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P e r m u t a t i o n  groups  on  unordered  sets I 

By 

JOHANNES SIEMONS *) 

I. Introduction. Let G be a permuta t ion  group on a finite or  infinite set S. Consider  the 
system X k of all k-element subsets of S and the natura l  act ion of G on Xk. The numbers 

1 nk of G-orbits on XK form a non-decreasing sequence for k < ~ �9 IS I, but little else is known 
apar t  from this fact. See [1, 3]. 

In  this note we examine the growth of nk (if these numbers are finite) in terms of the 
groups induced by G on subsets of S. If  G is (k - 1)-fold homogeneous  on S and l => k, 
a rough estimate for the growth rate is (7~_k+a) < (~-1)" nz. Much sharper  results are 
obtained if the act ion induced on subsets is rich. 

The nota t ion  used is s tandard.  The setwise and pointwise stabilizers of a subset Y of 
S are denoted by G(r~ and G(y) respectively. The group G r = G(r/G(y ) always is considered 
as a permuta t ion  group on Y The orbits of G on Xk are denoted by Xk(G ) and nk = IXk(G) I. 

II .  Arrangements.  Let H be a group acting on a set Y of finite size 1 and let x ( # Y) be 
a subset of Y. We allow x to be empty. An arrangement is a collection {x; Yl ,  Y2, . . . ,  Yt} 
such that  a) all y~ have size k = I xl + I and contain x, b) Y =  u Yi and c) for i -r j ,  Yi 
and yj belong to different H-orbits .  The set x is called the centre of the arrangement.  
Clearly t = l - k + 1. A second arrangement  A' = (x'; y'~, y~ . . . .  , Y't} is isomorphic to 
A = (x; y~, Y2 . . . .  , Yt) if there is some h in H such that  A h = A'. Notice that  two arrange- 
ments are i somorphic  if and only if their centres belong to the same H-orbit .  The total  
number  of non- isomorphic  arrangements  with centre size k - 1 is denoted by m (H, k). 
Clearly m(H,  k ) <  (k~_X) and equali ty holds if and only if H is the identi ty on Y. We 
determine the structure of groups for which arrangements  exist and determine the 
numbers  m (H, k) for some small values of k. 

Theorem 2.1. Le t  H # 1 be a permutat ion group on a set Y o f  size I and let k <= I. Suppose 
that x = {~, fl, . . . }  is the centre o f  an arrangement with Ix[ = k - 1. Then 

i) k > l . ( I n f a c t m ( H ,  1 ) = 0 / f H # l  a n d r e ( H ,  1 ) = 1  / f H = l . )  
ii) I f  k = 2, then H is an elementary abelian 2-group and m(H,  2) is the number o f  

H-orbi ts  on the points  o f  Y that have length IH[. 

*) Questo lavoro 6 stato fatto mentre ero all'Universit~i di Milano per un anno. Vorrei ringrazlare 
tutti per l'eccellente ospitalita. 
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iii) I f  k = 3, then I n~}l ~ 2. I f  [H~}I = 2, then H = Sym (2) and m (H, 3) = 1 - 1 or 
H = Sym (3) and m (H, 3) = 1 

iv) I f  k = 3 and I/'/~x~l = 1, then I/'/~1 and ]Hal are at most 2. Let O, and Oz be the orbits 
of c~ and/3 respectively. Then the graph on O~ w Ot~ with edge set x H has the following 
connected components: type  1 for I/'/~1 = Inzl  = 1 and O, r 0~, type 2for  IH=I = [/'/a[ = 2 
and O, 4= 0~, type 3 for J H,[ = 1, I Ho[ = 2 and O~ r Oa, type 4 for In=l = I and o .  = o a, 

or type  5 for IH~I = 2 and O~ = Op. 

o 

"type 1 type 2 

type 3 type 4. ~ype 5 

P r o o f. F i r s t  we no te  that/-/~x~ acts as the iden t i ty  on Y -  x if x is a centre  of an  
a r rangement .  This  in pa r t i cu la r  p roves  the s t a tement  i). If  k = 2, let O be the orb i t  of ~. 
If h r 1 is in/- / ,  then  also fl = ~h is a centre  and  fl ~ {~, fl} c~ {~, fl}h impl ies  tha t  these two 
sets are the same. Therefore  flh = e, h 2 = 1 and  H is an e l emen ta ry  abe l i an  2-group  of 
o rde r  I HI -- 1OI. Vice versa,  if H is an  e l emen ta ry  abe l i an  2 -group  and  if 7 be longs  to  an 
orb i t  of length  I/-/J, then  7 is the centre  of an a r rangement .  F o r  if V e {7, 8} c~ {7, d}h for 
some h in H,  then  ei ther  7 h = 7 and  h = 1 or  7 h = 6 and  7 = 6h In  b o t h  cases {7, c~} is fixed 
by  h and  so 7 is a centre. This  proves  ii). 

N o w  we assume tha t  x = {e, fl} is a centre  of size k - 1 = 2. By the ini t ia l  remark ,  I/'/(x/[ 
has  size at  mos t  2. Cons ide r  the case h/-/~x~[ = 2. Le t  O be the orb i t  con ta in ing  c~ and  ft. 
If O = x, H = Sym (2). If O r x, then  a n y / - / - i m a g e  is a centre  aga in  and  as there  is a 
t r anspos i t i on  (e, fl) (.) . . ,  (.), the images  mus t  intersect  x in a point .  Coun t ing  these images  
we ob ta in  I xul  =2"1 ]/'/I = (IOI - 2)- 2 + 1, or  IO[" (4 - I/'/~l) = 6. Therefore  IO[ = 3, 
I/-/=[ = 2 and  H is the symmet r i c  g r o u p  on  O. As H is genera ted  by  t r anspos i t ions  fixing 
all po in ts  in Y -  x, H acts as the iden t i ty  on  Y -  x and  the only  centres  are the three  
i som orph i c  pai rs  in O. Therefore  m (H, 3) = 1 which proves  iii). 

Secondly  cons ider  the case I H{x}l = 1. Suppose  tha t  k in H~ displaces  fi i.e. k: 7 ~ fl ~ 6. 
As {cq fl, 7} and  {c~, fl, 7} k b o t h  con ta in  x we conc lude  tha t  7 = 6. Therefore  IH~I -5_ 2 and  
s imi lar ly  I Hal < 2. Cons ide r  the g r a p h  on  the vert ices O~ w Or with  edge set x n. If  O~ ~ Oa 
it is b ipa r t i t e  wi th  respect ive degrees d~ = [H~I and  dp -= I/'/~1- This  results  in the com-  
ponen t s  of type  1 - 3 .  If O ~ = O p ,  the degree is d ~ = 2 . 1 H ~ ]  = 2  or  4. If  
h = (e, fl, 7 , . . . ,  6) . . .  (...) maps  c~ on to  /3, then  {c~,/3, ,~} and  {co fl, 6} h bo th  con ta in  x. 
Therefore  7 = 6 and  h has  o rde r  3. If IH~I = 1, the edges x, {e, Y} and  {7, fl} form a 
c o m p o n e n t  of the graph.  This  is type 4. If  IH~I = 2, there  is some k = (c 0 (/3, 0 . - .  in H~ 
with  r ~ 7 and  r mus t  be d isp laced  by  h = (ct,/3, 7) (~, O, rl)... F r o m  this one conludes  tha t  
k = (c 0 (/3, r 0)(t /) . . .  The  resul t ing images  of x form a c o m p o n e n t  of type  5. This  
comple tes  the proof.  
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We suppose now that  for any subset Y~ of Ysome group/4 ,  acting on Y~is given. Denote  
this collection of groups by ~ = {Hi}. Let x be a given set of size k - 1  and 
~ / =  {x; y l x  c y and y ~ Y has size k}. We say that  ~r is a f lag  arrangement for Jet ~, if 
the following is true: Whenever  A = {x; Yl,  Y 2 , . . . ,  Yi} ~= ~ ,  then A is an arrangement  in 
Y~ = yl  w Y2 u . . .  ~3 y, for the group H v Two flag arrangements  with centres x and x'  are 
isomorphic if x h =  X' for some h ~ H, the group on Y. Let m ( ~ ,  k) be the number  
non- isomorphic  flag arrangements  for ~r 

III .  The growth of the sequence n k. Let G be a permuta t ion  group on a finite or infinite 
set S. If  XI(G ) = {O1, . . . ,  O] . . . .  } are the orbits on /-element subsets we define 
mj (1, k) = m ( ~ ,  k) where ~ is the collection of groups G r' induced by G on the subsets 
Y, ~ Y for some fixed Y in O]. I t  is clear that  the definition does not  depend upon the 
choice of Y in Oj. 

Theorem 3.1. Suppose that G acts (k - 1)-fold homogeneously on a set S with a f ini te  
number o f  orbits on X k f o r  some k. I f  l > k let t = l - k + 1. Then 

( n t k ) ~ m i ( l , k ) .  
t = l , . , . , n l  

P r o o f. Let Q1 , . . - ,  Q,~ be all orbits of G on X k and select some set x of size k - 1. 
F o r  any t distinct orbits Qt . . . . .  Qt, we select yi in Qi for i = 1 . . . .  , t such that  x c Yl- This 
is possible because G is k - 1 homogeneous.  Then Yr = {x; Yl . . . .  , Yt} is a flag arrange- 
ment  for x/g = {G Y'[ Y/ ~ Y }  where Y =  Yl w Y2 w . . .  w Yr. This is a consequence of the 
fact that  the Yl belong to distinct G-orbits on Xk. We label the collection Q1 . . . .  , Qt by 
j if Y belongs to O1. (Of course the label is not  necessarily uniquely determined). In all we 
require (~) labels where a label may  be used several times. 

Suppose therefore that  also the sequence Q'I, Q'z . . . .  , Q't obtains the label j. Then there 
r 

are Y'i ~ x, y', ~ QI for i = 1 , . . . ,  t such that  Y' = y] u y~ w . . . w  Yt belongs to the same 
orbi t  as Y. Let therefore 9 in G be such that  Y ' g =  Y. Then { x ; y l  . . . .  ,Yt} and 
{x,O; ,g Yl . . . . .  y~O} are flag arrangements  for ~ .  However,  they are not  isomorphic  as 
{Q1 . . . . .  Q~} r {Q ' I , . . . ,  Q't}. Therefore a l a b e l j  may  be used at most  mj(l, k) times. This 
gives the required inequality. 

We note several consequences of the theorem: 

Corollary 3.2. L e t  G be a transitive permutat ion group on a set S with a f ini te  number 
n 2 o f  orbits on X 2. For  a given l >= 3 let nt, ~ be the number o f  orbits 0 f o r  which G r = 1, 
Y 6  0 and let nl, 2 be the number o f  orbits O' f o r  which G r is an elementary abelian 2-group, 
Y6  0' .  Then (1"_21) <= I .  nz, 1 + 1/2 �9 nt, 2. 

Corollary 3.3. Suppose that G acts doubly homogeneously on a set S with a f ini te  number 
n 3 of orbits on X 3. L e t  n4, ] be the number o f  orbits 0 for  which IGYI = j ,  Y~ 0 and 
j = 1, 2, 3, or  6. Then n 3 (n  3 - -  1) ~ 12 ' n4, 1 + 6 �9 n4, 2 + 2 �9 (n4, 3 -[- n4, 6)" 

We also note the following theorem which gives a bound  for n2 if the action induced 
on subsets is sufficiently rich: 
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Corollary 3.4. Le t  G be transitive on a f ini te  or infinite set S. Suppose there is a value 

I such that the fol lowing holds: Whenever Y ~= S has size I and s �9 Y then there is a subset 
Y', s �9 Y'  ~= Y with the fol lowing properties a) G r' ~ 1 and b) /f G r' is an elementary 

abelian 2-group, then the orbit o f  s under G r' has length different f rom [G r' [. Then 

n 2 < l - 1 .  

P r o o f o f 3.2. If G r = 1 on Y then m~ (1, 2) < I for the orbit containing Y and if G r 

is an elementary abelian 2-group on Y, then mi (l, k) < I/2 for the orbit containing Y by 
theorem 2.1. The conclusion now follows from theorem 3.1. 

P r o o f  o f  3.3. Using theorem 2.1 we get the bounds m i ( 4 , 3 ) < 6  if G Y = I ,  
m i(4, 3) < 3 if [G r] = 2 and m i(4, 3) < 1 if ]Grl = 3 or 6. In all other cases m i (4, 3) = 0. 
The conclusion now follows from theorem 3.1. 

P r o o f o f 3.4. The hypothesis together with theorem 2.1 implies that no element of 
Yis the center of a flag arrangement. Therefore mi (l, 2) = 0 for all orbits and so n z < I - 1 

by theorem 3.1. 

A simple but useful fact on orbits on Xk and Xz in general is 

Theorem 3.5. Le t  G be a permutation group on a f ini te  or infinite set with f ini te  numbers 

n k and n I o f  orbits on X k and X l for  some k < I. Le t  E = 01 u 0 2 u . . .  w 0 S be a union o f  
distinct orbits o f  G on X l and let r i denote the number o f  orbits o f  G r' on the k-element 

subsets o f  Yi e 0 i. Suppose the fol lowing holds about E: I f  Qi  and Q2 a r e  any given G-orbits 

on Xk ,  then there exist x i , y  i . . . .  ~yt, x2 such that x i c yl ,  l y l c ~ y ~ + l ] > k  for  

i = 1, . . . ,  t - 1, Yt ~ x2 with x 1 e 0 l ,  x 2 �9 0 2 and Yl �9 E. Then 

nk <= E (~) + 1 .  
i = 1 . .  s 

P r o o f. We consider the graph whose vertices are the orbits X k ( G  ). Two distinct 
orbits Q and Q' are linked by an edge e if there are x �9 Q and x ' � 9  Q' such that 
x ~J x' ~= y �9 E. We label this edge by j  i fy  belongs to Oj. The condition on E implies that 
this graph is connected. Therefore the total number of edges is at least n k - 1. On the 
other hand, a label j may be used at most (~) times. This yields the inequality. 

We conclude with the following inequalities obtained from a theorem on orbits in 
graphs [41. 

Theorem 3.6. L e t  G be a permutation group on a f ini te  set S. Suppose that X 2 is a disjoint 
union E 1 ~ E 2 kA.. .•  E r where each E i is a union o f  G-orbits on X 2. 
a) I f  each graph (S, Ei), (i = 1 . . . . .  r), is connected then n 1 < r -1 �9 n 2 -4- 1. 

b) I f  every connected component o f  (S, Ei) contains a circular path o f  odd length for  all 
i - -1 ,  . . . ,  r, then n 1 < r -  i . n2" 

P r o o f. Let F i be the graph with vertices S and edge set E~. Then G is a group of 
automorphisms of F~ and we denote the number of orbits of G on E~ by I Ei(G)l. By 
theorems 3.1 and 3.2 in [4] we have ni < IEI(G)[ + 1 and as n2 = ~IE~(G)h the assertion 
a) follows. If all connected components of F~ contain a cycle of odd length, then 
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n~ < lEg(G)[ as a consequence of theorem 2.1 and the proof  of theorem 3.1 in [4]. This 
yields b). 
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