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Abstract

We show that unconditionally efficient returns do not achieve the maximum uncondi-

tional Sharpe ratio, neither display zero unconditional Jensen’s alphas, when returns are

predictable. Next, we define a new type of efficient returns that is characterized by those

unconditional properties. We also study a different type of efficient returns that is rational-

ized by standard mean-variance preferences and motivates new Sharpe ratios and Jensen’s

alphas. We revisit the testable implications of asset pricing models from the perspective of

the three sets of efficient returns. We also revisit the empirical evidence on the conditional

variants of the CAPM and the Fama-French model from a portfolio perspective.
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1 Introduction

The seminal paper of Hansen and Richard (1987) analyzed the tension between the condi-

tional implications of asset pricing theory and the use of unconditional moments in empirical

work, as these moments are easily estimated with sample averages. They developed a theoreti-

cal framework to study the mean-variance implications of asset pricing models and the effect of

information omission. They proved that unconditionally efficient (UE) returns are a subset of

the conditionally efficient (CE) returns. Hence the conditional CAPM implies that the market

portfolio is CE, but not necessarily UE.

This paper extends their results. Our main contribution is a comprehensive analysis of three

different types of CE returns. CE returns have conditional properties similar to the unconditional

properties of the textbook Markowitz (1952) frontier. The mean-variance frontier is linear with

a safe asset, providing a unique risk-return trade-off defined by the Sharpe ratio on the frontier.

Moreover, if we use a return on the frontier as a factor to price any feasible return then the

corresponding Jensen’s alpha is zero.

In contrast, we show that UE returns1 do not satisfy any of those textbook properties in

an unconditional sense unless the safe asset return is constant. In general the safe return (e.g.,

the Treasury-bill rate) is risky from the perspective of unconditional moments, which distorts

the properties of UE returns in terms of unconditional Sharpe ratios and Jensen’s alphas. To

the best of our knowledge, these properties of UE returns have not been studied before,2 even

though unconditional measures are commonly used in empirical finance. Lewellen and Nagel

(2006) analyze the unconditional alphas of CE returns, which are not zero in general even though

their conditional alphas must be zero. They do not study UE returns in particular.

These facts open the question of what type of efficiency is actually tested in empirical work.

We characterize a new set of efficient returns that achieve the maximum unconditional Sharpe

ratio or equivalently display zero unconditional Jensen’s alphas. For this reason, we refer to

this new subset of CE returns as performance efficient (PE) returns. We show that PE returns

minimize the tracking error with respect to the safe asset return instead of the total return

variance. Ferson and Siegel (2009) construct an efficiency test3 that is based on the maximum

1Several papers have used UE returns to guide portfolio choice. See e.g. Ferson and Siegel (2001) and, adding
a benchmark, Chiang (2009). Other papers such as Brandt and Santa-Clara (2006) and Bansal, Dahlquist, and
Harvey (2004) approximate UE returns through managed portfolios.

2Hansen and Richard (1987) study a general set-up that may or not include a safe asset, but they only make
explicit the role of a safe asset to clarify some ideas, such as the safe return is CE but not necessarily UE.

3Other examples of recent references are Wang (2003) and Lewellen and Nagel (2006). See also the references
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unconditional Sharpe ratio with conditioning information. Our results point out that these

authors are testing if a particular return is PE instead of UE. They assume a constant safe asset

return when they develop their test, and in that case both types of efficiency are equivalent.

However, the safe asset return has a non-negligible variance for the purposes of testing efficiency

and asset pricing models as our empirical application shows.

We also study a third type of efficient returns, which represents a different subset of CE

returns, and can be rationalized by mean-variance preferences commonly used in finance. If we

decompose the unconditional variance as the average conditional variance plus the variance of

the conditional mean then these optimal returns minimize the first component only. We use the

term residually efficient (RE) returns because the average conditional variance is equal to the

variance of a residual, the return minus its conditional mean. Unlike UE returns, RE returns

inherit the properties of the Markowitz frontier in terms of alphas and Sharpe ratios, if the

required variances and covariances are based on the residuals instead of the returns themselves.

Our theoretical contributions conclude with important results on testing mean-variance ef-

ficiency and asset pricing models.4 Empirical finance is often interested in testing that some

portfolio of a given set of returns lies on the efficient part of the mean-variance frontier spanned

by a wider set of returns. We show that, for any of the commented efficiencies we may be

interested in (CE, UE, PE, or RE), the null hypothesis is the same and it is equivalent to zero

conditional alphas. However, if we think of the CAPM for instance, and we also want to impose

that the market return itself is PE or RE (which is equivalent to a stochastic discount factor

with a constant weight on the market) then the null hypothesis adds predictability constraints

of different types on the market return.

To illustrate our theoretical results and show their empirical relevance, we study conditional

variants of the CAPM and the Fama-French model. We use four excess returns: the excess

return on the market, two excess returns that capture the size and value effects, and another

one that captures the momentum effect. We use three prominent predictors, the dividend price

ratio, the default spread, and the term spread. We find return predictability in these data, with

considerable differences across the three types of efficiency and time-variation in the weights of

efficient returns. This time-variation invalidates asset pricing models with fixed-weight stochastic

therein as a comprehensive review of papers taking into account conditioning information in empirical work,
testing the conditional CAPM, etc.

4Sentana (2009) surveys portfolio efficiency tests without conditioning information.
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discount factors. The value and momentum effects are far more relevant than the size effect,

and also their weights in optimal portfolios tend to be higher than the market return weights.

Hence we find that the value effect is more important than the size effect as a source of rejection

of the CAPM, and the Fama-French model cannot price momentum. These patterns are in line

with the empirical literature, see Schwert (2003) for instance.

In our empirical application the unconditional Sharpe ratio of UE returns changes consid-

erably for target returns around the safe asset. As we increase the target, this Sharpe ratio

converges towards its value for PE returns, which is its maximum value. The unconditional

Sharpe ratio of PE returns is considerably higher than the ratio for fixed-weight returns, which

proves the benefits from using conditioning information. Nevertheless, there are regions in mean-

variance space where fixed-weight portfolios perform better than some types of efficient returns.

In addition, the correct zero-beta return of UE returns can be very different from the average

safe asset return. However, this is not the usual approach in empirical work, where the safe

asset is directly used in the computations of unconditional alphas instead. For UE returns,

these alphas can be very different from zero, the value that characterizes PE returns instead,

and also depend on the particular target return.

The rest of the paper is organized as follows. Section 2 describes the theoretical framework

and the empirical application that illustrates our theoretical results. We provide a deep analysis

of three types of efficient returns in Section 3. Next, we develop the implications for testing

asset pricing models in Section 4. Finally, we present our conclusions in Section 5. Proofs and

auxiliary results are gathered in the appendix.

2 Theoretical and Empirical Set-up

In our investment set-up there are N + 1 unit-cost payoffs, the safe asset return R0 and N

risky assets whose random returns R = (R1, . . . , RN)
′ are defined on an underlying probability

space. We define the corresponding vector of excess returns as A = (R1−R0, . . . , RN−R0)
′. We

follow the theoretical framework in Hansen and Richard (1987) to analyze portfolio strategies

when returns are predictable. Let G denote the investors’ information when trading, typically

containing signals that are informative about future asset payoffs. We denote the set of all

random variables that are measurable with respect to G by I. The safe asset return R0 and the
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first two conditional moments of the vector of excess returns, which are denoted by

E (A|G) , E
(
AA

′|G
)
, (1)

respectively, belong to I. To ease the exposition, we assume the smallest eigenvalue of V ar (A|G) =

E (AA′|G) − E (A|G)E (A|G)′ is uniformly bounded away from 0 with probability one. This

implies that none of the primitive risky assets is actually conditionally riskless or redundant.

We also assume E (A|G) �= 0 to avoid trivial mean-variance frontiers.

Investors can condition their portfolio weights on the information given by G, i.e. they

can construct portfolio strategies with weights that belong to I. We will be interested in two

subsets of the corresponding payoffs, the unit-cost strategies (or gross returns) and the zero-cost

strategies (or arbitrage portfolios), which we denote by R and A respectively. We refer to their

elements as R ∈ R and A ∈ A. If an investor is endowed with some positive wealth, which

we can normalize to 1 without loss of generality, then she will only be interested in portfolio

strategies that cost 1 for every possible value of the signals in G.

There are two arbitrage portfolios that play a key role in the characterization of the frontiers.

A+ represents the conditional mean of arbitrage portfolios with an uncentred second moment,

while A++ uses a centred second moment: A+ is the unique arbitrage portfolio that satisfies

E
(
A+A|G

)
= E (A|G) (2)

and A++ is the unique arbitrage portfolio that satisfies

Cov(A++, A|G) = E (A|G) (3)

for every A ∈ A. These representing portfolios are conditionally proportional,

A++ =
[
1−E

(
A+|G

)]−1
A+,

and can be expressed explicitly as

A+ = A′
[
E
(
AA

′|G
)]−1

E (A|G) , A++ = A′ [V ar (A|G)]−1E (A|G) , (4)

in our investment set-up.5

5Their conditional and unconditional means are

E
(
A+|G

)
= E (A|G)′

[
E
(
AA

′|G
)]
−1
E (A|G) , E

(
A++|G

)
= E (A|G)′ [V ar (A|G)]−1E (A|G) ,

and

E
(
A+
)
= E

[
E (A|G)′

[
E
(
AA

′|G
)]
−1
E (A|G)

]
, E

(
A++

)
= E

[
E (A|G)′ [V ar (A|G)]−1 E (A|G)

]
,

respectively.
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To illustrate our theoretical results and show their empirical relevance, we use return data

from Ken French’s Data Library. In particular, we use the Treasury-Bill return as R0, and up to

four excess returns as A. The first entry is the excess return on the market (MMR). The next

two entries are the Small-Minus-Big (SMB) and High-Minus-Low (HML) excess returns, which

are constructed by means of six size and book-to-market sorted portfolios. SMB goes long in

small capitalization stocks and short in big ones, while HML goes long in high book-to-market

stocks and short in low ones. Finally, the Winners-Minus-Losers (WML) excess return, goes

long in recent winner, or high return stocks, and short in loser ones.6 See Ken French’s web

page, as well as Fama and French (1993), for further details. We compare three sets of available

assets, the first one is given by the safe asset and MMR, the second one adds SMB and HML,

and the third one also includes WML. We use annual data from 1954 to 2010 in the main text,

and leave monthly data to Appendix B.

We use three prominent predictors, the US dividend price ratio (DP), the default spread

(DS), and the term spread (TS). DP is taken from Robert Shiller’s web page, while DS and TS

are constructed from FRED data; in particular from yields on AAA and BAA-rated bonds, and

from 10 and 1-year constant maturity Treasury bond yields respectively. These predictors are

widely used in empirical finance, see Ferson and Siegel (2009) for instance.

We keep the number of returns and predictors low to show that our theoretical results do

not require many returns and/or predictors to be quantatively important. Similarly, our model

of conditional moments is simple to guarantee that our evidence does not depend on a complex

set-up. In the case of annual data, E (A|G) is linear in the predictors, following the spirit of

predictive regressions, and V ar (A|G) is constant as GARCH effects are weak at this frequency.

Nevertheless, we allow time variation in V ar (A|G) with monthly data in the appendix. Table

1 describes our empirical set-up.

<Table 1: Description of annual data>

In panel B, the R2 of MMR is clearly high when compared to SMB or HML, but WML is

the excess return with the highest R2. On the other hand, the Wald test of zero slopes for MMR

represents the strongest rejection of lack of predictability, followed by SMB and WML. We also

6The momentum premium, introduced by Jegadeesh and Titman (1993), has become one of the strongest
anomalies from the perspective of both the CAPM and the Fama-French model without conditioning information.
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reject that all the slopes of the four excess returns are jointly zero. Panel C shows that the weights

of A+ and A++ have standard deviations of similar order to their means, which is another signal

on the relevance of return predictability in this data set. Nevertheless, the average of the weights

of A+ is not very different from the weights of its fixed-weight counterpart, a portfolio that uses

unconditional moments in (4) instead. Figure 1 displays the time series of these weights.

<Figure 1: Weights of representing portfolios>

There is more variability in the weights of A++. In general E (A+|G) must be bounded by

1, while E (A++|G) is not bounded. Furthermore, in our simple model, the weights of A++

are linear in the predictors, while the weights of A+ are given by the product of the inverse of

matrix that is quadratic in the predictors times the linear risk premia. The conservativeness

of the second type of weights in the face of extreme signals is emphasized by Ferson and Siegel

(2001) in terms of robustness. Note that in such a simple set-up these portfolio weights are

constant if and only if all the predictive regression slopes are zero.7 Table 1 rejected the lack of

predictability. Finally, Note that HML and WML tend to take higher values than MMR, while

SMB usually has the lowest weights.

3 Efficient Returns with Conditioning Information

The conditionally efficient (CE) returns are defined by Hansen and Richard (1987) as the

returns with minimum conditional variance V ar (R|G) for a given target of conditional expected

returns E (R|G). That is, the set of returns that solve the optimization problem

min
R∈R

E
(
R2|G

)
for a given E (R|G) ∈ I, (5)

which we denote by RC . Similarly, we denote by AC the excess returns that solve the problem

min
A∈A

E
(
A2|G1

)
for a given E (A|G) ∈ I. (6)

CE excess returns can be represented as8

AC =
E (AC |G)

E (A+|G)
A+ =

E (AC |G)

E (A++|G)
A++, (7)

7Richer models of conditional moments may allow return predictability and, at the same time, constant weights
in one of the representing portfolios.

8The proof follows the arguments in Hansen and Richard (1987), using the mean square inner product E(xy|G)

between random variables x and y, and the associated mean square norm
√
E(x2|G).
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and CE returns can be represented as9

RC = R0 +AC , (8)

for some AC . In the very special case of all risk premia being zero then A+ = 0, and the CE

returns collapse to the singleton R0. We assumed the more plausible case A+ �= 0 in the paper.

The conditional Sharpe ratio of an excess return A different from 0 is defined as

S = E (A|G) /
√
V ar (A|G),

and the conditional Jensen’s alpha of an excess return A with respect to the pricing factor Aβ

(an excess return different from 0) is defined as

α = E (A|G)− βE (Aβ|G) , β = Cov (A,Aβ|G) /V ar (Aβ|G) .

We can use the same expressions with returns R after subtracting the safe return.

CE excess returns different from 0 are characterized by achieving the maximum S2 =

E (A++|G). They are also characterized by α = 0 when they are used as a factor to price

any A ∈ A. Given the representation (8), CE returns satisfy the same properties as CE excess

returns in terms of S2 and α. These results can be interpreted as a translation of the Markowitz

frontier properties to conditional moments. The link between portfolio efficiency and zero alphas

has been widely used in the Markowitz set-up. For instance, see Gibbons, Ross and Shanken

(1989) and the references therein.

The CE returns lie along two straight lines on the [
√
V ar (R|G), E (R|G)] space for each

possible value of the signals in G, and those two lines intersect on the vertical axis at R0. The

addition of a safe asset when moving from A to R does not change the optimal risk-return

trade-off
√
E (A++|G), as any RC can be expressed as an AC plus R0. Note that E (A++|G)

is a quadratic function of the predictors in our simple model of linear risk premia and constant

variances. Hence the Sharpe ratio is constant if and only if there is not predictability in this

simple model. Lack of predictability was rejected in Table 1.

9This expression specializes the representation in Hansen and Richard (1987) to the existence of a safe asset.
Their representation becomes

RC = R0
(
1−A+

)
+ ωA+, ω ∈ I,

which can also be expressed as
RC = R0 + (ω −R0)A

+ = R0 +AC

by choosing the AC associated to E (AC |G) /E
(
A+|G

)
= ω − R0. We can also represent the CE returns in the

spirit of Chamberlain and Rothschild (1983),

RC = R0 + wA
++, w ∈ I,

which can also be expressed as R0 +AC by choosing the AC associated to E (AC |G) /E
(
A++|G

)
= w.
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Figure 2 displays the time series of the safe asset return and the conditional Sharpe ratio

of CE returns in our empirical application. The mean of the safe asset return is 4.9307 and its

standard deviation is 2.9398. The dynamics of the Sharpe ratio are similar across the three sets

of returns, and it is clear that WML increases considerably the level of the ratio. If the only

available risky return is MMR then the average of the Sharpe ratio is 0.493 and its standard

deviation is 0.3245. If we add SMB and HML, then the average increases to 0.7884 and the

standard deviation to 0.4118. After the inclusion of WML, the average jumps to 1.4045 and the

standard deviation increases to 0.4975.

<Figure 2: Safe asset return and conditional Sharpe ratio of CE returns>

3.1 Unconditionally Efficient (UE) Excess Returns

Unconditional moments, estimated by sample averages, are often used in empirical work to

avoid the potential misspecification of models of conditional moments. In addition, in many

practical situations the observer of the agents’ decisions only has access to an information set

that is much coarser than the agents’ information set. The performance evaluation of a portfolio

manager is a typical example of the use of unconditional moments by an outside evaluator who

may not have access to the proprietary strategies followed by the manager.

These issues motivate the analysis of UE returns and excess returns. We denote by AU the

excess returns that solve the problem

min
A∈A

E
(
A2
)

for a given E (A) ∈ R. (9)

The following proposition studies the properties of UE excess returns. The unconditional

Sharpe ratio of an excess return A is defined as

SU = E (A) /
√
V ar (A),

and the unconditional Jensen’s alpha of an excess return A with respect to a pricing factor Aβ

is defined as

αU = E (A)− βUE (Aβ) , βU = Cov (A,Aβ) /V ar (Aβ) .

Proposition 1 Representation and properties of UE excess returns defined by (9):

1. UE excess returns can be represented as

AU =
E (AU )

E (A+)
A+. (10)
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2. UE excess returns different from 0 are characterized by achieving the maximum

S2U =
E (A+)

1−E (A+)
.

They are also characterized by
αU = 0

when they are used as a factor to price any A ∈ A.

There is a single optimal risk-return trade-off on the [
√
V ar (A), E (A)] space. The UE

frontier is given by two straight lines, the upper one having slope equal to the Sharpe ratio

in the previous proposition. Similarly, excess returns on the zero-cost frontier (9) provide zero

alphas as a factor when pricing any excess return.

3.2 UE Returns and Performance Efficient (PE) Returns

UE returns are defined in Hansen and Richard (1987) as the returns with minimum uncon-

ditional variance V ar (R) for each target of unconditional expected return E (R). Hence, the

UE returns will be given by the set of returns that solve the problem

min
R∈R

E
(
R2
)

for a given E (R) ∈ R, (11)

and we denote these returns by RU . Adapting their results to the existence of a safe return, and

using the characterization of UE excess returns (10), these UE returns can be represented as

RU = R0
(
1−A+

)
+AU , (12)

for some AU . These authors proved that the UE returns are a subset of the CE returns, and the

representations (8) and (12) reflect this fact.10 They also show that UE returns satisfy a beta

pricing equation: A return Rβ ∈ R different from the minimum unconditional variance one is

UE if and only if, for every R ∈ R,

E (R)−EU =
Cov (R,Rβ)

V ar (Rβ)
[E (Rβ)−EU ] (13)

for some EU ∈ R. This number is interpreted as the unconditional mean of the corresponding

zero-beta return and depends on the chosen UE return factor.

We find that RU −R0 cannot be represented as a particular AU in general because its weight

on A+ is random unlessR0 is constant. Nevertheless, we can define a new type of return efficiency

10For instance, the safe asset return R0 is CE but it is not UE, while the return R0
(
1−A+

)
belongs to both

frontiers.
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that simply adds R0 to a particular AU independently of the randomness of R0. Performance

efficient (PE) returns solve a slightly different problem with respect to (11),

min
R∈R

E
[
(R−R0)

2
]

for a given E (R) ∈ R, (14)

and we denote them by RP . The safe asset is riskless with this criterion, which is equivalent to

V ar (R−R0), but is not with V ar (R). PE returns minimize the tracking error with the safe

asset as a benchmark. In fact, the investment industry usually measures performance relative

to a benchmark and a manager might care about her relative performance more than total risk

and return. In this case, we could refer to the excess return R−R0 as her active return, and its

variance as her tracking error, which is a widely used measure of relative investment risk. See the

results of Roll (1992) on tracking error optimization in a context without explicit information

neither a safe asset.11

Proposition 2 Representation and properties of PE returns defined by (14):

1. PE returns can be represented as

RP = R0 +AU . (15)

2. The excess returns of PE returns satisfy the same properties in terms of S2U and αU as
UE excess returns.

Importantly, adding the safe return to UE excess returns defines a new subset of CE returns

(8). This subset, PE returns, has similar properties to UE excess returns. In the case of PE

returns, we can find a relationship between their SU and S on the CE frontier,

1

1 + S2U
= 1−E

(
A+
)
= E

(
1

1 + S2

)
.

This result was already developed by Jagannathan (1996) for UE returns with a constant safe

asset return. However, our expressions show that UE returns share the properties of UE excess

returns only in the special case of a constant R0.

Figure 3 displays the UE and PE frontiers. There is a single optimal risk-return trade-off

on the [
√
V ar (A), E (A)] space but not on the [

√
V ar (R), E (R)] space. The PE frontier is

a straight line for positive risk premia on the [
√
V ar (A), E (A)] space, and provides the best

performance in that space. We can also compare PE and UE frontiers on the [
√
V ar (R), E (R)]

11See Section 3 of Peñaranda (2008) for further details on the role of background risks in mean-variance analy-
sis without explicit conditioning information. Note also the differences with respect to Chiang (2009), who is
interested in active portfolio management with respect to a general benchmark. Here we want to characterize the
subset of CE returns that have maximum unconditional Sharpe ratios and zero unconditional alphas instead.
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space, where the latter is the most efficient one. Both frontiers share the location of the minimum

and the asymptotes because the only difference between them is the background risk of the

safe return. Therefore, these two curves are more different the lower the target return. For

comparison, the location of the Markowitz frontier is also shown, interpreted as the PE frontier

in (14) but constrained to fixed-weight strategies (R0 + ωA′ [E (AA′)]
−1
E (A) with ω ∈ R)

and we refer to these returns as fixed-weight efficient (FE). The FE frontier is also given by a

straight line in the left plots, and is very similar to the PE frontier for target returns around

the average safe asset. Note that there are regions where fixed-weight portfolios perform better

than UE returns.

<Figure 3: UE and PE returns>

The following corollary of Proposition 2 clarifies the difference between UE and PE returns.

Corollary 1 Given the representation of UE and PE returns above,

1. A PE return is related to the UE return with the same mean by

RP = RU +

[
R0 −

E (R0A
+)

E (A+)

]
A+.

2. The UE and PE frontiers for returns are equal if and only if

R0 ∈ R.

The right term in point 1 does not depend on the chosen RP , has mean zero and is orthogonal

toA+. It can be interpreted as a hedging demand due to background risk. The difference between

both frontiers follows easily from this corollary,

V ar (RP ) = V ar (RU ) + V ar

([
R0 −

E (R0A
+)

E (A+)

]
A+
)
.

Therefore, the PE frontier represents a parallel parabola with respect to the UE frontier on the

[V ar (R) , E (R)] space, where the size of the parallel movement to the right depends on the

right term. Point 2 states that the PE and UE frontiers coincide when the safe asset return is

constant since then there is no conflict between the mean-variance and hedging motives. In this

case, the safe asset return is also UE.

Table 2 shows unconditional Sharpe ratios SU and alphas αU for the different types of efficient

returns that we study. The required formulas can be derived from the previous representations.
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Regarding alphas, we could study the pricing of any time-varying strategy of the primitive assets,

but we simply focus on pricing the primitive assets. UE returns do not display a constant SU

and it may change considerably for target returns around the safe asset. As we increase the

target, this SU converges towards the ratio for PE returns, which is its maximum value. Note

that the unconditional Sharpe ratio of PE returns is considerably higher than FE returns, and

hence there is added value in using conditioning information even in a simple model like ours.

The zero-beta return of UE returns, EU in the beta-pricing equation (13), can be very

different from the average safe asset return. UE returns would price any other return with these

values of EU and using gross returns in the computation of betas. However, this is not the usual

approach in empirical work and αU is more common. For UE returns, αU can be very different

from zero and it also depends on the particular target. Here we provide the alphas generated

when we use a particular UE return to price one of the primitive excess returns.12

<Table 2: Unconditional performance measures>

To sum up, when empirical work relies on unconditional Sharpe ratios and Jensen’s alphas

to test portfolio efficiency is actually testing if a return is PE, not UE. Both efficiencies are only

equivalent in the case of a constant safe asset return.

3.3 Residually Efficient (RE) Excess and Gross Returns

This section studies a third subset of CE returns. Appendix C analyses the link between

mean-variance preferences and frontiers. Ferson and Siegel (2001) show that UE returns can be

rationalized by preferences E (R|G) − (bU/2)E
(
R2|G

)
for some strictly positive bU ∈ R. But

UE returns are not related to preferences E (R|G)− (θR/2)V ar (R|G) for some strictly positive

θR ∈ R, which actually rationalize the efficient returns that we study in this section.

The last preferences only penalize a component of the unconditional variance. We can

decompose the unconditional variance of a return as

V ar (R) = E [V ar (R|G)] + V ar [E (R|G)] ,

and we refer to the first component as the residual variance because it is the variance of the

residual R−E (R|G), that is, V ar (R−E (R|G)) = E
[
(R−E (R|G))2

]
= E [V ar (R|G)]. Note

12 In contrast, fixed-weight portfolios provide zero αU in this application.
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that R0 is risky from the perspective of V ar (R), but not from the perspective of V ar (R|G) and

hence E [V ar (R|G)].

We define the RE returns as the returns that minimize the residual variance E [V ar (R|G)]

for a given target of expected return E (R). Thus, the RE returns are given by the set of returns

that solve the problem

min
R∈R

E [V ar (R|G)] for a given E (R) ∈ R, (16)

which we denote by RR. Similarly, we denote by AR the excess returns that solve the problem

min
A∈A

E [V ar (A|G)] for a given E (A) ∈ R. (17)

The following proposition studies the properties of RE excess and gross returns. The residual

Sharpe ratio of an excess return A is defined as

SR = E (A) /
√
E [V ar (A|G)],

and the residual Jensen’s alpha of an excess return A with respect to a pricing factor Aβ is

defined as

αR = E (A)− βRE (Aβ) , βR = E [Cov (A,Aβ|G)] /E
[
V ar

(
A
β
|G
)]
.

Proposition 3 Representation and properties of RE returns defined by (16), and RE excess
returns defined by (17):

1. RE excess returns can be represented as

AR =
E (AR)

E (A++)
A++.

2. RE excess returns different from 0 are characterized by achieving the maximum

S2R = E
(
A++

)
.

They are also characterized by
αR = 0

when they are used as a factor to price any A ∈ A.

3. RE returns can be represented as

RR = R0 +AR, (18)

for some AR, and hence their excess returns satisfy the same properties as RE excess
returns in terms of S2R and αR.
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The RE returns are a subset of the CE returns, as it is the case with UE returns.13 The RE

frontier is given by two straight lines on the [
√
E [V ar (R|G)], E (R)] space with zero residual

variance at E (R) = E (R0). In fact, we can see on the left side of Figure 4 that the PE and FE

frontiers are also linear in that space. RE returns provide the best risk-return trade-off in that

space, while UE returns provide the best frontier on the right side of the plot, which represents

[
√
V ar (R), E (R)]. Note that the safe asset belongs to both the PE and RE frontiers, and hence

they are tangent at that point. Interestingly, in some regions, the performance of fixed-weight

returns is better than some CE returns.

<Figure 4: UE, PE and RE returns>

There is a natural link between the RE frontier and its zero-cost counterpart (17), as it is

the case with the CE and the PE frontiers, but not with the UE frontier. The addition of a

safe asset when moving from A to R does not change the optimal residual risk-return trade-off,

as any RR can be expressed as an AR plus R0. There is a single optimal risk-return trade-off

on the [
√
E [V ar (R|G)], E (R)] space in the sense that SR reaches its maximum value for risky

returns on the efficient side of the RE. In this regard, there is a simple relationship between SR

on the RE frontier and S on the CE frontier

S2R = E
(
A++

)
= E

(
S2
)
.

Moreover, every RE return provides αR = 0 as a factor when pricing any return. This result is

the RE counterpart of the beta-pricing characterization of mean-variance frontiers in Roll (1977)

for the Markowitz set-up, and Hansen and Richard (1987) for UE returns.

Table 3 illustrates the previous points. RE returns provide the maximum SR, whose square

is equal to the average square of the conditional Sharpe ratio of CE returns. For instance, using

portfolios constructed from MMR, SMB, and HML in Figure 2, we commented that the mean

and standard deviation of the conditional Sharpe ratio of CE returns are 0.4118 and 0.7884

respectively. The sum of their squares is equal to the square of 0.8895, the corresponding value

of SR in Table 3. On the other hand, the SR of PE returns lies between the RE and FE returns.

These three types of returns display a single value for the residual Sharpe ratio, but this is not

13For instance, the safe asset return R0 is RE but not UE, and the return R0
(
1−A+

)
is UE but not RE, while

both returns are CE.
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the case again for UE returns, which can provide very different values across different target

returns. Similarly, there are not pricing errors with RE returns as a pricing factor in terms of

αR, but this is not the case with UE returns, where once again the particular target matters.

Regarding the application of unconditional measures to RE returns, Table 2 showed that the

SU for RE returns is constant, and between FE and PE. Similarly, αU are not zero with RE

returns, but they do not depend on the particular target.

<Table 3: Residual performance measures>

The next corollary characterizes the special cases where the RE is equal to the PE or the

UE frontiers:14

Corollary 2 Given the representation of RE, UE and PE returns in the previous propositions,

1. The RE and PE frontiers for returns are equal if and only if

E
(
A++|G

)
∈ R,

that is, the maximum conditional Sharpe ratio is constant. In this case, and only in this
case, the RE and UE frontiers for excess returns are equal, and every efficient excess return
has a constant conditional mean.

2. The RE and UE frontiers for returns are equal if and only if

R0 ∈ R, E
(
A++|G

)
∈ R,

that is, both the safe asset return and the maximum conditional Sharpe ratio are constant.
In this case, every efficient return has a constant conditional mean, and these frontiers
are also equal to the PE frontier.

Figure 2 showed that these conditions are empirically far from plausible. They are also

quite restrictive. In the case of point 2, the straight lines that represent the CE frontier on the

[
√
V ar (R|G), E (R|G)] space at each value of the conditioning variables in G should be equal.

Figure 5 illustrates the driver of the differences between UE, PE, and RE returns. The three

types can be interpreted as different scalings of A+, and hence the relative weights across risky

assets are the same for these types of efficiency. Figure 5 displays the time series of this scaling

for two target returns when the available assets are MMR, SMB, and HML.

14There are other theoretically possible cases. The RE and the UE frontiers for returns are tangent if and only
if there are two real numbers (a, b) such that

R0 = a+ bE
(
A++|G

)
,

in which case the shared return has a constant conditional mean a. A simple example is R0 ∈ R, since then this
return is also UE and hence both frontiers are tangent at R0.
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<Figure 5: Scaling for efficient returns>

The scaling is constant for PE returns, rising from 0.0019 to 0.1424 as the target increases

from 5 to 10%, but changes over time for RE and UE returns. As the target increases from 5 to

10%, the average value of the scaling of UE returns increases from 0.0022 to 0.1427, while the

standard deviation stays at 0.0294. The scaling of RE returns increases in both dimensions, the

mean from 0.0016 to 0.1148, and the standard deviation from 0.0007 to 0.0488.

4 Testing Portfolio Efficiency and Asset Pricing Models

Figure 6 provides a summary of the results in the previous section. In the context of CE

excess and gross returns, we have studied two types of efficient excess returns, and three types

of efficient gross returns. We can translate RE excess returns into RE gross returns by simply

adding the safe asset return. The same operation translates UE excess returns into PE returns.

However, the connection between UE excess returns and UE returns is not as straightforward.

Now we turn to the implications of our results for testing portfolio efficiency and asset pricing

models.

<Figure 6: Summary of efficient excess and gross returns>

4.1 Spanning of Efficient Returns

Tests of efficiency and asset pricing models are usually stated in terms of excess returns. If

we work with an N×1 vector of excess returns A, which we decompose into an N1×1 vector A1

and an N2 × 1 vector A2 (N = N1 +N2), then the hypothesis of interest is that some portfolio

of the elements in A1 lies on the efficient part of the mean-variance frontier spanned by A1 and

A2.

From (7), any CE excess return constructed with (A1,A2) is a portfolio of A1 if and only

if A+ has zero weights on A2, or equivalently A++ has zero weights on A2. From (8), the

same condition holds if and only if CE returns with (R0,A1,A2) are constructed with R0 and a

portfolio of A1. Hence some zero weights in A+ is the null hypothesis of a conditional efficiency

test. This condition is equivalent to some zero conditional alphas because, using the partitioned

inverse in (4), we find the equivalent constraints

E (A2|G) = E
(
A2A

′
1|G
) [
E
(
A1A

′
1|G
)]−1

E (A1|G)
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or

E (A2|G) = Cov (A2,A1|G) [V ar (A1|G)]
−1E (A1|G) .

This is a well known result, being an extension to conditional moments of efficiency tests in the

Markowitz framework. Our novel result is that the hypothesis to test is the same whatever the

particular subset of CE returns (UE, PE, or RE) we are interested in.

Proposition 4 Spanning of efficient returns:

1. Any RE or UE excess return constructed with (A1,A2) is a portfolio of A1 if and only if
A+ has zero weights on A2, or equivalently A++ has zero weights on A2.

2. The same condition holds if and only if RE, PE or UE returns with (R0,A1,A2) are
constructed with R0 and a portfolio of A1.

The proposition also shows that the hypothesis to test is the same if we study unit cost

portfolios instead of zero cost portfolios. All these efficient returns depend on A only through

A+ or A++. Table 1, and Figures 1 and 2, showed already some empirical evidence that is related

to this proposition, and to tests of the conditional versions of the CAPM and the Fama-French

model. In the case of the CAPM, we test the efficiency of the market portfolio, while in the

case of the Fama-French model we test the efficiency of some portfolio of the market, SMB and

HML.

In Figure 1, the weights of A+ and A++ on HML and WML tend to take higher values than

MMR, while SMB usually has the lowest weights. For instance, Table 1 shows that the A+

constructed with MMR, SMB, and HML has an average weight on HML twice the average on

MMR, while their standard deviations are similar. On the contrary, the weight on SMB has

much lower values in both dimensions. Similarly to Lewellen and Nagel (2006), we find that

the value premium, represented by HML, is the main source of rejection of the CAPM.15 We

also find clear evidence that the Fama-French model cannot price WML as its average weight is

far from zero. The conditional Sharpe ratio in Figure 2 increases considerably its average level

when WML is added. Hence our simple empirical set-up is in line with the empirical literature.

Proposition 4 is a result on both mean-variance efficiency and asset pricing. It provides

the conditions under which a portfolio of A1 lies on the mean-variance frontier spanned by A.

But the same conditions can be interpreted as A1 defining a set of factors that price the cross-

section of assets given by A. For instance, A1 could be a scalar as the market excess return

in the CAPM, or a vector that adds size and value factors as in the Fama-French model. In

15Petkova and Zhang (2005) also conclude that the conditional CAPM cannot explain the value premium.
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fact, we can translate the proposition into stochastic discount factors (SDFs). If we define the

random variable

m∗ =
1

R0

1−A+

1−E (A+|G)
=

1

R0

(
1−A++ +E

(
A++|G

))

then m∗ satisfies

E (m∗R0|G) = 1, E (m∗
A|G) = 0, (19)

which can be interpreted as a proper SDF16 that depends on A1 only. Moreover, note that

1−A+ could also be interpreted as a SDF that prices excess returns,

E
[(
1−A+

)
A|G

]
= 0,

and similar comments apply to 1−A++ +E (A++|G) because it satisfies

E
[(
1−A++ +E

(
A++|G

))
A|G

]
= 0.

The results in Gallant, Hansen and Tauchen (1990) show thatm∗ is the conditional projection

of any random variable m that satisfies the pricing equations (19) onto the conditional span of

R0 andA. Therefore, we can also use efficiency tests to test asset pricing models with nontraded

factors. We can focus on them∗ corresponding to a particular model m, as the differencem−m∗

does not play any role in pricing because it is orthogonal to R0 and A.

4.2 Fixed-weight Spanning

Empirical work often relies on excess returns and SDFs with fixed weights on the pricing

factors. In our context, that means

1−A+ = 1− λ′1A1

for some N1 × 1 vector λ1 of real numbers, which can be interpreted as prices of risk. Given a

vector of additional excess returnsA2, empirical work often relies on the unconditional moments

E







 A1

A2



(1− λ′1A1
)


 = 0,

which are equivalent to multivariate beta-pricing

E (A2) = Cov (A2,A1) [V ar (A1)]
−1E (A1) .

16The duality, or perfect conditional correlation, between conditional frontiers of returns and SDFs is studied
in Peñaranda and Sentana (2011a).
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For instance, we can test the CAPM with a scalar A1 equal to MMR or test the Fama-French

model with a 3× 1 vector A1 (MMR, SMB, and HML).

Similarly, we could work with a fixed-weight SDF

1−A++ +E
(
A++|G

)
= 1− η′1 (A1 −E (A1|G))

for some N1 × 1 vector η1 of real numbers. The corresponding SDF conditions would be

E







 A1

A2



(1− η′1 (A1 −E (A1|G))
)


 = 0,

and the corresponding multivariate residual beta-pricing

E (A2) = E [Cov (A2,A1|G)] [E [V ar (A1|G)]]
−1E (A1) .

The following corollary characterizes the predictability constraints that this type of SDFs

impose on top of the zero conditional alphas in Proposition 4.

Corollary 3 Let us assume A+, and equivalently A++, have zero weights on A2,

1. The weights of A+ on A1 are constant if and only if there is some λ1 ∈ R
N1 such that

E (A1|G) = E
(
A1A

′
1|G
)
λ1.

In this case, PE excess and gross returns are constructed with fixed-weight portfolios of
A1, and we can construct a SDF 1−A+ with constant weights on A1.

2. The weights of A++ on A1 are constant if and only if there is some η1 ∈ R
N1 such that

E (A1|G) = V ar (A1|G)η1.

In this case, RE excess and gross returns are constructed with fixed-weight portfolios of
A1, and we can construct a SDF 1−A++ +E (A++|G) with constant weights on A1.

In our simple model of linear risk premia and constant variances, the second condition holds

if and only if there is no predictability in A1. That is, the predictive regression slopes are zero.

This fact suggests that these conditions may not hold in usual models in empirical finance, even

though return predictability and these conditions could coexist in general.

The case of N1 = 1 is specially interesting as it is connected to the efficiency of a particular

portfolio, and hence to the CAPM when that portfolio is the market return. The second condition

means E (A1|G) /V ar (A1|G) ∈ R in that case, and then A1 is RE and R1 = A1 + R0 is also

RE. That is, the condition means that the particular portfolio itself is RE, which does not need

to be the case under zero conditional alphas only. Similarly, the first condition means that

E (A1|G) /E
(
A2|G

)
∈ R, and then A1 is UE and R1 = A1+R0 is PE. However, R1 = A1+R0 is
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UE if and only if R0+E
(
A21|G

)
/E (A1|G) ∈ R instead. Ferson and Siegel (2009) propose a test

of unconditional efficiency based on facing the unconditional Sharpe ratio of a portfolio against

the maximum one. As commented before, such a test should be interpreted as the corresponding

portfolio excess return being UE or the portfolio return being PE. Furthermore, now we see the

implied predictability constraints in such a test, as we are imposing that the portfolio itself lies

on a particular frontier.

Under the conditions of Proposition 4, a single excess return A1 will be CE but not necessarily

UE, PE or RE, since in general A+ or A++ are equal to a conditional rescaling of A1. For A1

to be UE, PE or RE, additional predictability constraints would be required such that optimal

excess returns do not use information. Let us briefly study this point with RE returns, which

can be represented as

RR = R0 +wRA
++ = R0 +wR

E (A1|G)

V ar (A1|G)
A1, wR ∈ R.

R1 will not be on the RE frontier unless there is a ẇR such that

ẇR
E (A1|G)

V ar (A1|G)
= 1,

which requires that E (A1|G) /V ar (A1|G) is a real number. Moreover, this condition would

imply that RE returns are fixed-weight portfolios of R1 and R0, and hence these optimal returns

would not use conditioning information.

A classic example of efficiency tests is testing the validity of the CAPM, a model where the

market portfolio must be mean-variance efficient in equilibrium.17 The conditional CAPM

assumes that investors choose CE returns. If the safe asset is in zero net supply, as it is usually

assumed, then the market return is only composed of risky returns. In that case, in equilibrium

the market return, say R1 in the previous paragraphs, is actually CE. However, the results

above show that such a return is not RE, PE or UE unless returns satisfy some predictability

constraints. In particular, if we think of mean-variance preferences such that agents’ returns

and their fixed-weight aggregation are RE, and a safe asset in zero net-supply, then equilibrium

imposes a constant V ar (A1|G) /E (A1|G) and optimal portfolio weights are independent of

information. These results are related to the existence of a tangency portfolio, which is studied

in Appendix D.

17The model was originally developed by Sharpe (1964), Lintner (1965) and Mossin (1966) in a context without
conditioning information.
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We commented that Panel C of Table 1 shows that weights of A+ and A++ have standard

deviations of similar order compared to their means, that is, there is considerable time-variation

in these weights. Now we can interpret this empirical fact as rendering SDFs with fixed weights

invalid to price time-varying strategies. Similarly, we can see graphically the relevant time-

variation in the MMR weight in the first row of Figure 1, which invalidates a CAPM-like SDF

with a fixed weight on the market return. We can also see the time-variation of weights on

the three Fama-French factors in the second row, and hence the same comments apply to a

Fama-French SDF with fixed-wights.

5 Conclusions and Further Research

Our results can be considered as a guideline for future empirical work, and an accurate

interpretation of the current evidence, on testing mean-variance efficiency and asset pricing

models. Our main contribution is a careful analysis of three different types of efficient returns

in the presence of conditioning information, as summarized in Figure 6.

We prove that unconditionally efficient returns do not show a unique optimal unconditional

Sharpe ratio, and their unconditional Jensen’s alphas are not zero either, even though these

measures are widely used in empirical finance. This fact opens the question of what type of

efficiency is actually tested in empirical finance, and next we characterize a new set of efficient

returns that actually satisfies those unconditional properties. We also characterize a third set of

efficient returns that is rationalized by standard mean-variance preferences and motivates new

Sharpe ratios and Jensen’s alphas.

We conclude our theoretical analysis by showing that, when there is portfolio of a set of

returns that lies on the mean-variance frontier spanned by an extended set of returns, any of

the three types of efficiency requires zero conditional alphas, and hence there is a unique null

hypothesis to test. However, if we think of the CAPM for instance, and we also want to impose

that the market return itself is efficient in a particular sense then the null hypothesis adds

predictability constraints of different types on the market return.

Our empirical application revisits the conditional variants of the CAPM and the Fama-French

model. We use four excess returns that capture the market, and the size, value, and momentum

effects, and consider three prominent predictors. We find return predictability in these data,

with considerable time-variation in the weights of efficient returns. This fact invalidates asset
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pricing models with fixed-weight stochastic discount factors. The value and momentum effects

are far more relevant than the size effect, and also their weights in optimal portfolios tend to be

higher than the weights on the market return. We find that the value effect is more important

than the size effect as a source of rejection of the CAPM, and we also find that the Fama-French

model cannot price momentum.

The unconditional Sharpe ratio of UE returns changes considerably for target returns around

the safe asset. As we increase the target, this Sharpe ratio converges towards the ratio for

PE returns, which is its maximum value. The unconditional Sharpe ratio of PE returns is

considerably higher than the ratio we can achieve with fixed-weight returns, which reflects the

added value in the conditioning information. Nevertheless, there are regions in mean-variance

spaces where fixed-weight portfolios perform better than some CE returns. The zero-beta return

of UE returns can be very different from the average return on the safe asset. However, this

is not the usual approach in empirical work, where using excess returns in the computations of

unconditional alphas is more common. For UE returns, these alphas can be very different from

zero and also depend on the particular target return.

There are some interesting avenues for further research. We could analyze the new types of

efficient returns in terms of portfolio performance, as e.g. Chiang (2009) does for UE returns

with a benchmark, or Avramov and Chordia (2006) do in a real-time Bayesian set-up. In fact,

our analysis has provided new efficiency measures that may be useful in performance evaluation.

Similarly, we could use the new efficient returns to compute factor mimicking portfolios, as

Ferson, Siegel, and Xu (2006) have computed such portfolios with UE returns. The analysis

of more general preferences that include higher order moments and intertemporal efficiency are

additional topics of further research.

As it is common in empirical work, the efficiency issues that we have studied focus on the use

of a safe asset and excess returns. Nevertheless, Appendix D studies the relationship between

frontiers with and without a safe asset. If such an asset is not available (e.g. the investor does

not have access to a safe asset in real terms) then we can think of testing spanning or tangency.

These tests are studied in Peñaranda and Sentana (2010, 2011b) in a framework that does not

take into account information explicitly, and we plan to develop the corresponding extensions.

Finally, our empirical application served as a standard illustration of our theoretical concepts,

and hence we were not specially concerned about the potential misspecification of the conditional
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moments. Testing zero conditional alphas seems to require the correct model of first and second

conditional moments of asset returns, and Ghysels (1998) stresses the impact of misspecification

in this context. In addition, a simple model as the one we used may not be rich enough to explore

interesting situations. However, as Hansen and Richard (1987) already pointed out, there is no

loss of information in moving from conditional to unconditional moments, but only as long as we

consider all zero-cost portfolio strategies, and not simply a subset (e.g. fixed-weight portfolios).

In fact, managed portfolios usually approximate portfolio strategies by linear functions of the

predictors, but they can provide the basis for a proper non-parametric procedure.18 Sieve

methods can approximate any portfolio strategy whose weights are a smooth function of the

predictors, and we plan to study this non-parametric approach in subsequent research. See

Chen (2007) for a survey of sieves methods.

18There are also other non-parametric approaches. Wang (2003) estimates the weights of the SDF as non-
parametric functions of the predictors. Lewellen and Nagel (2006) rely on short-window regressions to estimate
conditional moments without the use of predictors.
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Appendix

A Proofs

The proofs below are based on several types of orthogonal projections. We assume that the

diagonal elements of E (AA′|G) in (1) are uniformly bounded with probability one, so that all

the elements of A belong to L2, which is the collection of all random variables defined on the

underlying probability space with bounded unconditional second moments.

Proposition 1:

1) We can decompose any A ∈ A into two components that belong to A

A = ηA+ + u, η =
E (A+A)

E (A+2)
=

E (A)

E (A+)
,

where the first component is the unconditional projection of A onto the unconditional span of

A+, and u is the projection error. The error satisfies E (u) = 0 because E (A+u) = 0.

Therefore, the error does not affect E (A) but increases E
(
A2
)
. The excess returns that

solve problem (9) cannot have an error term, and hence the solution can be represented as

AU = ηA+, η =
E (AU )

E (A+)
.

2) When E (AU ) �= 0, the S2U of those optimal excess returns is given by

E2 (AU )

V ar (AU )
=

η2E2 (A+)

η2E (A+) (1−E (A+))
=

E (A+)

1−E (A+)
,

and, as a pricing factor, they provide αU = 0 for any A ∈ A because

Cov (A,AU )

V ar (AU )
E (AU ) =

ηE (A) (1−E (A+))

η2E (A+) (1−E (A+))
ηE
(
A+
)
= E (A) .

On the other hand, any risky Aβ such that

E (A+)

1−E (A+)
=

E2 (Aβ)

V ar (Aβ)
,

or such that

E (A) =
Cov (A,Aβ)

V ar (Aβ)
E (Aβ)

for any A ∈ A, must be equal to a particular AU . The reason is that we can decompose this Aβ

as an underlying AU plus an error u from the decomposition of excess returns above. Thus the

Sharpe ratio of Aβ satisfies

E2 (AU )

V ar (AU )
=

E2 (AU )

V ar (AU ) + V ar (u)
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and similarly, pricing the underlying AU , Aβ satisfies the beta-pricing equation

E (AU ) =
V ar (AU )

V ar (AU ) + V ar (u)
E (AU ) .

Any of the previous conditions implies that V ar (u) = 0, which translates into u = E (u) = 0.�

Proposition 2:

1) For any R ∈ R, we can decompose R − R0 ∈ A in a similar way to A in the proof of

point 1 in Proposition 1, and show that PE returns can be represented as

RP = R0 + ωPA
+ ωP ∈ R.

By choosing the AU associated to E (AU ) /E (A
+) = ωP ,

RP = R0 + ωPA
+ = R0 +AU

and hence RP −R0 can be represented as a particular AU .

2) We can use the proof of point 2 in Proposition 1 with AU and Aβ equal to RP −R0. �

Proposition 3:

1) This proof relies on the residual inner product E [Cov(x, y|G)] between random variables

x and y and its corresponding norm as
√
E [V ar(x|G)]. A priori, this may not be a proper norm

in the sense that V ar(x|G) = 0 implies x = E (x|G) but not necessarily x = 0. However, if there

is not a safe asset, i.e. there is no R such that R = E (R|G) �= 0, then V ar(R|G) = 0 implies

R = 0. Moreover, even if there was a safe asset, this inner product would define a proper norm

in A if there are no arbitrage opportunities, because a safe asset cannot belong to A.

We can decompose any A ∈ A into two components that belong to A

A = λA++ + u, λ =
E [Cov (A,A++|G)]

E [V ar (A++|G)]
=

E (A)

E (A++)
,

where the first component is the residual projection of A onto the unconditional span of A++,

and u is the projection error. The error satisfies E (u) = 0 because E [Cov (A++, u|G)] = 0.

The error does not affect E (A) but increases E [V ar (A|G)] and hence optimal excess returns

cannot have an error term. The solution of problem (17) is

AR = λA++, λ =
E (AR)

E (A++)
.
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2) When E (AR) �= 0, the S2R of these optimal excess returns is given by

E2 (AR)

E [V ar (AR|G)]
=
λ2E2 (A++)

λ2E (A++)
= E

(
A++

)
,

and, as a pricing factor, they provide αR = 0 for any A ∈ A because

E [Cov (A,AR|G)]

E [V ar (AR|G)]
E (AR) =

λE (A)

λ2E (A++)
λE

(
A++

)
= E (A) .

On the other hand, any risky Aβ such that

E
(
A++
0

)
=

E2 (Aβ)

E [V ar (Aβ|G)]
,

or such that

E (A) =
E [Cov (A,Aβ|G)]

E [V ar (Aβ|G)]
E (Aβ)

for any A ∈ A, must be equal to a particular AR. We can decompose this Aβ as an underlying

AR plus some error, and show that the conditions above imply that the error must be zero.

3) For any R ∈ R, we can decompose R−R0 ∈ A in a similar way to A in the proof of point

1, and show that RE returns can be represented as

RR = R0 + ωRA
++ ωR ∈ R.

Finally, by choosing the AR associated to λ = ωR,

RR = R0 + ωRA
++ = R0 +AR,

and hence RR −R0 can be represented as a particular AR. �

Proposition 4:

1) Any UE excess return is equal to A+ times a real number, and A+ is a portfolio of

(A1,A2). Therefore UE excess returns do not take position in A2 if and only if A+ does not.

A similar argument applies to RE excess and A++. Finally, A+ and A++ are conditionally

proportional to each other, so one of them does not take position in A2 if and only if the other

does not either.

2) RE, PE or UE returns with (R0,A1,A2) are constructed as R0 plus A+ times a random

variable in I, which is actually a real number in the case of PE returns. Therefore, we can follow

the same argument as in point 1. �
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B Monthly Data

In the case of monthly data, we model E (A|G) as linear in the predictors, and V ar (A|G)

is constructed by means of the Dynamic Conditional Correlation (DCC) methodology of Engle

(2002). In this model, the relevant information for risk premia is given by the three predictors,

while the relevant information for variances is given by past returns. Below we report results for

two sets of excess returns, one with MMR, SMB, and HML, and another one that adds WML.

Table A1 shows some annualized descriptive statistics, the outcome of predictive regressions

with monthly data, and the corresponding weights of the representing portfolios. As it is well

known, the R2 in monthly predictive regressions of MMR is much lower than in annual regres-

sions. Here note also the big drop for WML. In any case, the Wald test still rejects predictability

for MMR, SMB, and jointly. The weights of the representing portfolios show averages of a sim-

ilar order to their standard deviations again. The average weights of A+ are similar to its

fixed-weight counterpart.

<Table A1: Description of monthly data>

The annualized mean of the safe asset return is 4.7877, not far from its counterpart with

annual data, but its annualized standard deviation is much lower, 0.8306. This is due to the

high persistence in interest rates. Regarding the behavior of the annualized conditional Sharpe

ratio of CE returns, it has a higher mean and standard deviation than the annual figures. In

particular, with MMR, SMB, and HML we can achieve an average ratio of 1.0817 with a standard

deviation of 0.4804. If add WML then the average increases to 1.6755 and the standard deviation

to 0.6021.

<Table A2: Unconditional performance measures>

Tables A2 and A3 show that the annual patterns still hold at the monthly frequency, albeit

they are less pronounced.

<Table A3: Residual performance measures>
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C Preferences Underlying UE and RE Returns

In the classic Markowitz set-up based on fixed-weight portfolios, any family of mean-variance

preferences can be chosen to explore the whole efficient mean-variance frontier. For instance,

the passive returns that maximize E (R)− (b/2)E
(
R2
)

for each real number b lie on the mean-

variance frontier, and each of those optimal returns also maximizes E (R) − (θ/2)V ar (R) for

the corresponding real number θ. This is not the case when we take into account that investors

design portfolio strategies given a nontrivial information set G.

The justification of mean-variance preferences under the expected utility paradigm was linked

to elliptical distributions by Chamberlain (1983) and Owen and Rabinovitch (1983) in the

Markowitz set-up. Mean-variance preferences can be represented by U
(
E (R|G) ,

√
V ar (R|G)

)

for some function U (·) that may depend on G and satisfies some standard properties: strictly

increasing in the first argument, strictly decreasing in the second argument, and strictly concave

in both. These preferences rationalize CE returns.

We can map mean-variance preferences, or equivalently the CE problem (5), into simple

criteria based on possibly random risk-return trade-offs. The following mean-variance criteria

rationalize CE returns (the corresponding proof is available upon request from the author):

1. The optimal return of problem

max
R∈R

E (R|G)−
θ

2
V ar (R|G) ,

given some strictly positive θ ∈ I is equal to (8) for E (R|G) ∈ I such that

E (R|G)−R0
E (A++|G)

=
1

θ
.

2. The optimal return of problem

max
R∈R

E (R|G)−
b

2
E
(
R2|G

)
,

given some strictly positive b ∈ I is equal to (8) for E (R|G) ∈ I such that

E (R|G)−R0
E (A+|G)

=
1

b
−R0.

Ferson and Siegel (2001) show that the optimal portfolio of an agent with quadratic utility

E
[
R− (bU/2)R

2|G
]

for some strictly positive bU ∈ R is actually an UE return. In our set-up,
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the result above confirms that the solution of problem

max
R∈R

E (R|G)−
bU
2
E
(
R2|G

)
(C1)

is equal to the solution of problem (11) for the target E (R) ∈ R corresponding to the uncondi-

tional mean of the return

R0 +

(
1

bU
−R0

)
A+.

Nevertheless, when conditioning information is taken into account, probably the most com-

mon mean-variance preferences in finance theory are given by

max
R∈R

E (R|G)−
θR
2
V ar (R|G) . (C2)

for some strictly positive θR ∈ R. Areas such as market microstructure and rational expectations

equilibria often rely on those preferences, see e.g. Brunnermeier (2001) for a survey of asset

pricing theory under asymmetric information or Easly and O’Hara (2004) as a more recent

reference. They are also used in continuous time asset allocation, see Basak and Chabakauri

(2010) and the references therein. These preferences are also used in Dybvig and Ross (1985)

to study the complexity of performance evaluation of an informed manager by an uninformed

agent. The criterion (C2) is often justified by CARA utility E [− exp (−θRR) |G] plus conditional

normality of R, but none of our results require CARA utility and/or normality.

Given the first point above, we can easily characterize the specific CE subset where the

choices of this criterion are located. The optimal return that solves problem (C2) is

R0 +
1

θR
A++

and the RE frontier is the mean-variance frontier where only these returns are located.

D The Tangency Portfolio for UE and RE Returns

Most of the paper studies the case where there is a safe asset. But here we describe the more

general context where such an asset may not be available, and study the connection between both

cases. Let us briefly review the general case where the space of active returns R may not include

a safe asset, as originally studied in Hansen and Richard (1987). We define R∗ (the return with

minimum conditional second moment E
(
R2|G

)
) and A+ as the counterparts of R0 (1−A

+)

and A+ respectively. Chamberlain and Rothschild (1983) developed a representation of the

Markowitz frontier based on an alternative pair of payoffs. In our set-up, we define R∗∗ (the
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return with minimum conditional variance V ar (R|G)) and A++ as the counterparts of R0 and

A++ respectively.

Using this notation, the CE returns can be represented as

RC = R∗ +
E (RC −R

∗|G)

E (A+|G)
A
+ = R∗∗ +

E (RC −R
∗∗|G)

E (A++|G)
A
++,

the UE returns can be represented as

RU = R∗ +
E (RU −R

∗)

E (A+)
A
+,

and we can also extend our representation of RE returns to this set-up,

RR = R∗∗ +
E (RR −R

∗∗)

E (A++)
A
++.

Moreover, we can extend the beta-pricing results that we studied to the case where a

safe asset may not be available. The beta-pricing statement is: A return Rβ ∈ R differ-

ent from the minimum variance one is CE if and only if, for every R ∈ R, E (R|G) − E =

[Cov (R,Rβ|G) /V ar (Rβ|G)] [E (Rβ|G)−E] for some E ∈ I. That random variable is in-

terpreted as the conditional mean of the corresponding zero-beta return. It is unique and

equal to the safe asset return if such an asset exists. Similarly, a return Rβ ∈ R differ-

ent from the minimum unconditional variance one is UE if and only if, for every R ∈ R,

E (R) − EU = [Cov (R,Rβ) /V ar (Rβ)] [E (Rβ)−EU ] for some EU ∈ R. This number is in-

terpreted as the unconditional mean of the corresponding zero-beta return and depends on the

chosen UE return factor. Conditional and unconditional beta-pricing were studied in Hansen and

Richard (1987), and hence our contribution in this respect is that there is similar beta-pricing

equation for RE returns if we use E [Cov (R,Rβ|G)] /E [V ar (Rβ|G)] as beta.

The CE frontier without a safe asset is a hyperbola on the [
√
V ar (R|G), E (R|G)] space

for a particular value of the conditioning variables in G. In general there is a conditional

mean E (R|G) such that the weight of the CE return on the conditionally safe payoff will be

identically 0 for every possible signal realization. This unique optimal return that is shared

by the CE frontier with and without a safe asset is called the tangency portfolio. The only

exception where a tangency does not exist is the case E (R∗∗|G) = R0 because then the cost of

the risky component of the CE frontier with a safe asset would be zero at every E (R|G).

The risky component of the CE returns with a safe asset is conditionally proportional to

the tangency return, which we characterize in the following result (the corresponding proof is
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available upon request from the author): If E (R∗∗|G) �= R0 then there is a tangency portfolio

between the CE frontier with and without a safe asset given by

R∗∗ +
V ar (R∗∗|G)

E (R∗∗|G)−R0
A
++ = R∗ +

[
E
(
R∗2|G

)
−R0E (R

∗|G)

E (R∗|G)−R0 (1−E (A+|G))

]

A
+, (D3)

which is not RE or UE in general.

The UE and the RE frontiers without a safe asset are hyperbolas on their respective spaces. In

contrast with the textbook treatment of mean-variance frontiers, in general there is no tangency

in any of them. Peñaranda and Sentana (2011a) already pointed out this fact for the UE frontier.

We can characterize the special cases where we can find a tangency on the RE or the UE frontiers

by means of the previous result. Let us assume E (R∗∗|G) �= R0:

1. The CE tangency portfolio is RE when

V ar (R∗∗|G)

E (R∗∗|G)−R0
∈ R.

In this case, we can span the RE frontier with a safe asset by means of fixed-weight

portfolios in the safe asset and the tangency portfolio.

2. The CE tangency portfolio is UE when

E
(
R∗2|G

)
−R0E (R

∗|G)

E (R∗|G)−R0 (1−E (A+|G))
∈ R.

Nevertheless, we cannot represent the UE frontier with a safe asset by means of fixed-

weight portfolios in the safe asset and the tangency portfolio unless additionally R0 ∈ R.

The results are easier to understand in the case of a single risky asset with return R and

excess return A = R − R0. In that case, R∗ = R∗∗ = R and A+ = A++ = 0, and hence the

CE, UE, and RE frontiers without a safe asset are equal and given by a single point, R itself.

However, the CE, UE, and RE frontiers with a safe asset are different. R will be also on the CE

frontier with a safe asset, being the tangency portfolio, like in the Markowitz framework; and A

will be a CE excess return. However, R is not necessarily on the UE or RE frontiers. Note the

connection between these results and Corollary 3.
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Panel A. Descritive statistics
Mean SD Uncon. SR Residual SD Residual SR

MMR 7.3886 18.8474 0.392 17.4545 0.4233
SMB 3.2191 13.3611 0.2409 13.0297 0.2471
HML 5.5225 13.3059 0.415 12.9528 0.4264
WML 9.2816 17.7686 0.5224 14.4335 0.6431

Panel B. Predictive regressions

Constant DP DS TS R2 Wald
MMR 7.3886 6.5826 0.2186 4.2071 0.1423 0.0129
SMB 3.2191 1.5015 2.1041 0.1537 0.049 0.032
HML 5.5225 1.8824 ‐0.8966 3.0908 0.0524 0.5772
WML 9.2816 2.5905 ‐10.5476 ‐1.0922 0.3402 0.0814

Joint
0

Panel C. Weights of the representing portfolios
Fixed

Mean SD Mean SD
MMR 0.0159 0.0138 0.0247 0.0235 0.0183

MMR 0.0139 0.012 0.0298 0.0265 0.0162
SMB 0.0062 0.0067 0.0115 0.0138 0.0074
HML 0.0227 0.01 0.0428 0.0255 0.0258

MMR 0.0131 0.0083 0.0436 0.0288 0.0158
SMB 0.0049 0.0052 0.0131 0.0128 0.0081
HML 0.0214 0.0084 0.0657 0.0321 0.0254
WML 0.0232 0.0123 0.0698 0.055 0.0231

A+ A++

Table 1: Description of annual data. 
 
Annual data  from  1954  to 2010. MMR,  SMB, HML  and WML  denote  the Market,  the
Small‐Minus‐Big,  the  High‐Minus‐Low,  and  the Winners‐Minus‐Losers  excess  returns
respectively. DP, DS, and TS denote the dividend price ratio, the default spread, and the
term  spread  respectively.  Panel  A  displays  the  mean,  standard  deviation,  residual
standard  deviation,  and  the  corresponding  Sharpe  ratios,  of  the  four  excess  returns.
Panel  B  shows  the  predictive  regressions,  where  the  three  predictors  have  been
standardized, with Wald tests of predictability (zero slopes). Panel C provides the mean
and  standard  deviation  of  the  representing  portfolios weights  for  three  subsets  of
returns,  jointly with  the  fixed‐weight  counterpart of A+. Risk  premia  are  linear  in  the
predictors and conditional variances are constant. 
. 



Uncon. SR Zero‐beta
MMR SMB HML WML

Panel A. MMR
UE 5 0.0477 7.3239 ‐5.5183
UE 6 0.4202 2.3829 3.4088
UE 7 0.4809 0.8332 4.0712
UE 8 0.4964 0.4035 4.3143
UE 9 0.5023 0.2351 4.4406
UE 10 0.5052 0.1532 4.518
UE 15 0.5092 0.0394 4.6763
UE 20 0.5099 0.0176 4.7302
PE 0.5105 0
RE 0.4881 0.6801
FE 0.3955 0
Panel B. MMR, SMB, and HML
UE 5 0.0363 7.4162 3.2678 5.4575 ‐26.9686
UE 6 0.448 5.1527 2.606 3.0082 2.437
UE 7 0.6136 2.79 1.5655 1.2681 3.6262
UE 8 0.6751 1.6504 1.0047 0.5665 4.0443
UE 9 0.7022 1.0866 0.7065 0.2678 4.2577
UE 10 0.7161 0.7756 0.5325 0.1253 4.3871
UE 15 0.7363 0.2714 0.2218 ‐0.039 4.6492
UE 20 0.7403 0.1512 0.1358 ‐0.0504 4.7375
PE 0.7436 0 0 0
RE 0.6781 0.3146 0.479 1.2952
FE 0.6326 0 0 0
Panel C. MMR, SMB, HML, and WML
UE 5 0.0308 7.4253 3.2614 5.4885 9.2582 235.0737
UE 6 0.4455 7.0564 3.4314 4.4404 7.9204 ‐0.7577
UE 7 0.7475 5.6964 3.0013 3.0445 5.7824 2.1693
UE 8 0.935 4.3287 2.4338 1.9559 3.9892 3.1289
UE 9 1.0472 3.2874 1.9506 1.2466 2.7592 3.6057
UE 10 1.1159 2.5506 1.5837 0.803 1.955 3.8909
UE 15 1.2348 1.017 0.7343 0.0799 0.5075 4.4591
UE 20 1.2617 0.5791 0.4555 ‐0.0417 0.1903 4.6479
PE 1.2847 0 0 0 0
RE 1.0097 1.0062 1.0536 1.9704 4.621
FE 0.9958 0 0 0 0

Uncon. Alpha

Table 2: Unconditional performance measures. 
 
Annual  data  from  1954  to  2010. MMR,  SMB, HML  and WML  denote  the Market,  the
Small‐Minus‐Big,  the  High‐Minus‐Low,  and  the  Winners‐Minus‐Losers  excess  returns
respectively..  Panel  A,  B,  and  C  represent  three  sets  of  available  returns. We  study
unconditionally,  performance,  residually,  and  fixed‐weight  efficient  returns, which  we
label as UE, PE, RE, and FE respectively. We display several mean targets, from 5 to 20%,
for UE returns, and the  last column shows their zero‐beta returns. Unconditional alphas
are computed for each one of the primitive excess returns. Risk premia are  linear  in the
predictors and conditional variances are constant. 
. 



Residual SR
MMR SMB HML WML

Panel A. MMR
UE 5 0.0604 7.26
UE 6 0.4746 2.0388
UE 7 0.5342 0.7218
UE 8 0.5503 0.3538
UE 9 0.557 0.2036
UE 10 0.5604 0.1274
UE 15 0.5659 0.0112
UE 20 0.5673 ‐0.0157
PE 0.5693 ‐0.0502
RE 0.5902 0
FE 0.4271 0
Panel B. MMR, SMB, and HML
UE 5 0.0517 7.4001 3.268 5.4278
UE 6 0.5699 4.6171 2.2108 2.1934
UE 7 0.7254 2.6709 1.2081 0.5704
UE 8 0.7761 1.8992 0.7673 0.0316
UE 9 0.7975 1.5433 0.5492 ‐0.1812
UE 10 0.8085 1.3518 0.4253 ‐0.2796
UE 15 0.8247 1.043 0.2062 ‐0.3914
UE 20 0.8282 0.9675 0.1447 ‐0.3997
PE 0.832 0.8649 0.0437 ‐0.3685
RE 0.8895 0 0 0
FE 0.7011 0.6253 ‐0.0908 ‐0.3648
Panel C. MMR, SMB, HML, and WML
UE 5 0.0532 7.4415 3.2821 5.4731 9.2455
UE 6 0.7204 6.3963 3.1123 3.5144 6.3864
UE 7 1.0632 4.4456 2.1351 1.6632 3.2468
UE 8 1.2084 3.2359 1.4359 0.7695 1.6093
UE 9 1.2744 2.5705 1.0189 0.3666 0.8166
UE 10 1.3081 2.1859 0.7629 0.1743 0.4079
UE 15 1.3537 1.542 0.2894 ‐0.0245 ‐0.1266
UE 20 1.3608 1.3871 0.1569 ‐0.0214 ‐0.1932
PE 1.3611 1.1965 ‐0.0493 0.1001 ‐0.1318
RE 1.4901 0 0 0 0
FE 1.1607 ‐0.3591 ‐1.5127 ‐0.8112 1.6671

Residual Alpha

Table 3: Residual performance measures. 
 
Annual data  from 1954 to 2010. MMR, SMB, HML and WML denote the Market, the Small‐
Minus‐Big, the High‐Minus‐Low, and the Winners‐Minus‐Losers  excess returns respectively..
Panel  A  and  B  represent  two  sets  of  available  returns.  We  study  unconditionally,
performance, residually, and fixed‐weight efficient returns, which we label as UE, PE, RE, and
FE  respectively. We display  several mean  targets,  from 5  to 20%,  for UE  returns. Residual
alphas are computed for each one of the primitive excess returns. Risk premia are  linear  in
the predictors and conditional variances are constant. 
. 



Panel A. Descritive statistics
Mean SD Uncon. SR Residual SD Residual SR

MMR 6.5884 15.2762 0.4313 15.1166 0.4358
SMB 2.6207 10.3458 0.2533 10.2844 0.2548
HML 4.7411 9.6571 0.4909 9.6409 0.4918
WML 8.9353 14.1838 0.63 14.0644 0.6353

Panel B. Predictive regressions

Constant DP DS TS R2 Wald
MMR 0.549 0.5523 ‐0.1438 0.5663 0.0208 0.0013
SMB 0.2184 0.1277 0.1732 0.2035 0.0118 0.0372
HML 0.3951 0.0654 ‐0.1753 0.0957 0.0033 0.7833
WML 0.7446 0.1043 ‐0.5338 ‐0.0737 0.0168 0.4431

Joint
0.0021

Panel C. Weights of the representing portfolios
Fixed

Mean SD Mean SD
MMR 0.037 0.0373 0.0443 0.0468 0.0345
SMB 0.0267 0.0407 0.032 0.0502 0.0233
HML 0.088 0.0489 0.1004 0.0593 0.0689

MMR 0.034 0.0357 0.0462 0.0496 0.0419
SMB 0.0333 0.0448 0.0427 0.0601 0.0242
HML 0.0993 0.052 0.131 0.0777 0.0841
WML 0.0922 0.0626 0.123 0.0927 0.0559

A+ A++

Table A1: Description of monthly data. 
 
Monthly data from 1954 to 2010. MMR, SMB, HML and WML denote the Market, the Small‐
Minus‐Big, the High‐Minus‐Low, and the Winners‐Minus‐Losers  excess returns respectively.
DP, DS,  and  TS denote  the dividend price  ratio,  the default  spread,  and  the  term  spread
respectively. Panel A  displays  the  annualized mean,  standard  deviation,  residual  standard
deviation, and  the corresponding Sharpe  ratios, of  the  four excess  returns. Panel B  shows
the predictive  regressions, where  the  three predictors have been standardized, with Wald
tests of predictability (zero slopes). Panel C provides the mean and standard deviation of the
representing  portfolios weights  for  two  subsets  of  returns,  jointly  with  the  fixed‐weight
counterpart of A+. Risk premia are linear in the predictors and conditional variances follow a
DCC model. 
 
. 



Uncon. SR Zero‐beta
MMR SMB HML WML

Panel A. MMR, SMB, and HML
UE 5 0.6695 4.0692 1.8597 2.8487 0.463
UE 6 1.108 0.2445 0.2128 0.1378 4.1321
UE 7 1.13 0.046 0.0842 0.0114 4.4441
UE 8 1.1351 0.0075 0.0488 ‐0.0097 4.5602
UE 9 1.1371 ‐0.0041 0.0334 ‐0.0145 4.6209
UE 10 1.138 ‐0.0082 0.0251 ‐0.0153 4.6581
UE 15 1.1393 ‐0.0094 0.0108 ‐0.0115 4.7347
UE 20 1.1396 ‐0.0075 0.0068 ‐0.0086 4.7608
PE 1.1398 0 0 0
RE 1.133 ‐0.0201 0.0054 0.3431
FE 0.7952 0.163 0.0648 0.1173

Panel B. MMR, SMB, HML, and WML
UE 5 0.6107 5.6443 2.4457 3.9955 7.8623 ‐8.4612
UE 6 1.5501 1.0242 0.6336 0.6624 1.6231 3.3762
UE 7 1.6528 0.3187 0.2677 0.1828 0.578 4.0803
UE 8 1.679 0.1408 0.1562 0.0683 0.2946 4.334
UE 9 1.6892 0.074 0.1067 0.0277 0.1803 4.4648
UE 10 1.6942 0.0427 0.0798 0.01 0.123 4.5445
UE 15 1.7012 0.0035 0.0337 ‐0.0081 0.0382 4.7069
UE 20 1.7025 ‐0.0019 0.021 ‐0.0085 0.0199 4.762
PE 1.7037 0 0 0 0
RE 1.6853 0.1198 0.2578 0.322 0.5388
FE 1.1209 0.5909 0.235 0.4252 0.8013

Uncon. Alpha

Table A2: Unconditional performance measures.
 
Monthly data from 1954 to 2010, the numbers  in the table are annualized. MMR, SMB,
HML  and WML  denote  the Market,  the  Small‐Minus‐Big,  the High‐Minus‐Low,  and  the
Winners‐Minus‐Losers   excess returns respectively. Panel A and B represent two sets of
available  returns. We  study  unconditionally,  performance,  residually,  and  fixed‐weight
efficient  returns, which we  label as UE, PE, RE, and FE  respectively. We display  several
mean targets, from 5 to 20%, for UE returns, and the  last column shows their zero‐beta
returns. Unconditional alphas are computed for each one of the primitive excess returns.
Risk premia are linear in the predictors and conditional variances follow a DCC model. 
. 



Residual SR
MMR SMB HML WML

Panel A. MMR, SMB, and HML
UE 5 0.7158 3.8983 1.779 2.6463
UE 6 1.1468 0.3038 0.2124 ‐0.1185
UE 7 1.1677 0.135 0.0994 ‐0.2453
UE 8 1.1726 0.1037 0.0687 ‐0.268
UE 9 1.1745 0.0949 0.0554 ‐0.2741
UE 10 1.1754 0.0921 0.0482 ‐0.2757
UE 15 1.1768 0.0929 0.036 ‐0.2742
UE 20 1.1771 0.0951 0.0325 ‐0.2721
PE 1.1774 0.1029 0.0268 ‐0.2654
RE 1.1836 0 0 0
FE 0.8035 0.3191 ‐0.225 ‐0.0836

Panel B. MMR, SMB, HML, and WML
UE 5 0.6963 5.4902 2.3554 3.8696 7.73
UE 6 1.6526 0.7488 0.3317 0.3118 1.0641
UE 7 1.7354 0.1855 0.0125 ‐0.0925 0.1409
UE 8 1.7541 0.0613 ‐0.0762 ‐0.1774 ‐0.0932
UE 9 1.7606 0.0202 ‐0.1134 ‐0.2036 ‐0.1837
UE 10 1.7634 0.0037 ‐0.1329 ‐0.2132 ‐0.2276
UE 15 1.7664 ‐0.009 ‐0.1641 ‐0.2167 ‐0.2884
UE 20 1.7665 ‐0.0066 ‐0.172 ‐0.2128 ‐0.2998
PE 1.7653 0.0091 ‐0.1835 ‐0.1968 ‐0.3082
RE 1.7804 0 0 0 0
FE 1.1329 ‐0.2926 ‐0.1487 0.1856 0.0046

Residual Alpha

Table A3: Residual performance measures.
 
Monthly data from 1954 to 2010, the numbers in the table are annualized. MMR, SMB, HML
and WML denote  the Market, the Small‐Minus‐Big, the High‐Minus‐Low, and the Winners‐
Minus‐Losers    excess  returns  respectively.  Panel  A  and  B  represent  two sets  of  available
returns.  We  study  unconditionally,  performance,  residually,  and  fixed‐weight  efficient
returns, which we label as UE, PE, RE, and FE respectively. We display several mean targets,
from 5 to 20%, for UE returns. Residual alphas are computed for each one of the primitive
excess  returns.  Risk  premia  are  linear  in  the  predictors  and  conditional  variances  are
constant. 
. 
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Figure 1: Weights of the representing portfolios.

The first column shows the weights of the uncentred representing portfolio A+, and the weights of A++ can be found in the second column. The first row displays the weights when only MMR is available, the second row adds SMB and HML, and the third row also includes WML. The weights on MMR, SMB, HML, and WML are blue, green, red, and cyan respectively.
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Figure 2: Safe asset return and conditional Sharpe ratio of CE returns.

The safe asset return is shown as an annual % in the first plot. The second plot shows he conditional Sharpe ratio for three sets of excess returns: MMR (blue), adding SMB and HML (green), and also adding WML (red).
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Figure 3: UE and PE returns.

The first column shows the mean-variance frontiers in space [(Var(A))1/2,E(A)], and their representation in space [(Var(R))1/2,E(R)] can be found in the second column. Both means and standard deviations are measured in annual %. The first row displays the frontiers when only MMR is available, the second row adds SMB and HML, and the third row also includes WML. UE and PE returns are blue and green respectively. For comparison, efficient fixed-weight returns are also shown in red.
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Figure 4: UE, PE and RE returns.

The first column shows the mean-variance frontiers in space [(E[Var(R|G)])1/2,E(R)], and their representation in space [(Var(R))1/2,E(R)] can be found in the second column. Both means and standard deviations are measured in annual %. The first row displays the frontiers when only MMR is available, the second row adds SMB and HML, and the third row also includes WML. UE, PE, and RE returns are blue, green, and cyan respectively. For comparison, efficient fixed-weight returns are also shown in red.
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Figure 5: Scaling for efficient returns.

The first plot shows the scaling of A+ for different types of efficiency when the target return is 5%, while the second plot displays the scaling for a target of 10%. In this figure, A+ is constructed with MMR, SMB, and HML. UE, PE, and RE returns are blue, green, and cyan respectively.
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Figure 6: Summary of efficient excess and gross returns.




