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SUMMARY

We consider the problem of modelling the failure-time distribution, where failure is due to two distinct
causes. One approach is to adopt a two-component mixture model where the components correspond to
the two di�erent causes of failure. However, routine application of this approach with typical parametric
forms for the component densities proves to be inadequate in modelling the time to a re-replacement
operation or death after the initial replacement of the aortic valve in the heart by a prosthesis, such as a
xenograft valve. Hence we consider modi®cations to the usual mixture model approach to handle situations
where there exists a strong dependency between the failure times of the distinct causes. With these
modi®cations, a suitable model is able to be provided for the distribution of the time to a re-replacement
operation conditional on the age of the patient at the time of the initial replacement operation. The estimate
so obtained by the probability that a patient of a given age will undergo a re-replacement operation
provides a useful guide to heart surgeons on the type of valve to be used in view of the patient's age.
Copyright # 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the analysis of failure time data, it is often necessary to consider di�erent types of failure.
Suppose that there are g � 2 distinct causes of failure and that on each entity or individual under
study, the aim is to record y � (T, xT, d)T, where T denotes the failure time, x is a vector of
covariates, and d � i if failure is due to the ith cause (i � 1, 2). The superscript T denotes vector
transpose. In the case where the study terminates before failure occurs, T is the censoring time
and d is set equal to zero to indicate that the failure time is right-censored.

The traditional approach to the modelling of the distribution of failure time in the case of
competing risks is to postulate the existence of so-called latent failure times corresponding to the
two causes and to proceed on the basis that the two causes are independent of each other (see
David and Moeschberger 1978; Kalb¯eisch and Prentice 1980).
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An alternative approach is to adopt a two-component mixture model, whereby the survival
function of T is modelled as

S�t; x� � p1�x�S1�t; x� � p2�x�S2�t; x�; �1�

where the ith component survival function Si(t; x) denotes the conditional survival function given
failure is due to the ith cause, and pi(x) is the probability of failure from the ith cause (i � 1, 2). It
is common to assume that the mixing proportions pi(x) have the logistic form.

p1�x;bbbbb� � 1 ÿ p2�x; bbbbb� � exp�a � b
T
T�=�1 � exp �a � b

T
x�; �2�

where bbbbb � (a, bT)T is the vector of logistic regression coe�cients (see Farewell 1977, 1982, 1986).
This was the approach adopted by Larson and Dinse (1985) who assumed also that the
component survival functions follow a proportional hazards model (Cox 1972) and that the
baseline hazard functions h0i�t� i( � 1, 2) are piecewise constant for simplicity. That is,

hi�t; x� � e
gggggTi xh0i�t�

� e
gggggTi x�aim ; if t 2 Jm; �3�

where gggggi is a vector of parameters, J1 . . ., JM are M prespeci®ed disjoint intervals that totally
exhaust the non-negative real line, and aim is the parameter representing the log of the ith
component baseline hazard on the mth interval Jm �i � 1; 2; m � 1, . . ., M). As an alternative to
this speci®cation of h0i�t�, we can adopt some parametric form for the ith component baseline
hazard function h0i�t� (i � 1, 2). For example, Gordon (1990a) adopted this Gompertz distribu-
tion to specify the conditional survival functions in the context of estimating the `cure' rate of
breast cancer after a treatment therapy. She also examined the applicability of the mixture model
in ®tting competing risks data through a simulation study (Gordon 1990b). Kuk (1992) on the
other hand considered a semiparametric version of (3) by treating the baseline hazard functions
h0i�t� as nuisance parameters to be eliminated during the analysis.

In this paper, we consider the application of the two-component mixture model (1) to estimate
the probability that a patient aged x years will undergo a re-replacement operation after having
his/her native aortic valve replaced by a xenograft prosthesis. At the time of the initial replace-
ment operation, the surgeon has the choice of using either a mechanical valve or a biologic valve
such as a xenograft (made from porcine valve tissue) or an allograft (human donor valve).
Modern day mechanical valves are very reliable, but a patient must take blood-thinning drugs for
the rest of his/her life to avoid thromboembolic events. On the other hand, biologic valves have a
®nite working life, and so have to be replaced if the patient were to live for a su�ciently long
enough time after the initial replacement operation.

With respect to this problem, we now let T denote the time to either a re-replacement operation
or to death without a re-replacement operation. For brevity, we shall henceforth refer to the event
of a re-replacement operation as a reoperation. Then for a patient aged x years at the time of the
initial replacement operation, we can model the survival function of T by (1), where S1(t; x)
denotes the conditional survival function given the patient undergoes a re-replacement and S2(t;
x) denotes the conditional survival function given the patient dies without needing a reoperation.
The mixing proportion p1(x) then represents the probability of interest, namely that a patient
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aged x years at the time of the initial replacement operation will undergo a reoperation in his/her
lifetime.

In this application, speci®cation of a typically used parametric form for the component
survival functions in the mixture model (1) gave unsatisfactory results. Hence we had to consider
a modi®ed version of (1) in which constraints are e�ectively imposed on the component survival
functions. It will be seen that this mixture model with constrained components gives results that
are supported by the traditional latent failure-time approach based on the assumption of
independent competing risks. The results of this latter approach for presented in the next section,
while the constrained mixture approach is considered in Sections 4 and 5. Before we proceed with
the implementation of these two approaches, we give a brief account in Section 3 on why there is
a need to constrain the components of the mixture model (1) for this application.

2. LATENT FAILURE-TIME APPROACH

With the traditional approach to the handling of competing risks, consideration is given to the
hypothetical latent failure times corresponding to each cause in the absence of the other
(Moeschberger and David 1971). Accordingly, we let TR be the latent failure time for reoperation
in the absence of death and, likewise, we let TD be the latent failure time for death in the absence
of the risk due to reoperation. We let fR(t; x) and SR(t; x) denote the density and survival
functions of TR , and fD(t; x) and SD(t; x) the density and survival functions of TD . With this
approach, it is common to assume that the competing risks are independent. Under this
assumption, the survival function S(t; x) for the observable T � min(TR , TD), is given by

S�t;x� �
Z 1
t

fR�u; x�SD�u;x� du �
Z 1
t

fD�u; x�SR�u; x� du: �4�

This was the approach used by Grunkemeier et al. (1994) and McGi�n et al. (1997) in their
statistical analyses of data on the time to reoperation after an initial valve-replacement operation.

To illustrate why there is a need to have the components of the two-component mixture model
(1) inter-related or some constraints imposed on them, we can write (4) as the two-component
mixture model,

S�t; x� � p1�x�S1�t; x� � p2�x�S2�t; x�; �5�
where the mixing proportions pi(x) are given by

p1�x� � 1 ÿ p2�x� �
Z 1
0

fR�u;x�S�u; x� du; �6�

and the component survival functions Si�t; x� by

S1�t; x� �
Z 1
t

fR�u; x�SD�u; x� du
� ��

p1�x� �7�

and

S2�t; x� �
Z 1
t

fD�u;x�SR�u;x� du
� ��

p2�x�: �8�
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It can be seen from the forms (7) and (8) for the component survival functions that if the latent
failure due to one risk is much greater than the other, then this will a�ect the component survival
function corresponding to the other risk through the e�ect of truncation in the integrant of the
intervals on the right-hand sides of (7) and (8). For instance, in the present application, a
reoperation is eventually needed if a patient were to live for a su�ciently long enough period
following the initial replacement operation. Hence the presence of the latent survival function for
reoperation, SR�u; x�, in the integrand of the integral on the right-hand side of (8) can have a
marked e�ect on the consequent form for the component distribution S2�t; x� corresponding to
death without a reoperation. This gives some idea why the usual Gompertz model for death is not
appropriate for S2�t; x�. We shall consider this further in Section 4, but ®rstly, we shall analyse
the valve-replacement data by using the two-component mixture model (1) with (unconstrained)
Gompertz component baseline survival functions and proportional hazards assumed for the
e�ect of the age x of the patient at the time of the initial replacement operation. A guide to the
applicability of the logistic model (2) for the mixing proportions pi(x) can be obtained by plotting
the log of p1(x)/p2(x) versus x, where p1(x) is assessed using estimates of the latent failure-time
density and survival functions in the right-hand side of (6).

3. MIXTURE MODELS WITH UNCONSTRAINED COMPONENTS

The reoperation data set considered in this paper was drawn from a more extensive data set
involving 2100 patients undergoing 2366 aortic valve replacements with a variety of allograft,
xenograft, and mechanical valves (McGi�n et al. 1993). The present data set consisted of
n � 950 cases of aortic valve replacements that were performed with xenograft prostheses. There
were 62 subsequent valve-replacement reoperations due to either xenograft degeneration or some
other reason, while 198 patients died without a reoperation. The remaining 690 survival times
were all censored. The proportion of censoring observation is as large as 73%. Some preliminary
results for a similar data set were reported in McGi�n et al. (1997), using the latent-failure time
approach.

Under the logistic model (2),

p1�x; bbbbb� � 1 ÿ p2�x;bbbbb� � exp�a � bx�=�1 � exp �a � bx��; �9�

where bbbbb � �a; b�T is the vector of logistic regression, was adopted for the mixing proportions
p1(x) and p2(x), corresponding to reoperation and death without reoperation, respectively, as a
function of the covariate x, being the age of the patient at the time of the initial replacement
operation. Parametric forms for the component survival functions are speci®ed by assuming
proportional hazard models and taking the baseline hazard functions h0i�t� (i � 1, 2) to have the
Gompertz form. That is, the ith component hazard function is speci®ed as

hi�t; yyyyyi; x� � exp�gix�h0i�t�; �i � 1; 2�; �10�

where

h0i�t� � exp�li � xit�;
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with xi4 0, and yyyyyi � (li , xi , gi)
T (i � 1, 2). We let

CCCCC � �bbbbbT; yyyyyT1 ; yyyyyT2 �T

be the vector containing all the unknown parameters. Hence the component survival functions
Si�t; yyyyyi; x� are speci®ed as

Si�t; yyyyyi; x� � expfÿeli�gix�exit ÿ 1�=xig; �i � 1; 2�: �11�

The assumption of the Gompertz model for death in the absence of the competing risk of
reoperation (that is, for the latent survival function SD�t; x� for death) would appear to be
reasonable, as this distribution is often used in the literature to model death in the absence of
competing risks. However, it does not follow that this model will be applicable for death without
a reoperation. Indeed, it will be seen that assumption (10) of the Gompertz model for the baseline
hazard function and proportional hazards for the e�ect of age is inadequate for the second
component corresponding to death without a reoperation. However, it does appear to be
adequate for the ®rst component corresponding to the event reoperation before death. As
xenograft valves tend to degenerate more rapidly in younger patients (McGi�n et al. 1997), there
is a need to have the ®rst component hazard function (corresponding to reoperation) depending
on the age of the patient, as well as the second component hazard function (corresponding to
death without a reoperation), which clearly depends on age.

The observed data are of the form

y1 � �t1; x1; d1�T; . . . ; yn � �tn; xn; dn�T;

where dj � 1 if the jth patient undergoes a reoperation, dj � 2 if the jth patient dies without a
reoperation, and dj � 0 if the jth patient is still alive without having undergone a reoperation by
the end of the study (that is, the failure time is then right-hand censored at time tj). The
identi®ability of mixtures of Gompertz distributions has been established by Gordon (1990a) in
the case of mixing proportions that do not depend on any covariates. The extension to the case of
mixing proportions speci®ed by the logistic model (9) is straightforward. It follows that a
su�cient condition for identi®ability of the Gompertz mixture model is that the matrix
�x�1 ; . . . ; x�n �T be of full rank, where

x
�
j � �1; xj�T:

The log likelihood function is given by

log L�CCCCC� �
Xn
j�1
� I�dj � 1� log fp1�xj;bbbbb�f1�tj; yyyyy1; xj�g

� I�dj � 2� log fp2�xj; bbbbb�f2�tj; yyyyy2; xj�g �12�

� I�dj � 0� log S�tj;CCCCC; xj� �;
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where I(A) is the indicator function for the set A. The maximum likelihood estimate of C can be
obtained via the EM algorithm of Dempster et al. (1977). Further discussion of the EM
algorithm in its application to mixture models in a general context may be found in McLachlan
and Basford (1988) and McLachlan and Krishnan (1997). McLachlan et al. (1997) have
developed a FORTRAN program for the ®tting of a mixture of two Gompertz distributions to
censored survival data, using a generalized version of the EM algorithm.

The estimates so obtained are presented in Table I, where the standard errors of the estimates
are given in parentheses. The latter were computed by applying the nonparametric bootstrap
approach of Efron (1979, 1982) with the resampling scheme slightly modi®ed for the competing
risks problems. Let Ni be the number of cause i failures (i � 1, 2), and let N3 be the number of
censored observations. The bootstrap data are obtained by sampling separately from each of the
three sets, corresponding to cause i failures (i � 1, 2) and the censored observations, with the
sizes of these bootstrap subsamples taken equal to N1 , N2 , and N3 , respectively. A similar
resampling scheme has been used by Golbeck (1992) in bootstrapping life-table estimators. In
this application, K � 100 bootstrap samples were generated and the variances of the maximum
likelihood estimates are the sample variances of the corresponding estimates based on the
bootstrap samples.

Using the estimates â and b̂, the estimated probability p1(x; b̂bbbb) of reoperation is plotted versus
the age of the patient in Figure 1. The results in Figure 1 appear to be counterintuitive. For
example, it is estimated that only 65% of 20 year old patients will need to undergo a reoperation.
However, it is observed from the original data that 15 out of 18 non-censored patients of ages
between 10 and 30 years (83%) had to undergo a reoperation, and the censored observations in
this group would be expected to have very high chances of undergoing a reoperation. That is, the
probability p1(x; b̂bbbb) at x � 20 is underestimated by the mixture model with components (11)
using proportional hazards in conjunction with Gompertz baseline hazard functions. This is
because during the estimation process, censored observations are given too high a probability of
belonging to the second component, so that p1(x; bbbbb) and S1�t; yyyyy1; x� are underestimated. This bias
is serious here, as there is a large proportion of censored observations. In this situation, there is
inadequate information in the observed data on the tail of S1�t; yyyyy1; x�. This is typically the case in
practice, as most clinical studies require a very long follow-up to provide adequate information
on the tails of both the component survival functions.

As we surmised at the start of this section, we would not expect the proportional hazards
model to be appropriate for the second component for the mixture model corresponding to death
before reoperation. To investigate this further now, we applied the semiparametric method of
Kuk (1992) to this data set. This method adopts a marginal likelihood approach, whereby the

Table I. Maximum likelihood estimates (with standard errors) for a mixture of two Gompertz distributions
with proportional hazards

Logistic model Components

a b Reoperation Death without a reoperation

l1 x1 g1 l2 x2 g2

2.052 ÿ0.0726 ÿ3.530 0.507 ÿ0.0296 ÿ5.164 0.109 0.0245
(0.57) (0.013) (0.74) (0.098) (0.015) (0.55) (0.025) (0.008)
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baseline hazard functions in (3) do not have to be speci®ed, as they are treated as nuisance
parameters and eliminated during the analyses. The estimate so obtained for the probability p1(x;
b) of a reoperation of a patient aged x years at the time of the initial replacement operation is
displayed in Figure 1. It can be seen that it even gives a lower estimate of p1(x; bbbbb) than the
unsatisfactory assessment using the two-component mixture model with speci®ed parametric
forms (11) for the component baseline hazard functions. It would seem therefore that the
problem lies with the assumption of proportional hazards for the e�ect of the age x.

4. CONSTRAINED MIXTURE MODELS

We now proceed to consider a model for the second component hazard function, corresponding
to death without a reoperation, that does not assume proportional hazards. As a xenograft
prosthesis will eventually need replacement if the patient were to live long enough after the initial
replacement operation, it means that the second component hazard function h2�t; x� for death
without a reoperation will be grater than the ®rst component hazard function h1�t; x� corre-
sponding to reoperation before death; that is, for a given x,

h2�t; x�4 h1�t; x� 8t: �13�

One way in which this constraint is automatically satis®ed by the components of a two-
component mixture model with component survival functions S1�t; x� and S2�t;x� is to specify
the second component function S2�t;x� as

S2�t; x� � S1�t; x�Sa�t;x�; �14�

Figure 1. Estimated probability of reoperation at various age of patient: mixture model ÐÐ; semi-parametric mixture
model � � �
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where Sa�t; x� denotes some additional survival function. Then for (14), we have that

S�t; x� � p1�x�S1�t;x� � p2�x�S1�t; x�Sa�t;x�: �15�

From (14), it follows that

h2�t; x� � h1�t; x� � ha�t; x� �16�
4 h1�t; x� 8t; �17�

which implies that the inequality (13) holds. In (16), ha�t;x� denotes the hazard function
corresponding to the survival function Sa�t; x� introduced in the model (14) for S2�t; x�.

From (17), (15) can be considered as a constrained mixture model. We shall adopt it here with
the component survival function S1�t;x� for reoperation modelled as before by (11) and with the
same parametric form for Sa�t;x�; that is, it assumes a proportional hazards function with the
Gompertz distribution used to model the baseline hazard function, namely

Sa�t; yyyyya; x� � expfÿela�gax�exat ÿ 1�=xag;

where xa4 0, and yyyyya � �la; xa; ga�T. However, the component hazard function for death without
a reoperation now no longer has the proportional hazards form.

The model (14) for the component survival function S2�t; x� for death without a reoperation
has an easy to understand interpretation. Given that a patient will die without a reoperation, his/
her conditional hazard function can be viewed as being equal to the conditional hazard function
for reoperation plus some an additional hazard denoted here by ha�T; x�. A similar model to (14),
but without any covariate, was used by Berkson and Gage (1952) to estimate the cure rate of
breast cancer patients. The interpretation of their model was that `cured' patients are subjected
only to the `normal' hazard for death, while uncured patients are subjected to an additional
hazard from the risk of cancer. However, their formulation of the likelihood function was
di�erent from ours. Also, Berkson and Gate (1952) estimated the component survival function
corresponding to normal death from standard life tables rather than from the observed data,
which considerably simpli®ed the estimation process. Previously, Boag (1949) had given a
formulation of this problem in which the kernel of the log likelihood reduced to the same form as
for the so-called long-term survival mixture model (see, for example, Farewell 1977; Maller and
Zhou 1996).

The modi®ed mixture model (15), which we shall call the constrained mixture model, can be
®tted by maximum likelihood via the EM algorithm. To facilitate its implementation on the M-
step, we used the ECM algorithm, where the M-step is replaced by computationally simpler CM-
steps (Meng and Rubin 1993). The ECM algorithm shares all the appealing convergence
properties of EM and always increases the likelihood after each iteration (Meng 1994). For the
present problem, we divided the vector CCCCC of unknown parameters into three CM-steps corre-
sponding to bbbbb, yyyyy1 , and yyyyya . The FORTRAN program of McLachlan et al. (1997) for the ®tting of
mixtures of Gompertz components with proportional hazards was modi®ed to handle the
constrained model (15). The resulting estimates are reported in Table II, along with their
standard errors in parentheses.

In Figure 2, we have plotted the estimate of the probability p1�x;bbbbb� that a patient aged x years
at the initial replacement operation will undergo a reoperation, as obtained by the constrained
mixture model. It can be seen that it is good agreement with the corresponding estimate as given
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by the latent failure-time approach applied under the assumption of independent competing
risks. As this assumption would not appear to be a strong one for the application under study, it
thus appears that the constrained mixture model provides a satisfactory model for the time to
either reoperation or death without reoperation after the replacement of the native aortic valve by
a xenograft prosthesis.

In Figure 3, we have plotted the ®tted component survival function S1�t; ŷyyyy1; x� along with the
corresponding estimate as obtained with the latent failure-time approach assuming independent
competing risks. It can be seen that there is good agreement between this latter method and the
constrained mixture model approach. Although in Figure 3 we have plotted s1�T; ŷyyyy1; x� for t up
to 15 years for even a patient aged x � 70 years at the time of the initial replacement operation,
this estimate for large x should only be used for values of t in the practical range of interest. This
is because for large values of t, the proportional hazards model (10) for the e�ect of age x
provides only a crude approximation to reality for age x.

Table II. Maximum likelihood estimates (with standard errors) for constrained mixture model

Logistic model Components

a b Reoperation Death without a reoperation

l1 x1 g1 la xa ga

3.671 ÿ0.0757 ÿ2.783 0.275 ÿ0.0441 ÿ5.454 0.0672 0.0308
(0.82) (0.016) (0.37) (0.048) (0.0092) (1.07) (0.026) (0.014)

Figure 2. Estimated probability of reoperation at a given age of patient: Constrained mixture model (ÐÐ); Latent
failure-time approach (± ± ± ±)
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5. CONDITIONAL PROBABILITY OF A REOPERATION

Up to now we have focused on the probability that a patient aged x years at the time of the initial
replacement operation of the aortic valve by a xenograft prosthesis will have to undergo a re-
replacement operation, which we refer to as reoperation. As a patient can avoid a reoperation by
dying ®rst, it is relevant to consider the conditional probability of a reoperation within a speci®ed
time t after the initial operation given that the patient does not die without a reoperation during
this period. We shall denote this conditional probability by CPR�t; x�.

In the latent failure-time framework, this probability is given by

CPR(t; x) � pr{reoperation by t j no death without reoperation by t}

� pr{reoperation by t}/{1ÿ pr (death without reoperation by t)}

�

Z t

0

fR�u;x�SD�u; x� du

1 ÿ
Z t

0

fD�u;x�SR�u; x� du
: �18�

It can be expressed in terms of the components of the mixture model (1) as

CPR�t; x� � p1�x�f1 ÿ S1�t;x�g=�p1�x� � p2�x�S2�t; x�� �19�
In terms of the constrained mixture model (15), CPR(t; x) is given by

CPR�t;C; x� �
p1�x; bbbbb�f1 ÿ S1�t; yyyyy1; x�g

p1�x;bbbbb� � p2�x; bbbbb�S1�t; yyyyy1; x�Sa�t; yyyyya; x�
: �20�

Figure 3. Conditional survival function of reoperation for speci®ed age of patients. Constrained mixture model (ÐÐ);
latent failure-time approach (± ± ± ±). With each model: x � 20 years (bottom line); x � 40 years (middle line); x � 70

years (top line)
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In Figure 4, we have plotted the estimated conditional probability of reoperation, CPR�t; ĈCCCC; x�,
versus t for various levels of the age x of the patient, along with the corresponding plots given by
the latent failure-time approach applied under the assumption of independent competing risks. It
can be seen that there is good agreement between this latter method and the constrained mixture
model approach.

To illustrate further the close agreement between the estimates obtained with these two
approaches, we computed the average value of the estimate of p1(x) over the data set, namely,

p̂1 �
1

n

Xn
j�1

p̂1�xj�:

It gave average estimated values of p̂1 � 0.323 and 0.368, for the constrained mixture approach
and for the latent failure-time approach, respectively. In Figure 5, we plotted versus time t the
average value of the estimate of CPR�t;x� over the data set, given by

CPR�t� �
1

n

Xn
j�1

cCPR�t; xj�;

for both the constrained mixture and latent failure-time approaches. It can be seen that there is
very close agreement between the constrained and latent approaches over the whole range of t.

To investigate further the validity of the constrained mixture model (15), we calculated the
residuals rj de®ned as

rj � H�tj; ĈCCCC; xj�; �j � 1; . . . ; n�

Figure 4. Conditional probability of reoperation for speci®ed age of patients. Constrained mixture model (ÐÐ); latent
failure-time approach (± ± ± ±). With each model, x � 20 years (top line), x � 40 years (middle line), x � 70 years

(bottom line)
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If the model is correct and ĈCCCC is close to CCCCC, then the residuals rj s should behave like a censored
sample from a unit exponential distribution. In Figure 6, we have plotted the Nelson-Aalen
estimate of the cumulative hazard function formed from the residuals rj versus r1; . . . ; rn, along
with the 458 line corresponding to the cumulative hazard function of the unit exponential
distribution. It can be seen from this ®gure that the cumulative hazard function formed from the

Figure 5. Estimated conditional probability of reoperation averaged over the data. Constrained mixture model (ÐÐ);
latent failure-time approach (± ± ± ±)

Figure 6. Plot of cumulative hazard function estimated from the residuals versus cumulative hazard function for the
exponential distribution
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residuals is quite quite close to the 458 line, except in the tail where the variability in the estimate
of the cumulative hazard function is large. This suggests that the constrained mixture model is
adequate.

6. DISCUSSION

We have seen that a mixture model with typically used parametric forms for its component
survival functions is unable to provide a satisfactory model of the distribution of time to
reoperation or to death without reoperation after the replacement of the aortic valve by a
xenograft prosthesis. As a xenograft prosthesis will always need replacement if the patient were to
live for a su�ciently long time after the initial operation, the two mixture model components
corresponding to reoperation and death without a reoperation need to be inter-related in their
parametric speci®cation. We have handled this situation by constraining the components so that
the component hazard function for death without a reoperation is always greater than the hazard
for reoperation. This is e�ected implicitly by setting the component survival function corre-
sponding to death without a reoperation to be equal to the component survival function for
reoperation multiplied by some additional survival function. This constrained mixture model
gives results similar to those obtained by the traditional latent failure-time approach applied
under the commonly used assumption of independent competing risks. As this assumption would
appear not to be a strong one in this application, it supports the validity of the constrained
mixture model in this context. This constrained mixture model allows the component corres-
ponding to the competing risk with the greater hazard to have a nonproportional hazard
function, which is a more appropriate in the applications of the type here.

An attractive feature of the mixture model approach is that it does not have to make assump-
tions about the independence of the competing risks, as with the latent failure-time approach. As
pointed by Lagakos (1979), assumption of independence of risks seems unreasonable and
questionable in most real life situations. But any model that allows for dependence is restricted to
have simple parametric form for the joint distribution of the latent times, for example, a bivariate
normal mode, as proposed by NaÂ das (1971). Furthermore, the dependence of the competing risks
is nontestable. Cox (1959, 1962, p. 112) and Tsiatis (1975) showed that for any joint distribution
for the latent-failure times, there exists a joint distribution with independent latent-failure times
that gives the same distribution of the observable failure times. Thus from the observable failure
times and causes of failure alone, it is impossible to distinguish between an independent
competing-risks model and an in®nitude of dependent models. The indenti®ability of the latent
failure-time approach with covariates has been considered by Heckman and HonoreÂ (1989) and
Slud (1992). Klein and Moeschberger (1987) determined the e�ects of incorrect assumption and
independence and concluded that the departures from independence were of great consequence
on the estimations of the overall and marginal survival functions. In contrast to the latent failure-
time approach, the postulated component survival functions and mixing proportions of the
mixture model are able to be estimated directly from the observable data.
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