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Abstract

Equations are derived governing the behaviour of small disturbances superimposed on an underlying equilibrium
con"guration of a thermoelastic body. The body may be materially inhomogeneous, non-homogeneously prestrained
and be subjected to a non-uniform temperature resulting in non-constant-coe$cient partial di!erential equations. These
equations are generalized to the case where thermomechanical constraints are present, both deformation-temperature
and deformation-entropy constraints. It is known that the "rst of these types of constraints leads to material instabilities
and the second does not. By examining nearly constrained materials, and taking an appropriate limit, we "nd that the
instabilities associated with deformation-temperature constraints arise because the heat capacity at constant deformation
becomes negative whilst deformation-entropy constraints are stable because the same heat capacity remains positive,
though tending to zero in the limit of the constraint holding exactly. The ten important moduli of thermoelasticity are
examined in the limit of each constraint holding exactly. It is found, for example, that for each type of constraint the heat
capacity at constant stress remains positive and bounded away from zero. Results on wave propagation are also
presented. ( 2000 Published by Elsevier Science Ltd.
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1. Introduction

Truesdell and Noll [1] placed the theory of pure-
ly mechanical constraints on a "rm theoretical
basis by postulating that the stress is constitutively
determined only to within a reaction stress that
does no work in any motion satisfying the con-
straint. For example, there is an arbitrary spherical
pressure present as a component of the stress in any
incompressible material. For materials in which
temperature variation and heat conduction play
a role, on the other hand, there is as yet no "rmly
established theory of thermomechanical con-

straints. Green et al. [2] regard a thermomechani-
cal constraint as a restriction on allowable values of
deformation, temperature and temperature gradi-
ent and postulate that stress, entropy and heat #ux
are constitutively determined only to within a reac-
tion stress, entropy and heat #ux which collectively
give rise to zero entropy production in any process
satisfying the thermomechanical constraint, see
also [3]. We shall assume that the temperature
gradient is unconstrained and refer to a constraint
connecting the deformation and temperature as
a deformation-temperature constraint.

A di!erent theory for deformation-temperature
constraints was developed by Casey and
Krishanaswamy [4], generalizing a purely mechan-
ical theory of Casey [5,6]. Expressions for stress
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and entropy in the constrained material are derived
by considering a related family of unconstrained
thermomechanical materials and extending the do-
main of de"nition of the Helmholtz free energy in
a di!erentiable manner away from the constraint
manifold.

Manacorda [7] and Beevers [8] used the ap-
proach of [2] to demonstrate material instabilities
for wave propagation in an isotropic thermoelastic
material constrained to be incompressible at uni-
form temperature. Chadwick and Scott [9] further
demonstrated material instabilities for a fully an-
isotropic thermoelastic material su!ering an arbit-
rary deformation-temperature constraint. By
considering a nearly constrained material they were
able to show that the lack of stability may be
associated with the heat capacity at constant defor-
mation becoming negative as the limit in which the
constraint holds exactly is approached. This prop-
erty is explored further in the present paper. Nega-
tive heat capacity is well known to imply a lack of
stability, see, for example, [10, pp. 193, 201; 11].

In order to overcome this lack of stability a new
type of constraint has been introduced [12] in
which the deformation has been linked with the
entropy rather than the temperature. With this type
of deformation-entropy constraint it can be shown
that stability is maintained. These ideas have been
developed further [13], partly in the context of
wave propagation. By considering a nearly con-
strained material it was shown in [13] that as the
limit of the deformation-entropy constraint is ap-
proached the heat capacity at constant deforma-
tion tends to zero through positive values.
Although a zero heat capacity is anomalous, stabil-
ity is maintained because the heat capacity never
becomes negative. This behaviour is discussed fur-
ther below.

Despite the anomalous behaviour of the heat
capacity at constant deformation for either type of
constraint, we show in this paper that, for either
type of constraint, the heat capacity at constant
stress remains positive and bounded away from
zero. It is this heat capacity which is more com-
monly measured.

Leslie and Scott [14,15] have applied the ideas of
[9,12,13] to the theory of longitudinal wave propa-
gation in an isotropic thermoelastic material that is

either incompressible [14], or nearly incompress-
ible [15], at either uniform temperature or uniform
entropy. These ideas are developed further here,
largely outside the context of wave propagation, for
arbitrary material anisotropy and thermomechani-
cal constraint.

In Section 2 we outline the basic concepts of
non-linear thermoelasticity which will be needed.
In Section 3 we derive the "eld equations of uncon-
strained thermoelasticity. The equations are lin-
earized about an equilibrium state which may be
non-homogeneously deformed and have non-uni-
form temperature. After an initial discussion we
assume Fourier's law of heat conduction for simpli-
city. The displacement-temperature form of the
"eld equations is given, partly because of its later
utility in considering deformation-temperature
constraints and near constraints, and the displace-
ment-entropy form is also given for its utility with
deformation-entropy constraints and near con-
straints. The "eld equations were derived in refer-
ential form for convenience but are transformed to
spatial form as this is the most frequently used. In
all cases the linearized "eld equations with constant
coe$cients (i.e. for a homogeneous material, homo-
geneously deformed, and at uniform temperature)
are deduced because this is an important special
case. Section 3 is concluded with expressions for the
internal energy and Helmholtz free energy as far as
terms quadratic in the small quantities.

The "eld equations of constrained thermoelastic-
ity are derived in Section 4 for an inhomogeneous
material, non-homogeneously deformed at non-uni-
form temperature and then specialized to the case of
constant coe$cients. These equations reduce to
those of [16] in the purely mechanical situation.

In Section 5 a deformation-entropy constraint is
modelled by adding to the internal energy of the
unconstrained material a large multiple of the
square of the linearized deformation-entropy con-
straint, see (5.1) below. This large multiple, s( @,
corresponds to an elastic modulus which becomes
in"nite in the limit s( @PR of the constraint holding
exactly. (For example, in the case of near incom-
pressibility at uniform entropy, s( @ would be the
bulk modulus). Expressions for all ten thermoelas-
tic moduli are evaluated in the deformation-en-
tropy case. Whilst the heat capacity at constant
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deformation tends to zero that at constant stress
remains "nite and bounded away from zero. The
limit s( @PR of the constraint is explored for all ten
thermoelastic moduli. The limit of the heat capacity
at constant deformation tending to zero, without
the constraint holding, is shown to be equivalent to
the constraint and the consequences are explored.
Sinusoidal wave propagation is brie#y considered
in this limit and results unifying those of [13] are
obtained.

In Section 6 the deformation-temperature con-
straint is modelled in a manner similar to that of
Section 5. Results broadly comparable with those
of Section 5 are obtained.

2. The basic concepts of thermoelasticity

We consider a body B consisting of thermoelas-
tic solid material occupying a reference con"gura-
tion B

3
at time t"0 and a spatial con"guration

B
t

at time t. A material particle has Cartesian
coordinates X in B

3
and x in B

t
. The functions

x
i
(X

A
, t), i,A"1,2,3, describe the motion of B and

the quantities

F
iA
"Lx

i
/LX

A

are the components of the deformation gradient
tensor F with determinant J"detF. The densities
o
3

in B
3

and o in B
t
are related by

o
3
"oJ

expressing the conservation of mass. The balance of
momentum and that of energy are expressed in
B
t
by equations

p
ij,j

#ob
i
"oxK

i
, J~1¹SQ #q

i,i
"or, (2.1)

respectively, in which p
ij

are components of the
Cauchy stress r, b

i
are components of the body

force per unit mass b, q
i
are components of the heat

#ux q, and r is the heat supply per unit mass. ¹ is
the absolute temperature and S is the entropy per
unit volume of B

3
. A superposed dot denotes the

material time derivative, so that xK is the particle
acceleration, and ( )

,i
denotes current space deriva-

tive L( )/Lx
i

with repeated su$xes being summed
over from 1 to 3.

The components of the "rst Piola}Kirchho!
stress P and the referential heat #ux Q are given by

P
iA
"Jp

ij
F~1
Aj

, Q
A
"JF~1

Aj
q
j

(2.2)

in terms of which balance equations (2.1) become

P
iA,A

#o
3
b
i
"o

3
xK
i
, ¹SQ #Q

A,A
"o

3
r (2.3)

where ( )
,A

denotes the referential space derivative
L( )/LX

A
.

The internal energy per unit volume of B
3

is
denoted by;(F,S,X) and depends on the deforma-
tion gradient F, the entropy S and the material
particle X. The explicit dependence on X corres-
ponds to material inhomogeneity and is usually
suppressed. The internal energy is a potential func-
tion for stress and temperature:

P"

L;
LF

, ¹"

L;
LS

. (2.4)

The Helmholtz free energy A(F,¹, X), per unit vol-
ume of B

3
, is de"ned by the Legendre transforma-

tion

A(F,¹) :";!S¹, (2.5)

again suppressing explicit dependence on X, and is
also a potential function:

P"

LA

LF
, S"!

LA

L¹
. (2.6)

The isothermal elasticity tensor is de"ned by

c8
iAjB

"A
LP

iA
LF

jB
B
T

"

L2A(F,¹)

LF
iA

LF
jB

(2.7)

and the isentropic elasticity tensor is de"ned by

c(
iAjB

"A
LP

iA
LF

jB
B
S

"

L2;(F,S)

LF
iA

LF
jB

. (2.8)

The symmetry properties

c8
jBiA

"c8
iAjB

, c(
jBiA

"c(
iAjB

(2.9)

follow from (2.7) and (2.8). The temperature coe$c-
ient of stress is

bI
iA
"!A

LP
iA

L¹ BF

"!

L2A
LF

iA
L¹

"A
LS

LF
iA
B
T

(2.10)
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and the entropy coe$cient of stress is

bK
iA
"!A

LP
iA

LS B F

"!

L2;
LF

iA
LS

"!A
L¹
LF

iA
B
S

.

(2.11)

Two further thermodynamic potential functions,
per unit volume of B

3
, may be de"ned by means of

Legendre transformations. They are the Gibb's
function

G(P,¹) :"A!P )F, (2.12)

in which the scalar product of two tensors is given
by

P )F"trPFT"P
iA

F
iA

,

and the enthalpy

H(P,S) :";!P )F (2.13)

which act as potential functions according to

F"!

LG

LP
, S"!

LG

L¹
(2.14)

and

F"!

LH

LP
, ¹"

LH

LS
. (2.15)

The (temperature) coe$cient of thermal expan-
sion, at constant stress, is

a8
iA
"A

LF
iA

L¹ BP

"!

L2G
LP

iA
L¹

"A
LS

LP
iA
B
T

(2.16)

and the entropy coe$cient of thermal expansion,
again at constant stress, is

a(
iA
"A

LF
iA

LS BP

"!

L2H
LP

iA
LS

"!A
L¹

LP
iA
B
S

. (2.17)

From (2.10), (2.16), (2.7) and (2.9) we have

bI
iA
"A

LS

LP
jB
B
T
A
LP

jB
LF

iA
B
T

"c8
iAjB

a8
jB

(2.18)

and similarly

bK
iA
"c(

iAjB
a(
jB

. (2.19)

The isothermal compliance is

s8
iAjB

"A
LF

iA
LP

jB
B
T

"!

L2G

LP
iA

LP
jB

(2.20)

and the isentropic compliance is

s(
iAjB

"A
LF

iA
LP

jB
B
S

"!

L2H
LP

iA
LP

jB

. (2.21)

Since

A
LF

iA
LP

jB
B
T
A
LP

jB
LF

kC
B
T

"

LF
iA

LF
kC

"d
ik
d
AC

(2.22)

we may conclude from (2.7) and (2.20) that

s8
iAjB

c8
jBkC

"d
ik
d
AC

"c8
iAjB

s8
jBkC

(2.23)

and similarly from (2.8) and (2.21) that

s(
iAjB

c(
jBkC

"d
ik
d
AC

"c(
iAjB

s(
jBkC

.

This equation and (2.23) may be written in direct
notation as

s8 c8 "c8 s8"I"s( c("c( s( (2.24)

in which the unit tensor I has components
I
iAjB

"d
ij
d
AB

and the compliance s8 has compo-
nents s8

iAjB
, etc. Thus tensors s8 and c8 are mutually

inverse, as are s( and c( , so that it follows from (2.18)
and (2.19) that

a8
iA
"s8

iAjB
bI
jB

, a(
iA
"s(

iAjB
bK
jB

. (2.25)

In terms of direct notation these relations become

bI"c8 a8 , bK "c( a( and a8 "s8 bI , a("s( bK .

The heat capacity at constant deformation per
unit volume of B

3
is, from (2.6)

2
,

cF"¹A
LS

L¹BF

"!¹

L2A
L¹2

(2.26)

(so that cF/o
3

is the speci"c heat) and the heat
capacity at constant stress per unit volume of B

3
is,

from (2.14)
2
,

cP"¹A
LS

L¹BP

"!¹

L2G
L¹2

. (2.27)

From (2.10), (2.11) and (2.26)

bI
iA
"!A

LP
iA

L¹ BF

"!A
LP

iA
LS BFA

LS

L¹BF

"bK
iA

cF

¹
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so that

bK
iA
"

¹

cF

bI
iA

, a(
iA
"

¹

cP

a8
iA

, (2.28)

the second equation following similarly from (2.16),
(2.17) and (2.27). Eqs. (2.28) furnish connections
between the temperature and entropy coe$cients
of stress and between the temperature and entropy
expansion coe$cients, involving the speci"c heats
cF and cP , respectively. These quantities are all
second derivatives of ;(F,S), A(F,¹) or G(P,¹).

Other relationships between the second deriva-
tives of thermodynamic potentials may be derived
as follows. From (2.8) and (2.11) we have

c(
iAjB

"A
LP

iA
LF

jB
B
T

#A
LP

iA
L¹ BFA

L¹
LF

jB
B
S

"A
LP

iA
LF

jB
B
T

#A
LP

iA
L¹ BFA

LP
jB

LS BF

,

so that from (2.10), (2.11) and (2.28)
1

c(
iAjB

"c8
iAjB

#

¹

cF

bI
iA

bI
jB

. (2.29)

Heat capacities at constant stress and deformation
are related, from (2.27) and (2.6)

2
, by

cP"!¹

L2A
L¹2

!¹

L2A
LF

iA
L¹A

LF
iA

L¹ BP

,

so that

cP"cF#¹a8 )bI "cF#¹c8
iAjB

a8
iA

a8
jB

, (2.30)

in which (2.26), (2.10), (2.16) and (2.18) have also
been used. Using Lemma A.1 of the Appendix we
can invert (2.29) to obtain

s(
iAjB

"s8
iAjB

!

¹

cP

a8
iA

a8
jB

, (2.31)

where (2.25) and (2.30) have also been used.
It is usual to assume in thermoelasticity, on

grounds of stability, that the isothermal elasticity
tensor c8 is positive de"nite and that the heat capa-
city at constant deformation is positive:

cF'0. (2.32)

It follows that s8 and c( , and hence s( (despite the
negative sign in (2.31)), are also positive de"nite. It
also follows from (2.30) that

cP'cF . (2.33)

An alternative expression for cF may be derived
using (2.26) and (2.4)

2
:

cF"¹NA
L¹
LS BF

"¹N
L2;
LS2

. (2.34)

Also, from (2.19) and (2.28) we may deduce that

cP

cF

bI
iA
"c(

iAjB
a8
jB

(2.35)

which may be compared with (2.18).

3. The 5eld equations of unconstrained
thermoelasticity

We introduce an equilibrium con"guration
B
%
intermediate between B

3
and B

t
. Field quantities

de"ned in B
%

are distinguished by a subscript, or
superscript as convenient, e and are independent of
t but may depend on X. In B

%
the position vector of

the material point X in B
3

is denoted by x%(X) so
that, in component form, the particle displacement
u(X, t) is de"ned by

x
i
"x%

i
(X)#u

i
(X, t).

We assume that the deformation B
%
PB

t
is in"ni-

tesimal in the sense that

e"(u
i,A

u
i,A

)1@2.

is a small quantity. The incremental deformation
gradient, "rst Piola}Kirchho! stress, temperature
and entropy are de"ned respectively by

u
i,A

"F
iA
!F%

iA
,

p
iA
"P

iA
!P%

iA
,

h"¹!¹
%
,

/"S!S
%
, (3.1)

and depend on X and t. Each is assumed to be O(e).
Because the pre-deformation B

3
PB

%
need not be

homogeneous the equilibrium deformation gradi-
ent F%

iA
"Lx%

i
/LX

A
may depend on X. In addition,
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the Helmholtz free energy A may depend explicitly
on X, i.e. the material may be inhomogeneous, and
so the equilibrium values P%

iA
and S

%
also may

depend on X. The equilibrium temperature
¹

%
would depend on X if, for example, di!erent

parts of the boundary of B
%
had di!erent prescribed

temperatures.

3.1. The displacement-temperature form of the xeld
equations

We now derive the "eld equations for u(X, t) and
h(X, t) on the assumption that these are both O(e) by
linearizing balance equations (2.3). By linearizing
(2.6)

1
and using de"nitions (2.7), (2.10) and (3.1) we

"nd that

P
iA
"P%

iA
#c8 %

iAkC
u
k,C

!bI %
iA

h#O(e2).

The O(1) part of (2.3)
1

is

P%
iA,A

#o
3
b
i
"0 (3.2)

and the O(e) part is

Mc8 %
iAkC

u
k,C

N
,A
!MbI %

iA
hN

,A
"o

3
uK
i

(3.3)

under the assumption that the body force b(X) is
not a!ected by the deformation B

%
PB

t
. Eqs. (3.2)

are the equilibrium equations in B
%

and Eqs. (3.3)
are equations of motion in B

t
representing balance

of momentum.
It remains to linearize (2.3)

2
. From (2.6)

2
to-

gether with (2.10) and (2.26) we have

SQ "bI
iA

FQ
iA
#

c
F
¹

¹Q (3.4)

so that ¹SQ linearizes using (3.1) to give

¹
%
/Q "¹

%
bI %
iA

u5
i,A

#c%FhQ . (3.5)

The heat #ux Q is assumed to take the constitutive
form Q"Q(F,¹, G,X) where the referential tem-
perature gradient G is de"ned in component form
by G

A
"¹

,A
. Then linearizing gives

Q
A
"Q%

A
#A

LQ
A

LF
jB
B
%

u
j,B

#A
LQ

A
L¹ B

%

h

#A
LQ

A
LG

B
B
%

h
,B
#O(e2) (3.6)

in which Q%
A
"Q

A
(F%,¹

%
, G%,X). It is assumed that

the heat #ux vanishes if the temperature gradient
does, i.e.

Q(F,¹, 0,X)"0, ¹ is any constant. (3.7)

If in B
%

G"0 so that ¹"¹
%
, a constant, then it

follows that

A
LQ

A
LF

jB
B
%

"0, A
LQ

A
L¹ B

%

"0 (3.8)

leading to the linear Fourier law of heat conduction

Q
A
"!K%

AB
h
,B

(3.9)

in which

K%
AB

"!A
LQ

A
LG

B
B
%

is the referential thermal conductivity tensor, see
Chadwick [17]. But in B

%
we may have ¹

%
"¹

%
(X)

so that G%O0 and the heat #ux Q% is non-vanish-
ing, unlike that in (3.7). Then (3.8) may fail to hold
leading to a linearization of (3.6) more complicated
than (3.9). To simplify matters we shall make the
common assumption that heat conduction is gov-
erned by Fourier's law (3.9) for all values of temper-
ature:

Q
A
"!K%

AB
¹

,B
(3.10)

in which the referential thermal conductivity tensor
K%

AB
evaluated in B

%
may depend on X because of

material inhomogeneities or a non-homogeneous
predeformation.

Using (3.10) residual energy equation (2.3)
2

may
be written

¹
%
/Q !MK%

AB
¹

,B
N
,A
"o

3
r. (3.11)

The O(1) part of (3.11) is

!MK%
AB

¹%
,B

N
,A
"o

3
r (3.12)

and the O(e) part is

¹
%
/Q !MK%

AB
h
,B

N
,A
"0

which on using (3.5) becomes

MK%
AB

h
,B

N
,A
!¹

%
bI %
iA

u5
i,A

"cFhQ (3.13)

under the assumption that the heat supply r(X) is
not a!ected by the deformation B

%
PB

t
. The four
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equations (3.2) and (3.12) govern the equilibrium
con"guration B

%
and the four equations (3.3) and

(3.13) furnish four linear partial di!erential equa-
tions for the four small disturbances u(X, t) and
h(X, t) in which the coe$cients may depend upon
X but not upon t.

For a homogeneous body, homogeneously de-
formed in the absence of body force and heat sup-
ply, and with ¹

%
constant, Eqs. (3.2) and (3.12) are

satis"ed trivially and the "eld equations (3.3) and
(3.13) reduce to

c8
iAkC

u
k,AC

!bI
iA

h
,A
"o

3
uK
i
,

K
AB

h
,AB

!¹
%
bI
iA

u5
i,A

"cFhQ (3.14)

in which coe$cients are constants, independent of
X, understood to be evaluated in B

%
so that super-

scripts e are omitted from now on.

3.2. The displacement-entropy form of the xeld
equations

We now derive "eld equations for u(X, t) and
/(X, t) in the same way as the u,h equations were
derived in the previous subsection. Since we wish to
work in terms of entropy, rather than temperature,
we utilise the internal energy ;(F,S), rather than
the Helmholtz free energy A(F,¹). By linearizing
(2.4)

1
and using (2.8), (2.11) and (3.1) we "nd that

P
iA
"P%

iA
#c(

iAkC
u
k,C

!bK
iA

/#O(e2)

so that the O(1) part of (2.3)
1

is given by (3.2) as
before whilst the O(e) part, formerly (3.3), is re-
placed by

Mc(
iAkC

u
k,C

N
,A
!MbK

iA
/N

,A
"o

3
uK
i

(3.15)

where the coe$cients c( and bK are understood to be
evaluated in B

%
so that superscripts e may be omit-

ted.
With the de"nitions (2.11), (2.34) and (3.1), (2.4)

2
may be linearized to give

h"!bK
iC

u
i,C

#

¹
%

cF

/, (3.16)

a useful connection between incremental temper-
ature and entropy. By using (2.28)

1
it can be seen

that (3.16) and (3.5) are equivalent.

Keeping Fourier's law in form (3.10) we "nd that
the O(1) part of (2.3)

2
is given by (3.12) as before.

Using (3.16) we "nd that O(e) part, formerly (3.13), is
replaced by

GKABC
¹

%
cF

/!bK
iC

u
i,CD

,B
H
,A

"¹
%
/Q . (3.17)

Thus (3.15) and (3.17) furnish four linear partial
di!erential equations for the four small distur-
bances u(X, t) and /(X, t).

Using connections (2.29), (2.28)
1

and (3.16) it can
be shown that di!erent forms (3.3) and (3.15) of the
"eld equations expressing the balance of mo-
mentum are, in fact equivalent. Using (3.16), (3.5)
and (2.28)

1
it can be shown that residual energy

equations (3.13) and (3.17) are also equivalent.
In the case of constant coe$cients (3.15)

and(3.17) reduce to

c(
iAkC

u
k,AC

!bK
iA

/
,A
"o

3
uK
i
,

K
ABA/,AB

!

cF

¹
%

bK
iC

u
i,ABCB"cF/Q , (3.18)

which are equivalent to (3.14).

3.3. The xeld equations in spatial coordinates

It is often more convenient to express all quantit-
ies and derivatives in terms of position x% in B

%
,

rather than X, so that the displacements and in-
crements in temperature and entropy are taken in
the forms u(x%, t), h(x%, t) and /(x%, t). From conser-
vation of mass we may write the density in B

%
as

o
%
"J~1

%
o
3

where J
%
"detF% (3.19)

and from the chain rule

( )
,A
"( )

,j
F%

jA
, (3.20)

where ( )
,j

now denotes L( )/Lx%
j
, we may deduce the

Euler relation

(J~1
%

F%
iA

)
,i
"0. (3.21)

The spatial form of the thermal conductivity tensor
is

k
ij
"J~1

%
F%
iA

F%
jB

K
AB

(3.22)
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in terms of which Fourier's law (3.10) becomes

q
i
"!k

ij
¹

,j
(3.23)

where q is the spatial heat #ux, see (2.2)
2
. The

Cauchy stress in B
%

is given from (2.2)
1

by

r%
ij
"J~1

%
P%
iA

F%
jA

so that using (3.21) and (3.19) enables equilibrium
equation (3.2) to be written in the spatial form

r%
ij,j

#o
%
b
i
"0. (3.24)

On de"ning

c8
ijkl

"J~1
%

F%
jA

F%lC
c8
iAkC

, bI
ij
"J~1

%
F%
jA

bI
iA

(3.25)

and using (3.21) and (3.19) we "nd that the spatial
form of the momentum balance equation (3.3) is

Mc8
ijkl

u
k,l

N
,j
!MbI

ij
hN

,j
"o

%
uK
i
. (3.26)

Using (3.19)}(3.22) we "nd that residual energy
equation (3.11) becomes in the spatial form

J~1
%

¹
%
/Q !Mk

ij
¹

,j
N
,i
"o

%
r, (3.27)

with ¹
%
"¹(x%) denoting temperature in B

%
. The

O(1) part of (3.27) is

!Mk
ij
¹%

,j
N
,i
"o

%
r, (3.28)

equivalent to (3.12), and the O(e) part is

Mk
ij
h
,j
N
,i
!bI

ik
u5
i,k
"J~1

%
cFhQ , (3.29)

equivalent to (3.13). Thus the spatial forms of the
referential "eld equations (3.2), (3.3), (3.12) and
(3.13) are given by (3.24), (3.26), (3.28) and (3.29),
respectively.

We now derive spatial forms, involving u(x%, t)
and /(x%, t), of the O(e) "eld equations (3.15) and
(3.17), the O(1) equations still being given by (3.24)
and (3.28). On de"ning

c(
ijkl

"J~1
%

F%
jA

F%lC
c(
iAkC

, bK
ij
"J~1

%
F%
jA

bI
iA

we "nd that the spatial form of (3.15) is

Mc(
ijkl

u
k,l

N
,j
!MbK

ij
/N

,j
"o

%
uK
i
. (3.30)

Similarly, we "nd from (3.11) and (3.16) that the
spatial form of (3.17) is

GkjlC
¹

%
cF

/!J
%
bK
ik
u
i,kD

,l
H
,j

"J~1
%

¹
%
/Q . (3.31)

For a homogeneous material homogeneously
deformed with ¹

%
a constant, (3.26) and (3.29)

reduce to

c8
ijkl

u
k,jl

!bI
ij
h
,j
"o

%
uK
i
,

k
ij
h
,ij
!bI

ik
u5
i,k
"J~1

%
cFhQ , (3.32)

spatial forms of (3.14), and (3.30) and (3.31) reduce
to

c(
ijkl

u
k,jl

!bK
ij
/

,j
"o

%
uK
i
,

k
jlA/,jl

!J
%

cF

¹
%

bK
ik
u
i,jklB"J~1

%
cF/Q , (3.33)

the spatial forms of (3.18). In the special case where
B
3
and B

%
coincide, so that J

%
"1, Eqs. (3.32) have

been given by Chadwick [17, Eq. (19)] and Eqs.
(3.33) by Scott [13, Eq. (2.15)] in di!erent notations.

3.4. Quadratic forms of the thermodynamic
potentials ; and A

Expanding ;(F,S) as far as O(e2) terms in the
small quantities (3.1) allows the internal energy to
be expressed as

;(u
i,A

,/)";
%
#P%

iA
u
i,A

#¹
%
/

#1
2Gc( iAkC

u
i,A

u
k,C

!2bK
iA

u
i,A

/#

¹
%

cF

/2H
(3.34)

which acts as a potential for the stress increment
p
iA

and temperature increment h:

p
iA
"!P%

iA
#

L;
Lu

i,A

, h"!¹
%
#

L;
L/

, (3.35)

as can be veri"ed using equations of Section 3.2.
Coe$cients in (3.34) are all evaluated in B

%
and at

this stage may depend on X. The O(e) parts of the
momentum balance equations (2.3)

1
and the resid-

ual energy balance (2.3)
2

may be written

p
iA,A

"o
3
uK
i
, MK

AB
h
,B

N
,A
"¹

%
/Q . (3.36)

On substituting (3.34) into (3.35) and then substitu-
ting the resulting explicit expressions for p

iA
and

h into (3.36) we obtain the "eld equations (3.15) and
(3.17) already derived.
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Similarly, we "nd that the Helmholtz free energy

A(u
i,A

,h)"A
%
#P%

iA
u
i,A

!S
%
h

#1
2Gc8 iAkC

u
i,A

u
k,C

!2bI
iA

u
i,A

h!
cF

¹
%

h2H
(3.37)

acts as a potential:

p
iA
"!P%

iA
#

LA

Lu
i,A

, /"!S
%
!

LA

L/
, (3.38)

so that balance equations (3.36) lead to "eld equa-
tions (3.3) and (3.13) already derived.

4. The 5eld equations of constrained
thermoelasticity

The most natural extension of a purely mechan-
ical constraint f (F)"0 to thermoelasticity would
seem to be a constraint of the form

f (F,¹)"0 (4.1)

involving the temperature ¹ as well as the deforma-
tion gradient F. However, Chadwick and Scott [9]
and Leslie and Scott [14], amongst others, found
that an arbitrary constraint of the form (4.1) results
in instabilities in wave propagation. Scott [12] was
therefore led to consider a constraint of the form

g(F,S)"0 (4.2)

involving the entropy S in place of ¹. The instabili-
ties caused by constraint (4.1) are absent if con-
straint (4.2) is employed, see [12]. The physical
motivation for (4.2) is that it relates changes in
deformation directly to the introduction of heat
through the presence of the entropy S, see (2.3)

2
.

4.1. The deformation-entropy constraint g(F,S)"0

Constraint (4.2) may appear in an arbitrary man-
ner in the internal energy so we assume

;H(F, S)";M (F,S, g(F,S)) (4.3)

following the method of Chadwick et al. [18] in the
purely mechanically constrained case. The stress
and temperature are given by

PH"
L;M
LF

#

L;M
Lg

Lg

LF
,

¹H"
L;M
LS

#

L;M
Lg

Lg

LS
(4.4)

in which L;M /Lg may take any value. In (4.4)
1

L;M /Lg
plays the role of the arbitrary stress which exists for
any purely mechanical constraint. Without loss of
generality, therefore, we may replace the arbitrary
dependence of ;H upon the constraint function
g(F,S) by the linear form

;H";#g( g(F,S), (4.5)

in which the function g( (x, t) is arbitrary, and obtain
in place of (4.4)

PH"P#g(NK , ¹H"¹!g( l, (4.6)

where P and ¹ are the stress and temperature
obtained from (2.4) in the unconstrained material,
with the de"nitions

NK "
Lg

LF
, l"!

Lg

LS
. (4.7)

For simplicity we assume that PH%"P% and
¹H

%
"¹

%
, so that g( (x%, t) is O(e), the O(1) equations

(3.2) and (3.12) remain unchanged, the incremental
stress and temperature become

pH
iA
"c(

iAkC
u
k,C

!bK
iA

/#NK
iA

g( , (4.8)

hH"!bK
iA

u
i,A

#

¹
%

cF

/!lg( , (4.9)

and balance equations (3.36) become

pH
iA,A

"o
3
uK
i
, MK

AB
hH
,B

N
,A
"¹

%
/Q

leading to the "eld equations of deformation-en-
tropy constrained thermoelasticity

Mc(
iAkC

u
k,C

N
,A
!MbK

iA
/N

,A
#MNK

iA
g( N

,A
"o

3
uK
i

GKABC
¹

%
cF

/!bK
iC

u
i,C

!lg( D
,B
H
,A

"¹
%
/Q , (4.10)

which replace the "eld equations (3.15) and (3.17) of
unconstrained thermoelasticity.
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Constraint (4.2) is satis"ed in Br and B
%

so that

g(I,S
r
)"0"g(F%,S

%
)

and may be linearized in B
t
to give

NK
iA

u
i,A

!l/"0 (4.11)

where now NK and l, de"ned by (4.7), may depend
upon X but not upon F, S or t.

Eqs. (4.10) and (4.11) constitute a set of "ve
equations for the "ve unknown functions u

i
, / and

g( of deformation-entropy constrained thermoelas-
ticity. If the body is homogeneous and homogene-
ously deformed then the coe$cients of the "eld
quantities in (4.10) and (4.11) are constant and the
equations reduce to

c(
iAkC

u
k,AC

!bK
iA

/
,A
#NK

iA
g(
,A
"o

3
uK
i
,

K
ABA/,AB

!

cF

¹
%

bK
iC

u
i,ABC

!

lcF

¹
%

g(
,ABB"cF/Q , (4.12)

the spatial forms of which have been given by Scott
[13, (3.13)].

4.2. The deformation-temperature constraint
f (F,¹)"0

The argument follows closely that of Section 4.1
in the deformation-entropy case. Instead of the
internal energy we work with the Helmholtz free
energy

As"A#g8 f (F,¹), (4.13)

where g8 "g8 (X, t), in place of (4.5), leading to

Ps"P#g8 NI , Ss"S#g8 a, (4.14)

with

N3 "
Lf

LF
, a"!

Lf

L¹
(4.15)

in place of (4.6) and (4.7). Eqs. (4.8) and (4.9) are
replaced by

ps
iA
"c8

iAkC
u
k,C

!bI
iA

u
i,A

#NI
iA

g8 , (4.16)

/s"bI
iA

u
i,A

#

cF

¹
%

h!ag8 , (4.17)

so that the balance equations (3.36), taken in the
form

ps
iA,A

"o
3
uK
i
, MK

AB
h
,B

N
,A
"¹

%
/Q s, (4.18)

lead to the "eld equations

Mc8
iAkC

u
k,C

!bI
iA

u
i,A

#NI
iA

g8 N
,A
"o

3
uK
i
,

MK
AB

h
,B

N
,A
!¹

%
bI
iA

u5
i,A

!¹
%
ag85 "cFhQ (4.19)

in place of (3.3) and (3.12).
Constraint (4.1) may be linearized in B

t
to give

NI
iA

u
i,A

!ah"0 (4.20)

so that Eqs. (4.19) and (4.20) furnish "ve "eld equa-
tions for the "ve unknown functions u

i
, h and g8 of

deformation-temperature constrained thermoelas-
ticity. For a homogeneous body homogeneously
deformed equations (4.19) reduce to

c8
iAkC

u
k,AC

!bI
iA

u
i,AC

#NI
iA

g8
,A
"o

3
uK
i
,

K
AB

h
,AB

!¹
%
bI
iA

u5
i,A

!¹
%
ag85 "cFhQ , (4.21)

equivalent to the spatial forms [13, (3.5)].

5. The deformation-entropy near constraint

5.1. Expressions for the ten thermoelastic moduli in
the nearly constrained case

We take the internal energy in the form

;HH";#1
2
s( @Mg(F,S)N2 (5.1)

so that s( @"0 corresponds to the original uncon-
strained material and the limit

s( @PR, g(F,S)P0,

g( :"s( @g(F, S) remains bounded (5.2)

corresponds to the constraint holding exactly. The
stress and temperature in the nearly constrained
material (5.1) are given by

PHH
iA

"P
iA
#s( @g(F,S)NK

iA
, ¹HH"¹!s( @g(F,S)l.

(5.3)

On making identi"cation (5.2)
3

in (5.3) we may
arrive at the equations appropriate if the constraint
holds exactly, see (4.10).
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In the linear approximation we must keep terms
up to O(e2) in (5.1) to obtain

;HH";#1
2
s( @MNK

iA
u
i,A

!l/N2 (5.4)

where ; is given by (3.34). By regrouping the vari-
ous quadratic terms we see that

;HH";
%
#P%

iA
u
i,A

#¹
%
/

#1
2Gc( HHiAkC

u
i,A

u
k,C

!2bK HH
iA

u
i,A

/#

¹
%

cHHF

/2H
(5.5)

in which

c( HH
iAjB

:"c(
iAjB

#s( @NK
iA

NK
jB

bK HH
iA

:"bK
iA
#s( @lNK

iA

cHHF :"cF/(1#s( ) (5.6)

with

s( :"s( @l2cF/¹
%
. (5.7)

Now a nearly constrained material (0)s( @(R)
is, in fact, an unconstrained material and so the
"eld equations can be read o! from (3.18):

c( HH
iAkC

u
k,AC

!bK HH
iA

/
,A
"o

3
uK
i
,

K
ABA/,AB

!

cHHF

¹
%

bK HH
iC

u
i,ABCB"cHHF /Q (5.8)

by replacing the elastic constants occurring in (3.18)
by those de"ned at (5.6). From (2.28)

2
and (5.6)

2,3
we see that

bI HH
iA

"

cHHF

¹
%

bK HH
iA

"

bI
iA
#l~1s(NK

iA
1#s(

, (5.9)

a combination of moduli occurring in (5.8)
2
, whilst

from (2.29) we have

c8 HH
iAjB

"c( HH
iAjB

!

¹
%

cHHF

bI HH
iA

bI HH
jB

, (5.10)

leading by means of (5.6)
1,3

and (5.9) to

c8 HH
iAjB

"c8
iAjB

#

s(
1#s(

.
¹

%
cF

(bI
iA
!l~1NK

iA
)

](bI
jB
!l~1NK

jB
). (5.11)

From (5.6)
1
, (2.25) and Lemma A.1 we get

s( HH
iAjB

"s(
iAjB

!

s( @s(
iAkC

NK
kC

s(
jBlD

NK lD
1#s( @s(

iAjB
NK

iA
NK

jB

. (5.12)

By using (2.28) and (2.24)
2

in (2.30) we obtain

1

cP

"

1

cF

!

1

¹
%

s(
iAjB

bK
iA

bK
jB

(5.13)

in which using (5.6)
3
, (5.12) and (5.6)

2
gives

1

cHHP

"

1

cP

#

s( @
1#s( @s(

iAjB
NK

iA
NK

jB

)
[l!a(

iA
NK

iA
]2

¹
%

.

(5.14)

By using similar arguments it can be shown, in
direct notation, that

a( HH"a(#
s( @(l!a( )NK )

1#s( @N) ) s( NK
s( NK ,

a8 HH"

a8 !
s( M1#T%

cF
bI ) s8 ( bI !l~1NK )Ns8 (bI !l~1NK )

1#s(#s( T%

cF
(bI !l~1NK ) ) s8 ( bI !l~1NK )

,

s8 HH"

s8 !
s( s8 (bI !l~1NK )?s8 ( bI !l~1NK )

cF
T%
#s( McF

T%
#(bI !l~1NK ) ) s8 (bI !l~1NK )N

,

(5.15)

where ? denotes the fourth-rank dyadic product of
two second rank tensors.

Eqs. (5.6), (5.9), (5.11), (5.12), (5.14) and (5.15)
constitute a set of expressions for the ten ther-
moelastic moduli of deformation-entropy nearly
constrained thermoelasticity in terms of their
counterparts in the unconstrained theory. In the
limit s( @"0, s("0 these two sets of moduli co-
incide, as is to be expected. We now explore the
limit s( @PR, s(PR in which the constraint holds
exactly.
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5.2. The limit s( @PR, the constraint holds exactly

We shall discuss the behaviour in the limit of
each of the ten thermoelastic moduli of Section 5.1
in turn. Considering the moduli of (5.6), we "nd that

c( HHPR, bK HHPR, cHHF P0. (5.16)

In the context of wave propagation it has been
shown [13, Eq. (4.32)] that the in"nite limits
(5.16)

1,2
do indeed result in the secular equation of

deformation-entropy constrained thermoelasticity
[13, Eq. (3.14)]. We may interpret zero limit (5.16)

3
of the heat capacity by di!erentiating the exact
deformation-entropy constraint (4.11) to obtain,
from de"nition (2.26)

1
,

cHF"¹
%A

L/

L/B
ui,A

"0, (5.17)

cHF denoting the heat capacity of the constrained
material. Taking the limit s(PR of (5.9) results in

bI HH
iA

PbI H
iA

:"l~1NK
iA

, (5.18)

so that the temperature coe$cient of stress
in the constraint limit is determined by the
constraint itself. Alternatively, one may regard
the nature of a possible constraint as being deter-
mined by knowledge of the temperature coe$cient
of stress. We may interpret the limit (5.18) by
di!erentiating constraint (4.11) and using (2.10)
to obtain

l~1NK
iA
"A

L/

Lu
i,A
Bh"bI H

iA
. (5.19)

Taking the limit s(PR in the remaining ther-
moelastic moduli (5.11), (5.12), (5.14) and (5.15) re-
sults in limiting quantities that remain "nite and
do not vanish. We may not put cF"0 and
bI !l~1NK "0 in these limiting quantities be-

cause here cF and bI refer to the underlying uncon-
strained material, before a constraint or near
constraint is imposed, and may take on any (phys-
ically acceptable) values.

5.3. The limit cFP0, equivalent to the constraint

Connection (3.16) between temperature h and
entropy / may be inverted to give

/"bI
iC

u
i,C

#

cF

¹
%

h, (5.20)

where (2.28)
1

has been used. The stress increment
p is taken in the component form

p
iA
"c8

iAkC
u
k,C

!bI
iA

h. (5.21)

We shall investigate the limit cFP0 in these equa-
tions, without employing constraint (4.11) directly,
because this limit, in the form cHHF P0 of the nearly
constrained material, see (5.6)

3
, is inherent in the

existence of the constraint. In this limit (5.20) be-
comes

/"bI
iC

u
i,C

(5.22)

and if consistency with constraint (4.11) is to be
maintained we must have

bI
iA
"l~1NK

iA
, (5.23)

which is precisely what (5.9) gives in the limit
s(PR, see (5.18) and (5.19). We may state that

bI !l~1NK P0 as cFP0. (5.24)

On di!erentiating (5.20) with respect to / at "xed p,
for cF'0, and using (2.17) and (2.27), we "nd that

1!a( )bI "
cF

cP

, (5.25)

so that in the limit cFP0, bearing in mind (5.24)
and (5.25) gives

l!a( )NK P0 as cFP0. (5.26)

For any "nite s( @'0 we see that, for the nearly
constrained material (5.4), Eq. (5.7) implies that

s(P0 as cFP0, (5.27)

in sharp contrast to the limit s(PR of constraint if
cF'0. In the limit (5.27) we see that (5.9) gives
bI ** PbI which agrees with (5.18) since (5.24) holds
in this limit. From the limits (5.24), (5.26) and (5.27)
applied to the thermoelastic moduli (5.11), (5.14)
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and (5.15) we "nd that in the limit cFP0,

c8 , cP , a( , a8 , s8

retain the same values as for the unconstrained
material if s( @"0 and remain "nite if s( @O0.

We now discuss the remaining three moduli
bK , c( and s( in the limit cFP0. From (2.28)

1
, (5.24)

and (5.6)
2

bK **"lA
¹

%
l2cF

#s( @BNK (5.28)

and from (2.29), (5.24) and (5.6)
1

c8 **"c8 #A
¹

%
l2cF

#s( @BNK ?NK . (5.29)

The factors 1/cF are retained as it is not possible to
take the limit cFP0 in (5.28) and (5.29). Applying
Lemma A.1 to (5.29) gives

s( **"s8!
(s8 NK )?(s8 NK )

( T%

l2cF
#s( @)~1#NK ) s8 NK

. (5.30)

In the limit cFP0, (5.30) gives

s( **Ps( * :"s8!(s8 NK )?(s8 NK )

NK ) s8 NK
(5.31)

which satis"es

s( * NK "0 . (5.32)

The second-rank tensor N) is an eigentensor of the
fourth-rank tensor (5.29) corresponding to in"nite
eigenvalue. Similarly, N< is a null tensor of (5.30) in
the limit cFP0, see (5.32). Whether s( @"0 or s( @'0
makes no di!erence in the limit cFP0 to Eqs.
(5.28), (5.29) and (5.30).

5.3.1. Sinusoidal wave propagation
Let us consider the complex exponential wave

forms

Mu
i
,hN"M;

i
,#NexpMiu(N )X/v!t)N (5.33)

in which ;
i

and # are (complex) constant wave

amplitudes, i denotes J(!1), u is the real fre-
quency, N is the real unit vector de"ning the direc-
tion of wave propagation and v is the (complex)
wave speed. A non-zero imaginary part of v leads to
attenuation or growth of wave amplitude.

Substituting wave forms (5.33) into the "eld
equations (3.14), with cF"0, leads to the secular
equation

wb3 ) MQ3 !wIN!$+b3 #iuko
3
¹~1

%

]det(Q3 !wI )"0 (5.34)

in which

w :"o
3
v2, bI

i
:"bI

iA
N

A
,

QI
ij
"c8

iAjB
N

A
N

B
, k"K

AB
N

A
N

B
(5.35)

and adj denotes the adjugate. The secular equation
(5.34) is the same as that obtained [13, Eq. (2.22)]
by taking the limit cFP0 directly in the secular
equation [13, Eq. (2.17)] of unconstrained ther-
moelasticity. Using (5.23) it can further be shown
that (5.34) is equivalent to [13, Eq. (3.14)], the
secular equation of deformation-entropy con-
strained thermoelasticity.

6. The deformation-temperature near constraint

6.1. Expressions for the ten thermoelastic moduli in
the nearly constrained case

We take the Helmholtz free energy in the form

Ass"A#1
2
s8 @Mf (F,¹)N2 (6.1)

so that s8 @"0 corresponds to the original uncon-
strained material and the limit

s8 @PR, f (F,¹)P0,

g8 :"s8 @f (F,¹) remains bounded (6.2)

corresponds to the constraint holding exactly. The
stress and entropy in the nearly constrained mater-
ial (6.1) are given by

Pss
iA
"P

iA
#s8 @f (F,¹)NI

iA
, Sss"S#s8 @f (F,¹)a.

(6.3)
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On making the identi"cation (6.2)
3

in (6.3) we may
arrive at the equations appropriate if the constraint
holds exactly, see (4.19).

In the linear approximation we must keep terms
up to O(e2) in (6.1) to obtain

Ass"A#1
2
s8 @MNI

iA
u
i,A

!ahN2 (6.4)

where A is given by (3.37). By regrouping the vari-
ous quadratic terms we see that

Ass"A
%
#P%

iA
u
i,A

!S
%
h

#1
2Gc8 ssiAkC

u
i,A

u
k,C

!2bI ss
iA

u
i,A

h!
cssF

¹
%

h2H (6.5)

in which

c8 ss
iAjB

:"c8
iAjB

#s8 @NI
iA

NI
jB

,

bI ss
iA

:"bI
iA
#s8 @aNI

iA
,

cssF :"cF!s8 @a2¹
%
"cF(1!s8 ) (6.6)

with

s8 :"s8 @a2¹
%
/cF . (6.7)

Once again we observe that a nearly constrained
material is an unconstrained material and so the
"eld equations can be read o! from (3.14):

c8 ss
iAkC

u
k,AC

!bI ss
iA

h
,A
"o

3
uK
i
,

K
AB

h
,AB

!¹
%
bI ss
iA

u5
i,A

"cssF hQ (6.8)

by replacing the elastic constants occurring in (3.14)
by those de"ned at (6.6).

Of the ten elastic moduli discussed in Section 5.1
in the case of a deformation-entropy near-
constraint, we have found expressions for three
in the deformation-temperature case, namely
(6.6)

1,2,3
. By using similar methods we may

derive expressions for the other seven, in direct
notation:

bK ss"(1!s8 )~1(bK #s8 a~1N3 ), (6.9)

c( ss"c(#s8 (1!s8 )~1cF¹~1
%

(bK #a~1N3 )

?(bK #a~1NK ), (6.10)

s8 ss"s8!
(s8 NI )?(s8 N3 )

(s8 @)~1#NI ) s8 N3
, (6.11)

a8 ss"a8 #
a!a8 )NI

(s8 @)~1#N3 ) s8 N3
s8 NI , (6.12)

s( ss"

s8!
s8 cFs( (bK #a~1N3 )?s( (bK #a~1N3 )

¹
%
(1!s8 )#s8 cF (bK #a~1N3 ) ) s( (bK #a~1N3 )

,

(6.13)

cssP "cP!
¹

%
(a!a8 )N3 )2

(s8 @)~1#N3 ) s8 N3
, (6.14)

a( ss"a(#
T%

cP
(a!a8 )N3 )

(s8 @)~1#N3 ) s8 N3 !

¹
%

cP

(a!a8 )N3 )2

]G
¹

%
cP

(a!a8 )N3 )a8 #s8 N3 H. (6.15)

6.2. The limit s@PR, the constraint holds exactly

In the limit s@PR, when the deformation-tem-
perature constraint holds exactly, we "nd from (6.6)
that

c8 ssPR, bI ssPR, cssF P!R. (6.16)

In the context of wave propagation it has been
shown [13, Eq. (4.16)] that the in"nite limits
(6.16)

1,2
do indeed result in the secular equation of

deformation-temperature constrained thermoelas-
ticity [13, Eq. (3.6)]. The limit (6.16)

3
implies that

for s8 @ large enough the heat capacity becomes nega-
tive. A negative heat capacity is well known to
correspond to a lack of stability, see [10, pp. 193,
201; 11], and the secular equation already men-
tioned [13, Eq. (3.6)] does indeed have at least one
unstable branch. The in"nite limit (6.16)

3
may be

interpreted by di!erentiating the exact deforma-
tion-temperature constraint (4.20) to give

1

csF
"

1

¹
%
A
Lh
L/B

ui,A

"0, (6.17)

csF denoting the heat capacity of the constrained
material.

Taking the limit s8 PR of (6.9), which corres-
ponds to s8 @PR with cF "nite, gives

bK ss
iA
PbK s

iA
:"!a~1NI

iA
(6.18)
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so that once again the temperature coe$cient of
stress in the constraint limit is determined by the
constraint itself. Limit (6.18) may also be inter-
preted by di!erentiating constraint (4.20) and using
(2.11) to obtain

a~1NI
iA
"A

Lh
Lu

i,A
B
(
"!bK H

iA
. (6.19)

6.3. The limit cFP!R, equivalent to the constraint

We take the temperature in the form (3.16):

h"!bK
iC

u
i,C

#

¹
%

cF

/ (6.20)

and the stress in the form

p
iA
"c(

iAkC
u
k,C

!bK
iA

/ (6.21)

and investigate the limit cFP!R in these equa-
tions, without employing constraint (4.20) directly.
This limit, in the form cssF P!R of the nearly
constrained material, see (6.6)

3
is implied by the

constraint. Then (6.20) becomes

h"!bK
iC

u
i,C

(6.22)

and consistency with (4.20) requires

bK #a~1N3 P0 as cFP!R, (6.23)

consonant with (6.19). By arguing as in Section 5.3
we also "nd that

a!a8 )N3 P0 as cFP!R. (6.24)

For any "nite s8 @'0 Eq. (6.7) implies that

s8 P0 as cFP!R (6.25)

for the nearly constrained material, whereas the
limit is s8 PR if cF'!R. We note that
s8 cF"s8 @a2¹

%
remains "nite as cFP!R and it

follows that the moduli (6.10)}(6.15) also exist and
are "nite in this limit.

6.3.1. Sinusoidal wave propagation
On dividing (3.18)

2
by cF and taking the limit

cFP!R we obtain the "eld equation

!K
AB

bK
iC

u
i,ABC

"¹
%
/Q . (6.26)

Substituting wave forms (5.33), with h and # re-
placed by / and ' respectively, into the "eld equa-

tions (3.18)
1

and (6.26) leads to the secular equation

wdet(QK !wI )!iuko
3
¹~1

%
bK ) MQ) !wIN!$+b) "0

(6.27)

in which all quantities are de"ned as before with the
addition of

bK
i
:"bK

iA
N

A
, QK

ij
"c(

iAjB
N

A
N

B
. (6.28)

From (2.28)
1
, (2.29), (5.35)

3
and (6.28) we have

Q3 "Q) !cF¹~1
%

b) ? b) . (6.29)

Using (6.29) in the secular equation [13, Eq. (2.17)]
of unconstrained thermoelasticity and taking the
limit cFP!R results in the secular equation
(6.27) already found for that limit. Using (6.23) it
can also be shown that (6.27) is equivalent to the
secular equation of deformation-temperature con-
strained thermoelasticity, see [13, Eq. (3.6)].

Appendix A

Lemma A.1. If A and B are fourth-rank tensors,
C a second-rank tensor and j a scalar related by

A"B#jC?C,

where ? denotes the dyadic product, and if B
is symmetric in the sense that B

iAjB
"B

jBiA
, then

provided that B~1 exists, A~1 exists and is given by

A~1"B~1!
(B~1C)?(B~1C)

j~1#C )B~1C
,

if the denominator does not vanish.

The proof is by multiplication of these equations.
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