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Permutation groups on unordered sets I

By

JOHANNES SIEMONS *)

L Introduction. Let G be a permutation group on a finite or infinite set S. Consider the
system X, of all k-clement subsets of S and the natural action of G on X,. The numbers
n, of G-orbits on X, form a non-decreasing sequence for k < 1 - | S|, but little else is known
apart from this fact. See [1, 3].

In this note we examine the growth of n, (if these numbers are finite) in terms of the
groups induced by G on subsets of S. If G is (k — 1)-fold homogeneous on S and | = k,
a rough estimate for the growth rate is (*,.,) < (.~ ) - n,. Much sharper results are
obtained if the action induced on subsets is rich.

The notation used is standard. The setwise and pointwise stabilizers of a subset Y of
S are denoted by Gy, and Gy, respectively. The group G* = Gyy,/G,y, always is considered
as a permutation group on Y. The orbits of G on X, are denoted by X,(G) and n, = [ X,(G)|.

II. Arrangements. Let H be a group acting on a set Y of finite size [ and let x(# Y) be
a subset of Y. We allow x to be empty. An arrangement is a collection {x; y, 2, ..., J;}
such that a) all y; have size k = [x| + 1 and contain x, b) Y= U y; and ¢) for i #j, y,
and y; belong to different H-orbits. The set x is called the centre of the arrangement.
Clearly t =1 —k + 1. A second arrangement A’ = {X'; y}, 5, ..., y;} is isomorphic to
A=1{x; y1,¥5,..., ¥, if there is some kin H such that 4" = A’. Notice that two arrange-
ments are isomorphic if and only if their centres belong to the same H-orbit. The total
number of non-isomorphic arrangements with centre size k — 1 is denoted by m(H, k).
Clearly m(H, k) < (,',) and equality holds if and only if H is the identity on Y. We
determine the structure of groups for which arrangements exist and determine the
numbers m (H, k) for some small values of k.

Theorem 2.1. Let H # 1 be a permutation group on a set Y of size l and let k < . Suppose
that x = {a, B, ...} is the centre of an arrangement with |x| =k — 1. Then

i) k>1.(n fact m(H,1)=0if H#1and m(H,1)=1if H=1)

i) If k=2, then H is an elementary abelian 2-group and m(H, 2) is the number of
H-orbits on the points of Y that have length |H|.

*) Questo lavoro & stato fatto mentre ero all’Universita di Milano per un anno. Vorrei ringraziare
tutti per Peccellente ospitalita.
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iii) If k =3, then |Hyy| £ 2. If |Hy,| =2, then H = Sym(2) and m(H,3)=1—1 or
H = Sym(3) and m{H, 3) =1

) If k=3 and |Hy| = 1, then |H,| and | Hy| are at most 2. Let O, and Oy be the orbits
of « and B respectively. Then the graph on O, O, with edge set x” has the following
connected components: type 1 for |H,| = |Hg| = 1 and O, # Op, type 2 for |H,| = |Hy| = 2
and O, # Og, type 3 for |H,| = 1, |Hy| = 2 and O, # Oy, type 4 for |H,| = 1 and O, = Oy,
or type 5 for |H,| =2 and O, = O,.

a B a B o
=
type 1 type 2
a? ﬁ A
p p
type 3 type &4 type 5

Proof. First we note that H,, acts as the identity on Y— x if x is a centre of an
arrangement. This in particular proves the statement i). If k = 2, let O be the orbit of a.
Ifh # lisin H, then also f = «"is a centre and f € {o, B} ~ {a, B} implies that these two
sets are the same. Therefore p* = o, h* = 1 and H is an clementary abelian 2-group of
order [H| = |0|. Vice versa, if H is an elementary abelian 2-group and if y belongs to an
orbit of length | H|, then y is the centre of an arrangement. For if y € {y, §} n {y, 6}" for
some hin H, then either y* = yand h = 1 or y" = § and y = §". In both cases {y, 6} is fixed
by h and so y is a centre. This proves ii).

Now we assume that x = {«, B} is a centre of size k — 1 = 2. By the initial remark, | H, |
has size at most 2. Consider the case | Hy,3| = 2. Let O be the orbit containing « and f.
If O =x, H=Sym(2). If O # x, then any H-image is a cenire again and as there 1s a
transposition (o, 8)() ... (.), the images must intersect x in a point. Counting these images
we obtain |x"| =3 -|H|=(0]|—2)-2+1, or |0|-(4 —|H,|) = 6. Therefore |0| = 3,
{H,| = 2 and H is the symmetric group on O. As H is generated by transpositions fixing
all points in Y— x, H acts as the identity on Y— x and the only centres are the three
isomorphic pairs in 0. Therefore m(H, 3) = 1 which proves iii).

Secondly consider the case | H,;| = 1. Suppose that kin H, displaces fie k:y — f — 4.
As {o, B, v} and {a, B, y}* both contain x we conclude that y = §. Therefore |H,| = 2 and
similarly | H;| < 2. Consider the graph on the vertices O, U O, with edge set x" 10, # O,
it is bipartite with respective degrees d, = |H,| and d; = | H;|. This results in the com-
ponents of type 1-3. If O,=0,, the degree is d,=2-1H1=2 or 4 If
h=(pB,9,...,6)...(.) maps « onto f, then {«, 8, §} and {« B, 5}* both contain x.
Therefore y = 6 and & has order 3. If |H,| = 1, the edges x, {o, y} and {y, f} form a
component of the graph. This is type 4. If |H,| = 2, there is some k = () (f, £)... in H,
with £ # y and £ must be displaced by h = («, , y) (&, 6, 1) ... From this one conludes that
k=@ (B, & (y, 0)(n)... The resulting images of x form a component of type 5. This
completes the proof.
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We suppose now that for any subset Y; of Y some group H, acting on Y is given. Denote
this collection of groups by # = {H;}. Let x be a given set of size k— 1 and
% = {x;y|x < yand y £ Y has size k}. We say that & is a flag arrangement for #, if
the following is true: Whenever 4 = {x; y;, ¥,,..., ¥i} & %, then A is an arrangement in
Y, =y, Uy, u...u y,for the group H;. Two flag arrangements with centres x and x" are
isomorphic if x" = x' for some he H, the group on Y. Let m(s#, k) be the number
non-isomorphic flag arrangements for #.

III. The growth of the sequence n,. Let G be a permutation group on a finite or infinite
set S. If X,(G)=1{0,,...,0;,...} are the orbits on [-element subsets we define
m; (L, k) = m(H#, k) where # is the collection of groups G'* induced by G on the subsets
Y, < Y for some fixed Y in O,. It is clear that the definition does not depend upon the
choice of Y in O,.

Theorem 3.1. Suppose that G acts (k — 1)-fold homogeneously on a set S with a finite
number of orbits on X, for some k. If | Z klett=1—k + 1. Then

1=1,..., ny
Proof Let Q,,...,Q, be all orbits of G on X, and select some set x of size k — 1.
For any ¢ distinct orbits Q, ..., Q,, we select y;in Q,fori = 1, ..., t such that x < y,. This
is possible because G is k — 1 homogeneous. Then # = {x; y, ..., y,} is a flag arrange-

ment for # = {G"'|Y, < Y} where Y=y, U y, U... U y, This is a consequence of the
fact that the y; belong to distinct G-orbits on X,. We label the collection Q4,..., 0, by
jif Y belongs to O,. (Of course the label is not necessarily uniquely determined). In all we
require (}*) labels where a label may be used several times.

Suppose therefore that also the sequence Q7 , 0%, ..., Q; obtains the label j. Then there
are y; o x, y.eQjfori=1,...,t such that ¥' =y}, Uy, u...u y; belongs to the same
orbit as Y. Let therefore g in G be such that Y?=Y. Then {x;y,,...,y} and
{x% y¥, ..., y°} are flag arrangements for #. However, they are not isomorphic as
{Q1s--., @} # {0}, ..., Q;}. Therefore a label j may be used at most m;(l, k) times. This
gives the required inequality.

We note several consequences of the theorem:

Corollary 3.2. Let G be a transitive permutation group on a set S with a finite number
n, of orbits on X,. For a given | 2 3 let n, | be the number of orbits O for which G* =1,
Ye O and let n; , be the number of orbits O’ for which G* is an elementary abelian 2-group,
YeO'. Then ()<l -n ,+12-n,,.

Corollary 3.3. Suppose that G acts doubly homogeneously on a set S with a finite number
ny of orbits on X5. Let n, ; be the number of orbits O for which |G*| =j, Ye O and
j=123, 016 Thenns(ny — 1) =12 ny 1 +6-n4 , +2-(ny 3+ 1y ¢)

We also note the following theorem which gives a bound for #, if the action induced
on subsets is sufficiently rich:
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Corollary 3.4. Let G be transitive on a finite or infinite set S. Suppose there is a value
I such that the following holds: Whenever Y = S has size | and s € Y then there is a subset
Y, se Y' £ Y with the following properties a) G* # 1 and b) if GY' is an elementary
abelian 2-group, then the orbit of s under G* has length different from |G*'|. Then
n, <l—1

Proof of 3.2. If G¥ = 1 on Y then m;(l, 2) < [ for the orbit containing Y and if G*
is an eclementary abelian 2-group on Y, then m; ([, k) < 1/2 for the orbit containing Y by
theorem 2.1. The conclusion now follows from theorem 3.1.

Proof of 3.3. Using theorem 2.1 we get the bounds m;(4,3) <6 if G' =1,
m;(4,3) £ 3if |G| = 2 and m;(4,3) £ 1 if |G*| = 3 or 6. In all other cases m;(4,3) = 0.
The conclusion now follows from theorem 3.1.

Proof of 3.4 The hypothesis together with theorem 2.1 implies that no element of
Y is the center of a flag arrangement. Therefore m; (I, 2) = Ofor all orbitsand son, <[ —1
by theorem 3.1.

A simple but useful fact on orbits on X, and X in general is

Theorem 3.5, Let G be a permutation group on a finite or infinite set with finite numbers
n, and n; of orbits on X, and X, for some k < I. Let E =0, U 0, U... U O, be a union of
distinct orbits of G on X, and let r; denote the number of orbits of G** on the k-element
subsets of Y; € O,. Suppose the following holds about E: If Q, and Q, are any given G-orbits
on X, then there exist Xy, yVi,..., ¥,y Xp Such that x, <y, |y, v, 2k for
i=1...,t—1,y o x,withx, €0y, x,€0, and y;€ E. Then

m< Y )+l

i=1..s

Proof We consider the graph whose vertices are the orbits X, (G). Two distinct
orbits @ and Q' are linked by an edge e if there are xe Q and x'e Q' such that
x u x' € ye E. We label this edge by j if y belongs to O;. The condition on E implies that
this graph is connected. Therefore the total number of edges is at least n, — 1. On the
other hand, a label j may be used at most () times. This yields the inequality.

We conclude with the following inequalities obtained from a theorem on orbits in
graphs [4}.

Theorem 3.6. Let G be a permutation group on a finite set S. Suppose that X , is a disjoint

union E; v E, u...u E, where each E; is a union of G-orbits on X ,.

a) If each graph (S, E), (i =1,...,7), is connected thenn, <r ' -n, 4+ 1.

b) If every connected component of (S, E;) contains a circular path of odd length for all
i=1,....r,thenn; <r *-n,.

Proof Let I] be the graph with vertices S and edge set E,. Then G is a group of
automorphisms of I and we denote the number of orbits of G on E, by |E;(G)|. By
theorems 3.1 and 3.2 in [4] we have n; < |E;(G)| + 1 and as n, = Y |E,(G)| the assertion
a) follows. If all connected components of I; contain a cycle of odd length, then
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ny < |E;(G)| as a consequence of theorem 2.1 and the proof of theorem 3.1 in [4]. This
yields b).
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