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Abstract.  The results of experiments designed to measure the operational phase cosine 

and sine variances of weak states of light disagree with the variances predicted by 

canonical phase formalisms. As these variances are fundamental manifestations of the 

quantum nature of phase, it is important to be able to measure the canonical variances 

also.  A recent suggestion to do so, based on use of a two-component probe, involves the 

difficult preparation of exotic states of light which have not yet been produced.  In this 

paper we show how the variances can be measured with simple coherent state inputs.  

The retrodictive formalism of quantum mechanics provides useful insight into the physics 

involved.
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1.   Introduction 

While there are some differences in various theoretical quantum descriptions of 

the phase of light, a common feature is that there should be some uncertainty relation 

between photon number and phase.  Thus the quantum nature of phase should be 

manifest as an uncertainty, that is as a non-zero variance in the phase probability 

distribution. This uncertainty should be most pronounced for states of light with very 

small photon number variances as must pertain, for example, to states that do not differ 

very much from the vacuum.  By contrast, strong coherent states of light, which 

approximate classical states, should have sharply defined values of phase.  For this 

reason experimental investigations into the quantum nature of the phase of light [1,2] 

have paid particular attention to finding the width of the phase distribution of states of 

light with low mean photon number.  As the variance of the phase angle ϕ itself depends 

critically on the 2π window assigned to its range of values, such experiments are usually 

directed at measuring the phase cosine and sine variances ( cos )Δ ϕ 2  and ( sin )Δ ϕ 2 .  For 

small phase variances one might expect from expanding the classical series that 

( cos )Δ ϕ 2  + ( sin ) ( )Δ Δϕ ϕ2 2≈ .  Simple balanced homodyne techniques, sometimes 

referred to as phase measurements, can be used to obtain a distribution of a suitably 

defined operational, or measured, sine and cosine of phase [3].  For states with a small 

enough phase variance, this distribution can give a very good approximation to the 

canonical phase distribution [4] where the canonical phase is defined as the complement 

of the photon number operator and can be described mathematically by the formalism in 

[5].  For weak fields in the quantum regime, however, which by necessity have broader 
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phase distributions, significant divergences occur between the canonical and operational 

phase distributions.  This is also true for the operational phase defined and measured by 

Noh et al. [2] whose distribution width for coherent states has a maximum divergence 

from that of the canonical distribution for mean photon numbers around unity.  More 

recently other techniques have also been suggested that focus on measuring directly the 

phase properties of weak fields.  These include projection synthesis [6] for measuring the 

canonical phase distribution and a two-component probe technique [7] for measuring the 

canonical phase cosine or sine variance. These, however, rely on engineering specifically 

tailored probe states that, although possible in principle, will be very difficult in practice 

and have so far not been produced.  Even producing the two-component probe of  [7] by 

truncating a coherent state with a quantum scissors device [8] is by no means trivial.  

Thus on one hand there are techniques that use easily prepared states but which do not 

measure the canonical phase variances and on the other there are techniques that measure 

canonical phase variances but rely on exotic quantum states.  

In this paper we examine the possibility of measuring the canonical phase cosine 

and sine variances of optical fields, with a particular interest in weak fields,  by using 

input states which are easily produced in the laboratory, that is, coherent states. We find 

that, even though the two-component probe states needed for the technique of  [7] are 

effectively not available at present, it is not difficult to use a retrodictive two-component 

probe state for our purposes.  This is a state which, in the less usual retrodictive 

formalism of quantum mechanics [9], is assigned on the basis of the output of a 

measurement and which evolves backwards in time from the measurement event. 
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2.  Mean of the phase cosine  

By using the hermitian phase operator formalism of [5], in which the operators 

cos $ϕ  and sin $ϕ  commute, we can show that, for a physical state c c nn= ∑ , where 

n are photon number states, 

 

cos $ . .*ϕ = +
⎛
⎝
⎜

⎞
⎠
⎟+∑1

2 1c c c cn n
n

      (1) 

sin $ . .*ϕ = −
⎛
⎝
⎜

⎞
⎠
⎟+∑i c c c cn n

n2 1       (2) 

and 

cos $ [ cos( $ ) ]2 1
2 1 2ϕ ϕ= +        (3) 

where 

cos( $ ) . .*2 1
2 2ϕ = +
⎛
⎝
⎜

⎞
⎠
⎟+∑ c c c cn n

n

      (4) 

 

The formalism of [5] involves first finding the expectation values in a finite dimensional 

Hilbert space and then finding the limit of these as the dimensionality of the space is 

allowed to tend to infinity.  A physical state is one with finite energy moments.  An 

alternative method is to use the phase operators acting on Vaccaro’s space [10].  For a 

physical mixed state, we can find the mean values from the trace of the product of the 

density operator $ρ c  and the relevant function of the phase operator.  We obtain 
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cos $ . .,ϕ ρ= +
⎛
⎝
⎜

⎞
⎠
⎟+∑1

2 1n n
c

n

c c       (5) 

sin $ . .,ϕ ρ= −
⎛
⎝
⎜

⎞
⎠
⎟+∑i c cn n

c

n2 1       (6) 

cos( $ ) . .,2 1
2 2ϕ ρ= +
⎛
⎝
⎜

⎞
⎠
⎟+∑ n n

c

n

c c       (7) 

 

The proposed measurement technique uses the beam-splitter arrangement shown 

in figure 1. A controllable reference field in a coherent state α a  = a nn a∑ is in the 

input mode a of 50/50 symmetric beam splitter BS1.  The state c c  or $ρ c  to be measured 

is in the input mode c of beam splitter BS2 and a vacuum state 0 b  is in input mode b of 

BS2.  For now we do not specify the transmission and reflection coefficients of BS2. 

Photon detectors Db , Da  and Dc  are in the output mode b and output mode a of BS1 and 

in the output mode c of BS2.  We shall assume for now that these detectors can count 

photons with perfect efficiency, no dark counts and negligible dead time.  We return to 

this assumption later. 

In the usual predictive formalism of quantum mechanics a density operator $ρ  is 

assigned to describe the (predictive) state of the field between preparation and 

measurement based on the outcome of the preparation apparatus.  This state evolves 

forward in time until the field interacts with the measurement apparatus.  The 

measurement apparatus is described in general by a probability operator measure (POM) 

with elements corresponding to possible outcomes of the measurement [11].  The 

probability of a measurement outcome is given by the projection of the evolved 
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predictive state onto the associated POM element, that is, by the trace of the product of 

the density operator and the POM element.  To avoid unnecessary complications, we 

assume the predictive states we assign to the input fields of the device in figure 1 

describe the fields at their entry to the beam splitters.  The free evolution in the 

intermediate mode b between the beam splitters only changes the phase of the field in this 

mode so, by choosing the distance between beam splitters to be an integer number of 

wavelengths, we can ignore this evolution.  In practice, even if this is not the case such a 

phase shift can be compensated by adjusting the phase of α a .  Finally we can ignore the 

free evolution in all the output modes, as these do not affect the photocount probabilities.  

We denote the (forward time) unitary operator for the actions of beam splitters BS2 and 

BS1 as respectively $R2 , which acts on states in modes c and b, and $R1  which acts on 

states in modes a and b. 

The initial combined density operator for the three input fields is 

 

$ $ρ ρ α α= ⊗ ⊗c
b b a a0 0       (8) 

 

and the POM element for the detection of N , nb and na  photons in output modes c, b and 

a respectively is 

 

$ ( , , ) $ $ $Π Π Π ΠN n nb a c b a= ⊗ ⊗      

        = ⊗ ⊗N N n n n nc c b b b b a a a a     (9) 
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The probability for the detection of N, nb and na  photons in output modes c, b 

and a respectively is then 

 

P N n n R R R R N n nb a abc b a( , , ) [ $ $ $ $ $ $ ( , , )]† †= Tr 1 2 2 1ρ Π     (10) 

 

Substituting from (8) and (9) and using the cyclic property of the trace we can rewrite 

this as 

 

P N n n N n nb a c
c

b a( , , ) [ $ $ ( , , )]= Tr retrρ Π   .     (11) 

 

Here $ ( , , )Π retr N n nb a  is the retrodictive POM element: 

 

$ ( , , ) $ $ $ $ $ $ $† †Π Π Π Πretr N n n R R R Rb a b c a b a a b= ⊗ ⊗0 02 1 1 2α α  .    

  = r rc c        (12) 

 

where, from (9),   

 

r R N R n nc b c a b b a a
= 0 2 1

$ $† †α  .      (13) 

 

The state r c  in (13) can be interpreted as an unnormalised retrodictive state of 

the field in input mode c associated with the measurement outcome of N, nb and na  

photons being detected. In the usual predictive formalism the state of a system between 
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preparation and measurement is assigned on the basis of the preparation outcome.  In the 

retrodictive formalism this state is assigned on the basis of the outcome of the 

measurement, specifically $ $ / $ρ retr Tr= Π Πj j where $Π j is the POM element for the 

particular outcome j [12], and then evolves backwards in time from the measurement 

event to the preparation event.  In our case the retrodictive fields associated with the 

measurement outcomes of the photon detectors are simple number state projectors which 

are already normalised. We can see from (13) that the retrodictive fields nb b
and 

na a
associated with the measurements in the output mode b and output mode a evolve 

backwards in time and are entangled by means of beam splitter BS1.  This entangled state 

is projected onto α a  to yield an unnormalised retrodictive probe state 

 

q R n nb a b b a a
= α $ †

1        (14) 

 

in the intermediate mode b, that is, between the two beam splitters.  As we shall see later 

this is a retrodictive two-component state which performs a similar function to the 

predictive two-component probe of [7].  The state q b  is entangled by beam splitter BS2 

with the retrodictive state from the measurement outcome of the detector Dc .  This state 

in turn is projected onto the vacuum in input mode b to give the retrodictive state r c  for 

projection onto the state to be measured.   We remark here that if the state c c  is a 

coherent state then in the predictive picture there is no entanglement at all because all 

input states are coherent. The entanglement mentioned above occurs in retrodiction.  In 

addition to giving new insight, working in terms of the retrodictive probe state (13) has 
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practical calculational advantages in our case in that the fields that evolve backwards 

originate from single photon number states associated with the measurement outcomes. 

The simplest possible retrodictive probe is associated with n na b= = 0 .  In this 

case we find that the retrodictive probe state q b is just the vacuum and so r c  is just 

proportional to N c .  Thus only the diagonal matrix elements of $ρ c  are obtainable from 

the measured probabilities.  The next simplest retrodictive probes are associated with the 

measurement result na = 0 , nb = 1 and na = 1 , nb = 0 .  For a symmetric beam splitter 

with transmission coefficient cosθ  we have the relations (for a general description of the 

beam splitter see, for example, [13]) 

 

$ $ $ $ cos $ sin† † † †R a R a ib= −θ θ        (15)

 $ $ $ $ cos $ sin† † † †R b R b ia= −θ θ        (16) 

$ †R b a b a0 0 0 0=         (17) 

 
with $ †a , $ †b  and $ †c  the creation operators for modes a, b and c respectively.  For a  

50/50 beam splitter θ π= / 4 .  Using this value for BS1we easily find , by writing 

1 0b bb= $† , the unnormalised retrodictive probe state for na = 0 , nb = 1 to be 

 

q a iab o b b= −∗ ∗( ) /1 0 21    .      (18) 

 

This two-component probe can be used to obtain information about the off-

diagonal matrix elements of $ρ c  as follows.  Substituting into (13) allows us to find r c  
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by writing N c Nc
N

c= $ / !† 0  and using (15) and (16) with $ †c  in place of $ †a .  We 

find eventually 

 

r i a N N a Nc
N

c c= − + + +∗ ∗(cos )[ (sin ) ] /θ θ1 01 1 2  ,  (19) 

 

which allows us to find the retrodictive POM element from (12) and hence, from (11), the 

measurable probability 

 

P N( , , )1 0 = ( cos )[| | (sin )( )| |, ,
1
2

2
1

2 2
0

2
1 11N

N N
c

N N
ca N aθ ρ θ ρ+ + + +    

   + + +∗
+( sin . .)],a a N c cN N

c
0 1 11ρ θ    (20) 

 

For now we do not specify the value of θ  for BS2. 

Similarly we find the probability for na = 1 , nb = 0 and N counts in detector Dc to 

be 

 

P N( , , )0 1 = ( cos )[| | (sin )( )| |, ,
1
2

2
1

2 2
0

2
1 11N

N N
c

N N
ca N aθ ρ θ ρ+ + + +    

   − + +∗
+( sin . . )],a a N c cN N

c
0 1 11ρ θ     (21) 

 

For the first experiment we choose the phase of the coherent reference state α a  

so that an  are all real and positive. From (20), (21) and (5) an expression for the mean of 

the phase cosine in terms of the measurable probabilities can then be written as 
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cos $
( , , ) ( , , )

(cos )| | sin
ϕ

θ θ
=

−
+∑ P N P N

a a NN
N

1 1
2

0 1

1 0 0 1
2 1

     (22) 

 

where the subscript on the probability refers to the first experiment. 

 

 

3.  Variance of the phase cosine and sine 

The next simplest possible retrodictive probe originates from the measurement 

event n na b= = 1. Again for the 50/50 beam splitter BS1 we have θ π= / 4 .  Writing 

1 0b bb= $†  and 1 0a aa= $ †  we obtain from (15), (16) and (17), the two-component 

retrodictive probe state  

 

q i a ab o b b= − +∗ ∗( ) /2 0 22       (23) 

 

leading to 

 

[ ]r i a N a N N Nc
N

c c= − − + + +∗ ∗(cos ) (sin ) ( )( ) / /θ θ2 0
2 1 2 2 2 2  . (24) 

 

From (11) and (12), this gives the probability 

 

P N( , , )11 = ( cos )[| | (sin )( )( )| |, ,
1
2

2
2

2 1
2

4
0

2
2 21 2N

N N
c

N N
ca N N aθ ρ θ ρ+ + + + +  

          − + + +∗
+( ( )( ) / sin . . )],a a N N c cN N

c
0 2 2

21 2 2ρ θ  .  (25) 
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To allow the experiment with this probe to be conducted simultaneously with the 

experiment to find cos $ϕ , we take a0 and a2 to be real and positive and find 

P N1 11( , , ) by simply replacing a a0 2
∗  in (25) by | |a a0 2 . 

After measuring the probabilities P N1 1 0( , , ) , P N1 0 1( , , ) and P N1 11( , , )  the 

experiment is repeated with a phase shift of π / 2 in the reference state α a , which has 

the effect of changing an  to a inn exp( / )π 2 .  Thus now a a0 0= | | , a i a1 1= | | , and 

a a2 2= −| |  in (20), (21) and (25), yielding P N2 1 0( , , ) , P N2 0 1( , , )  and P N2 11( , , ) .  From (6) 

we can then obtain the mean phase sine from the measured results as 

 

sin $
( , , ) ( , , )

(cos )| | sin
ϕ

θ θ
=

−
+∑ P N P N

a a NN
N

2 2
2

0 1

1 0 0 1
2 1

 .    (26) 

 

We also find from (7) that 

 

cos( $ )
( , , ) ( , , )

| | ( )( ) / cos sin
2

11 11
2 1 2 2

2 1

0 2
2 2ϕ
θ θ

=
−

+ +∑ P N P N
a a N N N

n

 .  (27) 

 

After these values are obtained from the measured probabilities, the mean square 

phase cosine can be found from (3) and finally the phase cosine variance calculated as 

cos $ cos $2 2ϕ ϕ− .   Further, we can also write from the phase formalism of [5] 
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sin $ [ cos( $ ) ]2 1
2 1 2ϕ ϕ= −        (28) 

 

which allows us also to find the phase sine variance from the measured probabilities. 

 

4.  Discussion 

We have already assigned a value to the phase of the reference state α a but still 

have freedom to choose its mean photon number α 2 .  To avoid quotients of very small 

numbers, it is worth maximising the denominator, and hence the numerator, in (22) and 

(26).  Thus we should choose a reference state to maximise a a0 1  and for (25) we should 

maximise a a0 2 .  The former and latter are maximised for mean photon numbers of 0.5 

and 1 respectively.  The experiment could in principle be run for both these values but in 

practice it would be simpler just use a compromise value between 0.5 and 1. 

We have yet to choose the reflection to transmission ratio of the beam splitter 

BS2.  Again it is useful to choose a ratio which maximises the denominators of the terms 

in (22).  The optimum value of sinθ for each term is ( )1 2 1
2+ −N .  For (27) the optimum 

value of sinθ for each term is ( )1 1
2+ −N .  If necessary the experiment could be repeated 

for different values of N but, given we are mainly interested in weak fields, the spread in 

values of N should not be huge.  Thus a compromise value of aroundsin ( )θ ≈ + < > −1 1
2n  

should be adequate for determining both (22) and (27), where < >n  is the mean photon 

number of the field to be measured. Thus for fields with a mean photon number around 

unity a 50/50 beam splitter would be quite suitable.  For stronger fields an increase in the 

transmission of BS2 would be desirable.   
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Once we have measured cos $ϕ  and sin $ϕ  we can easily find exp( $ )iϕ  which, 

for a pure state c c nn= ∑ , is just c cn n
∗

+1 .  Then, if the state to be measured is a pure 

state with no gaps in the photon number distribution, we can use these results to 

reconstruct the complete state, as shown in [7].  If there are gaps then, provided these 

only involve the vanishing of a single number state coefficient, the complete state could 

still be reconstructed using a knowledge of exp( $ )i2ϕ  to bridge the gaps [7].  This 

would require an additional measurement of sin( $ )2ϕ  which we could obtain by 

repeating the measurement of cos( $ )2ϕ with a phase shift of π / 4  applied to the 

measured field. 

The detection probabilities used above are those that would be obtained by perfect 

detectors.  Practical photodetectors suffer from non-unit efficiencies that reduce the 

number of counts, the presence of dark counts and a non-zero dead time following a 

count during which no other counts are registered.  Using weak fields, in which we are 

particularly interested, and sufficiently long gating times reduces the effect of the dead 

time.  Other techniques can also be used for this purpose [14].  For known efficiency and 

dark count rate the ideal photocount probabilities can be found from the statistics of the 

experiment.  The probability that ideal detectors would have detected N, nb and na  

photons in output modes c, b and a respectively is 

 

P N n n P M m m p N M p n m p n mb a b a b b a a
M m mb c

( , , ) ( , , ) ( | ) ( | ) ( | )
, ,

= ∑   (29) 
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where M mb,  and ma  are the actual counts in the detectors and p N M( | ) , for example, is 

the probability that an ideal detector would have counted N photons if the actual detector 

counted M photons.  An expression for p N M( | )  for non-unit efficiency can be derived 

using Bernouilli transforms as in, for example, [15-17].  Allowance for dark counts can 

also be incorporated using the techniques, for example, in [8,17]. 

 

5.  Conclusion 

The measurement procedure described here can be used for the complete 

reconstruction of reproducible pure states of light which have no gaps in their number 

state distributions.  For a mixed state the diagonal, nearest off-diagonal and the next to 

nearest off-diagonal matrix elements can be measured.  These determine the mean sine 

and cosine of the phase as well as the mean square of the sine and cosine, from which the 

variance of the phase sine and cosine can be found.   

The above quantities can also be obtained by means of a two-component probe 

field technique suggested in [7].  There are very important differences however.  In [7], 

where states are assigned to the probe fields according to the usual predictive quantum 

formalism, the required probe states are, as acknowledged in that paper, very difficult to 

prepare.  Indeed, to our knowledge, such two-component states have yet to be produced.  

The preparation method suggested for [7] was optical truncation using quantum scissors 

[8], so the measurement would require three beam splitters in all, with separate 

experiments being run with each different probe.  More seriously, the preparation of the 

probe in a one-photon and vacuum superposition in [7] requires the injection of a single 
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photon state into one input port and the probe in a two-photon and vacuum superposition 

requires the simultaneous injection of a single photon into two input ports.   

In contrast to the technique suggested in [7], the method proposed here has real 

practical advantages.  Only two beam splitters are used and, apart from the state to be 

measured, the only states injected into other input ports are vacuum and coherent states.  

These are not only considerably easier to prepare, their coherence lengths can allow 

longer gating times, reducing the effect of dead times.  The retrodictive one-photon states 

needed to construct the retrodictive probe originate from photon detection events and are 

thus more readily available than their predictive counterparts which originate from 

preparation events.  Further, because the retrodictive probe states are produced by the 

detection events, all three probe states, including the retrodictive vacuum state used for 

measuring the diagonal density matrix elements, are produced in the one experiment.  

There is no need to run separate experiments for different probe states. 

In addition to the improved experimental practicality of the proposal in this paper, 

we feel that it also has importance as an application of the little used but completely 

rigorous retrodictive formalism [9].  Until recently this formalism has been treated as 

having a philosophic interest only but is beginning to find use in quantum communication 

problems [18] where the receiver and measurer of a quantum state must retrodict what 

state was prepared and sent.  The formalism was also helpful in examining, amongst 

other problems, the quantum scissors device for truncation optical states [8].  For the 

present paper we deliberately sought two-component retrodictive probes mirroring the 

probes of [7].  To emphasise that the retrodictive formalism yields the same measurable 

probabilities as the predictive formalism we used the standard predictive picture in (10) 
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to begin our mathematical analysis.   It is interesting, however, to compare our approach 

with the retrodictive analysis of the quantum scissors [8].  In the retrodictive picture, the 

state to be truncated is in one input mode of a beam splitter with detectors in the two 

output modes.  When one of these detects one photon and the other detects zero photons, 

the retrodictive state in the other input mode is a superposition of the vacuum and one 

photon states, so the actual cutting out of the higher photon state components is done at 

this beam splitter.  The other beam splitter of the quantum scissors creates a predictive 

entangled state.  Projection of the retrodictive state onto this state effectively converts the 

retrodictive state into a predictive state with the coefficients of the vacuum and one 

photon components interchanged.  The beam splitter BS1 of the present paper can be 

regarded as the part of the quantum scissors that creates the retrodictive two-component 

state.  As we wish to use this retrodictive probe directly, there is no need to employ 

another beam splitter to convert it to a predictive probe.  This also dispenses with the 

necessity to produce and inject single-photon fields.  

Finally, the insight provided by the retrodictive formalism of quantum mechanics 

has enabled us to propose a relatively simple experiment to measure some of the 

canonical phase properties of light.  There is now less need to define separate operational 

phase properties based on easily performed experiments. 
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Caption to figure 

 

Figure 1.  Apparatus for measuring the phase cosine and sine variance.  The horizontal 

mode is b and the vertical modes are c and a. The state c c  or $ρ c  to be measured 

is in the input mode c of beam splitter BS2 and a vacuum state 0 b  is in input 

mode b of BS2.  A reference field in a coherent state α a  is in the input mode a 

of 50/50 symmetric beam splitter BS1.  Photon detectors Db , Da  and Dc  are in 

the output modes b, a and c. 
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