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Abstract

Let Fo be a non-archimedean locally compact field of residual characteristic not 2.
Let G be a classical group over Fo (with no quaternionic algebra involved) which is not
of type An for n > 1. Let β be an element of the Lie algebra g of G that we assume
semisimple for simplicity. Let H be the centralizer of β in G and h its Lie algebra. Let I
and I1

β denote the (enlarged) Bruhat-Tits buildings of G and H respectively. We prove
that there is a natural set of maps jβ : I1

β → I which enjoy the following properties:
they are affine, H-equivariant, map any apartment of I1

β into an apartment of I and are
compatible with the Lie algebra filtrations of g and h. In a particular case, where this
set is reduced to one element, we prove that jβ is characterized by the last property in
the list. We also prove a similar characterization result for the general linear group.

Introduction

In this paper we establish new functoriality properties between affine Bruhat-Tits
buildings of classical reductive groups over local fields. More precisely let Fo be a non-
archimedean local field of residual characteristic not 2 and G be the group of Fo-rational
points of a classical group defined over Fo. We assume that G is the isometry group of
an ε-hermitian form over an F -vector space, where F is a (commutative) extension of Fo

of degree less than 2. We denote by g the Lie algebra of G and by I its affine building.
Let β be an element of g that we assume to be semisimple for simplicity. Let H be the
centralizer of β in G. Then H is the group of Fo-rational points of a product of groups
of the form ResEo/FoH i, where Eo/Fo is a field extension and where Res denotes the

functor of restriction of scalars. Here i runs over a finite set J̃ . Each H i is either a
classical group as above or a general linear group. We denote by J+ ⊂ J̃ the (possibly
empty) subset of indices corresponding to linear groups. We denote by h the Lie algebra
of H and by I1

β its (enlarged) affine building. Then there is a natural set of maps jβ :
I1
β → I which depend on identifications of the enlarged buildings of H i, i ∈ J+, with

certain sets of lattice functions (see §4 below). In particular, when J+ = ∅, there is a
natural choice of jβ. The maps jβ enjoys the following properties:

a) They are affine.
b) They are H-equivariant.
c) They map any apartment of I1

β into an apartment of I.
d) They are compatible with the Lie algebra filtrations of g and h (cf. §9).

In [BL] it was proved that when G is the general linear group and β is an elliptic
element then, replacing the buildings by the non-enlarged buildings, there is such a
natural map jβ satisfying the conditions above. It is actually characterized by properties
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a) and b). However in the case of a classical group (and assuming that J+ = ∅) it is no
longer true that properties a), b) and c) characterize jβ. The simplest counter-example is
the following. Consider the case of G = Sp2(Fo) = SL(2, Fo). One may choose β is such a
way that H is E1, the group of norm 1 elements of a ramified quadratic extension E/Fo.
Then I1

β is reduced to a point and fixing a map jβ satisfying a) b) and c) amounts to
choosing a point in I fixed by the torus E1. But E1 is contained in an Iwahori subgroup
of G and therefore fixes a chamber of I.

We prove that, in the case of a general linear group and of an elliptic element β,
the map jβ of [BL] is actually characterized by property d). In the case of a classical
group, we also prove that if J+ = ∅ and if a technical condition on β is satisfied then
jβ is characterized by condition d). We conjecture that when J+ = ∅ then jβ is indeed
characterized by property d).

In this work, we do not actually assume β to be semisimple but only to satisfy a
weaker assumption (see hypothesis (H1) of §5). Such elements naturally appear in the
generalization of the theory of strata due to Bushnell and Kutzko [BK] to the case of
classical groups (see the work of the second author [S1], [S2]. Even though the work of
the second author does not use the theory of affine buildings in a straightforward way
(it uses the equivalent language of hereditary orders), the existence and properties of
the maps jβ are applied to the representation theory of G, particularly in [S2].

The paper is organized as follows. In §2 we recall the structure of the maximal split
tori of G. In §3,4, using ideas of Bruhat and Tits, we give a model of the affine building
of G in terms of “self-dual lattice functions”. In §5 we study the centralizers in g and G
of the Lie algebra element β. The construction of the maps jβ is done in §6 and their
properties are established in §7,8 and 9. In §10 We prove the uniqueness result for the
general linear group and finally §11 is devoted to the uniqueness result in the classical
group case.

We thank G. Henniart, B. Lemaire, G. Prasad and J.-K. Yu for stimulating discus-
sions.
1. Notation

Here Fo is the ground field; it is assumed to be non-archimedean, locally compact
and equipped with a discrete valuation v normalized in such a way that v(F×

o ) is the
additive group of integers. We assume that the residual characteristic of Fo is not 2. We
fix a Galois extension F/Fo such that [F : Fo] 6 2 and set σF = idF if F = Fo and take
σF to be the generator of Gal(F/Fo) in the other case. We still denote by v the unique
extension of v to F . We fix ε ∈ {±1} and a finite dimensional left F -vector space V .
Recall that a σF -skew form h on V is a Z-bilinear map V × V → F such that

h(λx, µy) = λσF µh(x, y) , λ, µ ∈ F, x, y ∈ V .

Such a form is called ε-hermitian if h(y, x) = εh(x, y)σF for all x, y ∈ V . From now on we
fix such an ε-hermitian form on V and we assume it is non-degenerate (the orthogonal
of V is {0}).

For a ∈ EndF (V ), we denote by aσh = aσ the adjoint of a with respect to h, i.e. the
unique F -endomorphism of V satisfying h(ax, y) = h(x, aσy) for all x, y ∈ V .
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We denote by G the simple algebraic Fo-group whose set of Fo-rational points G is
formed of the g ∈ GLF (V ) satisfying g.h = h (it is not necessarily connected). Here g.h
is the form given by g.h(x, y) = h(gx, gy), x, y ∈ V .

We know ([Sch](6.6), page 260) that in the case σF 6= idF , we may reduce to the case
ε = 1. So we have three possibilities:

σF = idF and ε = 1, the orthogonal case;
σF = idF and ε = −1, the symplectic case;
σF 6= idF and ε = 1, the unitary case.

We abbreviate G̃ = GLF (V ) and g̃ = EndF (V ).

2. The maximal split tori of G

Recall that a subspace W ⊂ V is totally isotropic if h(W, W ) = 0 and that maximal
such subspaces have the same dimension r, the Witt index of h. Set I = {±1,±2, . . . ,±r}
and Io = {(0, k) ; k = 1, . . . , n− 2r}. We fix a Witt decomposition of V , that is

two maximal totally isotropic subspaces V+ and V−,
bases (ei)i=1,...,r, (e−i)i=1,...,r, (ei)i∈Io of V+, V− and Vo := (V+ + V−)⊥,

such that

h(ei, ei) = 0, i ∈ I,
h(ei, ej) = 0, for i, j ∈ I with j 6= −i or i ∈ I, j ∈ Io,
h(ei, e−i) = 1, for i ∈ I with i > 0,
h(x, x) 6= 0, for x ∈ Vo and x 6= 0.

The Witt decomposition gives rise to a maximal Fo-split torus S whose group of
Fo-rational points is

S = {s ∈ G ; sei ∈ Foei , i ∈ I and (s− Id)Vo = 0} .

It has dimension r, the Fo-rank of G. Conversely any maximal Fo-split torus of G is
obtained from a Witt decomposition as above. The centralizer Z of S in G has for
Fo-rational points

Z = {z ∈ G ; zei ∈ Fei , i ∈ I and zVo = Vo} .

For each i ∈ I, we have a morphism of algebraic groups ai : Z → ResF/Fo(Gm)
given by zei = ai(z)ei. Note that a−i(z) = ai(z)−σ. We also denote by ai : S → Gm /Fo

the character obtained by restriction. We have ai = −a−i in X∗(S), the Z-module of
rational characters of S. The ai, i ∈ I, i > 0, form a basis of X∗(S).

The normalizer N of Z in G is the sub-algebraic group whose Fo-rational points are
the elements of G which stabilize Xo and permute the lines Vi = Fei, i ∈ I. The group
N = N (Fo) is the semidirect product of Z by the subgroup N ′ formed of the elements
which permute the ±ei, i ∈ I.

3. MM-norms and self-dual lattice-functions

We keep the notation as in the previous sections.

Recall that a norm on V is a map α : V → R ∪ {∞} satisfying:

i) α(x + y) > Inf(α(x), α(y)), x, y ∈ V ,
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ii) α(λx) = v(λ) + α(x), λ ∈ F , x ∈ V ,
iii) α(x) = ∞ if and only if x = 0.

We denote by Norm1(V ) the set of norms on V .

Definition 3.1. (cf. [BT](2.1)) Let α ∈ Norm1(V ). We say that α is dominated by h if

α(x) + α(y) 6 v(h(x, y)) for all x, y ∈ V .

We say that α is an MM-norm for h (maximinorante in french), if α is a maximal
element of the set of norms dominated by h.

In [BT](2.5) an involution ¯ is defined on Norm1(V ) in the following way. If α ∈
Norm1(V ), then

ᾱ(x) = inf
y∈V

[v(h(x, y))− α(y)] , x ∈ V .

We then have

Proposition 3.2. (cf. [BT](Prop. 2.5)) An element α of Norm1(V ) is an MM-norm if
and only if ᾱ = α.

We are going to describe the set Norm1
h(V ) of MM -norms in terms of self-dual

lattice-functions. Recall [BL] that a lattice-function in V is a function Λ which maps a
real number to an oF -lattice in V and satisfies:

i) Λ(r) ⊂ Λ(s) for r > s, r, s ∈ R,
ii) Λ(r + v(πF )) = pF Λ(r), r ∈ R,
iii) Λ is left-continuous.

Here oF denotes the ring of integers of F , pF the maximal ideal of oF and πF a uniformizer
of F . As in [BL], we denote by Latt1

oF
(V ) (or by Latt1(V ) when no confusion may occur)

the set of oF -lattice-functions in V . Recall [BL] that Norm1(V ) and Latt1(V ) may be

canonically identified in the following way. To α ∈ Norm1(V ), we attach the function
Λ = Λα given by

Λ(r) = {x ∈ V ; α(x) > r} , r ∈ R .

Conversely a lattice-function Λ corresponds to the norm α given by

α(x) = sup{r ; x ∈ Λ(r)} , x ∈ V .

For a Λ ∈ Latt1(V ) and r ∈ R, set

Λ(r+) =
⋃
s>r

Λ(s) .

For an oF -lattice L in V , we define its dual L] = L]h by

L] = {x ∈ V ; h(x, L) ⊂ pF} .

Finally, we define the dual Λ] = Λ]h of a lattice-function Λ by

Λ](r) = [Λ((−r)+)]] , r ∈ R .

We say that a lattice function Λ is self dual if Λ] = Λ and we denote by Latt1h(V ) the
corresponding set.
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Proposition 3.3. Given a norm α ∈ Norm1(V ), we have Λᾱ = Λ]
α.

Corollary 3.4. Let α be a norm on V . Then α is an MM-norm if and only if the
attached lattice-function Λ is self-dual.

Proof of Proposition. Let x ∈ V and r ∈ R. Then the fact that x ∈ Λᾱ(r)\Λᾱ(r+) is
equivalent to the following points:

i) ᾱ(x) = r;
ii) there exists y ∈ V such that v(h(x, y)) − α(y) = r, and for all y ∈ V , we have
v(h(x, y))− α(y) > r;
iii) there exists y ∈ V such that v(h(x, y)) = 0 and α(y) = −r, and for all y ∈ V such
that α(y) > −r, we have v(h(x, y)) > 0 (scale by a suitable power of a uniformizer πF );
iv) there exists y ∈ Λα(−r)\Λα(−r+) such that h(x, y) ∈ oF\pF , and for all y ∈
Λα(−r+) we have h(x, y) ∈ pF ;
v) x ∈ Λ]

α(r)\Λ]
α(r+).

This proves that the two lattice-functions Λᾱ and Λ]
α share the same discontinuity points

and that at those points they take the same values; so there are equal.

Let Norm2g̃ (resp. Latt2g) denote the G̃-set of square norms in g̃ (resp. of square
lattice-functions in g̃; see [BT1] and [BL]). Recall that a lattice-function Λ2 in the F -
vector space g̃ is square if there exists Λ ∈ Latt1(V ) such that Λ2 = End(Λ), where

End(Λ)(r) = {a ∈ g̃ ; aΛ(s) ⊂ Λ(s + r), s ∈ R}, r ∈ R .

An additive norm on g̃ is square if the corresponding lattice function is square. Recall
[BT1] that Norm1(V ) and Norm2g̃ (and therefore Latt1(V ) and Latt2g̃ by transfer of
structure) are endowed with affine structures : the barycenter of two points with positive
weights is defined.

The involution σ acts on Norm2g̃ via

ασ(a) = α(aσ), a ∈ g̃, α ∈ Norm2g̃ .

By transfer of structure, σ acts on Latt2g̃ via

Λσ(r) = [Λ(r)]σ, Λ ∈ Latt2g̃, r ∈ R .

A square norm α (resp. a square lattice function Λ) is said to be self-dual if α = ασ

(resp. Λ = Λσ). We denote by Norm2
σg̃ and Latt2

σg̃ the corresponding sets.
Now, in terms of lattice functions, Corollary 2 of [BT2], page 163, writes:

Lemma 3.5 The map Λ 7→ End(Λ) induces a bijection from the set of self-dual lattice
functions in V to the set of self-dual square lattice functions in g̃.

In other words, for any Λ ∈ Latt2
σg̃, there exists a unique Λ2 = Λ2

h ∈ Latt1
h(V ) such

that End(Λ) = Λ2.

Note that the sets Latt1
h(V ), Norm1

h(V ), Latt2
σg̃ and Norm2

σg̃ are G-sets and that the
various identifications among them are G-equivariant.

Let u ∈ F× and assume that uh is still an ε-hermitian form with respect to σF .
Then the involution σ of g̃ corresponding to uh remains the same and defines the same
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unitary group G ⊂ G̃. For Λ ∈ Latt1(V ) and s ∈ R, we denote by Λ + s the lattice
function given by (Λ + s)(r) = Λ(s + r), r ∈ R.

Lemma 3.6. Let Λ2 ∈ Latt2
σg̃ and Λ2

h (resp. Λ2
uh) be the unique element of Latt1

h(V )
(resp. of Latt1

uh(V )) satisfying End(Λ2
h) = Λ2 (resp. End(Λ2

uh) = Λ2). Then Λ2
uh =

Λ2
h − v(u)/2, that is Λ2

uh(r) = Λ2
h(r − v(u)/2), r ∈ R.

Proof. We easily check that for Λ ∈ Latt1(V ) and s ∈ R, we have

Λ]uh = u−σΛ]h and (Λ + s)]h = Λ− s .

We certainly have End(Λ2
h − v(u)/2) = End(Λ2

h) = Λ2. So by a unicity argument, we
must prove that Λ2

h − v(u)/2 ∈ Latt1
uh(V ). But

(Λ2
h − v(u)/2)]uh = u−σ(Λ2

h − v(u)/2)]h

= u−σ(Λ2
h + v(u)/2) = Λ2

h + v(u)/2− v(uσ) = Λ2
h − v(u)/2 ,

as required.

4. The building as a set of self-dual lattice-functions

Let I denote the building of the standard valuated root datum of G introduced in
[BT2] and A denote the apartment of I attached to S. Write V ∗ = X∗(S ⊗ R); this is
an R-vector space with basis (ai)i=1,...,r. Let V denote the linear dual of V ∗. We identify
A with V .

To a point p ∈ A ' V , we attach the norm αp on V defined by

αp(
∑
i∈I

λiei + xo) = inf[ω(xo), inf
i∈I

(v(λi)− ai(p))], xo ∈ Vo, λi ∈ F for i ∈ I .

Here ω(xo) = 1
2
v(h(xo, xo)), xo ∈ Vo.

Here are two important facts from [BT2].

Proposition 4.1. ([BT2](Prop. 2.9, 2.11(i))) The map p 7→ αp is a bijection from A to
the set of MM-norms on V which split in the decomposition V = ⊕i∈IFei ⊕ Vo. It is
N-equivariant.

For the notion of splitting for norms, see [BT1](1.4).

Proposition 4.2. ([BT2](2.12)) i) The map p 7→ αp extends in a unique way to a G-
equivariant and affine bijection jh : I → Norm1

h(V ) (in particular Norm1
h(V ) is a convex

subset of Norm1(V )).
ii) The map jh is the unique affine and G-equivariant map I → Norm1

h(V ).

From §3, we get a unique affine and G-equivariant map I → Latt1
h(V ) that we still

denote by jh.

For r ∈ R, let Vr
o be the lattice of Vo given by {xo ∈ Vo ; ω(xo) > r}. For x ∈ R, let

dxe denote the least integer greater than or equal to x. Then the map jh : I → Latt1
h(V )

is given on A by jh(p) = Λp, where

Λp(r) = Vr
o ⊕

⊕
i∈I

p
dr+ai(p)e
F ei , r ∈ R .
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Let u be an element of F× such that uh remains ε-hermitian with respect to σF . It
follows from the proof of Lemma (3.6) that if Λ ∈ Latt1(V ), we have Λ ∈ Latt1

h(V ) if,
and only if, Λ− v(u)/2 ∈ Latt1

uh(V ). Since End(Λ + s) = End(Λ), for Λ ∈ Latt1(V ) and
s ∈ R, the bijective map jσ : I → Latt2

σ(V ), given by jσ = End ◦ jh, does not depend
on the choice of the form h, the involution σ being fixed. By construction it is affine
and G-equivariant. It is uniquely determined by these two properties. Indeed if j′σ :
I → Latt2

σ(V ) is affine and G-equivariant, so is (j′σ)−1 ◦ jσ : I → I. But such a map
must be the identity map.

We also recall here the description of the enlarged building I1 of G̃ = GLF (V ) in
terms of lattice functions.

Proposition 4.3. ([BT1](2.11)) i) There is a G̃-equivariant and affine bijection j :
I1 → Norm1(V ).
ii) If we have another affine and G̃-equivariant map j′ : I1 → Norm1(V ) then there
exists r ∈ R such that, for all α ∈ Norm1(V ), j′(α) = j(α) + r.

From [BL] Proposition 2.4, for each j as in Proposition 4.3, we get an affine and
G̃-equivariant map I1 → Latt1(V ) that we also denote by j.

5. Centralizers of Lie algebra elements

We denote by g the Lie algebra of G:

g = {a ∈ g̃ ; a + aσ = 0} .

We consider an element β of g satisfying

(H1) The F -algebra E := F [β] ⊂ g̃ is a direct sum of fields.

We write h̃ (resp. h) for the centralizer of β in g̃ (resp. in g) and H̃ (resp. H) for the
fixator of β in G̃ (resp. in G) for the adjoint action.

Since σ(β) = −β, we have easily that E ⊂ g̃ is σ-stable. We write

E =
⊕

i=1,...,t

(Ei ⊕ E−i) ⊕
⊕

k=1,...,s

E(0,k),

where, for each i in J = {±1, . . . ,±t} or Jo = {(0, k) : k = 1, . . . , s}, Ei is a field
extension of F , and we have labeled the components such that, for each i ∈ Jo ∪ J ,

(H2) σ(Ei) = E−i,

with the understanding that i = −i, for i ∈ Jo. We remark that the torus E ∩G in G is
anisotropic (modulo the centre) if and only if J = ∅ and that every maximal anisotropic
torus in G takes this form (see [Mor] Proposition 1.3).

For each i ∈ Jo, we set Eo
i = {a ∈ Ei ; a = aσ}, so that Ei/E

o
i is a Galois extension

of degree 6 2 and a generator of Gal(Ei/E
o
i ) is σEi

:= σ|Ei
. For i ∈ Jo ∪ J , let 1i be

the idempotent of E attached to Ei; from (H2), we have σ(1i) = 1−i. We have the
decomposition

V =
⊕

i∈Jo∪J

Vi , Vi = 1iV .
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Note that, if i 6= −k, v ∈ Vi and w ∈ Vk, we have h(v, w) = h(1iv, w) = h(v,1iw) = 0
so, for i ∈ Jo ∪ J ,

V ⊥
i =

⊕
k 6=−i

Vk.

For i ∈ Jo ∪ J , Vi is naturally an Ei-vector space and we have obvious isomorphisms
of algebras and groups respectively:

h̃ '
∏

i∈Jo∪J

EndEi
Vi ,

H̃ '
∏

i∈Jo∪J

AutEi
Vi .

The involution σ stabilizes h̃ ⊂ g̃ and, for each i, σ(EndEi
Vi) = EndE−i

V−i. For i ∈ Jo,
we write σi = σ|EndEi

Vi
. Let us fix i ∈ Jo. The map σi is an involution of the central

simple Ei-algebra EndEi
Vi. By a classical theorem ([Inv] Theorem 4.2), there exists

εi ∈ {±1} and a non-degenerate εi-hermitian form hi on Vi relative to σEi
such that σi

is the involution attached to hi. Of course hi is only defined up to a scalar in E×
i . Let

Hi = {g ∈ AutEi
Vi ; ggσi = 1}

be the unitary group attached to hi. On the other hand, for i ∈ J , we put

Hi = AutEi
Vi,

so that σ(Hi) = H−i and Hi is isomorphic to {g ∈ Hi×H−i : ggσ = 1} by h 7→ (h, h−σ).
Then, putting J+ = {1, . . . , t}, we have a natural group isomorphism

H '
∏

i∈Jo∪J+

Hi .

We may actually require a compatibility relation between the forms hi, i ∈ Jo and
the form h. Let us fix i ∈ Jo. Let λi : Ei → F be any σ-equivariant non-zero F -linear
form. Such forms exist. Indeed choose a non-zero linear form λo

i : Eo
i → Fo. If F = Fo

then we put λ = λo
i ◦TrE/Eo

i
. Otherwise Ei = FEo

i and we can extend λo
i by linearity to

get the required map λi. In all cases we have:

(5.1) λo
i ◦ TrEi/Eo

i
= TrF/Fo ◦ λ .

We still write h for the restriction of h to Vi.

Lemma 5.2. Let i ∈ Jo. There exists a unique ε-hermitian form hi : Vi × Vi → Ei

relative to σEi
such that

(5.3) h(v, w) = λi(hi(v, w)), for all v, w ∈ Vi .

It is non-degenerate.

Proof. Since we have the orthogonal decomposition

V = Vi ⊥
⊕
k 6=i

Vk ,

8



the restriction h|Vi
is non-degenerate.

The F -linear map HomEi
(Vi, Ei) → HomF (Vi, F ), ϕ 7→ λi ◦ ϕ is an isomorphism of

F -vector space. Indeed if ϕ lies in the kernel, we have Im(ϕ) ⊂ Ker(λi), a strict subspace
of Ei, and ϕ must be trivial. Moreover the two dual spaces have the same F -dimension.
For v ∈ Vi let hv be the element of HomF (Vi, F ) given by hv(w) = h(v, w). There exists
a unique ϕw ∈ HomEi

(Vi, Ei) such that hv = λi ◦ ϕw. It is now routine to check that
hi(v, w) := ϕv(w), v, w ∈ Vi, has the required properties.

We easily check that if hi is as in the lemma, then the corresponding involution on
EndEi

Vi is σi. In the following we assume that the forms hi, i ∈ Jo, satisfy (5.3).

For technical reasons, we need one more assumption on the λi, i ∈ Jo. We fix i again.
Let

I = {e ∈ Eo
i ; λo

i (eoEo
i
) ⊂ pFo} .

This is an oEo
i
-lattice in Eo

i and must have the form tpEo
i
, for some t ∈ (Eo

i )
×. So

replacing λi by e 7→ λi(tx), we may assume that I = pEo
i
. In the following we assume

that the linear forms λi, i ∈ Jo, have this property.

Lemma 5.4. Fix i ∈ Jo. Let λ1
i , λ2

i : Ei → F be two linear forms as above and let
h1

i , h2
i be the corresponding ε-hermitian forms on Vi (i.e. h1

i and h2
i satisfy (5.3)). Then

there exists u ∈ o×Eo
i

such that h2
i = uh1

i .

Proof. Since h1
i and h2

i induce the same involution on EndEi
Vi, there exists u ∈ E×

i such
that h2

i = uh1
i . The fact that h1

i and h2
i are both ε-hermitian with respect to σEi

implies
that u lies in Eo

i . Condition (5.3) writes

h(v, w) = λ1
i (h

1
i (v, w)) = λ2

i (uh1
i (v, w)) , v, w ∈ Vi .

So λ1
i (e) = λ2

i (ue), e ∈ Ei. By applying TrF/Fo to this equality, we get λo,1
i (e) = λo,2

i (ue),
e ∈ Eo

i . Hence
pEo

i
= {e ∈ Eo

i ; λo,1
i (eoEo

i
) ⊂ pFo}

= {e ∈ Eo
i ; λo,2

i (ueoEo
i
⊂)pFo} = u−1pEo

i
.

So u ∈ o×Eo
i

as required.

Let us fix i. Let L be an oEo
i
-lattice in Vi. Then L has a dual L] relative to the form

h|Vi
and a dual L]i relative to the form hi.

Lemma 5.5. The lattices L] and L]i coincide.

Proof. We have

L] = {v ∈ Vi ; h(v, L) ⊂ pF}
= {v ∈ Vi ; TrF/Foh(v, L) ⊂ pFo}
= {v ∈ Vi ; λo ◦ TrEi/Eo

i
hi(v, L) ⊂ pFo}

= {v ∈ Vi ; TrEi/Eo
i
hi(v, L) ⊂ pEo

i
}

= {v ∈ Vi ; f(v, L) ⊂ pEi
}

= L]i ,

where the second and fifth equalities hold because F/Fo and Ei/E
o
i are at worst tamely

ramified.

6. Embedding the building of the centralizer

9



We keep the notation as in the previous section. Assume for a moment that the
extensions Ei/F , i ∈ Jo ∪ J , are separable. Then the group H is naturally the group
of rational points of a reductive F -group H . Indeed each Hi, i ∈ Jo ∪ J , is naturally
the group of rational points of a classical Ei-group H i (we do not need Ei/F -separable
here) and

H '
∏

i∈Jo∪J+

ResEi/F H i .

The (enlarged) affine building of H , I1
β := I1(H , F ), is the cartesian product of the

(enlarged) affine buildings I1(ResEi/F H i, F ), i ∈ Jo∪J+. For all i, the (enlarged) build-
ings I1(ResEi/F H i, F ) and I1(H i, Ei) identify canonically. Note also that, for i ∈ Jo,
the centre of H i is compact so the enlarged building is also the non-enlarged building;
in particular, if J = ∅ then all the buildings involved are non-enlarged.

Since we do not want any restriction on the extensions Ei/F , we shall take as a
definition of the (enlarged) building I1

β attached to the group H:

(6.1) I1
β :=

∏
i∈Jo∪J+

I1(H i, Ei)

We abbreviate I1
i = I1(H i, Ei), i ∈ Jo ∪ J+.

We are going to construct a map jβ : I1
β → I. We normalize the lattice-functions in

Latt1
oEi

(Vi) by Λi(r+vi(πi)) = pEi
Λi(r), r ∈ R, where, for each i, πi denotes a uniformizer

of Ei and vi the unique extension of v to a valuation of Ei. It is straightforward that we
have a well defined map

j̃β :
∏

i∈Jo∪J

Latt1
oEi

(Vi) −→ Latt1(V )

(Λi)i∈Jo∪J 7→
⊕

i∈Jo∪J

Λi

where
(⊕

i∈Jo∪J Λi

)
(r) =

⊕
i∈Jo∪J Λi(r), for r ∈ R. This map is clearly injective and

equivariant for the action of group
∏

i∈Jo∪J

AutEi
Vi ⊂ AutF V .

For i ∈ Jo, we denote by ]i the involution on Latt1
oEi

(Vi) attached to hi, and by

Latt1
oEi

,hi
(Vi) ⊂ Latt1

oEi
(Vi) the set of fixed points. For i ∈ J , we denote be ]i the map

Latt1
oEi

(Vi) → Latt1
oE−i

(V−i) given by

Λ]i

i (r) = {v ∈ V−i ; h(v, Λi(−r+)) ⊂ pF} .

for Λi ∈ Latt1
oEi

(Vi).

We define an involution b on
∏

i∈Jo∪J

Latt1
oEi

(Vi) by

(Λi)
b
i∈Jo∪J =

(
Λ

]−i

−i

)
i∈Jo∪J

,

10



Then we have a bijection

ιh :
∏
i∈Jo

Latt1
oEi

,hi
(Vi)×

∏
i∈J+

Latt1
oEi

(Vi) →

( ∏
i∈Jo∪J

Latt1
oEi

(Vi)

)b

,

given by (Λi)i∈Jo∪J+
7→ (Λi)i∈Jo∪J , with Λ−i = Λ]i

i , for i ∈ J+.

Lemma 6.2. For x ∈
∏

i∈Jo∪J

Latt1
oEi

(Vi), we have j̃β(xb) = j̃β(x)]h. In particular j̃β ◦ ιh

maps
∏
i∈Jo

Latt1
oEi

,hi
(Vi)×

∏
i∈J+

Latt1
oEi

(Vi) into Latt1
h(V ).

Proof. Fix (Λi)i∈Jo∪J ∈
∏

i∈Jo∪J

Latt1
oEi

Vi and set Λ = j̃β

(
(Λi)i∈Jo∪J+

)
. We have

Λ]h(r) = Λ(−r+)]h = {v ∈ V ; h(v, Λ(−r+)) ⊂ pF} , r ∈ R .

Fix r ∈ R. We have
Λ(−r+) =

⊕
i∈Jo∪J

Λi(−r+) .

Let v =
∑

i∈Jo∪J vi, with vi ∈ Vi, be an element of V . Since V ⊥
i =

⊕
k 6=−i Vk, we have

v ∈ Λ]h(r) if and only if h(v−i, Λi(−r+)) ⊂ pF , for all i, that is if v−i ∈ Λ]i

i (r), for all i
(by lemma (5.5) for i ∈ Jo or by definition for i ∈ J); the lemma follows.

With the notation of §4, for each set {ji}i∈J+ of maps ji : I1
i → Latt1

oEi
(Vi) given by

Proposition 4.3, we define a map jβ :
∏

i∈Jo∪J+

I1
i → I by

jβ = j−1
h ◦ j̃β ◦ ιh ◦

∏
i∈Jo

jhi
×
∏
i∈J+

ji

 .

These maps depend a priori on the forms h, and hj, j ∈ Jo.

Theorem 6.3. Each map jβ is injective, H-equivariant. The set of such maps (as
{ji}i∈J+ varies) depends only on the involution σ.

In particular, if J = ∅ then there is a unique map jβ, depending only on the involution
σ.

Proofs. The first two properties are straightforward. Assume that h′ = uh, u ∈ F×, is
another ε-hermitian form on V , with respect to σF , defining the same involution σ on
g̃. Then u ∈ Fo. For i ∈ Jo, let h′i be an ε-hermitian form on Vi satisfying

uh(v, w) = λ′i(h
′
i(v, w)) v, w ∈ Vi ,

where the λ′i : Ei → F are linear forms as above. Then by lemma (5.4), for all i ∈ Jo,
there exists u′i ∈ o×Eo

i
such that u−1h′i = u′ihi, that is h′i = uu′ihi.

Let {ji}i∈J+ be as above; we show that, for a suitable choice of {j′i}i∈J+ , we have

j−1
h ◦ j̃β ◦ ιh ◦ j1 = jh′ ◦−1 j̃β ◦ ιh′ ◦ j′1,

11



and the result follows.

By Lemma (3.6), for i ∈ J+, for all xi ∈ I1
i , we have jh′i

(xi) = jhi
(xi) − v(uu′i)/2 =

jhi
(xi) − v(u)/2. For i ∈ J+, we choose j′i such that j′i(x) = ji(x) − v(u)/2 for x ∈ I1

i ,
that is j′i ◦ j−1

i (Λi) = Λi − v(u)/2 for Λi ∈ Latt1
oEi

(Vi). We abbreviate

j =
∏
i∈Jo

jhi
×
∏
i∈J+

ji, j′ =
∏
i∈Jo

jh′i
×
∏
i∈J+

j′i;

then, for (Λi)i∈Jo∪J+
∈
∏
i∈Jo

Latt1
oEi

,hi
(Vi)×

∏
i∈J+

Latt1
oEi

(Vi), we have

j′ ◦ j−1
(
(Λi)i∈Jo∪J+

)
= (Λi − v(u)/2)i∈Jo∪J+

.

It is also straightforward to check that

ιh′
(
(Λi − v(u)/2)i∈Jo∪J+

)
= ιh

(
(Λi)i∈Jo∪J+

)
− v(u)/2,

for (Λi)i∈Jo∪J+
∈
∏
i∈Jo

Latt1
oEi

,hi
(Vi)×

∏
i∈J+

Latt1
oEi

(Vi). Then we have

j̃β ◦ ιh′ ◦ j′ ◦ j−1
(
(Λi)i∈Jo∪J+

)
= j̃β ◦ ιh′

(
(Λi − v(u)/2)i∈Jo∪J+

)
= j̃β

(
ιh

(
(Λi)i∈Jo∪J+

)
− v(u)/2

)
= j̃β ◦ ιh

(
(Λi)i∈Jo∪J+

)
− v(u)/2.

By Lemma (3.6) again, we have jh′(x) = jh(x) − v(u)/2, x ∈ I, that is Λ − v(u)/2 =
jh′ ◦ j−1

h (Λ), Λ ∈ Latt1
h(V ). So

jh′ ◦ j−1
h ◦ j̃β ◦ ιh = j̃β ◦ ιh′ ◦ j′ ◦ j−1 ,

and the lemma follows.

7. Affine structures

We keep the notation as in the previous sections. For x = (xi)i∈Jo∪J+ , y = (yi)i∈Jo∪J+

in I1
β =

∏
i∈Jo∪J+

I1
i and t ∈ [0, 1], we define the barycenter tx + (1− t)y to be

(txi + (1− t)yi)i∈Jo∪J+ .

We define the barycenter of two points in
∏

i∈Jo∪J+

Latt1
oEi

(Vi) in a similar way. Since, for

i ∈ Jo, Latt1
oEi

,hi
(Vi) is convex in Latt1

oEi
(Vi), the subset

∏
i∈Jo

Latt1
oEi

,hi
(Vi)×

∏
i∈J+

Latt1
oEi

(Vi)

of
∏

i∈Jo∪J+

Latt1
oEi

(Vi) is convex also.

12



Proposition 7.1. Let β be as in §5. Then each map jβ is affine: for all x, y ∈ I1
β,

t ∈ [0, 1], we have
jβ(tx + (1− t)y) = tjβ(x) + (1− t)jβ(y) .

Proof. By construction it suffices to prove that the maps j̃β and ιh are affine. We begin

with j̃β. Let (Λi)i∈Jo∪J , (Mi)i∈Jo∪J be elements of
∏

i∈Jo∪J

Latt1
oEi

(Vi). We must prove that

⊕
i∈Jo∪J

(tΛi + (1− t)Mi) = t

( ⊕
i∈Jo∪J

Λi

)
+ (1− t)

( ⊕
i∈Jo∪J

Mi

)
.

Let us recall the construction of the barycenter of two lattice functions (we do it for
Latt1(V )). Let Λ, M ∈ Latt1(V ). There exists an F -basis (e1, . . . , en) of V which splits
both Λ and M : there exist constants λ1, . . . , λn, µ1, . . . , µn in R such that

Λ(r) =
⊕

k=1,...,n

p
dr+λke
F ek , M(r) =

⊕
k=1,...,n

p
dr+µke
F ek , r ∈ R .

Then for t ∈ [0, 1], tΛ + (1− t)M is given by

(tΛ + (1− t)M)(r) =
⊕

k=1,...,n

p
dr+tλk+(1−t)µke
F ek , r ∈ R .

The proof that j̃β is affine is then to construct a common splitting basis for
⊕

i∈Jo∪J Λi

and
⊕

i∈Jo∪J Mi from bases Bi of Vi, i ∈ Jo ∪ J , where Bi splits Λi and Mi. We leave
this easy exercise to the reader.

Now we turn to ιh. Suppose i ∈ J+ and Λi ∈ Latt1
oEi

(Vi), and let (e1, . . . , en) be an

Ei-basis of Vi which splits Λi. Let (e−1, . . . , e−n) be the dual E−i-basis of V−i, such that
h(e−k, el) = δkl, for 1 ≤ k, l ≤ n. It is straightforward to check that this basis splits Λ]i

i

and that,

(7.2) if Λi(r) =
⊕

k=1,...,n

p
dr+λke
Ei

ek then Λ]i

i (r) =
⊕

k=1,...,n

p
dr−λke
E−i

e−k.

To show that ιh is affine, we just need to check that, for i ∈ J+, Λi, Mi ∈ Latt1
oEi

(Vi)

and t ∈ [0, 1], we have

(tΛi + (1− t)Mi)
]i = tΛ]i

i + (1− t)M ]i

i .

The details of the proof – which is to choose an Ei-basis of Vi which splits both Λi and
Mi, take its dual basis and then use (7.2) – are again left to the reader.

8. The image of an apartment

We keep the notation of the previous sections. We will show that the image of an
apartment of I1

β under each map jβ is contained in an apartment of I.
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Given a Witt decomposition V = V+ ⊕ Vo ⊕ V−, with basis (el)l=1,...,r of V+ and the
dual basis (e−l)l=1,...,r of V− (as in §2), we get a (self-dual) decomposition

V =
r⊕

l=1

V l ⊕ Vo ⊕
r⊕

l=1

V −l,

where V l = Fel =
(⊕

k 6=−l V
l ⊕ Vo

)⊥
. Such a decomposition (which we will also call

a Witt decomposition) corresponds to the choice of an apartment A in I: in terms of
lattice functions, jh(A) is the set of self-dual lattice functions Λ such that

Λ(s) =
r⊕

l=1

(V l ∩ Λ(s))⊕ (Vo ∩ Λ(s))⊕
r⊕

l=1

(V −l ∩ Λ(s)), for all s ∈ R,

that is, Λ is split by the decomposition (cf. Proposition 4.1).

Similarly, the choice of an (enlarged) apartment A1 in I1
β =

∏
i∈Jo∪J+

I1
i is given by

similar Ei-decompositions of Vi for i ∈ Jo and (without the self-duality restriction)
i ∈ J+.

Proposition 8.1. Let A1 be an (enlarged) apartment of I1
β. Then there is an apartment

A of I such that jβ(A1) ⊂ A.

Proof. We write A1 =
∏

i∈Jo∪J+
A1

i , with A1
i an (enlarged) apartment in I1

i .

As above, for each i ∈ Jo, the apartment A1
i corresponds to a Witt Ei-decomposition

of V i

Vi =

ri⊕
l=1

V l
i ⊕ Vi,o ⊕

ri⊕
l=1

V −l
i ,

with V l
i =

(⊕
k 6=−l V

l
i ⊕ Vi,o

)⊥
, dimEi

V l
i = 1 and ri the (Ei-)Witt index of Vi. We write

LattA1

oEi
(Vi) for the set of lattice functions split by this decomposition, and LattA1

oEi
,hi

(Vi)

for the subset of self-dual lattice functions, so that jhi
(A1

i ) = LattA1

oEi
,hi

(Vi).

Also, for each i ∈ J+, the apartment A1
i corresponds to a decomposition of Vi as a

sum of 1-dimensional Ei-subspaces,

Vi =

ri⊕
l=1

V l
i ,

with ri = dimEi
Vi. As above, ji(A

1
i ) = LattA1

oEi
(Vi), the set of lattice functions split by

this decomposition.
We also take the dual splitting of V−i as a sum of 1-dimensional E−i-subspaces,

V l
−i =

(⊕
k 6=l

V k
i

)⊥

.

We remark that, if Λ ∈ LattA1

oEi
(Vi) then Λ#i

i is split by this decomposition.
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Now, for i ∈ Jo ∪ J+ and 1 ≤ l ≤ ri, we decompose V l
i as a sum of 1-dimensional

F -subspaces as follows: fix v ∈ V l
i , v 6= 0, and let Bi be an F -basis for Ei which splits

the oF -lattice sequence s 7→ p
ds/e(Ei/F )e
Ei

; then we take the decomposition

V l
i =

⊕
b∈Bi

Fbv.

Note that any oEi
-lattice sequence in V l

i is split by this decomposition. For i ∈ Jo, we
also take the dual decomposition of V −l

i and, for i ∈ J+, the dual decomposition of V l
−i.

Now we need to decompose the anisotropic parts W := ⊕i∈JoVi,o suitably, for which
we cheat. Let Go denote the classical group associated to the restriction of the form h
to W and, for i ∈ Jo, let H i,o denote the group associated to the restriction of the form
hi to Vi,o. Note that the groups Hi,o are compact so the building I1

β,o := I1(H i,o, Ei) is
reduced to a point.

Now, our constructions in §6 give an embedding of I1
β,o in the building I1

o := I1(Go, F )
and the image is certainly contained in some apartment. Hence there is a Witt F -
decomposition of W which splits the (unique) self-dual lattice sequence in W corre-
sponding to I1

β,o, and this is the decomposition we take.

Altogether, we have described a Witt F -decomposition of V , which corresponds to
an apartment A of I. We denote by LattA

oF ,h(V ) the set of self-dual lattice functions in

V which are split by this splitting, so that jh(A) = LattA
oF ,h(V ).

Finally, by construction it is clear that j̃β◦ιh maps
∏
i∈Jo

LattA1

oEi
,hi

(Vi)×
∏
i∈J+

LattA1

oEi
(Vi)

into LattA
oF ,h(V ) so jβ(A1) ⊂ A, as required.

9. Compatibility with Lie algebra filtrations

In this section, we fix Hk-equivariant identifications jk : I1(Hk, Ek) → Latt1
oEk

(Vk),

k ∈ J+. They give rise to the map jβ : I1
β → I(G, H) defined in §6.

Let x ∈ I(G, F ) = I1(G, F ), that we see as a self-dual lattice function Λ in Latt1
h(V ).

To x we can associate a filtration (gx,r)r∈R of the Lie algebra g as follows. First x defines
a filtration (g̃x,r)r∈R of g̃ by

g̃x,r = {a ∈ g̃ ; aΛ(s) ⊂ Λ(s + r), s ∈ R}, r ∈ R .

We then define

gx,r := g̃x,r ∩ g = {a ∈ g ; aΛ(s) ⊂ Λ(s + r), s ∈ R}, r ∈ R . (1)

Similarly a point x of I1
β defines a filtration (hx,r)r∈R of h. Write x = (xk)k∈J∪Jo , xk ∈

I1(Hk, Ek); each xk corresponding to a lattice function Λk of LattoEk
(Vk) (with Λ]k

k =
Λ−k, k ∈ J ∪ Jo). We then define

(2) hx,r :=
⊕

k∈J+∪Jo

hk
xk,r, r ∈ R,
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where

hk
xk,r = {a ∈ Lie(Hk) ; aΛk(s) ⊂ Λk(s + r), s ∈ R}, r ∈ R, k ∈ J+ ∪ Jo .

The filtration (hx,r)r∈R only depends on the image x̄ of x in the non-enlarged building
Iβ. One can prove that for x ∈ I(G, F ), (gx,r)r∈R is the filtration of g attached to x
defined by Moy and Prasad [MP]. Similarly, when β is semisimple and x ∈ I1(H, F ),
(hx,r)r∈R is the filtration of h attached to x̄ defined in loc. cit. The proof of this fact is
announced by B. Lemaire and J.-K. Yu [BY].

Lemma 9.1. Let us see h as being canonically embedded in h̃ = EndEV =
⊕

k∈J∪Jo

EndEk
Vk

via
(ak)k∈J+∪Jo 7→ (bk)k∈J∩Jo ,

where bk = ak, k ∈ Jo, and b−k = −aσ
k , k ∈ J+. Fix x ∈ I1

β as before and consider the
oF -lattice function in V given by

Λ =
⊕

k∈J∪Jo

Λk (notation of §6) .

For r ∈ R, let

h̃x,r = {a ∈ h̃ ; aΛ(s) ⊂ Λ(s + r), s ∈ R}, r ∈ R .

Then we have hx,r = h̃x,r ∩ h, r ∈ R.

Proof. Indeed, for all a = (ak)k∈J∪Jo ∈ EndEV , we have a ∈ h̃x,r ∩ h if and only if
a + aσ = 0 and aΛ(s) ⊂ Λ(s + r), s ∈ R, i.e.

akΛk(s) ⊂ Λk(s + r), s ∈ R, k ∈ J ∪ Jo .

For k ∈ Jo, these conditions can be rewritten ak ∈ Lie(Hk) and akΛk(s) ⊂ Λk(s + r),
s ∈ R, that is ak ∈ hk

x,r, as required. For k ∈ J , these conditions can be rewritten
a−k = −aσ

k and
akΛk(s) ⊂ Λk(s + r), s ∈ R (a)

−aσ
kΛ]k

k (s) ⊂ Λ]k

k (s + r), s ∈ R . (b)

So we must prove that conditions (a) and (b) are equivalent. By symmetry we only prove
one implication. Applying the duality ]k on lattices of Vk to inclusion (b), we obtain

Λk((−s− r)+) ⊂ [aσ
kΛ]k

k (s)]]k , s ∈ R,

with
[aσ

kΛ]k

k (s)]]k = {v ∈ Vk ; akv ∈ Λk((−s)+)}, s ∈ R .

So we have
akΛk((−s− r)+) ⊂ Λk((−s)+) ⊂ Λk(−s), s ∈ R ,

that is
akΛ(s+) ⊂ Λk(s + r), s ∈ R .
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On each open interval (u, v) where Λk is constant, we have

akΛk(s+) = akΛk(s) ⊂ Λk(s + r) ,

and (a) is true for s ∈ (u, v). Finally if so is a jump of Λk with Λk constant on (t, so],
we have

akΛk(so) = akΛk(s+) ⊂ Λk(s + r), s ∈ (t, so) .

So
akΛk(so) ⊂

⋂
s∈(t,so)

Λk(s + r) = Λk(so + r) ,

Λk being left continuous, and (a) is then true for all s ∈ R.

Proposition 9.2. Let x ∈ I1
β. Then we have

gjβ(x),r ∩ h = hx,r, r ∈ R .

Proof. Indeed, with the notation of (9.1) and by definition of jβ, we easily see that

g̃jβ(x),r ∩ h̃ = h̃x,r .

So our result is now a corollary of (9.1) since h = g ∩ h̃.

10. A unicity result for the general linear group

As in [BL]§I.2, we define an equivalence relation ∼ on Latt1(V ) by Λ1 ∼ Λ2 if there
exists s ∈ R such that Λ1(s) = Λ2(r+s), s ∈ R. Then ∼ is compatible with the G̃-action
and the quotient LattoF

(V ) := Latt1(V )/ ∼ is naturally a G̃-set. We shall denote by Λ̄
an element of LattoF

(V ), where Λ is a representative in Latt1(V ). As a consequence of
[BL]§I.2 and [BT1], there is a unique affine and G̃-equivariant map j : Ĩ → LattoF

(V ),
where Ĩ denotes the non-enlarged building of G̃.

We fix an element β of g̃ satisfying

(H) E : F [β] is a field .

As in §5 we denote by h̃ = EndEV the centralizer of β in g̃ and by H̃ = AutEV its
centralizer in G̃. There is a canonical identification of the non-enlarged affine building
Ĩβ of H̃ with the H̃-set LattoE

(V ). Here we normalize the lattice functions of Latt1
oE

(V )
by the condition Λ(s + v(πE)) = πEΛ(s), s ∈ R, where πE is a uniformizer of E.

Any Λ̄ ∈ LattoF
(V ) defines a filtration (g̃Λ̄,r)r∈R by

g̃Λ̄,r = {a ∈ EndF V ; aΛ(s) ⊂ Λ(r + s), s ∈ R} .

Then the map End(Λ̄) : r 7→ g̃Λ̄,r is an element of Latt1g̃. The map Λ̄ 7→ End(Λ̄),

LattoF
V → Latt1g̃ is a G̃-equivariant injection (cf. [BL]§4) for the action of G on Latt1g̃

by conjugation. Its image is Latt2g̃. From now on we shall canonically identify Ĩ (resp.
Ĩβ with Latt2h̃).
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Let us recall the main result of [BL].

Theorem 10.1. There exists a unique affine and H̃-equivariant map j̃β : Ĩβ → Ĩ. It is
injective, maps any apartment into an apartment and is compatible with the Lie algebra
filtrations in the following sense:

(10.2) g̃j̃β ,r ∩ h̃ = h̃x,r, x ∈ Ĩβ, r ∈ R .

Let us recall how j̃β is constructed. If x ∈ Ĩβ corresponds to End(Λ̄) ∈ Latt2h̃,
then j̃(x) simply corresponds to End(Λ̄), where Λ, an oE-lattice function in V , is now
considered as an oF -lattice function.

Theorem 10.3. Let x ∈ Ĩβ and y ∈ Ĩ satisfying

g̃y,r ∩ h̃ ⊃ h̃x,r, r ∈ R .

Then y = j̃β(x). As a consequence the map j̃β is characterized by property (10.2).

Proof. Assume that x and y correspond to elements Λ̄x and Λ̄y of LattoE
(V ) and

LattoF
(V ) respectively.

Lemma 10.4. Under the assumption of (10.2), Λy is an oE-lattice function.

Proof. To prove that Λy is an oE-lattice function we must prove that it is normalized by
E× = 〈πE〉o×E, or equivalently:

(10.5) xg̃y,rx
−1 = g̃y,r, x ∈ E×, r ∈ R .

We first notice than oE ⊂ h̃x,0 ⊂ g̃y,0, so that o×E ⊂ g̃×y,0 and (10.5) is true for x ∈ o×E.
We are reduced to proving (10.5) when x = πE.

We have πE ∈ h̃x,1/e ⊂ g̃y,1/e and π−1
E ⊂ h̃x,−1/e ⊂ g̃y,−1/e, where e = e(E/F ). It

follows that

(10.6) πE g̃y,rπ
−1
E ⊂ g̃y,1/eg̃y,rg̃y,−1/e ⊂ g̃y,r, r ∈ R .

Consider the duality “∗” on subsets of g̃ given by

S∗ = {a ∈ g̃ ; Tr(aS) ⊂ pF}, S ⊂ g̃,

where Tr is the trace map. Recall ([BL](6.3)) that (g̃y,r)
∗ = g̃y,(−r)+, r ∈ R. Using a well

known property of the trace map, we observe that

(πE g̃y,rπ
−1
E )∗ = πE(g̃y,r)

∗π−1
E , r ∈ R .

So applying the duality to (10.6), we obtain

g̃y,(−r)+ ⊂ πE g̃y,(−r)+π−1
E , r ∈ R .

We have proved that on each open interval (r1, r2) where the lattice function (g̃y,r)r∈R
is constant, we have both containments

πE g̃y,rπ
−1
E ⊂ g̃y,r and πE g̃y,rπ

−1
E ⊂ g̃y,r, r ∈ R .
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So by continuity we have πE g̃y,rπ
−1
E = g̃y,r, for all r, as required.

Let us return to the proof of (10.3). Since Λy is an oE-lattice function, we have

g̃y,r ∩ h̃ = h̃x′,r, r ∈ R,

where x′ ∈ Ĩβ is attached to Λ̄y, Λy being seen as an oE-lattice function. So by injectivity
of the map Latt1

oE
(V ) → Latt2h̃, we have Λ̄x = Λ̄y and y = j̃β(x) by definition.

11. A unicity result in the 1-block case and a conjecture

With the notation of §5, we consider an element β ∈ g satisfying:

(11.1) E := F [β] ⊂ g̃ is a field and β 6= 0 .

We fix an ε-hermitian form hE on the E-vector space V relative to σE and we assume
that it satisfies (5.3) as well as the condition J = pEo of §5. This allows us to identify
I1
β with Latt1

hE
(V ). Identifying I with Latth(V ), the map jβ of §6 is simply given by

jβ(Λ) = Λ, Λ ∈ Latt1
hE

(V ),

where on the right hand side Λ is considered as an oF -lattice function.

Theorem 11.2. Under the assumption (11.1), let x ∈ I1
β and y ∈ I satisfying

(11.3) gy,r ∩ h = hx,r, r ∈ R .

Then y = jβ(x). In particular the map jβ is characterized by compatibility with the Lie
algebra filtrations.

Proof. The point x (resp. y) corresponds to a self-dual lattice function Λx ∈ Latt1
hE

(V )
(resp. Λy ∈ Latt1

h(V )). We may see x and y as points of Latt1
oE

(V ) and Latt1
oF

(V )

respectively and they give rise to filtrations of h̃ and g̃ as in §9: (h̃x,r)r∈R and (g̃y,r)r∈R.
Write

g+
y,r = {a ∈ g̃y,r ; a = aσ}, r ∈ R

and
h+

x,r = {a ∈ h̃x,r ; a = aσ}, r ∈ R

Since 2 is invertible in oF , we have:

g̃y,r = gy,r ⊕ g+
y,r and h̃y,r = hx,r ⊕ h+

x,r, r ∈ R .

Write
ro = vΛx(β) := Sup{r ∈ R ; β ∈ h̃x,r} .

Since β ∈ E×, it normalizes Λx so that βh̃x,r = h̃x,r+ro , r ∈ R. Moreover since β is
central in h̃, we easily have that h+

x,r = βhx,r−ro , r ∈ R. Hence, for r ∈ R, we have

h+
x,r = β(gy,r−ro ∩ h) = β(gy,r−ro ∩ h̃) ⊂ gy,r ∩ h̃ .

It follows that, for x ∈ R, we have:

h̃x,r = hx,r ⊕ h+
x,r ⊂ gy,r ∩ h̃⊕ g+

y,r ∩ h̃ ⊂ g̃y,r ∩ h̃ .
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By applying (10.3), we obtain Λ̄y = j̃β(Λ̄x), that is Λ̄y = Λ̄x. In particular we have
End(Λx) = End(Λy) ∈ Latt2

σh̃. But by (3.5) we have Λx = Λy, as required.

Let us give an example. Assume that G = Sp2(F ) = SL(2, F ) (here F = Fo) and
take β ∈ g such that E/F is quadratic and ramified. Then H is the group E1 of norm
1 elements in E. The building of H is reduced to a point {x}. The group E× fixes a
unique chamber C of I and H ⊂ E× fixes C pointwise. There are infinitely many maps j
: I1

β → I which are affine and G-equivariant; indeed j(x) can be any point of C. On the
other hand there is a unique map j : I1

β → I which is compatible with the Lie algebra
filtrations: it maps x to the isobarycenter of C.

We conjecture that when J = ∅ (notation of §5) then the map jβ of §6 is characterized
by condition (11.3). We may address the more general (but more informal) question.
Being given two F -reductive groups H and G, as well as a morphism of algebraic groups
ϕ : H → G, is there an affine and H(F )-equivariant map I(H , F ) → I(G, F ) which
is compatible with the Lie algebra filtrations defined by Moy and Prasad. When is it
characterized by this last property?
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