically significant

in all 4 cases) mean returns and high (above-average, represented by the single-state panel of the table)

correlations. In this state, expected returns fail to be statistically different from zero in the case of Japan,

continental Europe, the UK, and the US. The only exception, mentioned above, occurs in the case of

Pacific ex-Japan USD returns, which appear to have a high and mildly statistically significant expected

return in the first regime, of 1.15% per month. Moreover, all pair-wise correlations are structurally higher

in this first regime than they are in the second. For instance, the average correlation in regime 1 is

0.77 vs. an average of 0.63 in the single state model. For instance, during this bear regime, UK and

continental European returns show a correlation of 0.94, i.e., from an investor’s viewpoint there is only

one single European stock market. We call this regime a bear state of high correlations, in which (notice,

only within the regime itself), the value of international diversification may be attenuated by the strong

tendency of international stock markets to linearly co-move in highly synchronous ways. Interestingly, and

differently from what found by other papers with reference to shorter (or alternative) sample periods (e.g.,

Guidolin and Timmermann, 2008b), this bear state of high correlations fails to be also characterized by

high volatilities: the estimated within-state standard deviations are higher than in the second state in the

case of continental Europe and North America, but they are lower for the remaining 3 indices. The bear

state has exceptionally high persistence– once in the bear regime, markets tend to stay in this state for

36 months on average– and as a result this regime characterizes approximately 56% of the data in the

long run (equivalently, 0.56 is the ergodic probability of the bear regime).

Figure 1 plots the full-sample smoothed probabilities from the two-state model and shows that the

most prolonged periods of modest mean stock returns but high correlations may be identified with 1996-

1997 (the Asian flu), the dot-com market crash of 2000-2001, and more recently a long span extending

itself between 2002 and mid-2008. This characterization of the smoothed probabilities and of the first

regime should not surprise us because the model estimated in Table 2 seems to be primarily driven by

the time-variation in pair-wise correlations, similarly to Ang and Bekaert (2002a). It then corresponds to

common wisdom the fact that since 2000 and until the trough of the 2008-2009 financial crisis, developed

financial markets have become increasingly correlated– some commentators have linked this observation

to the alleged occurrence of two financial bubbles between the late 1990s and then 2004-2008. Moreover,

both during the market downturn of 2000-2001 and the recent financial crisis, it has been obvious that

some economies (such as those in the Far East) less dependent on the process of securitization and still

relying on a solid web of export industries, have been affected by the crisis waves to a less extent than

Europe or the US (not to mention Japan). This may justify why the first regime is essentially a bear

state for four out of five of our indices, but not for the Pacific ex-Japan index, which groups a number of

developed Asian economies, Australia, and New Zealand.

Again with the exception of Pacific ex-Japan, the second state is a bull regime characterized by positive
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(and statistically significant, for three indices out of four) mean returns and by moderate (below-average)

correlations, in some cases not significantly different from zero when tests of size 1% are applied.22 For

instance, the average pair-wise correlation in this second regime is 0.51 vs. 0.77 in the first regime and

0.63 in the single-state model. Obviously, the diversification opportunities are maximum in this second

state, even though our goal is to actually characterize diversification opportunities across regimes, and

when investors are uncertain on the nature of the current regime, as it will be often the case in a latent

regime switching environment. Also this regime displays considerable persistence– once in this regime,

international stock markets tend to display this dynamics for 29 months on average; as a result, 44% of

any long sample ought to be generated by this bull state of low correlations. Figure 1 shows that long

stretches of time — well in excess of 29 months, in fact — such as 1988-1992, 1997-2000, and more recently

early 2009 are characterized as draws from the bull regime, when markets do not strongly co-move.

We perform diagnostic checks based on the one-step predictions errors, similarly to Guidolin and Ono

(2006). A number of alternative Portmanteau statistics and tests all indicate that the one-step errors

are approximately martingale difference sequences. In particular, there is only weak evidence of residual

ARCH effects in the prediction errors, which seems to be a rather common finding in similar applications

(see Ang and Bekaert, 2002a, and Guidolin and Timmermann, 2008b).

3.4. Time-Varying Efficient Frontiers

One of the goals of this Section is to illustrate how multivariate Markov switching models may be put

at work. We start doing this by computing regime-specific Markov switching mean-variance frontiers

(MSMVF, for short). MSMVFs are a simple generalizations of standard textbook, Markowitz-style efficient

frontiers to the case in which the (predicted) moments–in particular, means, variances, and covariances–

of returns of assets in the choice menu are time-varying and driven by the realization of a Markov chain

within a MSIAH (or MSMAH) process. Besides the econometric estimates of a Markov switching model–

in our case to be identified with those presented and commented in Section 3.3–two basic ingredients

inform the construction of a MSMVF: how to go from MSIAH parameter estimates to predictions of

means, variances, and covariances of portfolio returns; the investment horizon for which the MSMVF is

to be built.23 Before presenting some illustrative results based on the MSIH(2,0) estimates, we describe

how forecasts of future moments may be computed in a Markov switching framework.24

To get some intuition on the factors that determine the predictions of means and variances of asset

22It turns out that Japanese expected returns are not strongly affected by regimes and are always close to zero. This

finding corresponds to what Guidolin and Timmermann (2008b) have reported within a different type of MS models and

to the common perception that Japanese markets may have fallen in a “slump” since the early 1990s, i.e., over most of our

historical sample. Moreover, Pacific ex-Japan stocks yield a positive but insignificant expected return, that is lower than the

estimate obtained for the first regime.
23Notice that in standard unconditonal (implicitly, single-state Gaussian IID analysis) mean-variance analysis, the invest-

ment horizon makes no difference because the forecast of future means, variances, and covariances are the currently estimable

means, variances, and covariances. Of course, the horizon will matter in the presence of predictability, as captured (both

linearly and non-linearly) by a MSIAH model.
24To save space, we only deal with the simple case of a MSIH(2,0) model. A more complete treatment of how model

estimates map into moment forecasts may be found in Guidolin and Timmermann (2009) or Ria (2008).
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returns under a MSIH process for returns, consider first the case of a single risky asset ( = 1),  =

 + 2, where  ∼ (0 1). Call ξ̂| the 2 × 1 vector of (filtered) probabilities of being in each of
the two alternative regimes, based only upon the information available up to time , ξ̂| ≡ [Pr( = 1|F)
Pr( = 2|F)]

0. Notice that the (row) vector of time +1 predicted probabilities of the two states can be

computed as:

ξ̂+1| = [̂1|̂11 + ̂2|(1− ̂22) ̂1|(1− ̂11) + ̂2|̂22] = ξ̂
0
|P̂,

where ̂ is the row- column- element of the transition probability estimate, P̂.
25 The predicted mean

for period + 1 is then

[+1] =

2X
+1=1

[+1|+1] Pr(+1|F) =

2X
+1=1

[+1|+1] Pr(+1|F ) Pr(|F)

= ̂1|̂11̂1 + ̂1|(1− ̂11)̂2 + (1− ̂1|)(1− ̂22)̂1 + (1− ̂1|)̂22̂2 (9)

In general, and extending this result to the case of a  -step ahead forecast, we have that:

[+ ] = ξ̂
0
P̂

 μ̂∗ (10)

where μ̂∗ is a matrix that stacks in each row the regime-dependent mean return estimates for each asset

(here μ̂∗ is a 2×1 vector because there is only one asset). In the case of a generic number  of assets, this
expression easily generalizes to: [y+ ] = ξ̂

0
P̂

 μ̂∗ where now μ̂∗ is 2 ×  and [y+ ] yields a 1 × 

vector of predicted means. Next, consider the prediction of the variance of one asset return in period +1

conditional on the information set F:

 [+1] =

2X
+1=1

[(+1 −[+1])
2|+1] Pr(+1|F ) Pr(|F)

= ̂1|̂11[(̂1 −[+1] + ̂1+1)
2] + ̂1|(1− ̂11)[(̂2 −[+1] + ̂2+1)

2]+

+ (1− ̂1|)(1− ̂22)[(̂1 −[+1]̂1+1)
2] + (1− ̂1|)̂22[(̂2 −[+1] + ̂2+1)

2]

= ξ̂
0
|P̂

"
(̂1 −[+1])

2 + ̂21

(̂2 −[+1])
2 + ̂22

#


Once again, this is easily extended to the conditional variance of returns in period +  :

 [+ ] = ξ̂
0
|P̂



"
(̂1 −[+ ])

2 + ̂21

(̂2 −[+ ])
2 + ̂22

#


The implication is that unless ̂1 = ̂2 = [+ ] (i.e., unless there is no regime switching in the conditional

mean function),

 [+ ]  ξ̂
0
|P̂



"
̂21

̂22

#
= ̂1+ |̂

2
1 + ̂2+ |̂

2
2

25In a similar fashion (see Timmermann, 2000), one can show that the vector of time +  predicted probabilities of the

two states is given by ̂
0
+1| = ̂

0
|P

 , where P ≡

=1P and P0 = I2.
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where the right-hand side expression is simply a predicted state-probability weighted combination of the

two-regime specific variance estimates. This means that Markov switching in the conditional mean always

increases — as (̂ −[+ ])
2  0 for  = 1 2 — the conditional variance of the asset return.

These results are easy to generalize to the case of multiple assets,  ≥ 2, which is obviously the relevant
case in an asset allocation perspective, see Guidolin and Timmermann (2009) and Ria (2008). Consider

a portfolio of assets summarized by the  × 1 vector of percentage portfolio weights at time , ω. For

simplicity, we still refer to the MSIH(2,0) model that well characterizes the MSCI international index data

analyzed earlier on. Under a simple MSIH(2,0) switching model, the return on the portfolio, 

+1, is:



+1 = ω0y+1 = ω0μ+1

+ ω0Σε+1

The expected portfolio return next period is then simply

[

+1] = ω0[y+ ] = ξ̂

0
P̂

 μ̂∗ω

The variance of portfolio returns can be written in the following form



£
(


+ − ̄


+ )

2
¤
= ω0(̂1+ |[(y+ −[y+ ])(y+ −[y+ ])

0|+ = 1]+
+ ̂2+ |[(y+ −[y+ ])(y+ −[y+ ])

0|+ = 2])ω

where the ×  matrix of squared return deviations from the mean in state + is given by

[(y+ −[y+ ])(y+ −[y+ ])
0|+ ] = Ω++

+
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The second term, which shows the deviations of the state-specific conditional means from its overall expec-

tation in each state and for each asset, does not arise in single-state models. This term could be potentially

important for portfolio allocation purposes. The first term is the standard, regime-specific variance covari-

ance matrix Ω+1 . Again, the implication is that unless 

1 = 2  = 1 2   (no regime switching in the

conditional mean, for none of the assets or portfolios under investigation), the conditional variance of the

 -period ahead portfolio returns is not simply ω0(̂1+ |Ω̂1 + ̂2+ |Ω̂2)ω involving instead a complex

matrix reflecting cross products of deviations of the conditional means from the unconditional means for

the assets, taken in pairs.
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A MSMVF reflects the basic intuition of Markowitz (1952): investors should decide optimal portfolio

weights on the basis of the trade-off between portfolio risks and expected returns; risk should be measured

by the variance of portfolio returns. Moreover, for any given level of expected return, a rational, risk-averse

investor will choose the portfolio with minimum variance from amongst the set of all possible portfolios.

In particular, suppose that the goal of our investor is to select a portfolio composed of  risky assets, in

the form of a vector of portfolio weights ω
 ≡ [1 2 ... ]0 such that

P
=1 


 = (ω


 )
0ι = 1 Unless

we shall state otherwise, notice that   0 (hence,   1  6= ) is admissible, i.e. short sales are

possible. Also notice that the notation ω
 ≡ ω (F) stresses that the weights are selected at time  and

only conditional upon information available at time  The investor has a risk-return trade-off goal over

 periods; therefore she cares for “optimizing” the trade-off between the portfolio expected return and

variance over the interval [  +  ]. The investor’s problem may be formulated as a simple constrained

minimization:

min


 [

+ ;ω


 ]  (i) ̌ = [


+ ;ω


 ]; (ii) (ω

 )
0ι = 1 (11)

where 

+ is the (continuously compounded) portfolio return  -period forward, ̌ is the desired mean

portfolio goal, and the notations [

+ ;ω


 ] and  [


+ ;ω


 ] want to stress that the (predicted) time

 expectation and variance of a portfolio depend on the selected portfolio weights ω
 in the ways discussed

early on. As discussed in Fabozzi, Focardi, and Kolm (2006), this is a simple quadratic optimization

problem that can be solved with the method of Lagrange multipliers. The resulting ω̂
 (̌) will be a

straightforward (yet, highly non-linear) function of the basic Markov switching parameter matrices, μ̂∗,

Σ̂∗, P̂ as well as the (filtered) state probabilities collected in the vector ξ̂. Since ξ̂ ∈ F and the
perceived state probabilities change over time, the result is that ∀̌, the variance-minimizing weights
become themselves a function of either the current state –if known–or at least of the vector of state

probabilities ξ̂.

Consider now solving the program in (11) for all possible, different choices of ̌ ∈ (−1+∞) This
delivers a set of variance minimizing weights {ω̂

 (̌); ̌ ∈ (−1+∞)} In correspondence to each vector
ω̂
 (̌) it is then possible to computed the associated portfolio expected return and risk (where in fact

[

+ ; ω̂


 (

∗)] = ̌ by construction). The set of all possible mean-variance combinations induced by

{ω̂
 (̌); ̌ ∈ (−1+∞)} is the mean-variance frontier. Since in the presence of Markov switching dynamics

all optimal variance-minimizing portfolios in {ω̂
 (̌); ̌ ∈ (−1+∞)} will generally depend on the state (or

the perception of the state, as captured by the vector ξ̂) the resulting MSMVF will be state-dependent.

Figure 3 shows three sets of MSMVFs computed in this way, each corresponding to a different choice of

the horizon  , i.e., 1-, 6-, and 36-month ahead. Within each set, four different mean-variance frontiers

are plotted. Three of them are MSMVFs and correspond to three alternative and key configurations of

the (filtered) state vector ξ̂, i.e., when an investor has knowledge of the current regime being bear/high

correlation, being bull/low correlation, or when an investor ignores the nature of the current regime and

simply assigned to each of the two states a probability equal to their long-run, ergodic probabilities. The

latter case corresponds to a plausible situation of ignorance on the nature of the current state. A fourth

frontier is provided as a benchmark and simply corresponds to the (time invariant) frontier an investor
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would derive from a standard, Gaussian IID model as in top panel of Table 3.

Clearly, modelling Markov regimes has massive effects when the investment horizon is short: the bull

and bear MSMVFs are substantially different, with the bull MSMVF implying a substantially better risk-

return trade-off for low-to-intermediate levels of volatility but a worse trade-off for higher volatility levels.

For instance, if an investor were to expect a portfolio return of ̌ = 0015 (i.e., 18% per year), in the bull

regime she would be able to reach this goal bearing a rather moderate risk of 16.5% per year; however,

the same expected return target in a bear regime would force the investor to accept a much higher risk of

22.9% per year. However, if the target expected returns were to be ̌ = 004 (i.e., a rather aggressive 48%

per year), in the bull regime she would be able to reach this goal bearing a higher risk (62% per year)

than under the bear regime (54.8% per year). This means that while the higher regime-specific expected

returns and lower correlations do help an investor to achieve a good risk-reward trade-off in the bull state,

this works only for moderate levels of ̌; for levels in excess of 3% per month, the fact that the two regimes

do not possess a clear ranking across volatilities leads to the existence of a crossing point between the bull

and bear MSMVF.

Interestingly, already for  = 1 month, the ergodic and single-state (IID) MSMVFs are very hard

to tell apart from the Figure. Importantly, this does not have to happen as a result of any statistical

property: Markov switching models produce ergodic joint densities for the variables that are neither

Gaussian nor even approximately similar to single-state models (see Guidolin and Timmermann, 2007,

for related comments). However, in this illustration, this turns out to be the case: the ergodic density

implied by our MSIH(2,0) originates a MSMVF which is very close to the classical MVF. The bottom

panel of Figure 2 shows that provided an investor has a sufficiently long horizon, the bull, bear, and

ergodic MSMVFs all come to coincide. This is to be expected as the longer the horizon, the higher is the

chance that the predicted state probabilities used to compute predicted means, variances, and covariances

will come to essentially coincide with the model-implied ergodic state probabilities.26 Since the ergodic

MSMVF clearly cannot depend on  , for a sufficiently long horizon it also happens that bull, bear, and

ergodic MSMVFs all converge to the single-state MSMVF. Finally, the intermediate panel of the Figure

shows the case of  = 6 months. Clearly, this plot falls in-between the top and bottom panels, even

though  = 6 has been selected to show that Markov switching effects are not entirely short-lived and will

potentially affect optimal portfolio choices for horizons that are plausible in practice.

3.5. Portfolio Implications

As a last illustrative step, we have also computed portfolio weights using simple mean-variance preferences.

One can interpret such an exercise as equivalent to computing the MSMVFs in Section 3.4 and then

proceeding to select an optimal vector of weights ω̃
 after super-imposing on the plots in Figure 2 some

standard sets of mean-variance indifference curves that trade-off mean and variance to hold the investor

indifferent across alternative portfolios. Similarly to Guidolin and Na (2009), consider an investor with

26The definition of ergodic state probabilities implies that lim→∞ + | = ̄.
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the simple objective:27

max


½
:+ (ω


 ) ≡ [


:+ ;ω


 ]−



2
 [


:+ ;ω


 ]

¾
 (ω

 )
0ι = 1 (12)

where 

:+ ≡

P
=1 


+ is the total, cumulative portfolio return between time  and time + ,   0 is

the coefficient of risk aversion characterizing the investor’s preferences. As discussed in Fabozzi, Focardi,

and Kolm (2006), such an objective may be derived from an expected utility maximization problem when

the investor has preferences described by a quadratic utility function over final wealth at a certain future

date + . At time  the investor maximizes the expected utility objective (12) by implementing a simple

buy-and-hold strategy (no dynamic rebalancing) in which ω
 is selected at time  and held up to time  .

In particular, we have proceeded to compute optimal international diversification weights (among

developed markets) on the basis of the MSIH(2,0) estimates of Section 3.3 and setting  to (locally) match

the behavior of an investor with constant coefficient of relative risk aversion of 5.28 We have performed

this exercise recursively between 1998:01 and 2010:09. Table 4 reports a number of summary statistics

for these recursive sets of (153) portfolio weights for the cases  = 1 12, and 120 months and for the

MSIH(2,0) and the single-state models. The exercise considers both the case in which the constraints

(ω
 )
0e ∈ [0 1] ( = 1  ) are imposed (and this implies that the optimization in (12) has to be solved

numerically), and the unconstrained case. The table reports means, medians, standard deviations and the

10% empirical confidence bands for recursive portfolio weights.29 The upper panel of Table 4 considers the

case in which short-sale constraints are imposed, while the lower panel deals with the unconstrained case.

The table shows important differences between single- and Markov switching recursive portfolio weights.

For instance, focussing on the case in which short sales are admitted, while a single-state model implies

that Pacific ex-Japan for  = 1 should receive a modest average weight of 0.6% (basically nothing when

the median is used), the two-state MSIH model yields an average weight of 23% with rather large spikes

in correspondence to periods of crisis in financial markets, as revealed by the fact that the median weight

is 4% only; similarly, the weight to North American stocks is an overwhelming 87% (the median is 94%)

under a no-predictability Gaussian IID model vs. 37% (35% using the median) under a regime switching

MVF. The fact that Pacific ex-Japan, Japanese, and (to a smaller extent) UK stock weights are inflated

by Markov switching dynamics is compensated by the lower weights assigned to North American stocks.

27At times we will impose the absence of short sales, 
 ≥ 0.

28Suppose = 1 and take a second order Taylor series expansion of a power utility function
1−
+ (1−) (  0) around

 = exp( ):

(+ ) ' 1−

1− 
+ 

−
(+ − )− 1

2

−(+1)

(+ − )
2


where we used that 0() = −  and 00() = −−(+1). Expanding the powers of (+ − ) and taking the expectation

conditional on information up to time , one can show that

[(+ )] ' 0() + 
0
1()[+ ] + 2() [+ ] ∝ [+ ]−  [+ ]

where 2() ≡ − 1
4
−(1+) [2 + 2( + 1) + ( + 1)( + 2)]  0 i.e.,  may be interpreted as a complicated non-linear function

of 
29In practice, the 10% lower bound is the 5th percentile and the 10% upper bound is the 95th percentile of the empirical

distribution of optimal portfolio weights. In the table, we have boldfaced 10% confidence bands that fail to include zero, i.e.,

indices for which the exercise gives a clear indication as to the sign of the average committment to the portfolio.
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Interestingly, when the constraints are not imposed in the lower panel of Table 4, some of the qualitative

implications of the upper bound hold (basically, MS implies larger weights to Japanese and Pacific stocks

and lower weights to continental European stocks), but others fail to hold: for instance, the average UK

weights are higher under Markov switching in the case of no short sales, but are lower when no constraints

are imposed.

A few other facts emerge from Table 4. As one would expect, MSIH weights are much more volatile

than single-state weights are, and this difference is particularly strong in the  = 1 case and when no

constraints are imposed. This should be expected because an investor that uses the Markov switching

framework will actively try to time the international markets’ bull and bear regimes and to tailor her

optimal risk-return trade-off on the basis of the underlying dynamics. Interestingly, the differences between

single- and two-state mean-variance weights increases as the investment horizon  grows larger. This is in

no way a contradiction of our earlier remark that the MSMVFs converge to the single-state, classical MVF

as  grows: notice in fact that while the MSMVFs simply reflect the trade-off between predicted means

and variances for all possible portfolios  -step ahead, the portfolio problem in (12) concerns  -horizon,

cumulative portfolio weights defined as 

:+ ≡

P
=1 


+ , where 


+ ≡ ω0y and y is in our application

a × 1 vector of portfolio weights. This means that the 120-month portfolio weights reported in Table 4
will reflect cumulative deviations of MSMVFs from the single-state, no predictability MVF, so that even

though the MSMVFs do converge to the single-state MVF, the portfolio weights do not have to.

These differences are visualized by Figure 3, when a no short-sale constraint is imposed on the portfolio

exercise. The most striking difference is the existence of periods (such as 2003-2004, i.e., during a span of

time best characterized as a bear, high-correlation market) in which under Markov switching the demand

for Japanese stocks should be positive and non-negligible, which is never the case under a classical single-

state model. From Table 3, this is easily justified by the fact that–even though they give very small

positive expected returns–Japanese stocks imply modest risk (their variance is among the lowest in

the first regime) and are useful hedging tools, since their pair-wise correlations with returns on other

equity indices are among the smallest (e.g., always below 0.7) in the bear regime. Equally visible is that

fact that–especially in correspondence to high correlation periods (e.g., 2002-2007), while the Markov

switching model suggests relative large investments in Pacific stocks, this is not the case under a single-

state model. This is easily explained with the fact that Pacific stocks give high expected returns exactly

in the bear, high-correlation regime and this provides an important hedging opportunity even to investors

with medium- and long-investment horizons, given the high persistence of the first regime. Finally, it

is clear that while a classical, Gaussian IID mean-variance strategy would suggest large and persistent

weights invested in North American equities (never below 50% in our recursive exercise), this is not the

case under a MSMVF case, when for instance the weight to North American stocks drops to zero between

mid-2008 and early 2009, in correspondence to the recent financial crisis. The intuition is that during

high correlation period, North American stocks yield low (Japanese-style) expected returns and have poor

diversification properties, in the sense that their correlations with other indices (with the only exception

of the Japanese) are generally close to 0.9.30

30During the period August 2008 - March 2009, a MS investor would have invested relatively large weights (in excess of
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4. Recursive Out-of-Sample Performance: Should We Be Tracking Regime Shifts in

Efficient Frontiers?

The empirical results in Section 3.5 cannot of course establish in any way that taking into account the

presence of regime shifts in MVFs is important in practice, i.e., that it allows the creation of economic

value to a portfolio manager (or its customers). In fact, so far we have purely documented a number

of in-sample properties of the multivariate time series of MSCI international equity returns, such as the

presence of two distinct regimes for expected returns and pair-wise correlations. However, economic value

will be produced only if by taking into account regime shifts in MVFs, an investor could increase her

realized, out-of-sample portfolio returns per unit of risk. In this Section we therefore proceed to set up a

recursive experiment to assess whether–at least in the case of our application to international portfolio

diversification–such improvement in risk-adjusted realized performance may be attained. Section 4.1

briefly describes the nature of the recursive experiment. Section 4.2 reports the key results. Section 4.3

briefly examines how the strategies would have performed during the recent financial crisis.

4.1. Design of the Recursive Exercise

We perform a standard exercise in real time asset allocation based on a fully recursive scheme of model

estimation and portfolio optimization. In particular, we initialize our experiment using data from January

1988 up to December 1997 to estimate the parameters of our two competing models, a single-state Gaussian

IID model and the MSIH(2,0) model that emerges as the best trade-off between fit and parsimony in Table

2. Based on the parameter (and state probability) estimates obtained over the sample 1988:01-1997:12

(for a total of 600 observations), we proceed to forecast multi-period means, variances, and covariances of

returns on all equity portfolios, which allow us to determine mean-variance portfolio weights, taking into

account of the nature of (inference on) the current state in the case of MSIH, as well as the likelihood of

subsequent regime switches. This is done imputing to our “hypothetical” investor a range of alternative,

potential investment horizons parameterized by  ; in fact we use 3 alternative horizons, of 1, 12, and

120 months.31 These recursive estimation and portfolio choice exercises are repeated on the following

month, using data from January 1988 and up to January 1998 (for a total of 605 observations) to compute

afresh forecasts of moments and to select optimal portfolio weights. Iterating this recursive scheme until

September 2010 (when all the available 1,365 observations are employed) generates a sequence of 153 sets

of optimal portfolio shares — importantly, one for each possible investment horizon — as well as realized

portfolio returns from such ex-ante optimal choices, from which ex-post performance measures for these

alternative portfolio strategies and horizons may be computed.

50% for  in excess of 6 months) in Japanese stocks. Similar plots are available upon request from the Authors for the case

of no short sale constraints. Their qualitative implications are similar to those in Figure 3, although there is naturally much

more variability in optimal weights.
31We perform these calculations for a range of alternative coefficients of risk aversion ( = 2 5, 10, and 20, when expressed

in terms of the underlying coefficient of relative risk aversion). Although many qualitative conclusions are not sensitive to

the specific risk aversion coefficient imputed, to save space we report only on the case of  = 5. Further, detailed results are

available upon request. Fugazza et al. (2008) report further comments on the logics and limitations of recursive back-testing

exercises in asset allocation applications.
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Tables 5 and 6 report average performances using a number of alternative metrics. Table 5 reports

the annualized mean, the annualized standard deviation, and the corresponding Sharpe ratio for each

of four strategies. For all these statistics, we have block-bootstrapped their 90% confidence interval

using the realized performance measures, which means a total of 153 −  observations, for  = 1 12,

and 120.32 Besides the single- and two-state Markov switching mean-variance strategies, we also report

realized performance statistics for two additional benchmarks that have played an important role in the

recent literature: an equally-weighted portfolio (also called “1/N” after De Miguel et al., 2009) in which

20% of the portfolio is invested in each of the five equity portfolios at all points in time; a value-weighted

portfolio in which at each point in time the percentage invested equals the relative importance of each

index on the sum of the aggregate market capitalizations of the five indices, which is the basic prescription

of the (international) CAPM. In Table 5, we also proceed to present 90% confidence intervals for Sharpe

ratios following Opdyke (2007). Following and generalizing seminal work by Jobson and Korkie (1981),

Opdyke reminds us that in finite samples, computing the Sharpe ratio for a given strategy as a simple

ratio between the sample mean excess return and sample standard deviation ( = ̄ ) leads to a

biased estimation of the Sharpe ratio; for instance, using a Taylor approximation to the order 1(153− )2
(i.e., of order (1(153−  )2)), they show that

[ ] ' 



∙
1 +

1

4(153−  )

µ
[( − )4]
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¶¸



where  is the mean excess return,  is the standard deviation of excess returns, and [( − )4]4 is

simply the kurtosis of portfolio returns. The asymptotic distribution of the statistic  is obtained

by an application of the delta method which holds under rather general assumptions on the multivariate

distribution of portfolio returns (stationarity and ergodicity, not requiring normality):

 =
̄
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where the variance is derived from the Taylor series approximation. In Table 5 we present 90% (asymptotic)

confidence intervals for the bias-corrected Sharpe ratios:

 =
̄h

1 + 1
4(153− )

³³
−1

P
=1( − ̄ )4

´
4 − 1

´i
from portfolio strategies with and without real estate, both in the classical and in the Bayesian framework.

Table 6 supplements the key information in Table 5 by also computing the Jensen’s alpha of each

strategy (along with asymptotic 90% confidence intervals), and the skewness and kurtosis of realized

portfolio returns. Finally, as recently discussed in the literature (see e.g., Adcock, 2007) is that Sharpe

ratios are highly sensitive to non-normally distributed returns. We find strong evidence of non-normal

portfolio returns in our sample (see Table 6), especially because returns appear to be skewed. One common

remedy consists of supplementing the presentation of Sharpe ratios with related reward-to-risk measures

32The application of a block bootstrap is particularly important because our recursive exercise generates realized per-

formances for overlapping horizons, which is likely to cause complex serial correlation patterns in performance measures,

especially in the case of  = 12 and 120.
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that divide the numerator (mean excess return) of the Sharpe ratio by portfolio downside risk (semi-

standard deviation). This ratio commonly called the Sortino ratio (also see Fishburn, 1977).33

4.2. Performance Results

Table 5 shows the key results of this paper. In qualitative terms, it is clear that taking into account the

presence of regime shifts in the MVF tends to increase–relative to the single-state case, when regime

shifts are ignored–realized mean returns but also to increase the realized volatility of portfolio returns.

For most combinations of horizons and constraints (i.e., whether short sales are allowed or not), the first

effect prevails and–both using standard and corrected Sharpe ratios–the two-state model outperforms the

single-state model: this is the case of  = 1 month and no short sales and of  = 12 and 120 independently

of constraints. In this sense, tracking regime shifts in MVFs certainly has a positive economic value. For

instance, for the case of  = 12 and with no short-sale constraints, the mean-variance regime switching

weights yield a (corrected) Sharpe ratio of 0.31 vs. 0.10 for the single-state model, with a remarkable

increase of 0.21. This derives from a mean performance (10.6% per year) that is almost double the mean

single-state performance (6%), and from an annualized volatility (23%) which is only slightly higher than

the 21% obtained in the single-state case. However, a number of issues and caveats remain. First, the

two-state strategy does outperform the two additional benchmarks that we have tracked only in one cases:

 = 12 when short-sales are not admitted, when the (corrected) Sharpe ratio of 0.31 also exceeds the 0.24

ratio that the equally weighted portfolio may yield. Otherwise, as recently stressed in a number of papers,

it remains the case that the equally weighted portfolio may often outperform both the two- and single-state

mean-variance strategies. Second, even when the two-state strategy outperforms the single-state one, the

corresponding 90% confidence interval remain relatively wide and often overlapping. For instance, even in

the case of  = 12 with no short sales, the 90% CI for the two-state strategy ([0.07, 0.57]) does overlap

with the CI for the single-state strategy ([-0.07, 0.27]). Longer data sets that would allow more extensive

recursive out-of-sample exercises would be required to shrink these confidence intervals to allow sharper

inferences.34

Table 6 extends these comparisons in a number of directions. Interestingly, the highest (and sometimes

statistically significant) Jensen’s alphas are yielded by the single-state model. However, it remains unclear

why–in the presence of pervasive nonlinearities and non-normalities generated by the presence of Markov

switching dynamics (see Guidolin and Timmermann, 2008b)–should the CAPM be able to exactly fit the

realized portfolio returns generated by any of the strategies examined. This is in fact witnessed by the

statistics on skewness and kurtosis of realized returns in Table 6: under no short sales and short horizons,

all strategies yield negative skewness; while the mean-variance strategies tend to produce excess kurtosis

(thick tails of realized performance), the opposite occurs for the equally- and value-weighted benchmarks.

This justifies reporting in Table 6 the Sortino ratios, for which 95% confidence intervals have also been

33When returns are normally distributed, total variance and semi-variance (which conditions on returns being below their

mean) are identical. Deviations from normality imply that total and downside variance differ.
34We limit our comments concerning the recursive results for the case  = 120 because with our sample this could generate

only 33 overlapping realized performances.
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block-bootstrapped using the empirical distribution of realized portfolio performances. Under the Sortino

metrics, the findings are starkly in favor of the two-state strategy, especially for  = 12 and to some extent

also  = 120 (although caution is suggested by the short out-of-sample period). For instance, when  = 12

and with no short sales, the two-state Sortino is 0.46 vs. 0.17 for the single-state model; the bootstrapped

CIs in this case barely overlap, [0.11, 0.83] vs. [-0.11, 0.41], although they remain rather wide. However,

it remains true that also in a Sortino dimension, it remains hard (although not impossible) to outperform

the equally- and value-weighted benchmarks.

4.3. Could This Have Mattered During the Financial Crisis?

Last but not least, we here tackle the question that probably harbors in the mind of many Readers: would

an effort at tracking the dynamics in MSMVFs have produced any significant payoff during the recent

financial crisis? We base our attempt at addressing this question on a few dating efforts that have recently

appeared in the literature (see e.g., Guidolin and Tam, 2010) and that have dated the “Great Financial

Crisis” to span the period that goes between August 2007 and the late Spring of 2009. For symmetry, we

will take the crisis period to consist of 24 months, and to correspond to the sub-sample 2007:08-2009:07.

Some promising, preliminary evidence comes already from a careful observation of Figure 1: there seems

to be very interesting changes in the current regime classification occurring between 2008 and 2009. This

gives hopes that our two-state strategy may have turned out to be sensitive to the occurrence of the crisis.

This is confirmed by recursive calculations of realized out-of-sample performance for 1- and 12-month

investment horizons, but limited to the crisis period. For instance, this means that between 2007:08 and

2009:07 we compute 24 sets of 1-month mean-variance weights under the four strategies/models covered

by Tables 5 and 6 and then compute their realized performances (between 2007:09 and 2009:08), obtaining

a vector of 24 realized returns. Our hopes are confirmed in the case of the two-state strategy when no

short-sales constraints are imposed: for  = 1, we record an annualized mean of 12.6% with a standard

deviation of 46.8%, for an overall Sharpe ratio of 0.067; for  = 12 we record an annualized mean of

14.4% with a standard deviation of 37.2%, for an excellent Sharpe ratio of 0.38. These performances have

to be contrasted by the negative Sharpe ratios that would have been delivered by a classical, single-state

mean-variance strategy, -0.38 for  = 1 and -0.61 for  = 12. In fact, during the crisis, a standard

mean-variance strategy heavily tilted towards US, UK, and continental European stocks would have been

disastrous for rather obvious reasons, while the two-state tilt towards Japanese and especially Pacific

stocks would have paid off handsomely. Interestingly, even the equally-weighted strategy would have been

losing with reference to this particular sub-sample, with implied Sharpe ratios of -0.18 and -0.07 for  = 1

and 12 months, respectively.35

35For completeness, we also report the corresponding statistics for the case in which short sales are not allowed. For the

two-state model and  = 1, we record an annualized mean of -7.2% with a standard deviation of 28%, for an overall Sharpe

ratio of -0.09; for  = 12 we record an annualized mean of -3.5% with a standard deviation of 34%, for an excellent Sharpe

ratio of -0.11. Under the single-state model, the Sharpe ratios are instead -0.21 and -0.15, i.e., they remain substantially

lower than in the regime switching case. The intuition is that the impossibility, under the MSMVF, to sell short European

(including UK) stocks does hurt performance.
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5. Conclusion

This paper has illustrated the potential effects of basing a standard but key financial decision making

exercise–the construction and use of the mean-variance frontier in a simple international asset allocation

framework–on models from the Markov switching class that imply that expected returns, their volatility,

and their correlations may depend on a discrete but unobservable Markov chain that illustrates transitions

from “bad” to “good” investment opportunities, and viceversa. Of course, a number of important aspects

of the application of Markov switching methods to strategic asset allocation, international diversification,

and risk management have failed to play a role in our paper, such as the interaction between regime shifts

and hedging demands when an investor frequently (continuously) rebalances her portfolio (see Guidolin

and Timmermann, 2007, 2008a), the role of preferences in which either predictions of conditional moments

higher than mean and variance (see Guidolin and Timmermann, 2008b) or the entire predictive density

for all portfolios/assets enter the portfolio problem, such as in the power utility (constant relative risk

aversion) case (see Guidolin and Timmermann, 2007), the role of transaction costs in potentially reducing

the out-of-sample, realized payoffs from portfolio strategies that exploit the presence of regime shifts (see

Guidolin and Na, 2009). Another interesting issue concerns the existence of estimation errors even within

a Markov switching framework, because we have been computing time-varying MSMVFs conditioning on

both the current regime and MLE parameter estimates whose distribution is ignored. Of course, it would

be possible or even advisable to combine the ideas on regime switching MVFs in this paper with recent

advances in the portfolio management literature concerning the value of resampling and robust estimation,

for instance along the Bayesian lines recently followed by Tu (2010).

A number of other extensions concern instead the structure of the econometric framework to be taken

to the data, in order to exploit its ability to fit and — especially — forecast. For instance, it would seem

interesting to write and estimate multivariate models in which two different (potentially uncorrelated or

even negatively correlated) Markov chains drive the process of stock returns, one state variable to fit

the dynamics of conditional means and another state variable to capture any dynamics in higher order

moments. However, such models will probably imply the need to specify a high number of regimes, for

instance regimes even to consider the simplest possible case. In a similar framework, Dueker and Sola

(2008) have recently explored the possibility that variables (in our case, stock indices) with different

size or economic importance be given a different weight in influencing the inference on the state of the

overall system. Especially in macroeconomic applications (where different countries or states may carry

a rather different importance) this extension may be crucial. A related point (see e.g., Guidolin, 2009,

Henry, 2009) is that some data sets seem to need to more complex Markov chain models in which also

ARCH-type effects follow a regime switching process or in which conditional means are modeled as vector

autoregressive processes that are themselves subject to Markov switching effects (see e.g., Bohl et al., 2009,

Guidolin and Ono, 2006). Finally, a third line of work that has received some attention (see e.g., Ang and

Bekaert, 2002a, 2004, Diebold et al., 1994) has made the transition matrix governing the Markov chain

a function of exogenous variables that would therefore influence the persistence and predicted duration

of different regimes. However, how that may differ (both technically, as Markov switching models with

30



time-varying transition probabilities are notoriously hard to estimate, and in terms of their forecasting

performance, see Foley, 2001) from including the same variables as endogenous in the system by expanding

the multivariate dimension of the model (see e.g., Guidolin and Ono, 2006) remains unclear and worthwhile

of future research.
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Appendix A - The EM Algorithm

The algorithm is dividend in two logical steps, the Expectation and the Maximization steps. Start from

the model written in state-space form (1). For the sake of argument, assume that all the parameters

of the model in Ψ and Σ are known. We separately describe the expectation and maximization steps

and then bring them together. To simplify notations and save space, in what follows we focus only on

MSIAH models, although their extension to the MSMAH class is straightforward, once the expansion of

the number of regimes induced by the “interaction” between  and  is accounted for.

The Expectation step. It is the product of a few smart applications of Bayes’ law that allow to

recursively derive a sequence of filtered probability distributions and then (going backwards) a sequence

of smoothed probability distributions. Starting from a prior

Pr (ξ|=−1) =
X
−1

Pr
¡
ξ|ξ−1

¢
Pr
¡
ξ−1|=−1

¢
the posterior distribution of ξ given = = {=−1y} Pr (ξ|=) is given by

Pr (ξ|=) =
Pr (y|ξ=−1) Pr (ξ|=−1)

Pr (y|=−1)


where Pr (y|=−1) =
P
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P

Pr (y|ξ=−1) Pr (ξ|=−1) is the unconditional likeli-

hood of the current observation given its past. For compactness it can also be expressed as
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³
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´
where ¯ denotes the element by element (Hadamard) product and the ×1 vector η collects the possible
log-likelihood values as a function of the realized state:
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Since the filtered vector ξ̂| also corresponds to the discrete probability distribution of the possible states
perceived on the basis of the information set =, we can re-write

ξ̂| =
η ¯ ξ̂|−1

ι0
³
η ¯ ξ̂|−1

´  (13)

The algorithm is completed by the transition equation that implies that

[ξ+1] = ξ̂+1| = Fξ̂| (14)

Assuming that the initial state probability vector ξ̂1|0 somehow known, (13)-(14) define an iterative algo-
rithm that allows one to generate a sequence of filtered state probability vectors {ξ̂|}=136 Notice that the
filtered probabilities are the product of a limited information technique, since despite the availability of a

sample of size  , each ξ̂| is filtered out of the information set = only, ignoring {y}=+1. However, once
{ξ̂|}=1 has been calculated, Kim’s (1994) smoothing algorithm is then easily implemented to recover the
sequence of smoothed probability distributions {ξ̂|}=1 by iterating the following algorithm backwards,

starting from the filtered (and smoothed) probability distribution ξ̂ | produced by (13)-(14). Observe
that

ξ̂| = Pr (ξ|= ) =
X
+1

Pr
¡
ξ ξ+1|=

¢

=
X
+1

Pr
¡
ξ|ξ+1=

¢
Pr
¡
ξ+1|=

¢
=

X
+1

Pr
¡
ξ|ξ+1= {y}=+1

¢
Pr
¡
ξ+1|=

¢
=

X
+1

Pr
¡
ξ|ξ+1=

¢
Pr
¡{y}=+1|ξ ξ+1=

¢
Pr
¡{y}=+1|ξ+1=

¢ Pr
¡
ξ+1|=

¢
=

X
+1

Pr (ξ|=) Pr
¡
ξ+1|ξ=

¢
Pr
¡
ξ+1|=

¢ Pr
¡
ξ+1|=

¢
since the Markovian structure implies that Pr

¡{y}=+1|ξ ξ+1=

¢
= Pr

¡{y}=+1|ξ+1=

¢
 Hence

ξ̂| can be re-written as

ξ̂| =
³
F0
³
ξ̂+1| ® ξ̂+1|

´´
¯ ξ̂| (15)

where ® denotes element-by-element division and Pr
¡
ξ+1|ξ=

¢
equals by construction the transition

matrix driving the first order Markov chain and therefore F0 in the transition equation. (15) is initialized
by setting  =  − 1 thus obtaining

ξ̂−1| =
³
 0
³
ξ̂ | ® ξ̂ |−1

´´
¯ ξ̂−1|−1

and so forth, proceeding backwards until  = 137

36Alternatively, ̂1|0 might be assumed to correspond to stationary unconditional probability distribution such that ̄ = P̄
37Notice that while ̂ | and ̂−1|−1 will be known from the application of Hamilton’s smoothing algorithm, ̂ |−1 =

F̂−1|−1
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The Maximization step. Call θ the vector collecting the parameters appearing in the measurement

equation and ρ the vector collecting the transition probabilities in P i.e. θ ≡ [ (Ψ) |(Σ)] and

ρ ≡ (P). Write the likelihood function as


¡{y}=1|{ξ}=1θ¢ = X

{}=1

Y
=1

(y|ξ=−1;θ) Pr (ξ|ξ0;ρ) (16)

where Pr (ξ|ξ0;ρ) =
P

0=1
0
Q

=1 −1 and the first summation spans the space defined by

ξ1 ⊗ ξ2 ⊗ ⊗ ξ
for a total of  possible combinations. Then the parameters [θ0 ρ0]0 can be derived by maximization of
(16) subject to the natural constraints:

Pι = ι ξ00ι = 1 (17)

ρ ≥ 0 ξ0 ≥ 0 and Σe is positive definite ∀ = 1 2  (18)

At this point it is common place to assume the “nonnegativity” constraints in (18) are satisfied and to

take the first-order conditions of a Lagrangian that explicitly enforces the adding-up constraints:

∗
¡{y}=1|{ξ}=1θ¢ = ln

⎡⎣ X
{}=1

Y
=1

(y|ξ=−1;θ) Pr (ξ|ξ0;ρ)
⎤⎦− λ01 (Pι − ι)− 2

¡
ξ00ι − 1

¢


(19)

Appendix B - First-order conditions useful in the M-step

Derivation of the logarithm of (19) with respect to θ gives the score function:

∗

θ0
=

1



X
{}=1


Q

=1 (y|ξ=−1;θ)
θ0

Pr (ξ|ξ0;ρ)

=
1



X
{}=1

 ln
hQ

=1 (y|ξ=−1;θ)
i

θ0

Y
=1

(y|ξ=−1;θ) Pr (ξ|ξ0;ρ)

=
X

{}=1

X
=1

 ln (y|ξ=−1;θ)
θ0

Pr (ξ|= ;θρ)

since from the definition of conditional probabilityQ
=1 (y|ξ=−1;θ) Pr (ξ|ξ0;ρ)P

{}=1
Q

=1 (y|ξ=−1;θ) Pr (ξ|ξ0;ρ)
=

Q
=1 (y|ξ=−1;θ) Pr (ξ|ξ0;ρ)


¡{y}=1|{ξ}=1θ¢ = Pr (ξ|= ;θρ) 

Therefore
X
=1

ξ̂| (θρ)
 lnη(θ)

θ0
= 00 (20)

provides the first set of FOCs w.r.t. θ Notice that these conditions involves the smoothed probabilities of

the state vector, {ξ̂|}=1 Furthermore, these are simply smoothed probability-weighted standard FOCs
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(score conditions) in a general MLE problem. For VAR() models, GLS-type, closed form solutions are

available (see Hamilton, 1994).

The FOCs w.r.t. the transition probabilities are determined as follows. Since

 ln

ρ0
=

1



X
{}=1

 Pr (ξ|ξ0;ρ)
ρ0

Y
=1

(y|ξ=−1;θ)

=
1



X
{}=1

 lnPr (ξ|ξ0;ρ)
ρ0

Y
=1

(y|ξ=−1;θ) Pr (ξ|ξ0;ρ)

=
X

{}=1

X
=1

 lnPr (ξ|ξ0;ρ)
ρ0

Pr (ξ|= ;θρ) 

for each component  of ρ this implies:

 ln


=

X
=1

X
−1=e
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which originates the vector expression
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=1

³
ξ̂
(2)

|
´0!

® ρ0

where ξ̂
(2)

| is a 2 vector of (smoothed) probabilities related concerning the state ξ−1 ⊗ ξ Since the 
adding-up restrictions in Pι = ι can equivalently be written as (ι0 ⊗ I)ρ = ι it follows that the

FOCs can be written as
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In other words,
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so that λ1 =
³P

=1 ξ̂|
´
results. Finally, we have

ρ =

Ã
X
=1
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ξ̂
(2)

|
´!

®
Ã
ι ⊗

Ã
X
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ξ̂|

!!
 (21)

which is a highly nonlinear function of smoothed regime probabilities, but that can also be easily evaluated.
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Table 1 
Summary Statistics for International Stock Returns 

Mean St. Dev. Sharpe ratio Median Min. Max. Skewness Kurtosis Jarrque‐Bera LB(12) LB(12)‐squares
Pacific ex‐Japan 1.045** 6.137 0.117 1.055** ‐25.0 20.8 ‐0.326 4.955* 48.30** 14.29 35.63**
Japan 0.171 6.355 ‐0.025 ‐0.208 ‐19.4 24.3 0.272 3.757 9.88** 11.65 42.67**
Europe ex‐UK 0.933** 5.444 0.111 1.293** ‐22.3 15.7 ‐0.653* 4.641 48.40** 13.12 65.20**
United Kingdom 0.763* 4.903 0.089 0.670** ‐19.0 15.1 ‐0.102 4.048 12.97** 8.08 45.51**
North America 0.860** 4.344 0.122 1.300** ‐17.9 10.6 ‐0.645* 4.233 36.21** 10.05 49.33**
** = significant at 1%; * = signifcant at 5%  

 
Table 2 

Model Selection Statistics 

Model (k,p) Log‐likelihood LR Statistic
Davies' approx. 

p‐value
BIC HQ AIC

Number of 
parameters

Number 
of obs.

Saturation 
ratio

Tests

MSIA(1,0) ‐3789.41 __ __ 28.172 28.014 27.908 20 1365 68.3
MSIA(1,1) ‐3759.23 __ __ 28.569 28.212 27.972 45 1360 30.2

MSI(2,0) ‐3766.82 45.195 0.000 28.151 27.937 27.794 27 1365 50.6
MSIH(2,0) ‐3702.17 174.495 0.000 27.985 27.653 27.430 42 1365 32.5 H: 129.30 (0.000)
MSH(2,0) ‐3690.65 177.537 0.000 27.971 27.678 27.482 37 1365 36.9 I: 23.04 (0.000)
MSIA(2,1) ‐3722.71 73.034 0.001 28.960 28.349 27.939 77 1360 17.7 VAR: 88.21 (0.001)
MSIAH(2,1) ‐3655.23 208.011 0.000 28.773 28.043 27.553 92 1360 14.8 H: 134.98 (0.000)

VAR: 93.88 (0.000)
MSI(3,0) ‐3756.87 65.097 0.000 28.263 27.978 27.787 36 1365 37.9
MSIH(3,0) ‐3650.64 277.544 0.000 28.101 27.578 27.228 66 1365 20.7 H: 212.45 (0.000)
MSIA(3,1) ‐3679.42 159.626 0.000 29.342 28.462 27.871 111 1360 12.3 VAR: 154.90 (0.000)
MSIAH(3,1) ‐3601.06 316.346 0.000 29.384 28.266 27.515 141 1360 9.6 H: 156.72 (0.000)

VAR: 99.17 (0.032)
MSI(4,0) ‐3741.76 95.301 0.000 28.378 28.006 27.757 47 1365 29.0
MSIH(4,0) ‐3637.06 304.704 0.000 28.536 27.807 27.319 92 1365 14.8 H: 209.40 (0.000)
MSIA(4.1) ‐3615.01 288.436 0.000 29.611 28.444 27.662 147 1360 9.3 VAR: 253.50 (0.000)
MSIAH(4,1) 192 1365 7.1

Four‐state models

No converge achieved (too many parameters)

Single‐state models

Two‐state models

Three‐state models
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Table 3 

Estimates of Two-State Markov Switching Model 

Pacific EX JP Japan
Europe EX 

UK
UK North America

1. Mean returns 1.045** 0.171 0.933** 0.763* 0.860**
2. Correlations/Volatilities
Pacific EX JP 6.137
JP 0.480** 6.335
Europe EX UK 0.690** 0.512** 5.444
UK 0.695** 0.522** 0.816** 4.903
North America 0.685** 0.429** 0.759** 0.729** 4.344

Pacific EX JP JP
Europe EX 

UK
UK North America

1. Mean returns
Bear/High Correlation State 1.145* 0.104 0.606 0.550 0.419
Bull/Low Correlation State 0.943 0.240 1.265** 0.979* 1.308**
2. Correlations/Volatilities
Bear/High Correlation State
Pacific EX JP 5.882
JP 0.633** 4.904
Europe EX UK 0.865** 0.607** 5.950
UK 0.868** 0.610** 0.938** 4.834
North America 0.838** 0.573** 0.898** 0.853** 4.528
Bull/Low Correlation State
Pacific EX JP 6.362
JP 0.399* 7.524
Europe EX UK 0.508** 0.483** 4.832
UK 0.540** 0.482** 0.677** 4.944
North America 0.542** 0.351* 0.566** 0.595** 4.084
3. Transition probabilities
Bear/High Correlation State
Bull/Low Correlation State

Bear Bull Bear Bull
Ergodic Probs 0.557 0.443 Avg. dur. 36.34 28.91
** = significant at 1% size or lower; * = significant at 5% size.

Panel A ‐ SINGLE STATE MODEL 

Panel B ‐ TWO‐STATE MODEL

Bear/High Correlation State Bull/Low Correlation State

Panel C ‐ MARKOV CHAIN PROPERTIES, TWO‐STATE MODEL

0.973**
0.035

0.027
0.965**
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Table 4 

Summary Statistics for Recursive, Optimal Mean-Variance Portfolio Weights (Sample Period: 1998:01 – 2010:09) 

5% Lower 5% Upper 5% Lower 5% Upper 5% Lower 5% Upper

Pacific ex‐Japan 0.006 0.000 0.023 0.000 0.002 0.006 0.000 0.021 0.000 0.000 0.008 0.000 0.031 0.000 0.000
Japan 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Europe ex‐UK 0.064 0.000 0.105 0.000 0.221 0.066 0.000 0.104 0.000 0.242 0.072 0.000 0.126 0.000 0.292
United Kingdom 0.055 0.000 0.089 0.000 0.203 0.049 0.000 0.080 0.000 0.185 0.029 0.000 0.063 0.000 0.132
North America 0.874 0.942 0.150 0.621 1.000 0.878 0.959 0.151 0.628 1.000 0.891 1.000 0.167 0.602 1.000

Pacific ex‐Japan 0.233 0.040 0.311 0.000 0.662 0.329 0.315 0.309 0.000 0.786 0.381 0.304 0.376 0.000 0.957
Japan 0.181 0.000 0.298 0.000 0.730 0.167 0.000 0.254 0.000 0.556 0.206 0.000 0.324 0.000 0.812
Europe ex‐UK 0.036 0.000 0.168 0.000 0.000 0.013 0.000 0.099 0.000 0.000 0.012 0.000 0.102 0.000 0.000
United Kingdom 0.180 0.000 0.311 0.000 0.759 0.141 0.000 0.283 0.000 0.649 0.130 0.000 0.290 0.000 0.687
North America 0.370 0.352 0.343 0.000 0.897 0.350 0.334 0.306 0.000 0.739 0.271 0.225 0.312 0.000 0.761

Pacific ex‐Japan ‐0.362 ‐0.451 0.406 ‐0.832 0.200 ‐0.376 ‐0.495 0.422 ‐0.868 0.217 ‐0.534 ‐0.717 0.591 ‐1.229 0.289
Japan ‐1.089 ‐0.990 0.253 ‐1.475 ‐0.857 ‐1.130 ‐1.026 0.261 ‐1.530 ‐0.895 ‐1.651 ‐1.503 0.370 ‐2.250 ‐1.319
Europe ex‐UK 0.474 0.375 0.406 0.042 1.175 0.503 0.418 0.424 0.043 1.207 0.692 0.580 0.590 0.036 1.669
United Kingdom 0.602 0.646 0.262 0.303 0.891 0.605 0.633 0.258 0.271 0.853 0.782 0.823 0.353 0.312 1.106
North America 1.374 1.443 0.424 0.735 1.869 1.398 1.481 0.440 0.722 1.918 1.712 1.842 0.614 0.759 2.436

Pacific ex‐Japan 0.733 0.794 1.817 ‐1.334 3.165 1.040 1.157 1.683 ‐1.345 3.281 1.245 1.698 1.963 ‐2.379 3.352
Japan 0.476 0.168 1.373 ‐0.531 1.891 0.604 0.521 0.690 ‐0.079 1.296 0.786 0.557 1.010 ‐0.268 1.865
Europe ex‐UK ‐0.292 ‐0.369 1.972 ‐2.736 1.831 ‐2.628 ‐2.693 1.908 ‐4.983 ‐0.031 ‐3.281 ‐4.352 2.141 ‐4.983 0.080
United Kingdom ‐0.910 ‐1.848 2.547 ‐3.683 2.728 ‐0.292 ‐0.887 2.561 ‐3.249 3.847 ‐1.086 ‐1.053 3.066 ‐4.863 2.918
North America 0.994 1.469 2.165 ‐2.353 3.057 2.277 2.489 1.643 ‐0.160 4.484 3.336 3.629 2.274 0.127 5.854

T=1 month T=12 months

Mean Median Std. Dev.
10% Confidence bands

Two‐State Model, Mean‐Variance Preferences

Single‐State Model, Mean‐Variance Preferences

Two‐State Model, Mean‐Variance Preferences

                                    No short sales

                                    Short sales admitted

10% Confidence bands
Mean Median Std. Dev.

Single‐State Model, Mean‐Variance Preferences

T=120 months

Mean Median Std. Dev.
10% Confidence bands
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Table 5 

Realized, Recursive Out-of-Sample Performance of Alternative Portfolio Strategies 

5% Lower 5% Upper 5% Lower 5% Upper 5% Lower 5% Upper 5% Lower 5% Upper

Single‐State Model (No Predictability) 6.91 ‐2.27 15.92 16.61 14.44 18.69 0.052 ‐0.105 0.221 0.051 ‐0.104 0.220
Two‐State MVF Model 8.03 ‐2.79 18.82 17.81 15.40 20.22 0.065 ‐0.126 0.271 0.066 ‐0.126 0.270
Equally‐Weighted (1/N) 8.26 ‐1.23 17.44 16.99 14.62 19.29 0.073 ‐0.085 0.243 0.073 ‐0.085 0.242
Value‐Weighted (International CAPM) 7.54 ‐1.61 16.61 16.62 14.31 18.80 0.063 ‐0.093 0.233 0.062 ‐0.093 0.232

Single‐State Model (No Predictability) 16.10 ‐4.38 36.98 37.92 31.73 43.73 0.093 ‐0.068 0.242 0.092 ‐0.068 0.241
Two‐State MVF Model 16.25 ‐13.98 47.79 55.58 43.58 66.82 0.064 ‐0.105 0.210 0.064 ‐0.105 0.209
Equally‐Weighted (1/N) 8.26 ‐1.23 17.44 16.99 14.62 19.29 0.073 ‐0.085 0.243 0.073 ‐0.085 0.242
Value‐Weighted (International CAPM) 7.54 ‐1.61 16.61 16.62 14.31 18.80 0.063 ‐0.093 0.233 0.062 ‐0.093 0.232

Single‐State Model (No Predictability) 5.99 2.56 9.33 20.68 18.23 22.86 0.099 ‐0.065 0.275 0.099 ‐0.065 0.274
Two‐State MVF Model 10.57 6.07 15.02 22.60 20.08 24.90 0.291 0.07 0.569 0.307 0.070 0.566

Equally‐Weighted (1/N) 9.45 5.73 13.23 22.91 20.34 25.24 0.240 0.077 0.424 0.239 0.077 0.422

Value‐Weighted (International CAPM) 8.52 4.82 12.13 22.33 19.92 24.43 0.205 0.038 0.384 0.204 0.038 0.382

Single‐State Model (No Predictability) ‐11.94 ‐17.77 ‐6.03 35.48 31.76 38.84 ‐0.448 ‐0.648 ‐0.273 ‐0.445 ‐0.645 ‐0.271

Two‐State MVF Model 3.19 ‐4.27 11.22 46.75 37.06 56.37 ‐0.016 ‐0.201 0.141 ‐0.016 ‐0.200 0.141
Equally‐Weighted (1/N) 9.45 5.73 13.23 22.91 20.34 25.24 0.240 0.077 0.424 0.239 0.077 0.422

Value‐Weighted (International CAPM) 8.52 4.82 12.13 22.33 19.92 24.43 0.205 0.038 0.384 0.204 0.038 0.382

Single‐State Model (No Predictability) 3.45 2.04 4.94 13.47 10.56 15.23 ‐0.117 ‐0.547 0.221 ‐0.114 ‐0.535 0.216
Two‐State MVF Model 6.04 3.98 8.33 18.80 12.12 23.99 0.376 ‐0.110 0.777 0.369 ‐0.107 0.758
Equally‐Weighted (1/N) 7.92 6.33 9.64 15.49 11.92 17.91 0.812 0.580 1.105 0.793 0.567 1.080

Value‐Weighted (International CAPM) 6.34 4.85 7.94 14.58 11.17 16.83 0.520 0.244 0.812 0.508 0.238 0.793

Single‐State Model (No Predictability) ‐9.53 ‐9.92 ‐8.92 4.94 0.51 7.96 ‐8.62 ‐85.83 ‐5.11 ‐8.42 ‐83.86 ‐4.99

Two‐State MVF Model 3.60 ‐9.71 27.62 69.94 14.23 84.12 ‐0.018 ‐0.607 0.214 ‐0.017 ‐0.548 0.209
Equally‐Weighted (1/N) 7.92 6.33 9.64 15.49 11.92 17.91 0.812 0.580 1.105 0.793 0.567 1.080

Value‐Weighted (International CAPM) 6.34 4.85 7.94 14.58 11.17 16.83 0.520 0.244 0.812 0.508 0.238 0.793

No Short Sales

Short Sales Admitted

                                                      1‐month Horizon (152 obs.)

                                                      12‐month Horizon (141 obs.)
No Short Sales

Short Sales Admitted

                                                        120‐month Horizon (33 obs.)

No Short Sales

Short Sales Admitted

Sharpe 
ratio

Sharpe ratio Corrected 
Sharpe r.

Corrected Sharpe r.
Mean

Mean
Volatility

Volatility
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Table 6 

Realized, Recursive Out-of-Sample Performance of Alternative Portfolio Strategies: 
Other Performance Measures 

5% Lower 5% Upper 5% Lower 5% Upper

Single‐State Model (No Predictability) 9.55 3.55 15.33 ‐0.57 3.31 0.069 ‐0.143 0.305
Two‐State MVF Model 3.16 ‐2.75 9.00 ‐0.42 4.00 0.089 ‐0.165 0.385
Equally‐Weighted (1/N) ‐0.14 ‐0.29 ‐0.02 ‐0.23 3.89 0.100 ‐0.116 0.356
Value‐Weighted (International CAPM) 2.52 0.74 4.18 ‐0.14 2.77 0.085 ‐0.128 0.336

Single‐State Model (No Predictability) 35.64 0.25 70.85 0.84 4.49 0.164 ‐0.110 0.478
Two‐State MVF Model ‐9.15 ‐67.47 43.19 1.13 7.83 0.125 ‐0.177 0.486
Equally‐Weighted (1/N) ‐0.14 ‐0.29 ‐0.02 ‐0.23 3.89 0.100 ‐0.116 0.356
Value‐Weighted (International CAPM) 2.52 0.74 4.18 ‐0.14 2.77 0.085 ‐0.128 0.336

Single‐State Model (No Predictability) 10.72 7.57 14.33 ‐0.37 2.45 0.167 ‐0.113 0.410
Two‐State MVF Model 6.18 1.48 11.17 ‐0.46 2.76 0.464 0.107 0.833

Equally‐Weighted (1/N) 0.09 ‐0.01 0.20 ‐0.01 2.85 0.419 0.140 0.675

Value‐Weighted (International CAPM) 2.25 0.91 3.41 ‐0.15 2.28 0.373 0.074 0.628

Single‐State Model (No Predictability) 44.71 23.25 67.79 0.54 2.75 ‐1.011 ‐1.510 ‐0.597
Two‐State MVF Model 0.291 ‐29.35 25.74 1.28 5.89 0.033 ‐0.268 0.357
Equally‐Weighted (1/N) 0.09 ‐0.01 0.20 ‐0.01 2.85 0.419 0.140 0.675

Value‐Weighted (International CAPM) 2.25 0.91 3.41 ‐0.15 2.28 0.373 0.074 0.628

Single‐State Model (No Predictability) ‐24.46 ‐32.75 ‐17.26 0.84 2.10 ‐0.404 ‐1.805 0.874
Two‐State MVF Model ‐22.54 ‐61.41 21.88 1.80 6.72 0.884 ‐0.196 1.949
Equally‐Weighted (1/N) 0.08 ‐0.39 0.62 0.54 1.68 2.925 1.746 5.384

Value‐Weighted (International CAPM) ‐7.24 ‐10.80 ‐4.09 1.07 2.78 2.198 0.857 4.538

Single‐State Model (No Predictability) ‐48.77 ‐69.63 ‐37.79 3.51 13.68 ‐16.41 ‐120.78 ‐6.30
Two‐State MVF Model ‐36.21 ‐110.35 ‐16.09 5.12 28.38 ‐0.337 ‐3.438 0.501
Equally‐Weighted (1/N) 0.08 ‐0.39 0.62 0.54 1.68 2.925 1.746 5.384

Value‐Weighted (International CAPM) ‐7.24 ‐10.80 ‐4.09 1.07 2.78 2.198 0.857 4.538

                                                            12‐month Horizon (141 obs.)

                                                            120‐month Horizon (33 obs.)

Sortino ratio

                                                             1‐month Horizon (152 obs.)

Jensen's 
alpha

Jensen's alpha
Skewness Kurtosis

Sortino 
ratio
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Figure 1 

Smoothed (Full-Sample) Probabilities from Two-State Markov Switching Model 
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Figure 2 

Single-State vs. Markov Switching Mean-Variance Frontiers 
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Figure 3 
Recursive Optimal Mean-Variance Optimal Portfolio Weights under Markov Switching 

vs. Single-State Model 
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Figure 3 [continued] 
Recursive Optimal Mean-Variance Optimal Portfolio Weights under Markov Switching 

vs. Single-State Model 
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