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Abstract. Aggregated data arises commonly from surveys and censusar® \groups of individuals are studied as coherent
entities. The aggregated data can take many forms inclsditsg intervals, distributions and histograms. The dafyatneeds

to measure the similarity between such aggregated data &acha range of metrics are reported in the literature teeaehhis
(e.g. the Jaccard metric for sets and the Wasserstein nfatfiéstograms). In this paper, a unifying theory based oasnee
theory is developed that establishes not only that knowmicsedre essentially similar but also suggests new metrics.
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1. Introduction

Large data sets concerning individual entities found in icedd census or financial databases, for
example, are often too large and/or too sensitive to be setbéo a wider community. To facilitate
analysis of such data, it is common practice to aggregatdatebased on individuals into data based
upon groups of individuals. For example, with census dadta chight be generated and analysed that
describes geographically based communities. This canmiptpootect the individual but also be used
as a means of comparing communities and thereby targetiaggic government funding. For medical
data, aggregated data might be based on hospitals or hettitbrities and comparisons between them
can then be made. Once the data has been aggregated, naibnipie manageable but it can often be
safely released to a wide community, perhaps even to thea@gneblic.

Aggregated data, often referred to as symbolic data [2s2jally have a markedly different structure
from that of an individual. An entry for an individual mightate a field describing the individual’s
age. The corresponding data for a group of individuals mliigh& set of ages, an interval of ages or a
histogram describing the distribution of ages within theug.

The analyst needs to compare one group with another and #rasrtechniques to measure the
similarity between aggregated data. To measure siméaritietween items, it is common to seek a
metric (or perhaps a pseudometric). In this paper, metndspseudometrics are defined over various
types of aggregated data. These measures can then be cdritbget an overall measure of similarity
between the aggregated groups. Defining such measurestbpisémportant because it can affect policy
and investment, internationally, nationally and locally,companies, organisations and by governments.

In this paper, metrics and pseudometrics for aggregateal al& studied. By introducing some
simple measure theory, such metrics and pseudometriceang@ have much in common; they are all
special cases of one of two (pseudo)metrics defined in tefrasnteasure over an algebra. Section 2
introduces the measure theory required and Section 3 defimextric space and explains how metrics
and pseudometrics can be derived for an algebra over whicheaume is defined. Then, in Section 4,
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the theory that has been developed is applied to generatiesnahd pseudometrics over sets, intervals
and histograms. Throughout, care is taken to distinguisivden categorical data that is nominal and
that which is ordinal, as well as distinguishing betweermgatical and numeric data. The last section
of the paper presents conclusions and some suggestionstoerfresearch.

Metrics are important in the analysis of unaggregated @saecially in clustering applications (see,
e.g. [17]). Their use is dicussed further in [19] togethethwiarious metric based maesures for cluster
qulaity. A scalable, metric based algorithm is describef@]n Studying metrics for aggregated data is
also not new. There is a large and growing corpus of work is éinea both of a theoretical and of an
applied nature, see [2—4,6-8,10-12,15], several of winiclude case studies relating to the analysis of
census data. This paper provides a unifying theory for maistieg metrics used in these articles and
also produces some new metrics.

2. Finitely additive measures

Let S be a setand Iet be a non-empty set of subsets of S that is closed under corapteand union.
Thus, if A is in X then so is the complement df, A’ = S\ A. Similarly if A, B areinX thenAU Bis
also inX. Providing these properties are satisfigsl,>) is called amalgebra By applying de Morgan’s
law, any algebra(S, X), will also be closed under intersection.

A finitely additive measurg:, on an algebrg,S, ¥), is a function

w:Y — RU{oo}

such that

1. u(A) > 0forall A € %,
2. p(A)=0if A=10,
3. If A, B are disjoint sets ift then

n(AU B) = p(A) + u(B).

A finitely additive measure is a relaxed form of a measure. Asoee is defined on@algebra, which

is an algebra that is also closed under the union of a couwntabhber of sets, rather than just a finite
number of sets, see for example, [1,13]. A measure then h#seaproperties of a finitely additive
measure but also satisfies the additional propert thdg jfAo, . .. is a countably infinite sequence of
disjoint sets in ther-algebra then

p(JA) =D w4,

If u(A) is finite for all A € X, a finitely additive measure is calldohite and all of the example
measures used in this paper are indeed finite.

A finitely additive measurey, will be calledstrongif (A) = 0 = A = (). Not all finitely additive
measures discussed here are strong but, when they are,ia cagtibe constructed rather than just a
pseudometric.

Forany sets, B € ¥, the setsA \ B, B\ A andA N B are mutually disjoint. Thus,the following can
be deduced.
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Fig. 1. Two intersecting sets.

C

Fig. 2. Three intersecting sets.

Proposition 1 For any finitely additive measurg, on the algebrd S, X) and for any setsd, B € ¥, if
a=u(A\B),b=pu(B\A)andc = u(AN B),as in Fig. 1, then

n(A) =p(A\ B) + n(ANB) =a+c,
1(B) = pu(B\ A) + p(ANB) = b+ cand
w(AUB)=u(A\ B)+ u(B\A)+u(ANB)=a+b+c.
Similarly,

Proposition 2 For any three setsA,B,C in X, if a = p(A\ B\ C),b = w(B\ A\ C),c =
p(C\A\B),d=p((BNC)\ A),e = u((CNA)\ B), f = p((ANB)\ C) andg = u(ANBNC),
as in Fig. 2, then

pA)=a+e+ f+y,

uw(B)=b+d+ f+g,

(
u(C)=c+d+e+yg,
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wWAUB)=a+b+d+e+ f+yg,
wBUC)=b+c+d+e+ f+ gand
p(AuC)=a+c+d+e+ f+g.

These two propositions are key to proving the following tesson metrics and to understanding this
paper.

3. Metrics

To be ametricon X, a distance function : ¥ x ¥ — Rg must satisfy:

1. 6(A,B) >0,

2. (A,B) =0ifandonly ifA = B,

3. ¢ is symmetric, i.ed(A, B) = 0(B, A) forall A, B € ¥, and

4. § satisfies theriangle inequalityi.e.6(A, B) + 6(B,C) > 6(A,C) forall A, B,C € ¥.

(X%, 6) is then called anetric space

Metrics are used to define the difference between objectsarsét> and are widely used both to
compare objects and within clustering algorithms, see[&7j-

If § satisfies all the conditions of being a metric, exceptdliat B) = 0 can occur whedl # B, then
¢ is called gpseudometricClearly, any pseudometric will infer a metric on the eqlévae classes of
defined by the equivalence relatign~ B iff (A, B) = 0.

Given a finitely additive measurg, on an algebra,S, ), the distance functior; : ¥ x ¥ — Rar
is defined by

61(A, B) = n(AUB) — p(AN B) = u(A\ B) + u(B \ A).
Then,

1. 01(A, B) > 0since, by Proposition (AU B) — u(ANB) = u(A\ B) + u(B\ A), which must
be> 0,

2. 01(A,B) =0if A= Bsincethem(AUB) — u(ANB) = u(A) — u(A) =0,

3. if §1(A, B) =0thenu(A\ B) + u(B\ A) = 0 and thus botlu(A \ B) =0andu(B\ A) =0. If
w is a strong measure then it follows théat, B = ) andB \ A = () and henced = B,

4. 01(A, B) = 61(B, A) by the symmetry of the definition, and

5. using the notation of Fig. 2, for any sets,B,C € X,

61(A,B) +61(B,C)=a+e+b+d+b+ f+cte
za+ f+c+d
=6(4,0)
By the results listed above féi, the following result is established.

Theorem 1. Given a finitely additive measurg, on an algebra(S, X)), a pseudometrigj; : ¥ x ¥ —
R{ can be defined by

01(A,B) = u(AUB) — (AN B).

Moreover, iy is a strong measure then is a metric.
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An alternative distance measudg,: > x ¥ — RJ, is defined by

0 if A= DB =,

02(A, B) = {1 _ Z&Bg; otherwise.

Then0 < 02(A, B) < 1sinced < (AN B) < u(AU B). Clearly

1. 02(A, A) =0,

2. 62(A,B) =0impliesu(AN B) = u(AU B) and henceu(A\ B) = u(B\ A) = 0. Thus, ifu is
strong, this impliesA \ B = B\ A = () and hencel = B,

3. 02(A, B) = 55(B, A).

The triangle inequality is also satisfied as shown in the lerbeiow.
Lemma 1. For any subsetsd, B, C of X,
82(A, B) 4 05(B,C) = 05(A,C)
Proof: Referring to Fig. 2 and assumifg=a + b+ c+d+ e+ f + g andS — ¢ # 0 then

B f+yg
(A, B)=1- S
Similarly,
d+g
B =1-

52( 7C) S—a

providedS — a # 0 and
. e+g
(A, C) =1 S

providedS — b # 0.
Then, providedS — a)(S — b)(S — ¢) # 0,

53(A, B) + 62(B, C) — 65(A, C)

ot
_ U +9E-a)(S-b)+(d+9)(S-b)(S —¢) ~ (e+g)(S—a)§—¢)

(S—a)(S—b)(S—c)

After some tedious algebra, the numerator of this exprassialuates to a sequence of terms that are all
non-negative.

On the assumption thés — a)(S — b)(S — ¢) # 0, the denominator is also positive, so we can deduce
thatdy (A4, B) + 02(B, C) — d2(A, C) > 0 and thus the triangle inequality holds.

The above argument relies on the assumption that a)(S — b)(S — ¢) # 0. Now (S — a)(S —
b)(S — ¢) = 0iff one or more of(S — a), (S — b) or (S — ¢) is zero iff at least two of the sets are empty.
If A= B = C = (thends(A4, B) = d2(B,C) = §2(A,C) = 0 and the triangle inequality holds. If
A =B =(andC # () thend:(A,C) = §2(B,C) = 1 andd, (A, B) = 0 so the triangle inequality
holds. The argument for the remaining cases are similar.pfdef is thereby completed.

Hence, the following can be deduced.
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Theorem 2. The distance functiod, : ¥ x ¥ — R; defined by

5 0 if A= B =0,
273 1 Zgﬁggg otherwise

is a pseudometric ol and, moreover, if; is a strong measure then is a metric.

Proof: The pseudometric result follows from the lemma alsrve the preceeding observationsyIf
is strong then

92(A,B) =0= pu(AUB) = u(ANB)
= WA\ B) = p(B\ A) =0
= A\B=B\A=10
=A=1H

and henc®, is a metric.

4. Applicationsto aggregated data

In this section, we consider examples of aggregated datatemd how measures can be defined and
metrics deduced.

4.1. Finite sets

One of the most common examples of aggregated data is a sgta &fabase has a field, F, with
values that are categorical. Now, consider aggregatirayfdamn field F fromn recordsy, 7o, ..., 7.
The result may be a set of values taken by field F for theserords.

Given a finite setS, thecardinality function, .. : 25 — Z ¢ Ris defined by

MC(A) = ‘A’

Clearly this is a finitely additive measure on the algebrand, moreover, it is a strong measure. Hence
the following.

Corollary 11f S is a finite set then the following are both metricsn
1. 0{(A,B)=|AUB|—-|ANB|=|A\B|+ |B\ 4],
if A= B =1,

2. 03 =\ 1 _ [AnB| _ |A\B|+|B\A| otherwise.

~ JAUB|] T J[AUB] >

The first metric is the usual metric for sets, the second isvknas the Jaccard metric [16]. Both
have been used to cluster sets; for example, in [20], setsppfast for partial classification rules were
clustered using$ in order to identify rules that were similar semanticallydahereby to gain a better
understanding of the data.
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4.2. Finite sets of ordinals

Field values may be ordinal; if the values lie in a finite oaliget, S, then there will be a function
p: S — Rt. This may be a simple ranking function whereby iffeelement of the set is assigned
or it may be a more sophisticated assignment. For exampl€REECLASS may contain values from
1st, 2(i), 2(ii), 3rd, Pass, Fail and a simple ranking wowdign these values to integers 1, 2, 3,4, 5
and 6, respectively. An alternative assignment that perbagter reflects their relative merit would be
to assign each classification to the average of the mark®isghn. Using a UK marking scheme, this
might result in an assignment of 85, 65, 55, 45, 37, 17.5 aetspely.

Let S be a finite set of ordinal data apd: S — R* be an injection. Thes,2%) is an algebra and
therank measure induced hyis

€A
Theny, is a finite measure and, sinpe> 0, 11,(A) = 0 only whenA = . Thusy, is also a strong
measure and hence the following result.
Corollary 21f S'is a finite ordinal setang : S — R™ is an injection then the following are both metrics

on?2s:

L (AB) = > pa)— Y pla)= > pl@)+ Y p),

x€AUB r€ANB x€A\B z€B\A
0 if A= B =1,
2. %(AB)= {1 ~ Zeeann?® gtherpise
veaup P& .

which is equivalent to

0 if A=B=10,
55(’47 B) = Za:eA\B p(x)+zz€B\A p(z)

3 o) otherwise.
r€AUB

4.3. Intervals

Let S be the interval of the real linéq, b] say, and let> denote all the finite sets of subintervals of
[a,b]. A subinterval is either the empty set or may be open, closédibopen, i.e. of the form

1. (e,d)={z|a<c<z<d<b}

2. [e,d)={z|a<c<x<d<b},

. (gdl={zx]a<c<axz<d<b}or

4. [e,d ={r|a<c<x<d<b}

Then(S,Y) is an algebra.

The width measure is defined on any intervak: (¢, d), [¢,d), (¢, d], or [¢, d] by

p(I) =d—c.

Two intervals are said to bdisjointif their union is not itself an interval. A union of a finite nidoer of
intervals can clearly be expressed uniquely as a union ofviga disjoint intervals. IfA is an element
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of ¥, i.e. a set of intervals ifa, ], then A will represent the corresponding set of pairwise disjoint
intervals.
The functionu,, can then be extended to elementsiah the obvious way by defining

1. uyw(®) =0, and
2. for any nonempty set of intervals € 3, u,,(A) is the sum of the widths of the pairwise disjoint
intervals in4, i.e.

pw(A) = Z,uw(l)'

IcA

This measure is finite since for any set of intervalsin [a,b], uy,(A) < b — a. However, since
iz, z]} = 0foranyz € [a, b], it is not a strong measure.

Corollary 31If A, B € X denote finite sets of intervals |, b] then the following are both pseudometrics
onX:

1. 6Y(A,B) = uu(AUB) — ny(AN B),
if A= DB =0,

2. 6(AB)= {1 _ Zwﬁﬁﬂgi otherwise.

4.4. Regions of the Euclidean Plain

Let S be a finitely bounded, closed region Bf. S has a finite perimeter and contains all the points
on the perimeter and in the region bounded by that perime&tB denote all finitely bounded regions
within S. An element ofB is a subspace & and will be contained by a perimeter but may or may not
contain points on that perimeter, i.e. it may be be closedreno Now, let: denote the closure aB
under union and complement so thais an algebra.

EveryA € ¥ has afinite area less than or equal to the finite aréa dhe area oA, denoted by:, (A)
provides a finitely additive measure @i, X). It is not a strong measure since4fis an open region in
S, i.e. does not contain its boundary, whiltis the corresponding closed region, i.4.together with
its boundary, them,(A) = u,(A) althoughA # A.

Area measures are of particular interest to analysts ofeggged data when applied to distributions
and to histograms.

Let I = [a,b] be an interval and let be a positive real. Thes, ;. denotes the set of continuous
functions on | bounded so that

if fe Fapcthend < f(z) <cforallz e 1.

Any f € Fu, . defines a regionX , bounded by the perimeter comprising four lines

1 {(z,y) |z=a, 0<y< f(a)},
2. {(z,y) |z=0b, 0<y < f(b)},
3. {(z,y) |a <z < b, y=0},

4. {(z,y) |la<z<b, y=f(z)}

asin Fig. 3.
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Xe

Fig. 3. The regionXy.

The area of the regio ; is then
b

f(x)dz.

r=a

By applying the area pseudometric, the following can be dedu

Corollary 4 The following are metrics on elements’f, ..

b b
1 / (@) - g(a)| = / (max(f(z), g(x)) — min(f(z), g(x))),

T min(f(@) glx)

2. 12
Jo—amax(f(z),9(x))

providing f, g are not both everywhere 0.

Proof:

1. The integral simply gives the value @f (X ; \ X;) + 1o (X4 \ X¢) and hence, by Theorem 1, is a
pseudometric. However,

b
/ lf(z) —g(z)] =0= f(z) = g(x) Vx € [a,b],i.e.f =gonTl

=a
and hence the integral is also a metric.
2. This follows from Theorem 2 using a similar argument.
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Vi Vs, V3
Fig. 4. Representing a simple histogram{dn, V>, V5}.
4.5. Histograms

Let F be a field of a databasewfecords that has been aggregated to produce a histogranfielthe
F, may be nominal, ordinal or real-valued. Each case willd®res@ered separately.

4.,5.1. Histograms over nominal sets
In the nominal case, the possible values in F will be finiteumber. LetV denote the set of values
that are enumerated &s;, v, ..., v, }. A histogram for FH, overV is determined by

1. a partition ofl/ into disjoint, nonempty, subsefg;, 15, ...,V £ < m and,
2. for eachl < i < k, acountc(V;) € ZF, of the number of occurrences of elementd/jrthat
occur in field F of the database.

Commonly, but not necessarily, eathis a singleton set. I is such a histogram arid = {v;} then
cH ({v;}) may be expressed a¥ (v;).
Note that in all cases

n= Z W)
k=1

is the number of elements in the underlying database andihibe called thebase numbeof the
histogram.

There are two ways of representing a histogrdmover V, in R2. The first provides equal width
partitions of the x-axis for each df;, V5, ...,V and comprises a series of rectangigs1 < 7 < k,
whereR; = [i — 1,i) x (0, (V;)).

Thus, if F comprises the values 1,2,2,3,4,4 &hd= {1}, V> = {2,3}, V3 = {4}, the histogram can
be represented as in Fig. 4.

However, it is also common to label the x-axis with the eleta@fiV;, followed by the elements df;,

etc. Then a rectangl&;, is drawn for eaclV; of width |V;| and heightcl‘{‘(/:f). For the above example

and using the listing oF to bewq, vy, v3, vy, this results in the histogram of Fig. 5.
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1.5

V4 Vo V3 V4
Fig. 5. Representing a simple histogram{en, vz, vs, v4 }.

Note that, with either representation, the total area ofrtipeesentation of the histogram is its base
number.

Assume now thakf, andH, are two distinct histograms ovet andVs, respectively, wherg/; | = m;
and|V;| = mo. These two histograms are to be compared.

If V1 # V5, then set = V4 U V5 and regard each aff; and H» to be a histogram ovér setting
YV \ V) =0if V\ Vi # 0 and, likewisec2(V \ V5) = 0if V' \ V5 # 0. Letn; denote the
base number off; andn, denote the base number &f,. The histograms are then scaled by setting
n = lem(n1, no), and multiplyinge* (V;) by n/n1 andc”2(V;) by n/ns. The two histograms are then
over the same set (although not necessarily using the sanitiopaof this set) and have the same base
numbern.

For example, consider two histogrants, and Hs, where

1. H, is defined ovef1,2, 3,4} and partitions this set into the three subdéts= {1}, V12 = {2, 3}
andViz = {4} with 1 (V1) = 1,1 (Vo) = 3 andcf1 (Vy3) = 2.

2. H, is defined oveK1,2,3,4,5} and partitions this set into the three subséts= {1,4}, Vs =
{3, 5} andV23 = {2} with CH2 (Vgl) = 2, CH2 (VQQ) =4 ¢':1f'ldCH2 (Vgg) = 2.

In this case, the base numbers Bf and H, are 6 and 8, respectively. Both can be regarded as
histogramms ovef1, 2, 3,4, 5} and their revised, scaled values are

L cff'(Vin) =4, ¢/ (Vig) = 12, ¢l (Vi3) = 8,11 ({5}) =0,
2. (Vo) = 6, cl2 (Vo) = 12 andcl’2(Va3) = 6.

Any two histograms that are to be compared will thus be asdumbe over the same séf, and both
to have base number, Let Hy, H, denote two such histograms.

If two histograms,H; and H, are defined over the same partition WBfinto singleton setsy =
{v1} U{va}...U{v,} then the obvious metric to use to compafeand H, is
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Vi Vo V3 Va4 Vs

Fig. 6. Derived Representation of (scaléd).

m

S(Hy, Ha) =Y | (v;) — ™2 (vy)].

i=1

However, when the histograms use different partitionsiriberic is not so immediate but is an obvious
generalisation. With respect to a histograkh, overV, eachv € V can be assigned a derived count
value

H VH
@ (v) = S,
Vil
whereV,/ is the set in the partition off containingv. Then the following is clear.

Corollary 5 One metric to comparé&l/; and H, is simply
51(H1, Hz) = Z |dH1 (Uz) — dHQ(UZ)|
i=1

The two histogramsH; and H,, can both be presented diagrammaticallyHdh where they both
have an identically labelled x-axis, which will be some emuation ofV, v{,vs,...,v,,. Thederived
representatiorof histogramH;(i = 1,2) is constructed as follows. For each labej, the rectangle
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Vi Ve V3 Va4 Vs

Fig. 7. Derived Representation of (scaléd).

[j — 1,4] x [0,d(v;)] is drawn. Thus ifH; and H, are the scaled histograms above, their derived
representations are as in Figs 6 and 7. Note that the repagisemecessarily has area

The above metric then corresponds to the first metric thabeateduced using proposition 1 from the
area measure applied to the two histograms viewed as regfdsn| x [0,n]. A second metric then
follows from Proposition 2.

Corollary 6
Doty |d (vi) — d™2(v;)]
ey max(d (v;), d"2 (v;))

> iy min(d" (v;), d™2 (vy))
> iy max(d (v;), dH2 (v;))

do(Hy, Hy) =

—1—

isametric. Proof:

S |dT (v) — df2(v;)| is the area of the symmetric difference of the two regions de-
fined by H, and H, and is equal toy ., max(dt (v;),d2(v;)) — Y | min(d (v;), df2(v;)).
S max(dH1 (v;), dH2 (v;)) is the area of the union of these two regions.
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For our example histograms, the first metric provides a digtavalue of
|[4—3|+16—6|+]6—6/+|8—3]+1[6—0] =12

and the second normalises this as

12 4
44+6+6+84+6 10

Of course, it may not have been wise to share out the coun¢ofitmber of occurrences of elements of
a partition equally between the elements in that partit®was done withl” . Sinced! (v) may not be
integer valued, there may be no possible databaset#ments that could give rise to such a distribution.
Also, given two histograms with different partitions butnstructed from the same database, the above
metrics constructed fron#!’ anddl’ are quite unlikely to measuré; and H, as being distance zero
apart.

One might argue that a more reasonable distance measureugetalternative derived functions
et eH2 which are both integer valued and are such that

1. If the partition ofH; is Vi1, Vig, ..., Vik, then
> efli(w) = cM(vyy) forall 1 < j < ky.
UEVlj

2. If the partition ofHy is Vay, Vaa, . . ., Vo, then

> e (v) = (V) forall 1 < j < k.
veVaj

3. Subject to the above,
Smin(H1, Ha) = |e" (v) — ™2 (vy)]
=1

is minimised.

Note, such a distance measure may not itself be a metric simeg/ not satisfy the triangle inequality.
However, if two histograms are constructed from the sanmedxdeste, they will necessarily be distance zero
apart as measured By,;,. This distance measure can be computed using a maximum fipsitaim.

A network is constructed as follows.

1. There is a source node labelle#l, and from this node, directed edges go to nodes labelled,
Vi1, Vi, ..., Vi, , Where the arc fron$ to V7; has capacitycHl(Vlj) forall1 < j < k.

2. There is a node labelled with eache V' and, for each node labelléd ;, 1 < j < ki, there are
directed edges to eaehe V3 ;; these edges all have capacit{ (V3,).

3. There are nodes labelléidy; , Va2, . . ., Vai, and, for eachva;, 1 < j < ko, there are directed edges
from eachv € V4;; these edges all have capaciti? (V5;).

4. There is a sink node labelléd, and directed edges go to the noffefrom nodes labelled,
Var, Vag, ..., Vag,, Where the arc fron¥,; to T has capacitytHZ(ng) forall1 < j < ko.

As a simple example, consider two histografhsand H,, where
1. V11 = {a, b},vlg = {C, 6}7V13 = {d},
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Fig. 8. Constructed network.

10)

2. V21 = {a,d},V22 = {b},V23 = {C}, ‘/24 — {6},
3. cHl(Vn) = 10,cH1(V12) = ZO,CHI(Vlg) =30, and
4. M2 (Vor) = 20,2 (Vo) = 16,2 (Vog) = 2 (V) = 12.

The network constructed is then as in Fig. 8.

Let F' denote the maximum flow that can be put through such a netwoirbitraryH;, H, from the
source node to the sink node. This can be computéxin?) time using the well known Ford-Fulkerson
maximum flow algorithm [18]. For the example of Fig. 8, F is &he possible maximum flow is given
in parentheses alongside the arcs in Fig. 8 and it can belsatghis is a maximum flow sindes, Vi3, d}
are separated from the remaining nodes by edges that aratsatu

Theorem 3. 5min(H1a H2) = 2(’1’L — F)

Proof:
Consider the maximum flowF" and let the flow through the node labellecbe f(v). For each
Vij 1 < j <k if ey, fv) = cf1(vy;) then setg (v) = f(v) for all v € V;;. Otherwise
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>vew, f(v) < M (145 and then select an arbitrary elemeat; € Vi;, and assigny™™ (ai;) =
f(alj) + CH1 (Vlj) — ZUEVU f(’U) > f(alj, whilst Settingng (U) = f(v) forallv € Vlj \ {alj}.

Similarly, For eachVa;, 1 < j < ko, if 3o,y f(v) = (Vo)) then sety™2(v) = f(v) for all
v € Vh;; otherwise select an arbitrary elememnt; € Va; and assign™2(ay;) = f(az;j) + 2 (Va;) —
> vevy, f(v) whilst settingg™™2 (v) = f(v) for all v € Va; \ {az;}. Then,

Z g (v) = (V) forall 1 < j < Ky
U€V1j

and

Z g2 (v) = M2 (Vo) forall 1 < j < ko.
UGVQj

Note also that for all nodes labelleds V,

min(g™" (v), ™2 (v)) = f(v)

since if there is any node where that does not occur, the flosuthh that node can be increased. For
eachVy;, if - ¢y, f(v) < cf1(V4; then there is some arbitrary elementlgf, whoseg”* value

has been increased to take up the slack, @iZ! (V;;) — Zvevlj f(v). The total slack across all sets

Vi1, Vig, ..., Vig, isn — F. This also applies to sel§;, Vao, ..., Vo, and hencé " | lg (v;) —
g2 (v;)| = 2(n — F).

All that is now needed to be established is tHaf”, |/ (v;) — e2(v;)| is minimised by
g. Say it was not and that there is some other choice of fungtibfi* (v;), h"2(v;) that satify
>veny, M) = (Vi) foralll < j < ki andys,qy, R (v) = 2 (Vy) forall1 < j < ko
but whered"7"; |21 (v;) — h2 (v;)| < 3774 g™ (vi) — g™ (vi)].

Now, setf’(v;) = min(h'1 (v;), 2 (v;)) and consider a flowf”, through the network wherg (v;)
passes through nodg. This will be a valid flow through the other nodes of the netwas well.
Sy IR () =R 2 (v)| < 2(n—F") SO2F" = 2n—371 g™ (v;) = g™ (v;)] > 2n—377" et (v;) —
e2(y;)| = 2F and this is a contradiction since F is a maximum flow. The teeois thus established.

Returning now to the above simple example. If the derivedesld are used thea(H;, Hy) =
|5 — 10| + |5 — 16| 4 |10 — 12| + |30 — 10| + |10 — 12| = 40. However, constructing the flow network
of Fig. 8, the maximum flow is found to be 50, comprising (saffper througha of 0, throughb of 10,
throughe of 10, throught of 20 and througla of 10. Henceg,in(H1, H2) = 2(60-50)= 20. This could
arise if H; was a histogram for a database with 0 occurrences® occurrences @f 10 occurrences of
¢, 30 occurrences ef and 10 occurrences efand H, was a histogram for a database with 0 occurrences
of a, 16 occurrences df, 12 occurrences af, 20 occurrences af and 12 occurrences of

4.5.2. Histograms on ordinal sets

If a histogram,H, is over an ordinal field, F, with values in a finite ordered 3$&t then there is
an injective ranking functiop : V- — R™T. A histogram is then based on a partitioning 16finto
subsetsly, Vs, ..., V) for somek > 1. In the case wher& is ordinal,v € V; andw € V; must
satisfy: < j < p(v) < p(w). The elements of/ are assumed to be ordered by theivalue, i.e.
v; < vj < p(v;) < p(v;), and then, foreach < i < k, V; = {v;,, v;,41, ..., vr, }, Where
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1. v, = v andv,, = vy,

2. Vpp1 = vy, for1 <i < k.

A histogram ovel/ = V; U Va... U V; will then assign a count” (V;) € Z; for eachl < i < k, of
the number of occurrences of elementd/jrthat occur in field F of the database.

As in Subsection 4.5.1, the assumption is made when congpwim histogramsH, H», on ordinal
sets that both histograms have been scaled if necessargtdbely both have the same base number,
and are both defined over the same Bet,

The fact thatV is ordered can be ignored and, if wishédcan be treated as nominal data. Hence
the two metrics of Corollaries 5 and 6 can be used on histogjarer ordinal sets. However, such
metrics do not exploit the ordering; to do so, a cumulativedgram should be constructed. Hf is a
histogram over an ordinal set, taamulative histogrami, corresponding tdZ has the same partition
Vi, Va, ..., Vi asH but has count

v =" (vy).
j=1

For example, in Fig. 9H; and H, are two histograms on an ordered $et= {vy,vs,...,v6}. H;
partitionsV" into {vy, v}, {vs, v, v5} @and{uvg}. Ho partitionsV into {vy,ve,vs}, {va} and{vs, vs}.
H, andH, are their corresponding cumulative histograms.

If H is ahistogram over an ordinal 3ét= {vy, ve, ..., v, } WwhereV is partitioned intd/; UV, .. .UV
then, as for nominal data, a derived count can be computezhfdnw,; € V,

HViwy)
25

wherer(l-) is the set in the partition that contains Thederived cumulative couffibr v;, 1 < ¢ < m,
is then

d" (v;) =

dH(U) B B |€Z\CH(V1) if f(i) =1,
e H(Viay-1) + %CH(V}C(Z-)) otherwise,

wherev; is thep;th element o/ ;. A simple induction argument can be used to show that thevatig
result holds.

Proposition 3 dff (v;) = 3%, d (v;).

If H; and H, are histograms over an ordinal s&t, two new metrics can be deduced by applying
Corollaries 5 and 6 to the histogrami§ and H/, both with partition{{v, }, {v2},...,{vm}} and with
countsd1 (v;), 2 (v;), respectively. This gives the following result.

Corollary 7 If H; and H, are histograms over an ordinal sét, = {vy,vs, ..., v, }, then the following
are metrics:

1.

m

03(H1, Hp) =) _|d{" (vi) — dff(vy)]
i=1
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Histogram H, Histogram H,

Cumulative histogram Cumulative histogram
for Hq for H,

Fig. 9. Two histograms and their correponding cumulatiwgtdgrams.

= 1> df(v) = Y d™ ().
i=1 j=1 j=1

>y min(di (v;), d2 (v;))

S max(dEt (vy), dE (v;)

Dot min(E}zl d™ (vy), Zéél A" (vj))
Sy max(Y0_y df(vy), Yoy d2(v)))

04(Hy,Ha) =1—




V.J. Rayward-Smith / Measure based metrics for aggregadtal d 127

As an example, consider the two histografis,and H, of Fig. 9. The derived cumulative counts for
H, for the 6 elements;, vo, v3, v4, v5 anduvg are 4, 8, 11, 14, 17, 20, respectively and fbrthey are 2,
4,6, 10, 15, 20. Hence

d3(Hy,Hy) =24+4+454+4+2+0=17

and
2+446+10+15+20 17
44+84+114+144+174+20 74

d4(Hy,Hy) =1 —

4.5.3. Histograms on intervals of the real line
If a field, F, is real-valued with values in the range- («a, b], a histogram/H, overI then comprises

1. a partition of the interval into subintervald; = (Iy,71], Ix = (lo, 73], ..., Ix = (I, rr] where
l1 =a,rg = b andr; :ll'Jrl forl<i<m-—1,
2. foreachintervall;,1 < i<k, a countcH(IZ-) € ZgL of the number of occurrences of elements of
F that lie inI;.
Consider two interval histogramsl; over (a, b], andH, over (¢, d]. Both can be regarded as acting
over the same intervalmin(a, ¢), max(b, d)], by setting
1. ¢i(c,a) =0if ¢ < aandc2(a,c] =0if a < c,
2. cti(b,d] =0if b < dandc’2(d,b] = 0if d < b.
By applying a scaling function

x —min(a, c)

max(b, d) — min(a, c)’

it can then be assumed that both histograms are (@vé}. This will be assumed to have been done for
any histograms that are to be compared. Moreover, it willdsimed that the base numberjs also
the same.

For any histogrami{ over (0, 1], thecumulative distribution functioassociated witl# is defined as
a continuous line fronf0, 0) to (1,n) such that,

1. over the segment; = (0, 7], it corresponds to the straight line joiniig, 0) to (ry, ¢ (1)), and
2. for 1 < i < k over the segment/; = (I;,r], it corresponds to the straight line joining
(rie1, Y252 (1)) to (ri, o5, (1)
The cumulative distribution function associated wifhwill be denoted byf .
Figure 10 gives two histograms over (0,1] together withrtleeimulative distibution functionsH
partitions(0, 1] into (0, 3] and(3, 1]; H partitions(0,1] into (0, 3], (3, 2] and (3, 1]; ¢, (0, 3] = 10,
CHI(%? 1] =6, CHQ(O’ %] =8, CHQ(%’ %] =2, CHZ(%’ 1] =6.

Corollary 8If Hy, H are histograms over the intervéd, 1] then the following are metrics
1.

1
51 (Hy, Ha) = /0 i (@) — fiz, ()

- /0 (max((frr, (1), frr, (1)) — min( o, (2), Frr, (),
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Cumulative Cumulative

Distribution Distribution
Function for H, Function for H;

Fig. 10. Two histograms ovéb, 1].

1 .
5£(H1,H2) =1- fo min(fw, (2), fi, (x)) _

Jo max(frr, (2), fim, ()
Proof: Both results follow immediately from Corollary 4. @liirst of these metrics is known as the
Wasserstein metriand is the usual metric for comparing histograms on intsp\sse, e.g. [5,14].

To compute’! (Hy, H,), the points of intersections gfy, () and f, (z) need to be found and then
the integral is simply the sum of the differences of areasaygfdzia. For example, referring to Fig. 10,
the functionsfy, (z) and fx, (z) are superimposed in Fig. 11. These two lines only interdexsagle
point in (0, 1] other than(1, 1), i.e. the point of intersection of the line joinir{@, 0) with (3, 10) with
the line joining(%,8) and (2, 10), viz. (2, 2). The Wasserstein metric in this case can be computed by
computing the difference between the areas of two trape@ach of the five regions shown. In general,




V.J. Rayward-Smith / Measure based metrics for aggregadtal d 129

Fig. 11. The intersection ofx, and fu,.

if H, hask, intervals andH, hask, intervals, the number of intersection points is at mosi(k1, k).
The Wasserstein metric can thus be computed(ik®) time wherek = max(k, ko).

5. Conclusionsand topicsfor further research

Two pseudometrics, one of which is normalised, have beewrsiio exist on an algebrg,S, ¥),
over which a finitely additive measurg, is defined. Provided the measure is strong, both of these
pseudometrics have been shown to be full metrics. The firdtexfe metrics is known in the measure
theory literature. The normalised version appears to be new

From these results, metrics or pseudometrics have beercei@dor aggregated data in the form of
sets, intervals and histograms. Neither of the metrics dedifor nominal sets is new but the second
metrics for ordinal sets does appear to be new. The first widdtric for intervals is known but again
the normalised version has not been found in the literature.

With histograms, it is important to distinguish betweentdigams over nominal sets, over ordinal
sets and over intervals of the reals. The metrics discusseddtt on histograms that do not necessarily
assume the base set has been partitioned in the same wa iof o two histograms being compared.
For histograms over nominal sets, Corollary 6 gives a nogahalised metric. Theorem 3 provides a
lower bound on the similarity of two histograms and is newdtig a similar bound in the ordinal case
is an open problem. Of the two metrics for histograms oveinatdets given in Corollary 7, the first is
the obvious one and, once again, it is the second, normatietdc that appears to be new. This is also
the case for histograms over intervals of the real line wttegdirst metric is the Wasserstein metric and
the normalised metric appears to be new.

Aggregated data arises following a summarisation proddasye databases and may be used as a way
of hiding sensitive information on individuals or may be @lyrpart of an analysis process. Important,
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strategic planning decisions can result from the compamdagroups described by aggregated data and
a key step in this is to define metrics to measure the differbetween aggregated data items relating to
two different groups. Normalised metrics have an obvioyseapand, in this paper, a unified theory and
notation has been developed from which they can be deducieen &vo groups of individuals, each
may have a number of fields, each describing aggregated @iatadifference between any two fields
can be now be measured but how these differences are besineahd produce a fair and honest, single
measure of the difference betwreen the two groups remamsi@afor research.
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