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a b s t r a c t

Euphotic zone plankton production (P) and respiration (R) were determined from the in vitro flux of

dissolved oxygen during six latitudinal transects of the Atlantic Ocean, as part of the Atlantic Meridional

Transect (AMT) programme. The transects traversed the North and South Atlantic Subtropical Gyres (N

gyre, 18–381N; S gyre, 11–351S) in April–June and September–November 2003–2005. The route and

timing of the cruises enabled the assessment of the seasonal variability of P, R and P/R in the N and S

gyres, and the comparison of the previously unsampled N gyre centre with the more frequently sampled

eastern edge of the gyre. Mean euphotic zone integrated rates (7SE) were P ¼ 63723 (n ¼ 31),

R ¼ 69722 (n ¼ 30) mmol O2 m�2 d�1 in the N gyre; and P ¼ 58726 (n ¼ 30), R ¼ 62724 (n ¼ 30)

mmol O2 m�2 d�1 in the S gyre. Overall, the N gyre was heterotrophic (R4P) and it was more

heterotrophic than the S gyre, but the metabolic balance of both gyres changed with season. Both gyres

were net heterotrophic in autumn, and balanced in spring. This seasonal contrast was most pronounced

for the S gyre, because it was more autotrophic than the N gyre during spring. This may have arisen from

differences in nitrate availability, because spring sampling in the S gyre coincided with periods of deep

mixing to the nitracline, more frequently than spring sampling within the N gyre. Our results indicate

that the N gyre is less heterotrophic than previous estimates suggested, and that there is an apparent

decrease in R from the eastern edge to the centre of the N gyre, possibly indicative of an allochthonous

organic carbon source to the east of the gyre.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The magnitude of plankton production (P) and respiration (R)
are crucial to our understanding of the biogeochemistry of the
oceans, since the balance between them indicates the amount of
biologically fixed carbon available for export to the deep ocean, or
for return to the atmosphere. The oligotrophic gyres are of prime
importance to our understanding of how atmospheric CO2 is
influenced by the ocean carbon cycle (Neuer et al., 2002). They
cover more than 60% of the global ocean, make a significant
contribution to global productivity (Marañón et al., 2003; McClain
et al., 2004), and export up to 50% of global carbon (Emerson et al.,
1997). However, the P/R balance of these vast regions has not been
satisfactorily determined. There is a lack of open ocean P and R

data, with respiration measurements being particularly sparse
(Robinson and Williams, 2005).

Analysis of the limited P and R data that do exist, has led to
differing conclusions. Serret et al. (2002) attributed observations
of a net heterotrophic (PoR) N gyre coincident with a more
balanced S gyre to biogeochemical differences in gyre functioning.
However, although net heterotrophy has been consistently
observed in the subtropical N Atlantic (Duarte et al., 2001; Serret
et al., 2001, 2002; Moran et al., 2004), one Atlantic Ocean
latitudinal study suggested that the S gyre is more heterotrophic
than the N gyre (González et al., 2002). The gyres are not
homogeneous, static systems (Marañón et al., 2003; McClain et al.,
2004), and these different interpretations may simply be due to
different temporal and spatial ranges in the data collected by
Serret et al. (2002) and González et al. (2002). The determination
of how P and R vary temporally and spatially within the gyres
therefore remains an essential prerequisite to accurately assess
the level of autotrophy (P4R) to heterotrophy, and so the implied
biological source or sink of CO2 from the ocean to the atmosphere.

Using measurements collected east of 321W in the N Atlantic,
Duarte et al. (2001) estimated the carbon source required for the
measured net heterotrophy to be as high as 0.5 Pg C yr�1 for the
North Atlantic subtropical gyre-east (NAST-E; Longhurst, 1998).
This dataset could not confirm whether the observed imbalances
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extended throughout the gyre, or if they were only characteristic
of the northeastern region. The analysis of spatial variability is
also pertinent within the N gyre because net heterotrophy in the
region may be supported by allochthonous carbon sources
originating, for example, in the northwest African upwelling, or
from atmospheric inputs of organic matter (Robinson et al., 2002;
Pelegri et al., 2005; Duarte et al., 2006; Serret et al., 2006), which
might lead to a gradient in R from the eastern edge to the centre of
the gyre (Serret et al., 2006). Certainly, previous estimates of net
heterotrophy within the N gyre were too high to be supported by
local, simultaneously produced carbon (Duarte et al., 2001; Serret
et al., 2002). Both P/R and primary production (PP) exhibit
pronounced seasonal variability (González et al., 2002; Marañón
et al., 2003; Teira et al., 2005), and the accumulation of carbon
produced during the more productive seasons may lead to the
decoupling of P and R over large spatial or temporal scales (Serret
et al., 2001). Inter-annual measurements are also important, as
they allow the assessment of both natural temporal variability and
long-term trends (Karl et al., 2001). This is particularly important
in the context of recent evidence which indicates that the gyres
are expanding (McClain et al., 2004), as well as the suggestion that
future climate warming could lead to increases in stratification
and the geographical extent of the gyres within the oceans
(Sarmiento et al., 2004).

Since 1995, the Atlantic Meridional Transect programme (AMT;
www.amt-uk.org) has undertaken biological, chemical and phy-
sical oceanographic research during the annual return passage of
research vessels between the UK and the South Atlantic. The
programme aims to study ocean plankton ecology and biogeo-
chemistry, and their interaction with atmospheric processes. The
present study took place during six latitudinal transects, AMT
12–17, in the years 2003–2005. The cruise transects traversed a
range of ecosystems, but in the present study we will only
consider the N and S Atlantic gyres. Prior to this study, P/R had not
been measured in the N gyre any further west than 321W, and
only two studies had measured P and R in the S gyre (González et
al., 2002; Serret et al., 2002). The bi-annual sampling regime in
both gyres enabled the direct comparison of the gyres at the same
time of the year (during opposite seasons), and also within the
same season (at different times of year). Cruise tracks sampled
both the eastern edge of the N gyre and the previously unsampled
centre of the N gyre (Fig. 1), allowing the comparison of rates in
the two regions.

The aims of this study were (1) to examine the temporal and
spatial variability of P, R and P/R, and to investigate how this might
have affected previous estimates of the metabolic balance of the
gyres, (2) to address the idea that contrasting P/R balances within
the N and S gyres arise from characteristic differences in
ecosystem functioning and (3) to consider our observations in
the context of future global warming.

2. Methods

2.1. Sampling

The six cruises (AMT 12–17) took place between May 2003 and
November 2005 on the RRS James Clark Ross (Falkland Island
tracks) or the RRS Discovery (South Africa tracks). The northbound
cruises (AMT 12, 14 and 16) sampled during boreal spring–
summer, embarking from either Port Stanley (Falkland Islands) or
Cape Town (South Africa) and disembarking in the UK. The
southbound cruises (AMT 13, 15 and 17) started in boreal autumn,
departing from the UK and ending in either the Falkland Islands or
South Africa. All cruise tracks sampled the centre of the South
Atlantic Subtropical Gyre (S gyre, 29 stations) and within the
North Atlantic Subtropical Gyre (N gyre, 31 stations). AMT 12, 14,
16 and 17 (June 2003, May 2004, June 2005, October–November
2005) specifically sampled the centre of the N gyre (211N 351W,
291N 371W, 351N 431W, 281N 391W) whereas the AMT 13 and 15
cruise tracks (September 2003 and 2004) sampled the east of the
N gyre north of the Mauritanian coastal upwelling (Fig. 1).

2.2. Euphotic zone gross production and dark community respiration

Water was collected daily, up to 2 h before dawn, from up to
five depths, with a rosette of 24�20 dm3 ‘Niskin’-type sampling
bottles fitted with a SeaBird 9/11 plus CTD system. Gross
production (P) and dark community respiration (R) were deter-
mined from in vitro changes in dissolved oxygen. Water was
collected directly into opaque polypropylene aspirators from
depths equivalent to 97% (AMT 14–17 only), 55%, 33%, 14% and
1% of surface irradiance. Irradiance levels were determined from
light measurements made the previous day, or by assuming that
the deep fluorescence maximum approximated the depth to
which 1% of surface irradiance reached (Agusti and Duarte, 1999).
The water was siphoned into 125-cm3 borosilicate glass bottles
and 4–5 zero time replicates were fixed within an hour of
collection. Two further sets of 4–6 replicates were incubated for
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Fig. 1. Locations of the rate measurements considered in our analysis from AMT

12–17 (circles) and from previously published studies (crescents) obtained from

www.amt-uk.org/data/respiration.xls. Regions indicated by the large open circles

are the approximate positions of the SeaWiFS data given in Fig. 5.
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24 h in surface water cooled deck incubators or in temperature
controlled water baths at in situ temperatures. One set of
replicates was incubated in the dark, the other set in the
equivalent irradiance to that found at the in situ sampling depth.
This was controlled using polycarbonate screens incorporating
neutral density acrylic of differing transmission (Robinson et al.,
2002). Dissolved oxygen concentrations were measured using an
automated Winkler titration system with a photometric endpoint
(Williams and Jenkinson, 1982). R was calculated as the difference
between the means of dissolved oxygen concentrations for the
zero and the dark replicates, net community production (NCP or
P�R) as the difference between the means for the zero and the
light replicates and P as the difference between the means for the
light and the dark replicates. Due to limitations of sample water
volume and analysis time during AMT 12 and 13, we assumed that
plankton community structure was homogeneous within the
surface 15 m and so incubated a set of replicates sampled from the
55% light depth at 97% of surface irradiance. Flow cytometry data
from AMT 13 confirmed that this was a reasonable assumption,
since picoplankton cell abundance varied by less than 5% between
the two light depths throughout the transect, and nanoplankton
varied by 11%. Incubations commenced at dawn (7�1 h), and
during hours of darkness the incubators were covered with
opaque screens to prevent interference from the ship’s deck lights.

Throughout our analysis, we considered rates of P and R

integrated to the base of the euphotic zone (assumed to be the
depth of 1% surface irradiance) to facilitate comparisons with recent
Atlantic gyre-based studies (Duarte et al., 2001; Serret et al., 2001,
2002; Moran et al., 2004). Integrated rates introduce less bias than
volumetric rates, by compensating for imbalances in the water
column (Williams, 1998), which is particularly important when
comparing rates from different seasons with potentially very
different depth profiles (Williams et al., 2004). Rates were integrated
(linear trapezoidal integration) from the surface to the 1% light depth
(which ranged from 75 to 180 m). Integrations were only performed
on volumetric data when the samples’ fixing temperatures were
within 5 1C of in situ temperature, when data were available at more
than three depths, and when these data included the surface and 1%
light depth (this removed 6% of raw data). The analytical precision
on measurements was calculated from the standard error (SE) on a
particular set of replicates (calculated as SD/On, where SD is the
standard deviation of a set of n replicates), and these standard errors
were integrated to give errors for the integrated rates. Only
volumetric rates that were greater than twice their associated SE
were used, although rates at the 1% light depth were often low in
comparison to associated errors, so all rates from this depth were
included in water column integrations regardless of errors (16% of
rates were o2SE). Negative rates of P and R measured at the 1% light
depth were assumed to be zero for the purposes of integration (10%
of rates at 1% light depth). Data from the S gyre during AMT 12
include rates with particularly low precision (13 out of 15 volumetric
rates o2SE), due to technical limitations. In these cases the median
of replicate samples was used rather than the mean, to reduce the
influence of extreme values (2% of rates).

The mean of the standard errors on the volumetric rates for all
six cruises was 0.15 mmol O2 m�3 day�1 for P (n ¼ 265), and
0.13 mmol O2 m�3 day�1 for R (n ¼ 275). The mean of the standard
errors on the depth integrated rates for all six cruises were
10 mmol O2 m�2 day�1 for P, and 9 mmol O2 m�2 day�1 for R

(n ¼ 60 in each case).
The dataset referred to in this study includes 3 days when we

were unable to carry out light incubations, so R was determined
but not P. One P datapoint had no associated rate of R since this
rate, measured during a time of technical problems, significantly
skewed an otherwise unskewed dataset from normal distribution.
The larger dataset (including the four ‘‘unpaired’’ rates) was used

throughout, except when paired t-tests were used to compare
rates of P and R.

We assumed a PQ of 1 for all carbon/oxygen unit conversions.

2.3. Nitracline and mixed-layer depth

Nitrate concentrations were determined using a Bran+Luebbe
AAIII segmented flow colorimetric autoanalyser (Woodward and
Rees, 2001). The nitracline (Zn) was defined as the depth at which
nitrate concentrations greater than 0.03mM were detected. The
mixed-layer depth (Zm) was defined as the depth at which in situ

temperature changed by more than 0.2 1C m�1. However, in 12 out
of 60 cases Zm could not be determined by this method, and we
used the depth at which in situ temperature changed by more
than 0.1 1C m�1.

2.4. Satellite-derived chlorophyll

Estimates of chlorophyll concentration for six locations on the
cruise track were extracted from NASA-supplied sea-viewing wide
field-of-view sensor (SeaWiFS) monthly composites. Each sample
represents the average chlorophyll during the month over a nominal
9 km�9 km point. The satellite retrievals use the current operational
band switching algorithm, OC4v4 (O’Reilly et al., 1998).

2.5. Gyre boundaries

Sea surface (�7 m) salinity and density were measured
underway throughout the cruises using an FSI thermosalinograph.
Calibration samples for the salinity measurements were taken
daily and analysed using an Autosal 8400B salinometer. Surface
chlorophyll concentrations were measured using a Chelsea MKIII
Aquatracka fluorometer on the CTD. The fluorometer was
calibrated by filtration of 250–500 cm3 of seawater (Whatman
GF/F glassfibre filters; nominal pore size 0.7mm), extraction in
10 cm3 90% acetone (HPLC grade) for 18–20 h (dark, 4 1C) and
measurement of chlorophyll fluorescence with a TD-700 (Turner
Designs) fluorometer (after Welschmeyer, 1994) calibrated with
pure Chl a standards (Sigma, UK).

The gyre boundaries were determined as far as possible from
the position of coincident salinity and density fronts (evident as
abrupt changes in the magnitude of the second derivative of
salinity and density when plotted against latitude). When the
physical changes were not abrupt enough to show a sharp
boundary, we used salinity and density data from previous cruises
at similar times of year to determine where ‘borderline’ stations
might occur. We then used real-time surface chlorophyll con-
centrations to determine whether they were indeed gyre stations.
Data were not included in the gyre dataset when surface
chlorophyll was more than 0.05 mg m�3 higher than the chlor-
ophyll concentration measured at the closest station within the
gyre, or where surface chlorophyll exceeded 0.2 mg m�3. Due to
the different cruise tracks, the latitudinal range of the gyre data
was specific to each cruise. The northern extent of the N gyre data
lay between 35 and 401N (depending on the cruise) and the
southern extent between 141 and 201N, except on AMT 13 and 15
when the gyre boundary was crossed at 26–301N. The northern
extreme of the S gyre lay between 101 and 141S and the southern
extreme between 351 and 381S on AMT 12–15 and between 231
and 271S on AMT 16 and 17.

2.6. Statistical analysis

The significance of the hypothesis that rates of P differed from
associated rates of R was tested using the paired t-test for P versus
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R (Table 1a). For the comparison of datasets with each other (for
example, rates measured within a particular gyre between
seasons or comparing rates measured in the two gyres),
Kolmogrov–Smirnov tests were used to check the normality of
datasets, and they were consequently log transformed. One-way
analysis of variance (ANOVA) was used to test whether there were
significant differences between data measured in the two gyres
and between seasons. The results are given in Table 1b.

2.7. Combined dataset of Atlantic P/R measurements

The scope of our P/R dataset was expanded using previously
measured rates of P and R that fell within the geographical range
of our AMT 12–17 dataset (from the global database at
www.amt-uk.org/data/respiration.xls; Robinson and Williams,
2005). This ‘‘combined dataset’’ is specific to the gyre region
sampled during AMT 12–17 to ensure spatial comparability
between the two datasets. The combined dataset includes data
collected between 181 and 381N, but not stations sampled east of
191W, or between 191 and 241W south of 241N (to avoid stations
within the NW African upwelling).

3. Results

3.1. Sampling times in relation to season

Spring sampling times in the N gyre were relatively late in the
season, ranging from 19 May (�8 weeks after the vernal equinox)

to 21 June (summer equinox). Spring sampling in the S gyre
occurred comparatively early in the season, ranging from 3
October (�1 week after the vernal equinox) to 18 November (�1
month before the summer solstice). Boreal autumn sampling was
relatively early in the season (19 September–4 November)
compared to austral autumn sampling (5 May–3 June, �2–6
weeks before the start of winter).

3.2. Vertical mixing and nutrient stress

Spring sampling in the S gyre generally coincided with periods
of deep mixing (4100 m), in contrast to autumn sampling, when
the mixed layer was usually shallower, and defined by a
pronounced thermocline. The nitracline in the S gyre was deeper
than 100 m at 27 of the 28 stations. However, mixing depths in the
N gyre exhibited much less seasonality and all had some degree of
stratification, although this was generally weaker in spring than
autumn. The nitracline lay below 100 m at 26 of the 30 stations.

Sampling stations were classified according to ‘‘nutrient
stress’’, defined after González et al. (2002) from the relative
depths of the nitracline (Zn) and mixed-layer depth (Zm). Stations
where the nitracline lay within the mixed layer were assumed to
be under low nutrient stress, whereas those stations with a
nitracline lying below the mixed layer (Zn�Zm40), were defined
as under high nutrient stress.

Therefore in the S gyre, nutrient stress was driven by seasonal
changes in water-column stability. Fewer stations were defined as
being under high nutrient stress in the S gyre during the spring
(when the nitracline lay within the deep mixed layer at 8 of the 16
stations) than in autumn (when the nitracline lay below the
thermocline at all 12 stations). In the N gyre, 28 of the 30 stations
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Table 1a
Euphotic-zone integrated rates of P and R (mmol O2 m�2 d�1) from the N and S

gyres.

Range Mean (7SD) Mean spr Mean aut

AMT 12–17

N gyre

P 20–119 63723 65 59

R 35–133 69722 68 74

P/R 0.6–1.4 0.970.2 1.0 0.8

P vs R ** n/s **

S gyre

P 15–107 58726 72 42

R 23–149 62724 67 56

P/R 0.3–1.8 1.070.4 1.2 0.7

P vs R n/s n/s **

Combined dataset

N gyre

P 10–201 69741 84 56

R 35–209 98750 99 77

P/R 0.1–2.1 0.870.1 0.9 0.8

P vs R ** * **

S gyre

P 15–107 58725 68 44

R 7–149 57724 60 64

P/R 0.3–5.2 1.270.2 1.4 0.7

P vs R n/s n/s **

The range and mean (7standard deviation) are shown for rates measured during

this study (AMT 12–17) and for those rates in the combined dataset (AMT12–17

plus data at www.amt-uk.org/data/respiration.xls). Also shown are mean rates for

spring (spr) and autumn (aut) (April–June and September–November in respective

gyres). The significances for the difference between simultaneously measured

rates of P and R within each dataset (paired t-tests) are also given. Significance is

denoted as ** for po0.01 and * for po0.1. Non-significance is denoted as n/s.

Table 1b
Comparisons of P and R between seasons and gyres using one-way analysis of

variance (ANOVA).

Variables tested using ANOVA Significant

difference

ANOVA results

AMT 12–17

P between gyres (all seasons) No F1,59 ¼ 0.91 p ¼ 0.343

R between gyres (all seasons) No F1,60 ¼ 3.30 p ¼ 0.075

P between seasons (both gyres) Yes F1,59 ¼ 9.67 p ¼ 0.003

R between seasons (both gyres) No F1,60 ¼ 0.60 p ¼ 0.441

N gyre only

P between seasons No F1,29 ¼ 0.30 p ¼ 0.591

R between seasons No F1,30 ¼ 0.31 p ¼ 0.583

S Gyre only

P between seasons Yes F1,29 ¼ 16.43 p ¼ 0.000

R between seasons No F1,60 ¼ 1.70 p ¼ 0.203

Combined dataset

P between gyres (all seasons) No F1,94 ¼ 0.89 p ¼ 0.348

R between gyres (all seasons) Yes F1,96 ¼ 22.84 p ¼ 0.000

P between seasons (both gyres) Yes F1,94 ¼ 8.89 p ¼ 0.004

R between seasons (both gyres) Yes F1,96 ¼ 4.11 p ¼ 0.046

N gyre only

P between seasons No F1,60 ¼ 1.68 p ¼ 0.199

R between seasons Yes F1,62 ¼ 5.36 p ¼ 0.024

S gyre only

P between seasons Yes F1,33 ¼ 15.13 p ¼ 0.000

R between seasons No F1,33 ¼ 0.01 p ¼ 0.910

The results are reported as Fa,b ¼ x, p ¼ y, where F is the mean square to mean

square error ratio, the subscripts denote the degrees of freedom and p is the

ANOVA critical significance value.
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were defined as under high nutrient stress, with the nitracline
lying below the mixed layer. Fig. 2A shows the mixed layer and
nitracline depths of stations sampled in the N and S gyres
indicating the relatively higher nutrient stress in the N gyre than
in the S gyre during spring. The equivalent data from autumn is
shown in Fig. 2B.

3.3. Balance between P and R

The mean, range, and variability of P and R were similar in both
gyres, but the mean rates of R were slightly higher than the mean
rates of P within each gyre (Table 1a). Several Atlantic Ocean
studies have derived empirical relationships between P and R or
between P/R and P from which ‘‘threshold values’’ of P (below
which the system is net heterotrophic) could be calculated (e.g.
Gonzalez et al., 2001; Duarte et al., 2001; Serret et al., 2001, 2002;
Aristegui and Harrison, 2002). The simplicity of this relationship
has been challenged (Serret et al., 2002), and it is unlikely that the
relationship is the same between even similarly unproductive

systems (Serret et al., 2006). However, the value has been used to
extrapolate datasets to longer and larger temporal and spatial
scales, so it is relevant to determine how our values compare with
previous estimates. The threshold values of P for the N and S gyre
were 74 and 58 mmol O2 m�2 d�1, respectively (Fig. 3A). Fig. 4
shows integrated rates for the two gyres during AMT cruises
12–17, and there is an apparent seasonal split in the rates of P

within the S gyre, with autumn and spring rates tending to lie
either side of the threshold value.

Considering all data regardless of sampling season, the N gyre
was net heterotrophic, and the S gyre was balanced. Rates of R

were higher than simultaneously measured P at 21 out of 30
stations in the N gyre, a statistically significant difference
(Table 1a). In the S gyre, R exceeds P at 17 of the 29 stations but
there was no significant difference between the rates of P and R

(Table 1a).

3.3.1. Seasonal variability of P and R

The metabolic balance of the gyres changed with sampling
season, and there was significant seasonal variability of P within
the S gyre (Table 1b). Both gyres were heterotrophic in autumn,
but P/R was higher for both gyres during spring (Table 1a). This
change in the P/R balance was most pronounced within the S gyre,
where P/R was o1 in autumn and 41 during spring, a change
apparently driven by variability of P. Mean P in spring was 70%
higher than the autumn mean, a statistically significant seasonal
change (Table 1b), but R changed much less between seasons. In
contrast to the S gyre, there was no significant seasonality of P in
the N gyre (Table 1b), and P/R was less than or equal to 1 during
both seasons (Table 1a).

4. Discussion

4.1. AMT 12–17 dataset

4.1.1. Balance between P and R

Our results imply that the N gyre is net heterotrophic, and that
it is more heterotrophic than the S gyre. This agrees with the
persistent net heterotrophy observed in the NAST-E (e.g., Duarte
et al., 2001; Serret et al., 2002; Moran et al., 2004) and the
contrasting balances (of a net heterotrophic N gyre and more
balanced S gyre) measured during the AMT 11 transect in
September 2000 (Serret et al., 2002). The threshold values for
this study (74 and 58 mmol O2 m�2 d�1 for the N and S gyres,
respectively) lie within the range of previously published values
(summarised in Lopez-Urrutia et al., 2006), but are low compared
to previous estimates that are based on O2-derived P/R data from
the Atlantic: 100 mmol O2 m�2 d�1 (N and S Atlantic, Serret et al.,
2001) and 92 mmol O2 m�2 d�1 (NE subtropical Atlantic, Duarte
et al., 2001). It is possible that the contrast between our results
and those from the earlier studies arises from differences in
temporal/spatial coverage of the datasets. The threshold value of
Serret et al. (2001), for example, is based on rates measured at
similar times of year to our study, but it includes rates from both
productive and oligotrophic open-ocean regions, whereas our
value is based only on rates measured within the oligotrophic
gyres. The study of Duarte et al. (2001), while confined to the
subtropical Atlantic, included rates measured in the Eastern
(Canary) coastal province (CNRY, Longhurst, 1998), as far east as
311N 10.41W, whereas our N gyre threshold value is based only on
data collected west of 201W, the eastern boundary of the AMT
12–17 cruise tracks. The threshold value derived by Duarte et al.
(2001) is also based on measurements from summer and early
spring, in contrast to our value, which is derived from measure-
ments made in spring and autumn. Our study included rates
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Fig. 2. (A) Spring sampling during AMT 12–17, in relation to the vernal equinox

(denoted by the y-axis) and the summer solstice (denoted by a dashed vertical

line), both 7 1 day depending on the year. Displayed for each sample point is the

mixed-layer depth (solid vertical line) and nitracline depth (open diamonds for the

N gyre; open triangles for the S gyre). (B) Autumn sampling during AMT 12–17, in

relation to the autumnal equinox (denoted by the y-axis) and the winter solstice

(denoted by a dashed vertical line), both 7 1 day depending on the year. Displayed

for each sample point is the mixed-layer depth (solid vertical line) and nitracline

depth (open diamonds for the N gyre; open triangles for the S gyre).
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measured beyond the western limits of both the earlier studies
(west of 321W), and rates measured further south than the extent
of the previous sampling (as far south as 181N). Rates of P higher
than 100 mmol O2 m�2 d�1 (i.e. above the Serret et al. (2002)
threshold value) were measured at only 4 of the 30 N gyre stations
from our study, and the mean rate of R for the remaining, less
productive stations was 61 mmol O2 m�2 d�1, which is only �50%
of the mean rates for similarly unproductive stations in the two

earlier studies. This indicates that, even for similarly unproductive
waters, rates of respiration were higher during the earlier studies
than during AMT 12–17. However, despite, our N gyre threshold
value being lower than previous estimates for the region, it is still
higher than the mean rate of carbon production estimated for the
NAST-E from satellite measurements (�50 mmol O2 m�2 d�1,
Duarte et al., 2001), implying that, as suggested by earlier studies,
this region cannot be sustained by locally produced carbon alone.

ARTICLE IN PRESS

Fig. 3. (A) Relationship between P/R and P in the gyres for AMT 12–17 (closed diamonds) and the measurements from www.amt-uk.org/data/respiration.xls (open

diamonds). Model II linear regressions are shown as a solid line for the AMT 12–17 dataset and a dashed line for the combined AMT 12–17 plus www.amt-uk.org/data/

respiration.xls dataset with equations as follows: N gyre AMT 12–17: P/R ¼ 0.07P0.62, r ¼ 0.69, n ¼ 30; N gyre AMT 12–17 plus dataset: P/R ¼ 0.01P1.04, r ¼ 0.70, n ¼ 61; S

gyre AMT 12–17: P/R ¼ 0.03P0.89, r ¼ 0.64, n ¼ 28; S gyre AMT 12–17 plus dataset: P/R ¼ 79.4P1.10, r ¼ 0.42, n ¼ 32. (B) Relationship between R and P in the gyres for AMT

12–17 (closed diamonds) and the dataset measurements from www.amt-uk.org/data/respiration.xls (open diamonds). Model II linear regressions are shown as a solid line

for the AMT 12–17 data and a dashed line for the combined AMT 12–17 plus www.amt-uk.org/data/respiration.xls dataset with equations as follows: N gyre AMT 12–17:

R ¼ 3.47P0.73, r ¼ 0.78, n ¼ 30; N gyre AMT 12–17 plus dataset: R ¼ 3.39P0.79, r ¼ 0.34, n ¼ 61; S gyre AMT 12–17: R ¼ 2.29P0.81, r ¼ 0.53, n ¼ 28; S gyre AMT 12–17 plus

dataset: R ¼ 0.59P1.14, r ¼ 0.47, n ¼ 32.

Fig. 4. Rates measured during AMT 12–17. Autumn rates (closed diamonds) and spring rates (open diamonds) are plotted with error bars 71 SE. Errors were particularly

high in the S gyre during AMT 12 due to technical difficulties, but the data is normally distributed and within the range of the other measurements. The dotted vertical line

denotes the threshold value of P for each gyre for the AMT 12–17 cruises, and this is also shown on the R plots.
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We aim to establish when and where the gyres are most
imbalanced in order to help to determine how the observed
heterotrophy might be sustained.

4.1.2. Seasonal variability of P and R

The results outlined in the previous section imply that the N
gyre is more heterotrophic than the S gyre, but spring sampling in
the N gyre occurred relatively late in the season compared to the S
gyre, and this may have affected the outcome of our comparison.
The surface waters of the gyres are nutrient deplete for the
majority of the year, and are separated from the nitracline by well-
developed thermoclines; nutrient-limited blooms occurring when
stratification breaks down (Longhurst, 1998). However, recent
seasonal studies show that primary production within the N gyre
peaks during the winter months (Teira et al., 2005), when the
mixed layer deepens to the nitracline (Neuer et al., 2002), and
SeaWiFS-derived surface chlorophyll concentrations also peak at
this time of year (Fig. 5). Seasonality within the S gyre is less well
constrained, but we would expect the N gyre to be more
productive than the S gyre, and subject to greater seasonal forcing
(Longhurst, 1998), consistent with the less-defined seasonal peak
for the intra-annual Chl cycle (Fig. 5). However, rates of P

measured during our study had similar ranges and means in both
gyres, and seasonality of P and P/R were most pronounced in the S
gyre. This suggests that our spring sampling in the N gyre, but not
in the S gyre, occurred well after rates of P had peaked. This is
consistent with the deeper mixing and lower nutrient stress in the
S gyre compared to the N gyre, and with the timing of the cruises
in relation to the seasonal Chl cycles (Fig. 5). Accordingly, the
more marked seasonality in the S gyre does not arise from higher
rates of P relative to the N gyre. P in the S gyre was significantly
lower during autumn than during spring (Table 1a), and autumn P

was lower here than in the N gyre during the same season
(Table 1a), which suggests that sampling during our study missed
the most productive period for the N gyre.

The more pronounced seasonality of P and P/R within the S
gyre was related to the changes in the relative depths of the
thermocline and nitracline. The greater degree of heterotrophy
measured in the N gyre compared to the S gyre may therefore be a
consequence of the more advanced stratification in the N gyre at
the time of sampling, notwithstanding the caveat that the most
productive season in the N gyre was not sampled. We cannot
disregard the possibility that the heterotrophy that was measured
in the N gyre is balanced during more autotrophic periods, as
observed in temperate ecosystems (Blight et al., 1995; Serret et al.,
1999).

4.1.3. Spatial variability in the N gyre

Rates of P and R measured during AMT 12–17 imply that the N
gyre is less heterotrophic than estimated by previous studies

(Duarte et al., 2001; Serret et al., 2002). This may be a
consequence of differences in the spatial coverage of our dataset,
compared to earlier studies. Our study included rates measured
beyond the southern extreme of previous gyre measurements
(between 181 and 251N), and we measured further west into the
gyre than previous studies. However, excluding the data from 181
to 251N decreased the degree of heterotrophy and the threshold
value even more, indicating that rates measured in this region do
not account for the differences. Similarly there was no significant
difference between P and R measured in the east and west of the N
gyre.

4.2. Combined dataset of P and R measurements

The S gyre rate measurements added to our dataset from
www.amt-uk.org/data/respiration.xls (Robinson and Williams,
2005) were all from a single AMT cruise (AMT 11, Serret et al.,
2002), and the addition of these data to our S gyre dataset (n ¼ 4)
had no significant effect on the overall range, mean or standard
deviation of the rates. The only other published S gyre rates of P

and R that we are aware of were collected during AMT 4 and AMT
5; however, sampling was generally outside our gyre boundaries
(González et al., 2002). The single rate of P/R that was measured
within our study region was not considered in our analysis, since R

at this station was 10 times higher than other open-ocean
measurements in the database (discussed previously in Serret
et al., 2006).

Many more P/R measurements have been made in the N
Atlantic than the S Atlantic, and 28 previously published rates
could be added to those collected here. This combined N gyre
dataset had a much greater range and variability of both P and R,
almost double that for the AMT 12–17 data alone (Table 1a). The
mean R for the 28 previously published rates was more than 80%
higher than the mean R for the AMT 12–17 data (125 mmol O2

m�2 d�1 compared with 69 mmol O2 m�2 d�1), although the mean
P was similar in both datasets. It is possible that this difference
arises from inter-annual variability, since the majority of these
higher rates of respiration were measured prior to our study.
However, they were also measured at a different time of year to
our studies (April and August), and are confined to the
northeastern region of the N gyre, so we cannot separate these
spatial and temporal influences. We can find no methodological
variations between the studies that might account for such
pronounced differences in rates.

4.2.1. Balance between P and R

The combined dataset yielded similar results to the AMT 12–17
dataset for the overall balance of P and R in the gyres, but the
contrast between the S gyre and N gyre was much more

ARTICLE IN PRESS

Fig. 5. SeaWiFS monthly mean surface chlorophyll concentrations for January 2002–December 2006 at (a) 351N 231W, (b) 361N 201W, (c) 301N 211W, (d) 291N 371W, (e)

261S 251W, (f) 191S 271W. The arrows denote the approximate timings of the cruises.
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pronounced. Comparing P at each station with associated rates of
R, the N gyre was significantly heterotrophic but the S gyre was
balanced (Table 1a), reflected in the means of P/R, which were 0.8
and 1.2 in the N and S gyre respectively. The difference between
the ‘‘threshold values’’ for the two gyres also increased, with the N
gyre threshold value increasing to 85 mmol O2 m�2 d�1, but the S
gyre value decreasing to 55 mmol O2 m�2 d�1. The increased
imbalance in the N gyre was driven by the higher rates of R

measured in previous studies compared to those measured during
AMT 12–17 (Fig. 3B), and the shift in P/R is immediately apparent
from the regression of P/R and P (Fig. 3A). However, the contrast
between the balances in the two gyres also increased due to the
addition of previously published data to our S gyre dataset, which
increased the overall P/R balance (Fig. 3A).

4.2.2. Seasonal variability of P and R

The seasonality of the P/R balance observed during AMT 12–17
was also evident within the combined dataset. Both gyres were
most heterotrophic in autumn, when rates of R were higher than
associated rates of P (Table 1a). In spring the S gyre was balanced,
but the N gyre was heterotrophic (Table 1a). Previously published
spring rates from the S gyre that were added to the AMT 12–17
dataset were all autotrophic. They were measured early in the
season (2–5 October 2000) and were associated with deep mixing
(132–172 m) to the nitracline, as for the majority of spring rates
measured within the S gyre during AMT 12–17. Within the
combined dataset, the ‘‘high nutrient stress’’ stations were more
heterotrophic than the ‘‘low nutrient stress’’ stations. Mean P/R for
the high and low stress groups were 0.9 and 1.6, respectively
(t-test, po0.1), and P was lower in the high stress group than in
the low stress group (54 and 65 mmol O2 m�2 d�1, respectively,
unpaired t-test, po0.1). The relationship between P/R and
‘‘nutrient stress’’ is shown in Fig. 6. In the N gyre, 26 of the 29
stations had Zn�Zmo0, and 20 of these were heterotrophic.
However, those stations with nitraclines lying below a pro-
nounced thermocline (n ¼ 11) were all heterotrophic.

The N gyre combined dataset included rates from April to
August, months that were not sampled during AMT 12–17. Mean P

for April was higher than for any other month covered by the
study (116 mmol O2 m�2 d�1), and rates reached 204 mmol O2 m�2

d�1, the maximum rate in the combined dataset, whereas in
August 1998, the N gyre was extremely heterotrophic (González
et al., 2002). Mean P for August (34 mmol O2 m�2 d�1) was lower,
and mean R was higher (153 mmol O2 m�2 d�1), than the mean
rate for any other month included in this study (Fig. 7). The
measurements from these months come from a single set of
cruises (González et al., 2002), but we can find no variation in our
methodology that would give rise to such pronounced differences.
The variability in P agrees with that observed for PP in the NAST-E
(Teira et al., 2005), with mean PP during summer being about half
the magnitude of the mean for spring and autumn.

Our analysis also implies that the N gyre is more heterotrophic
than the S gyre, but that this contrast is at least exacerbated, if not
caused, by the timing of our measurements. The S gyre dataset
was biased towards spring periods of deep mixing, whereas the N
gyre dataset spans April–November, missing the most productive
months. The most autotrophic data from our combined N gyre
dataset come from April, but the most autotrophic period in the N
gyre is likely to be the winter months (e.g. December–April, Fig. 5;
November–March, Fig. 7) and these were not covered by the
database. Linear interpolation of all our N gyre rates, measured
over a 7-month period, gives rise to a carbon deficit of 36 mmol
C m�2 d�1 (7533 mmol C m�2 over 208 days, assuming a PQ of 1),
which, although slightly higher than a straightforward average of
P minus R at each station, is lower than the deficit of 53 mmol

C m�2 d�1calculated from previous measurements within the N
gyre (Robinson and Williams, 2005; Duarte et al., 2001; Serret
et al., 2002). To support this deficit by microbial production alone
over the remaining 5 months would require a net carbon
production of 48 mmol C m�2 d�1 during this period (7533 mmol
C m�2 over 157 days). Mean NCP during March 2001 in the frontal
zone of the N gyre (41.5–44.5N) was 62.5 mmol O2 m�2 d�1, and
mean P was 108 mmol O2 m�2 d�1 (Maixandeau et al., 2005).
Assuming a similar degree of seasonality in P as observed for PP
(winter rates a factor of �6 higher than summer rates, Teira et al.,
2005) this is potentially only �50% of P at the most productive
time. Of course, the actual ratio between summer and winter P is
unlikely to be as high as the seasonal ratio for PP, since PP
becomes increasingly comparable to NCP as productivity de-
creases (Marra and Barber, 2004). Nevertheless, it suggests that
108 mmol O2 m�2 d�1 is unlikely to be a production maximum for
the year, and that the gyre is likely to be more autotrophic earlier

ARTICLE IN PRESS

Fig. 6. Relationship between P/R and nutrient stress at stations within the S gyre

during AMT 12–17 (closed diamonds) and AMT 11 (open diamonds). Zm is the

mixed-layer depth and Zn the nitracline depth. When Zm�Zn is positive, stations

are defined as having low nutrient stress and when Zm�Zn is negative, stations are

defined as being under high nutrient stress. The equation of the regression line

shown, which excludes the circled points, is y ¼ 0.0052x+1.0968, r2
¼ 0.21, n ¼ 30,

p(x)o0.05. Areas where high nutrient stress coincides with P/Ro1 and where low

nutrient stress coincides with P/R41 are shaded.
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in the season, closer to the winter peak in production. Our analysis
implies that heterotrophy measured during less productive
months could be supported by carbon accumulated during more
productive seasons.

The conclusions of our analysis, that the contrast in P/R
between the two gyres is partly related to water-column stability
at the time of sampling, is particularly important in the context of
the suggestion that climate warming will lead to increased
stratification and lower productivity within the gyres (Sarmiento
et al., 2004). The thermoclines within the gyres are deepening, the
gyre extent is increasing (McClain et al., 2004), and decadal
changes in N Atlantic carbon cycling have been related to
reductions in nutrient availability, induced by increases in sea
surface temperatures (Gruber et al., 2002; Gregg et al., 2003;
Behrenfeld et al., 2006). If, as our analysis suggests, net
heterotrophy in the gyres will increase with increased nutrient
stress, then studies such as AMT, which repeatedly sample the
same region at the same time of year, are extremely important,
because they will help to identify long-term trends (Karl et al.,
2001). This tendency of decreasing P/R with increasing nutrient
stress is in addition to the tendency for decreasing P/R with
increasing temperature as estimated by Lopez-Urrutia et al.
(2006).

As the balance between P and R does not only depend on local
P (Serret et al., 2006), it is important that the sources of carbon to
the region are quantified as well as any predicted change in their
magnitude due to environmental change.

4.2.3. Spatial variability in the N gyre

We examined the spatial variability of P and R in the N gyre by
performing regression analysis on the mean rates for 31 bins of
longitude. Both P and R decreased overall from the gyre edge to
the centre, but R decreased more than P (Fig. 8). Throughout this
work, no distinction is made between Longhurst’s biogeographic
NAST-E, NAST-W and NATR (North Atlantic Tropical Gyre)
provinces for our analysis. We refer instead to broader, real-time
hydrographically defined gyre regions. The majority of the rates in
our N gyre dataset lie within either the NAST-E or the NATR, but
the three most westerly rates from our dataset fall within the
NAST-W province. Longhurst (1998) makes the NAST-E/-W sub-
division because the ecology of the eastern and western basins
differ, and this is consistent with recent studies which show that
phytoplankton growth rates (Marañón, 2005) and export produc-
tion (Neuer et al., 2002) are significantly different at the outer
edges of the two provinces. Excluding the three rates measured in
the NAST-W from our dataset does not significantly change the
overall estimates of the P/R balance in the N gyre, but when these
three rates are excluded from our N gyre dataset, the significance
of the regressions show a marked increase, with r2 increasing
(from 0.01 to 0.26 for P and from 0.33 to 0.86 for R) and p

decreasing (from 0.15 to 0.03 for P and from o0.001 to o0.0001
for R) (Fig. 8). Excluding those rates measured to the south of the
NAST-E province (18–251N, n ¼ 11) did not significantly alter the
gradient or intercept of the regressions, indicating that our
comparatively lower carbon deficit is not caused by the inclusion
of these rates. The observed decrease in R from the edge to the
centre of the gyre might explain why the gyre was apparently less
heterotrophic during AMT 12–17, which spanned 20–45 1W, than
during previous studies that were restricted to the northeast of
the gyre, and suggests that previous estimates of threshold values
and carbon deficits, extrapolated to the NAST-E as a whole, are too
high.

Our combined dataset of P and R, comprising rates measured in
the N and S gyres between 1998 and 2005, indicates that the N
gyre is less heterotrophic than previously estimated (Duarte et al.,

2001; Serret et al., 2002), but that it still tends towards net
heterotrophy. However, the dataset is still heavily biased towards
measurements from the east of the gyre, so to take account of the
observed spatial variability within the gyre, we calculated a
spatially weighted mean of P–R in the N gyre (from the linear
interpolation between the longitude of measurements), which
was �19 mmol O2 m�2 d�1. This is lower than the estimated mean
carbon production for the NAST-E (e.g. �50 mmol C m�2 d�1;
Duarte et al., 2001), and lower than estimations of dissolved
organic carbon (DOC) accumulation in the Azores front region
(�47 mmol C m�2 d�1, Doval et al., 2001) suggesting that locally
sustained net heterotrophy in the N gyre is more feasible than for
previous estimates, and highlighting the need for increased spatial
coverage of data within the gyres. Our estimated mean (�19
mmol O2 m�2 d�1, calculated from integrated rates with an
average error of �10 mmol O2 m�2 d�1) compares better with the
basin-scale estimate of net heterotrophy calculated by Hansell
et al. (2004) of 2.5 mmol O2 m�2 d�1 (calculated assuming a PQ of
1 and the surface area of 10�1012 m2 quoted).

However, the observed gradient in Fig. 8 also could be
indicative of an external source of carbon for the N gyre
originating, for example, in the northwest African upwelling
(Serret et al., 2006) or the atmosphere (Duarte et al., 2006). A
recent study suggests that there is a measurable source of
atmospheric carbon to the NE Atlantic, and although the
magnitude is relatively low compared to our carbon deficit
(�1 mmol C m�2 d�1, Duarte et al., 2006), it can significantly affect
the P/R balance during high deposition events. The possibility of
an external upwelling source has serious implications in the
context of a recent study which predicts that global warming is
likely to increase the extent of the subtropical gyres, while
upwelling systems remain unchanged (Sarmiento et al., 2004).
This implies that, in the N gyre, increased heterotrophy related to
increased nutrient stress could be exacerbated by a supply of
carbon produced outside the gyre.

5. Conclusions

Our data indicate that the N gyre is heterotrophic, and that it is
more heterotrophic than the S gyre. However, the P/R balance

ARTICLE IN PRESS

Fig. 8. Mean P (open diamonds) and R (closed diamonds) for 3 1 bins, centred

around the longitude displayed on the x-axis. Regression equations are:

P ¼ �1.7x+119, r2
¼ 0.26, n ¼ 60, and R ¼ �2.8x+177, r2

¼ 0.86, n ¼ 62, where

x ¼ bin centre (1W). Circled points are from the NAST-W and not included in the

regression equation.
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changes with season in both gyres, and there is significant
temporal variability of P in the S gyre, which is related to water-
column stability and nutrient availability. We are unable to say
whether production between November and April in the N gyre is
sufficient to support the heterotrophy measured between April
and November without a more seasonally representative dataset.
The positive relationship between net heterotrophy and nutrient
stress suggests a positive feedback of increasing CO2 emissions
caused by increased stratification predicted in model climate
change scenarios. The relationship between P/R and P in the N
gyre varied, depending on the temporal and spatial range of the
measurements, possibly indicative of an external carbon source
originating in the east of the N gyre.
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