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Ž . Ž .ABSTRACT: The local spin-density LSD functional and Perdew]Wang 91 PW91
generalized gradient approximations to atomization energies of molecules are
investigated. We discuss the coupling-constant dependence of the atomization energy
and why exchange errors of the functionals are greater than exchange]correlation errors.
This fact helps to justify hybrid schemes which mix some exact exchange with density
functional approximations for exchange and correlation. It is shown that the biggest
errors in the atomization energies occur when there is a strong interaction between
different electron pairs, which vanishes upon atomization. We argue that the amount of
exchange character of a molecular property, such as the atomization energy, depends on
the property itself. We define an exact mixing coefficient b, which measures this
exchange character, and show that both LSD and PW91 typically overestimate this
quantity. Thus, nonempirical hybrid schemes which approximate this quantity by its LSD
or PW91 value typically do not improve the exchange]correlation energy. Q 1997 John
Wiley & Sons, Inc. Int J Quant Chem 64: 285]295, 1997

I. Introduction

he development of generalized gradient ap-T Ž . w xproximations GGAs 1]7 has significantly
extended the range of systems where density func-

Ž .tional theory DFT can make useful predictions.
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Gradient-corrected density functionals are now
routinely applied to quantum chemical problems.
DFT is a relatively new means to investigate the
molecular bond and, as with every other approach,
leads to a new view of this fundamental problem.
We focus on the coupling-constant decomposition
w x8, 9 of the atomization energy and explain how
currently available density functional approxima-
tions produce useful predictions for the ex-
change]correlation contribution, D E , which isxc
typically greater than 50% of the total atomization
energy.
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ERNZERHOF, PERDEW, AND BURKE

In Section II, we introduce our notation and
review the coupling-constant integration formula
w x8, 9 . The coupling-constant integral is used to
derive a hybrid formula for the exchange]correla-
tion energy in terms of the exchange energy and
the exchange]correlation energy at full coupling
strength in Section III. In Section IV, we investigate
both the exchange and the coupling-constant aver-

Ž .aged exchange]correlation contributions to atom-
ization energies. In Section V, a modification of the
hybrid formula of Section III is applied to atomiza-
tion energies of molecules.

II. Coupling-Constant Integration

Ž .The ground-state energy of a nonrelativistic
many-electron system may be written as

Ž .E s T q V q V , 1ee ext

where T is the interacting kinetic energy, V is theee
expectation value of the Coulomb repulsion be-
tween electrons, and V is the expectation valueext
of the external potential. In Kohn]Sham density

w x Ž .functional theory 10 , Eq. 1 is rewritten in terms
Žof a noninteracting reference wave function the

.Kohn]Sham determinant , so that

Ž .E s T q U q V q E . 2s ext xc

T denotes the kinetic energy of a noninteractings
ground-state wave function which yields the exact

Ž .density r r of the interacting system and mini-
m i z e s t h e k i n e t i c e n e r g y . U

1 X X X3 3 Ž . Ž . < <s H d r d r r r r r rr y r is the classical or2

Hartree energy, and E is the exchange]correla-xc
Ž . Ž .tion energy, defined by Eqs. 1 and 2 ,

Ž .E s V y U q T . 3xc ee c

T s T y T is the difference between the interact-c s
ing and noninteracting kinetic energies. The kinetic
energy contribution to the exchange]correlation
energy can be accounted for by a coupling-con-
stant integration over purely potential contribu-
tions. Since the coupling-constant integration is
one of our main concerns in the present work, we
briefly review this formal procedure.

We define a coupling-constant dependent Ham-
iltonian

ˆ ˆ ˆ ˆ Ž .H s T q V q lV , 4l l ee

ˆ 3 Ž . Ž .where V s H d r v r r r and the electron]elec-ˆl l
ˆtron repulsion operator V is multiplied by theee

coupling-constant l. The external potential v ,l

which is equal to the Kohn]Sham potential for
l s 0 and equal to v for l s 1, is adjusted toext
keep the density fixed and equal to the physical
density for all values of l. The ground-state en-

ˆergy of H is denoted E . Obviouslyl l

dE1 l Ž .E s E s E q dl . 5Hls1 ls0 dlo

From the Hellmann]Feynman theorem, dErdl s
ˆ² < < :c  H rl c where c is the ground-state wavel l l l

ˆ w xfunction of H , we find 8, 9l

dE dvl l3 Ž . Ž .s V q d r r r 6Hee , ldl dl

ˆ² < < : Ž .where V s c V c . From Eq. 4 we haveee, l l ee l

3 Ž . Ž . Ž .E s T q d r r r v r . 7Hls0 s ls0

Ž . Ž . Ž .Combining Eqs. 5 , 6 , and 7 , we find

13 Ž . Ž . Ž .E s T q d r r r v r q dl V . 8H Hs ee, l
0

V is usually decomposed into a l-independentee, l

Hartree term U and the l-dependent exchange]
correlation energy E :xc, l

Ž .V s U q E . 9ee , l xc, l

We finally obtain

13 Ž . Ž . Ž .E s T q d r r r v r q U q dl E , 10H Hs xc, l
0

where the last integral is E . This important resultxc
shows that the kinetic energy contribution to the
correlation energy can be deduced from the l
dependence of E . Furthermore, this l depen-xc, l

dence can be extracted from the exchange]correla-
tion energy functional via the exact scaling relation
w x11]13

Ž .d r rrl
2w x Ž .E r s l E . 11xc , l xc 3ž /dl l

To illustrate the nature of the l dependence of
E , in Figures 1 and 2 we show the coupling-xc, l

constant dependence of E rN for the homoge-xc, l

neous electron gas, as parametrized by Perdew
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FIGURE 1. The l-dependent exchange]correlation
energy per particle of a uniform electron gas at a high

(density, r = 0.25 bohr, typical of core electrons energys
)in hartrees .

w xand Wang 14 . This is the only system for which
this dependence is known for all l. We consider
two electron densities characterized by the Seitz

Ž .1r3radius r s 3r4pr . The first, r s 0.25, is as s
typical density of core electrons in an atom or
molecule; note how nearly linear the curve in
Figure 1 is. The second, r s 6, is typical of valences
electrons in a low-density metal; note how much
curvature develops in Figure 2.

More generally, under uniform scaling

Ž . 3 Ž . Ž .r r s a r ar 12a

for any finite system, the l-dependent curve be-
Ž .comes linear in the high-density a ª ` limit. On

FIGURE 2. Same as Figure 1, but at a low density,
r = 6 bohrs, typical of valence electrons.s

the other hand, as a ª 0 in the low-density limit,
Ž .the initial l ª 0 slope of the curve tends to y`,

and the curve drops infinitely rapidly and be-
comes an a-dependent constant for all l ) 0.

For purposes of discussion, we will also need
w xthe exchange]correlation hole 15, 16 density

Ž X.r r, r around an electron at r, which is itself axc
coupling-constant average,

1X XŽ . Ž .r r, r s dl r r, r ,Hxc xc, l
0

Ž X . � Ž X . Ž . Ž X .4 Ž . Ž .r r, r s P r, r y r r r r rr r , 13xc , l l

Ž X .where P r, r is the pair density of c ,l l

Ž X . Ž . 3 3P r, r s N N y 1 d r . . . d r ds . . . dsHl 3 N 1 N

U Ž X .= c r, s , r , s , r , s , . . . , r , sl 1 2 3 3 N N

Ž X .= c r, s , r , s , r , s , . . . , r , s .l 1 2 3 3 N N

Ž .14

E is given in terms of the exchange]correlationxc
hole by

1
X X X3 3Ž . Ž . < < Ž .E s d r r r d r r r, r rr y r . 15H Hxc xc2

The exchange]correlation hole fulfills the normal-
w xization condition 9 ,

3 X Ž X . Ž .d r r r, r s y1. 16H xc

III. An Exact Mixing Coefficient

In this section, we define an exact exchange
w xmixing coefficient 17]19 , which tells us how

much exchange to mix with E to recover thexc, ls1
exact exchange]correlation energy.

We use the mean value theorem to replace the
coupling-constant integral E s H1 dl E by axc 0 xc, l

weighted sum of the integrand E at the endxc, l

points of the integration. Note that E alwaysxc, l

lies below E , since correlation is always negativex
w x20 . Since E is an average over a monotonicxc
curve beginning at E and ending at E , wex xc, ls1
can always find a number 0 F b F 1 which satis-
fies

Ž . Ž .E s bE q 1 y b E . 17xc x xc, ls1

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 287



ERNZERHOF, PERDEW, AND BURKE

w xSolving for b, we find 21

E y Exc xc, ls1
b s

E y Ex xc, ls1

E y Ec , ls1 cs
Ec , ls1

Tc Ž .s y . 18
Ec , ls1

Ž .From Eq. 17 , we see that b is a coefficient which
indicates how much exchange must be mixed with
E to recover E . Since all the energies in Eq.xc, ls1 xc

Ž .17 are functionals of the density, so too is b.
We may also interpret the inverse of b as a

measure of the curvature of the l-dependent curve,
E . To see this, note that in the high-densityxc, l

Ž .limit where E is a straight line ,xc, l

1w x Ž .b r ª , a ª `, 19a 2

Ž .while in the low-density or strong coupling limit,

w x Ž .b r ª 0, a ª 0. 20a

In fact, if E is closer to E than to E , as it isxc xc, ls1 x
in all cases we are aware of, then the E curve isxc, l

1concave upward, and 0 F b F . For the curves2
Ž .shown in Figures 1 and 2, we find b r s 0.25 ss

Ž .0.42 and b r s 6 s 0.29, respectively. Thus thes
inverse of b measures the curvature, which in turn
indicates the relative strength of correlation versus
exchange in the system. For exchange-dominated

1systems, b is close to ; for strongly correlated2

systems, b is much lower. We will interpret b as
w xthe ‘‘exchange character’’ 17 .

To finish this section, we discuss examples of b
from quantum chemistry. Consider a system for

Ž .which second-order perturbation theory MP2
gives nearly the exact correlation energy, e.g., the
Ne atom. In that case, E is almost linear in l,xc, l

1and b is close to . On the other hand, if there is a2

near degeneracy of the Hartree]Fock determinant
with excited determinants, then high-order pertur-
bation expansions are necessary to obtain useful
results. In such a system, the wave function
changes very rapidly on going from zero to nonzero
l values, and rapidly approaches its l s 1 value
with increasing l. An example is stretched H2
w x21]23 , where for small but finite l the wave

Ž .function assumes its final l s 1 value and b is
close to zero.

IV. Atomization Energies at l = 0

Ž .In this section we discuss the exchange l s 0
energy contribution to the atomization energy of
molecules. This means that we replace H1 dl E0 xc, l

by H1 dl E s E . We consider both the local0 xc, ls0 x
Ž .spin-density LSD and the PW91 approximation

w xto E . Self-consistent LSD calculations 24 havex
been performed and the exchange energy in the
density functional approximations has been evalu-
ated on the LSD densities. The exact exchange
results D E are obtained by inserting the LSDx

Kohn]Sham orbitals into the Fock integral, which
yields the exchange energy of a Slater determinant.
Details of the calculation are given in the Ap-
pendix.

LSD APPROXIMATION

The formation of a covalent bond is accompa-
nied by a compression of the molecular density,
which also becomes more homogeneous than in

w xthe separated atoms 25 . This compression makes
the exchange energy more negative at the LSD
level of approximation. Because LSD overly favors
density homogeneity, it therefore overbinds. The
LSD decrease in exchange energy upon molecule
formation is in general much too large, as can be
seen by comparing D E with D ELSD in Table I.x x

Note that the error in D ELSD is particularly big inx

cases where bond formation leads to electron pairs
Žwhich strongly interact with each other collected

.in the lower part of the table , i.e., electron pairs
which are close to each other as in first-row multi-
ple-bonded systems and in F . It is well known2
that F , although formally single-bonded, has2
strongly interacting lone pairs. In fact this interac-
tion between the lone pairs is the reason the F2
molecule is not stable in the Hartree]Fock approx-
imation. On the other hand, the overlap between
electron pairs leads to an increase in the electron
density, which in turn causes an exaggerated de-
crease in the LSD exchange energy of the molecule.

In general, as shown in Table I, the exchange
energy of the molecule is better described within
the LSD approximation than the exchange energy
of the separated atoms. We can understand this
behavior in terms of the exchange hole. In the
midbond region of a molecule, the two nuclei
compete for the electron density and the exact

VOL. 64, NO. 3288
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TABLE I
LSD ( ) aE contribution to atomization energies D .x e

LSD LSDDE E E DE E Exc x x x x x
LSDSystem exact molecule atoms exact molecule atoms DEx

H 0.090 y0.648 y0.597 0.051 y0.559 y0.513 0.0452
LiH 0.080 y2.099 y2.059 0.041 y1.819 y1.779 0.040
CH 0.468 y6.536 y6.215 0.320 y5.864 y5.476 0.3884
NH 0.328 y7.612 y7.440 0.171 y6.886 y6.627 0.2593
OH 0.114 y8.489 y8.437 0.052 y7.685 y7.588 0.097
H O 0.262 y8.876 y8.736 0.140 y8.075 y7.845 0.2312
HF 0.160 y10.343 y10.253 0.090 y9.438 y9.286 0.152
Li 0.035 y3.519 y3.520 y0.001 y3.049 y3.044 0.0052
Cl 0.085 y54.909 y54.888 0.021 y50.746 y50.648 0.0982
P 0.079 y45.055 y45.117 y0.062 y41.534 y41.488 0.0462

d } } } } 1.243 1.297 0.055

CO 0.213 y13.229 y13.159 0.070 y11.998 y11.780 0.217
N 0.137 y13.035 y13.088 y0.053 y11.824 y11.715 0.1092
NO 0.106 y14.616 y14.682 y0.066 y13.300 y13.189 0.112
O 0.099 y16.224 y16.277 y0.053 y14.805 y14.663 0.1422
F 0.009 y19.810 y19.930 y0.120 y18.124 y18.072 0.0522

d } } } } 1.373 1.543 0.171
a ( ) ( )DE ' E atoms y E molecule . The table is divided between systems with weakly and strongly interacting electron pairs.xc xc xc

LSD( ) ( ) (Exact E and LSD E exchange energies are shown. d denotes the mean absolute error. All energies are given in hartree 1x x
)hartree = 627.5 kcal / mol .

exchange hole becomes more isotropic and cen-
tered on the reference electron compared to the
exact exchange hole in the valence density of the
separated atoms. In an atom, the exact exchange
hole in the valence density is displaced toward the
nucleus. The LSD exchange hole, however, is al-
ways centered on its reference electron, with the
deepest point at the position of this electron. The
LSD approximation neglects the displacement of
the hole completely and therefore introduces a
differential error in the exchange energy. The LSD
approximation to D E does not compare well withx
the exact D E . Note, however, that D ELSD is ax x
much better approximation to the exact ex-
change]correlation energy difference D E . This isxc
a consequence of the fact that the LSD exchange
hole is centered around the reference electron. In
an inhomogeneous system, this centering of the
hole is more appropriate for the exchange]correla-
tion hole than for the exchange hole. This observa-
tion suggests that it is in general not a promising
route to approximate the exchange energy and the
correlation energy separately by a local or semilo-
cal density functional. Indeed, it has been sug-
gested that local or semilocal density functionals

for exchange also include an estimate of static
w xcorrelation 17]19, 22, 23, 26]29 . The ‘‘exact’’ D Exc

Ž LSDin Table I is obtained by subtracting D E y
LSD.E from the experimental atomization energies.xc

PW91 APPROXIMATION

Density gradients make the GGA exchange en-
w xergy more negative 7 . The gradients in the sepa-

rated atoms are usually bigger than the gradients
in the molecule, where we find a region of zero

w xgradient in the midbond region 25, 30 . Therefore
gradient corrections to LSD lower the energy of
the atoms more than the energy of the molecule.
This leads to a reduction of the overbinding of the
local approximation, as shown in Table II.

The PW91 gradient-corrected exchange func-
tional shows a significant improvement over LSD.
For the single-bonded systems with weakly inter-
acting bonds, such as H O and CH , D EPW91

2 4 x
agrees nicely with the exact results. For multiple-
bonded systems we also observe a significant im-
provement, but the remaining error is larger. We
attribute this error to the interaction between elec-
tron pairs. For the multiple-bonded systems, the
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TABLE II
PW91 ( )E contribution to atomization energies D .x e

PW 91 PW 91E E DE E Ex x x x x
PW 91 LSDSystem molecule atoms exact molecule atoms DE DEx x

H y0.648 y0.597 0.051 y0.641 y0.589 0.052 0.0452
LiH y2.099 y2.059 0.041 y2.086 y2.040 0.045 0.040
CH y6.536 y6.215 0.320 y6.521 y6.185 0.336 0.3884
NH y7.612 y7.440 0.171 y7.629 y7.412 0.217 0.2593
OH y8.489 y8.437 0.052 y8.518 y8.438 0.080 0.097
H O y8.876 y8.736 0.140 y8.919 y8.732 0.187 0.2312
HF y10.343 y10.253 0.090 y10.395 y10.271 0.124 0.152
Li y3.519 y3.520 y0.001 y3.498 y3.492 0.007 0.0052
Cl y54.909 y54.888 0.021 y54.904 y54.849 0.056 0.0982
P y45.055 y45.117 y0.062 y45.084 y45.077 0.007 0.0462

d } } } 0.023 0.022 0.029 0.055

CO y13.229 y13.159 0.070 y13.309 y13.151 0.158 0.217
N y13.035 y13.088 y0.053 y13.123 y13.058 0.065 0.1092
NO y14.616 y14.682 y0.066 y14.729 y14.672 0.057 0.112
O y16.224 y16.277 y0.053 y16.361 y16.287 0.074 0.1422
F y19.810 y19.930 y0.120 y19.967 y19.963 0.003 0.0522

d } } } 0.115 0.018 0.116 0.171

molecule is less accurately described by the GGA
approximation than are the separated atoms. A
plausible explanation is that the GGA exchange]

correlation hole is off-center, but too localized
around its electron, like the hole in an atom. For
single-bonded systems, there is no clear pattern
with regard to the question whether the molecule
or the atom is better described.

To support our claim that the interaction be-
tween electron pairs gives rise to an additional
error in the differential exchange energy for LSD
and PW91, we consider the NH molecule and3

compare the performance of the LSD and PW91
exchange functionals at the experimental geometry
and at a distorted geometry, in which the H—N
—H angle has been reduced to 51.38 from its

experimental value of 106.78. The N—H bond
length is kept fixed. From Table III we see that the
error in the PW91 exchange energy increases sig-
nificantly if the binding electron pairs are pushed
together. The decrease in exchange energy on
squeezing the molecule is overestimated by a fac-
tor of 2 both in LSD and PW91. The magnitude of
this error is comparable to the difference between
the error in atomization energy of single- and
multiple-bonded systems.

The presence of several different orbitals in the
same region of space can give rise to complicated
and highly delocalized exchange holes which are
poorly described by local or semilocal density
functional approximations. In particular, the ef-
fects of orbital nodality have been discussed by

TABLE III
Interaction between electron pairs in NH .3

LSD PW 91( )- H—N—H E E LSD error E PW91 errorx x x

106.78 y7.612 y6.886 0.726 y7.629 y0.017
51.38 y7.626 y6.921 0.705 y7.658 y0.032

Change y0.014 y0.034 y0.021 y0.029 y0.015
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w xGunnarsson and Jones 31 . Thus, while the den-
sity functional exchange energy always becomes
more negative when the molecule is formed
Ž DFT .D E ) 0 , the exact exchange energy some-x

Ž .times becomes less negative D E - 0 , as shownx

in Tables I and II.

COUPLING-CONSTANT AVERAGED
ATOMIZATION ENERGIES

It is expected that density functional approxi-
mations to E work better for large compared toxc, l

w xsmall values of l 17]19, 32 . The l-average E ofxc
E is therefore in general better approximatedxc, l

than E s E .x xc, ls0
Table IV shows that we indeed find a remark-

able improvement in the density functional ap-
proximations to E over the approximations toxc
E . With increasing l, the on-top value of thex
exchange]correlation hole becomes deeper, and

Ž .the sum rule of Eq. 14 ensures that the hole
becomes more short-ranged and centered around
its reference electron, so that information about the
local density and the gradient of the density is
sufficient to model the hole very accurately. The
general trend which emerges from Table IV is that

TABLE IV
( )Atomization energies D in the LSD ande

PW91 approximation.

exact LSD PW91System DE DE DE

H 0.1743 0.1799 0.16802
LiH 0.0921 0.0955 0.0850
CH 0.6682 0.7359 0.67214
NH 0.4740 0.5367 0.48313
OH 0.1697 0.1975 0.1761
H O 0.3700 0.4240 0.37552
HF 0.2243 0.2580 0.2279
Li 0.0389 0.0368 0.03262
Cl 0.0924 0.1281 0.10172
P 0.1869 0.2264 0.19172

d } 0.033 0.006

CO 0.4129 0.4763 0.4288
N 0.3643 0.4259 0.38642
NO 0.2437 0.3164 0.2731
O 0.1920 0.2785 0.22872
F 0.0614 0.1255 0.08752

d } 0.070 0.026

atomization energies are overestimated by the ap-
proximate density functionals used in this work.
This overestimation is greatly exaggerated at the
exchange-only level. But the error made at the
lower end of the coupling-constant integration is
not uniform: it is big for multiple-bonded systems
and small for single-bonded systems. This effect

Ž .carries over to a much smaller extent to the
coupling-constant averaged quantity E , so thatxc
the atomization energy for multiple-bonded sys-
tems is less accurately reproduced than the atom-
ization energy of single-bonded systems.

We now sketch the coupling-constant depen-
dence of D E s Eatoms y Emolecule for the Nxc, l xc, l xc, l 2
molecule in Figure 3. D ELSD and D EPW91 are cal-xc, l xc, l

Ž .culated using Eq. 11 , while the ‘‘exact’’ curve is a
sketch. In the separated atoms we do not have
much static correlation, so D E can be accu-xc, l

rately obtained from low-order perturbation the-
ory, which implies that Eatoms is close to a straightxc, l

line. The N molecule shows strong static correla-2

tion. Static correlation causes Emolecule to drop morexc, l

rapidly from its l s 0 value toward its l s 1
value. Based on these observations, we expect that
the D E curve goes rapidly away from its ex-xc, l

Ž .change-only i.e., l s 0 value and then linearly
approaches the l s 1 value. The l s 1 value of
D E is drawn assuming it to be exactly repro-xc, l

duced in the PW91 approximation. The LSD curve
overestimates D E at l s 1, but its error isxc, l

much smaller there than at the l s 0 end. In cases
Žwhere we have less static correlation i.e., in sin-

.gle-bonded systems , the approximate density
functional and exact curves match each other more
closely and the difference at l s 0 is much smaller.
The qualitative picture of the l dependence of
D E given here has been confirmed by the suc-xc, l

(FIGURE 3. Sketch of DE for N ª 2N energy inxc, l 2
)hartrees . Since we could not find an ‘‘exact’’ correlated

wave function for N , we have constructed the ‘‘exact’’2
curve to agree with PW91 at l = 1.
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cessful construction of nonempirical hybrid
w xschemes 33]35 and by the calculation of the exact
< w xdE rdl 35 .ls0xc, l

V. Hybrids Based on the
Mixing Coefficient

Now we use the LSD or PW91 approximation
Ž .for E together with Eq. 18 to determine thec, l

mixing coefficient b, which is a measure of the
Žexchange contribution to E . This recipe b sxc

DFA .b ensures that b is exact in cases where the
approximate density functional is exact, so that we
recover the correct limit for slowly varying densi-
ties. Other choices which reproduce the exact b in
the limit of slowly varying densities are also possi-
ble, but they require further information about the
exchange character of the system of interest.

A simple prescription is to use a density func-
Ž .tional approximation DFA for both E and bxc, ls1

Ž .in Eq. 17 , and the exact exchange energy for E ,x
which is less accurately approximated by density
functionals. We evaluate the exact exchange en-
ergy by inserting the DFA Kohn]Sham orbitals
into the Fock integral for the exchange energy of a
Slater determinant. We obtain the hybrid energy

hyb DFA exact Ž DFA . DFA Ž .E s b E q 1 y b E . 21xc x xc, ls1

Ž .From Eq. 17 it follows that

DFA Ž DFA . DFA Ž .E s 1 y b E , 22c c , ls1

Ž .which, inserted into Eq. 21 , leads to

hyb DFA exact Ž DFA . DFA DFAE s b E q 1 y b E q Exc x x c

DFA Ž exact DFA . DFA Ž .s b E y E q E . 23x x x c

w xBecke’s recent empirical hybrid scheme 17 makes
Ž .use of an expression similar to Eq. 23 :

empir Ž exact DFA . DFA Ž .E s a E y E q E , 24xc x x xc

w xwhere the empirical parameter a is 0.16 or 0.28 17
depending on the GGA used. Note that a in Eq.
Ž .24 is usually chosen to be the same constant for
all systems. It does not have the same meaning as
the parameter bDFT s yT DFArEDFA , which is sys-c c, ls1

Ž . DFAtem-dependent. In Eq. 21 , b determines the
amount of EDFA contributing to Ehyb, and so, forc, ls1 xc
the hybrid constructed here, can be considered as a

nonempirical estimate of the value a. The empiri-
cal approach to determine a is based on fits to
energy differences upon ionization, atomization,

w xand proton attachment 17 . The empirically deter-
mined single value for a may be characteristic of
the properties it is fitted to, just as bD is, as argued
below. A fit of a to a set of atomization and
ionization energies and proton affinities may not
be optimal for properties which are mainly deter-
mined by core electrons, or are otherwise different
from those to which a was fitted. Note that Grit-

w xsenko, van Leeuwen, and Baerends 21 use Eq.
Ž . DFA exact exact21 with b ª b , where b is determined

Ž .for each system by Eq. 18 .
Ž .In general, Eq. 23 needs to be modified if we

want to calculate molecular properties such as
atomization energies. This can be seen by the fol-
lowing argument: bDFA, which measures the ex-
change contribution to Ehyb, is in part determinedx c
by electrons which do not participate in the atom-
ization process, e.g., core electrons. The high-den-
sity core electrons are well described by second-
order perturbation theory, so that the more core

1 welectrons we have, the closer b will be to as in2
1Ž .xEq. 19 . But b s is not appropriate for the2

Ž .valence electrons see Fig. 2 . We need to find a
way to eliminate the contribution to the parameter
b from electrons which do not participate in the
atomization process.

To account for this property dependence of the
amount of exchange mixing, we turn the above
scheme for the calculation of Ehyb into a schemexc
for the calculation of energy differences and the
corresponding bD :

hyb D Ž exact DFA . DFA Ž .D E s b D E y D E q D E , 25xc x x xc

where

DT DFA
cD Ž .b s y . 26DFAD Ec , ls1

An alternative way to reduce the effect of the core
electrons on the parameter b would be to use
a pseudopotential. Note that in the energy-dif-
ference hybrid approach no attempt is made to
define a unique energy for a given system.

A special case in which the above hybrid form
becomes exact is when the shape of the exact
l-dependent curve follows precisely that of the
DFA curve, being identical at l s 1 but differing
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at l s 0, i.e., when

E y Exc , l xc, ls1 Ž .s constant 27DFA DFAE y Exc , l xc, ls1

Ž .or a similar equation for energy differences . Un-
der these circumstances, bDFA s b, and the hybrid

Ž .of Eq. 21 reproduces the exact exchange]correla-
tion energy. Unfortunately, as can be seen from
Figure 3, the fact that the exchange error of the
approximate functionals is far greater than the

Ž .exchange]correlation error suggests that Eq. 27 is
not valid for atomization energies. The following
tables, giving results based on this hybrid, also
suggest that this assumption is incorrect.

First we discuss the results obtained by using
the LSD approximation in the energy difference
hybrid. Table V compares the LSD approximation
to the atomization energies of a number of small
atoms with the results obtained from the energy-
difference hybrid. We see that the energy differ-
ence hybrid gives an improvement compared to
the LSD approximation. Note, however, that Becke

w xhas shown 19 that even the extreme value b s 0.5
leads to significant improvements over LSD.
Therefore any mixing coefficient 0 F b F 0.5 gives

TABLE V
( )E contribution to the atomization energies Dxc e

from hybrid schemes based on the LSD
approximation. ‘‘h & h’’ is the half-and-half

( )hybrid b = 1 ///// 2 .

LSD h&h D DSystem DE DE DE DE bxc xc xc xc

H 0.090 0.096 0.088 0.098 0.3652
LiH 0.080 0.083 0.074 0.084 0.353
CH 0.468 0.535 0.473 0.510 0.3824
NH 0.328 0.391 0.322 0.357 0.3853
OH 0.114 0.142 0.111 0.125 0.389
H O 0.262 0.316 0.256 0.281 0.3892
HF 0.160 0.194 0.156 0.170 0.392
Li 0.035 0.033 0.022 0.031 0.3132
Cl 0.085 0.121 0.078 0.089 0.4102
P 0.079 0.119 0.051 0.077 0.3812

d } 0.033 0.008 0.013 }

CO 0.213 0.276 0.194 0.216 0.410
N 0.137 0.199 0.103 0.133 0.4032
NO 0.106 0.178 0.079 0.106 0.406
O 0.099 0.186 0.082 0.105 0.4132
F 0.009 0.074 y0.016 0.002 0.4172

d } 0.070 0.024 0.004 }

an overall improvement of the atomization ener-
gies, since atomization energies at the LSD level
are always too high and the atomization energies
at the Hartree]Fock level are always too low. As
already mentioned, the choice of b s 0.5 is consis-
tent with the assumption that second-order pertur-
bation theory gives the correct atomization energy.
Results obtained with this half-and-half approach
Ž .i.e., b s 0.5 are also listed in Table V; they tend
to overcorrect the LSD atomization energies in
some cases. Note also that the mixing coefficients
given in Table V do not reflect expectations about
the Hartree]Fock character of the molecules. We
would expect the CH molecule to have more4
Hartree]Fock character than the N molecule. We2
conclude that the energy difference hybrid in the
LSD approximation shows an error cancellation
which results in good predictions for the atomiza-
tion energies. Because D ELSD is much largerxc, ls1

Ž .than D E as shown in Fig. 3 , an excessivexc, ls1
1Ž .b s mixing of exact exchange accidentally can-2

cels this l s 1 error of LSD.
We can also use the PW91 approximation for

the exchange and correlation energy functionals in
Ž .Eq. 23 . The results for atomization energies from

this hybrid scheme are reported in Table VI. We

TABLE VI
( )E contribution to the atomization energies Dxc e

from hybrid schemes based on the
PW91 approximation.

PW91 h&h D DSystem DE DE DE DE bxc xc xc xc

H 0.090 0.084 0.079 0.084 0.4242
LiH 0.080 0.073 0.067 0.071 0.423
CH 0.468 0.472 0.443 0.465 0.4124
NH 0.328 0.337 0.297 0.318 0.4173
OH 0.114 0.121 0.101 0.109 0.423
H O 0.262 0.268 0.233 0.248 0.4212
HF 0.160 0.164 0.142 0.150 0.426
Li 0.035 0.028 0.020 0.026 0.3592
Cl 0.085 0.094 0.070 0.081 0.3892
P 0.079 0.084 0.036 0.057 0.3942

d } 0.006 0.021 0.009 }

CO 0.213 0.229 0.175 0.192 0.418
N 0.137 0.159 0.087 0.110 0.4182
NO 0.106 0.135 0.062 0.084 0.416
O 0.099 0.136 0.063 0.084 0.4122
F 0.009 0.036 y0.031 y0.017 0.4232

d } 0.026 0.042 0.022 }
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do not obtain a consistent improvement over PW91.
To understand why, note that the sketch Figure 3
shows that D EPW91 has too little curvature, so thatxc, l

b, which measures the inverse curvature, is overes-
timated.

For completeness, we also report results for the
half-and-half approach. In both hybrids we obtain
a large overcorrection. At the more accurate PW91

1level we therefore see that b s is quite unrealis-2

tic. Note that the mixing coefficient bPW91 agrees
better than bLSD with our expectation about the
Hartree]Fock character of the atomization pro-
cesses of the various molecules.

VI. Conclusion

The coupling-constant analysis shows that the
major error made in the LSD and PW91 calculation
of atomization energies comes from the lower end
of the coupling-constant integration. Furthermore,
the exchange contribution to atomization energies
is badly approximated in cases where we have
strong static correlation effects in the molecule,
including first-row multiple-bonded systems with
many interacting electron pairs. The local and
semilocal density functional approximations stud-
ied here are derived from the homogeneous or
slowly varying electron gas and are not expected
to describe finite systems with strong static corre-
lation as accurately as systems with dynamic cor-
relation. Based on our sketch for the coupling-con-
stant dependence of D E , we see that the lxc, l

dependence predicted by the density functionals is
much closer to a straight line than is the exact
D E . This helps, however, to reduce the error inxc, l

D ELSDrPW91: while D E is overestimated by ap-xc x

proximate density functionals, D E is underesti-c

mated. The fact that D EPW91 is too straight impliesxc, l

that the mixing coefficient which we obtain from
bD s yDT rD E , with PW91 input, is too big.c xc, ls1
A simple hybrid scheme using this bD therefore
tends to overcorrect the overbinding tendency of
the PW91 approximation. We conclude that the
successful construction of a nonempirical hybrid
requires further insight into the coupling-constant
dependence of D E . After this article was com-xc, l

pleted, work on this question led to nonempirical
w xhybrid schemes 33]35 , which verify the discus-

sion of the adiabatic connection presented here.

Appendix: Technical Details of
the Calculations

The calculations reported in this work are per-
formed with a modified version of the CADPAC

w xprogram 24 . The electron densities are obtained
from unrestricted Kohn]Sham calculations in the
LSD approximation, and the various functionals
have been evaluated on these densities. Nonspher-
ical densities and Kohn]Sham potentials have been

w xused for open-shell atoms 36 . The experimental
geometries employed in our work are listed in Ref.
w x37 . The D values are obtained from the experi-e
mental atomization energies and the zero point

w xenergies given in Ref. 38 . The Gaussian basis sets
used are of triple zeta quality with up to l q 2-type
polarization functions for H and for the first-row
elements and l q 1-type polarization functions for
the second-row elements. l is the angular momen-
tum number of the highest occupied orbital in the
atom.
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