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Multiply branching fluid flows are modelled in two contexts. The first (type I) is for one-
to-many branching. Computations are described for flow through a channel, with fully
developed motion upstream, which branches abruptly into a number of subchannels
downstream. The differences in pressure between the upstream end of the channel and
the downstream ends of the subchannels are substantial. Comparisons with recent
analytical predictions show fair agreement for Reynolds numbers in the low tens and
above. The second context (type II) has successive generations of bifurcation in a
network. Modelling, computations and analysis include the effects of many bifurcations.
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1. Introduction

There are two main kinds of multi-branching: (I) a single one-to-many branching
and (II) a succession of generations of bifurcations (i.e. of one-to-two branchings).
Type II is well known because of its relevance to comparatively normal networks
such as in the lung, cardiovascular or cranial systems. Type I is also of practical
significance in relation to arteriovenous malformations (cerebral abnormalities in
which a blood vessel subdivides over a relatively short distance into many
subvessels; Hademenos et al. 1996; Smith & Jones 2003) and to emerging issues,
including increased mass flux and an apparent absence of flow reversal. Several
theoretical conjectures remain largely untested, while direct computation has
only given solutions either accurately over a few generations or with limited
detail over more generations (see Hademenos et al. 1996; Pries et al. 1998;
Goldman & Popel 2000; Smith & Jones 2003). Related branching or network
studies have been conducted with some success by Handa et al. (1993), Miyasaka
et al. (1993), Pedley et al. (1994), Gatlin et al. (1995), Young et al. (1996), Gao
et al. (1997), Hademenos & Massoud (1997), Wilquem & Degrez (1997), Zhai et al.
(1997), Pries et al. (1998), Brada & Kitchen (2000), Kassab et al. (2000),
Lorthois et al. (2000), McEvoy et al. (2000), Cassidy et al. (2001) and Comer et al.
(2001). The presence of an arteriovenous malformation in a cranial system
On
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eventually requires study of the application of type I within the wider framework
of an application similar to type II. The significant Reynolds numbers in such
physiology vary from quite small to quite large values, although no more than a
few hundred or thousand, whereas much larger values are often encountered in
industrial processes, such as in oil pipeline design and water dispersal networks.

To test conjectures concerning the one-to-many branching (type I), we apply
direct numerical simulation and make comparisons with theoretical predictions.
This was designed to gain insight for theory and computation, to understand flow
physics, and to quantify the variation in flux from one daughter to the next. We
are also interested in the consequences for total through flow, individual fluxes
and wall shears, given that multi-branching can produce significant alterations in
pressure and flow direction (as in impacting motions). Moreover, it is useful to
discover the range of Reynolds numbers over which the approximations in
Smith & Jones (2003) apply satisfactorily. Simulations and theoretical work by
Tadjfar & Smith (2004) for three-dimensional motion show fair agreement, even
at relatively low Reynolds numbers and high divergence angle. The response at a
branching, especially of type I, can be a vital component in a cranial or
cardiovascular network (see references cited above), and this emphasizes the
need to assess the accuracy of local branching analysis. Concerning networks
(type II), we also apply a combination of local inviscid and global viscous flow
balancing similar to that in Smith et al. (2003b). The local part is nonlinear,
connected with the Smith & Jones study, whereas the global part is linear, akin
to Hademenos et al. (1996). Thus, a nonlinear system of network equations holds.

The two contexts (type I and type II) are investigated here as largely separate
issues, even though they have a number of common features. Thus, multi-
branching junctions are treated by direct simulations and by inviscid theory,
whereas longer-scale networks bring in the additional influences of viscous
dominated vessel flows. Section 2 describes the configuration in the type I
context for steady motion (given that the cranial blood flow of interest here is
generally much steadier than elsewhere in the arterial system for instance) along
with the computational method and results for various multi-branching
geometries. This is followed by comparisons with theoretical predictions. These
are for two or more daughters, which we assume to be parallel channels. We also
note that the Smith & Jones (2003) work implies that even a few daughters yield
properties close to those for many daughters. Section 3 then describes our
treatment for the type II context, in which there is an abundance of parameters
and flow phenomena. Section 4 provides further comments.
2. The model for one-to-many branching

Near a multi-branching junction, the flow response over streamwise lengths
comparable to the tube width is expected to matter most when the Reynolds
number (Re) is medium to large. To test this expectation, we first describe
a numerical investigation of the full viscous problem for such a junction.
The velocities, lengths and pressures non-dimensionalized with respect to u0,
[, ru 2

0 are (u,v), (x,y), p, respectively, and Re is u0[/n, where r, n denote the fluid
density and kinematic viscosity in turn, u0 is a representative measure of flow
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1047Multi-branching flows
speed and [ is typical of a tube half width. As the characteristic pressure
difference Dp can be taken to be prescribed, we set u0 as (jDpj/r)1/2, which leaves
Re as ([2jDpj/n2r)1/2. The Navier–Stokes equations then govern the internal two-
dimensional steady laminar motion:

ux Cvy Z 0; (2.1)

uux Cvuy ZKpx CReK1V2u; (2.2)

uvx Cvvy ZKpy CReK1V2v; (2.3)

where V2 denotes the Laplacian operator (v2/vx2C v2/vy2). The system is
subject to the boundary conditions of no slip at all the fixed solid surfaces and of
unidirectional flow sufficiently far upstream. Thus,

ux Z 0; v Z 0; pZ pKN at x Z xKN; (2.4)

ux Z 0; v Z 0; pZ pN in the N daughters at x Z xN; (2.5)

u Z v Z 0 on walls or dividers: (2.6)

Solutions of the full viscous problem in equations (2.1)–(2.6) at finite Re values
are presented in figure 1a–e. Here, xKN, xN are the end station values, suitably
far upstream and downstream, respectively, while the zeros of vu/vx, v in
equations (2.4) and (2.5) correspond strictly to those stations being infinitely far
upstream and downstream. This allows necessary flexibility regarding the inflow
and outflow, although near Poiseuille flow is generally found to emerge anyway in
the results at medium Re values. The values pKN, pN are the prescribed end
pressures upstream and downstream, N is the number of daughter channels, and
the walls of the mother channel upstream are given by yZG1, for x!0. The
branching itself occurs at xZ0. In each daughter, where xO0, the coordinate
y may be defined as perpendicular to the daughter wall. The mass flux in total
through the mother and through the daughters is unknown. The branching
geometry is to allow for expansions and contractions but by means of straight
sections of channel. The branching flow was treated by a direct finite difference
method based on Dennis & Hudson (1995) and Smith et al. (2003a). The end
stations were usually taken at K1, 1 as fundamental cases. Reduced downstream
areas were obtained (i.e. A!1) by closing off some of the downstream area
nearest the outer wall, effectively shutting off a daughter tube.

A typical case required around 500 iterations to converge to within 10K8.
As Re increased, substantial under-relaxation was necessary to achieve
a converged solution. The grid size was generally taken to be 0.05 in both
directions, but refinement was used to ensure accuracy of the solution. To help
resolve the thin wall layers present, the results below ReZ200 have a grid size
refined to 0.02, although they are virtually identical to those from the coarser
mesh in terms of velocity profiles and through flow.

The results will be compared with the limit analysis in Smith & Jones (2003),
which investigates a nonlinear inviscid model for high Re. The model holds
formally over the short length-scale where jxj is O(1). It seems reasonable
Phil. Trans. R. Soc. A (2005)
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Figure 1. Results for a one-to-many junction (i.e. branching type I). (a) Normalized mass flux
versus downstream area A, according to analysis for large Re and to the direct simulations at
Re values shown, with 11 daughters. (b) Normalized velocity profiles from direct simulations at
ReZ70, with five daughters. End pressures are as indicated. (c) ReZ200, with two daughters.
Velocity profiles as divider position is varied from 50 to 20%. End pressures are as indicated. (d) As
in (c) but the 50% divider position is maintained; end pressure in lower daughter is varied as
shown. (e) Mass fluxes predicted for the cases in (c) on right and (d) on left.
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to neglect viscous effects to a first approximation near a junction, as Re increases,
and indeed this is exploited in the work of the next section. Longer length-scales,
with distances jx j of 0(Re) or more, lead to viscous filling of the daughter tube
flows. This filling yields the fully developed velocity profile, which helps to form
the starting condition for the short-scale problem. Over the short length-scale,
recurrence relations between the unknown flow downstream in the daughter
tubes and the incoming rotational flow in the mother are derived by balancing
the mass flux and the pressure head since they remain constant along each
streamline. The relations are then analysed in detail to determine the flows in the
individual daughters as well as the total flow rate. The analytical predictions
Phil. Trans. R. Soc. A (2005)
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Figure 1. (Continued.)
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complement those of the current study. Thus, figure 1a compares the through
flow generated over a range of downstream areas A as predicted by analysis
(Smith & Jones 2003) and by the current finite Re method. It shows the case
NZ11 for Re ranging from 10 to 60. The comparisons indicate fair agreement as
Re increases. Further comparisons are presented in Smith et al. (2003a),
including cases where flow is forced down a daughter tube against the pressure
Phil. Trans. R. Soc. A (2005)
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gradient; that is, with one daughter pressure higher than the upstream pressure
while the other daughters have a low pressure. Forward flow is obtained in all
daughters in some cases. This phenomenon is also found in the inviscid theory.
Figure 1b shows velocity profiles obtained at ReZ70 for a case with NZ5.
Figure 1c–e presents results for a mother splitting into just two daughter
branches at ReZ200. Figure 1c shows the u velocity profiles for various
divider positions with downstream pressures being equal in each daughter. At
these medium Reynolds numbers near Poiseuille flow emerges at the inlet and,
after some deformation as the branch splits, the solution appears to settle
back into near Poiseuille flow very quickly after the bifurcation. We note here
that such a fully developed motion upstream and downstream is not assumed a
priori; it emerges at these Re values. At large Re, the downstream influence
length (or entry length) has the well-known long scale 0(Re), whereas the
upstream influence length is usually of order Re1/7 (Smith 1977), consistent with
the present numerical results. Figure 1d provides the u profiles with equal
downstream sizes but varying the lower daughter pressure from pZ0 (the
symmetric case) to pZK30. As might be expected, when p is decreased the flow
through that daughter, and the entire system, is increased. Finally, figure 1e
displays the through flow in each case. For the varying area ratios, the nearer to
the symmetric case the less through flow is generated for a given pressure
distribution. In the varying pressure case, the through flow increases seemingly
linearly with the magnitude of the overall pressure drop.
3. Modelling of successive bifurcation networks

For the network (type II; figure 2a), we presume the pressure drop between the
original entrance and the end vessels furthest downstream is known, as well as
the details of all vessels (resistance and diameter, etc.), and we seek the total
flux. The flux and pressure drop through individual vessels can then be
calculated. The generic model makes some central assumptions. First, the flow is
planar. Second, a long–short scale split is exploited. The dynamics in individual
vessels are over such a long scale that fluid inertia may be neglected, so that a
fully developed Poiseuille profile holds. Hence, the pressure drop over a vessel is
proportional to the flux through it, or to the mean velocity at its entrance. In a
sense, that is the far-field view. In contrast, the flow locally at the junctions
(i.e. in the near-field) is so (spatially) rapid as to be governed by inviscid
dynamics as in Smith & Jones (2003). Here, vorticity and pressure head are
conserved along a streamline, which, with mass conservation, allows calculation
of the downstream velocity profiles (Smith & Jones 2003), along with nonlinear
expressions for the pressure drops suffered on passing into the downstream
vessels. These profiles then develop into the Poiseuille profile, owing to viscous
action, on an intermediate scale that is short compared with the present vessel
length (as noted in §2). The short–long dynamics are combined through the
global condition of given total pressure drop from the original mother to any end
vessel, giving a nonlinear system for the flux in every vessel. In principle, this
system is solvable but here, in an attempt to understand the entire network, we
make a third assumption of replacing the incoming Poiseuille profile at a given
Phil. Trans. R. Soc. A (2005)
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Figure 2. Normalized results for successive generations of bifurcations (i.e. branching type II).
(a) Sample network of successive bifurcations from one mother to 32 descendants. (b) Predicted
mass flux Q1 through whole system, Q2 through one half and Q3 through other half, versus right-
hand pressure difference DP3, with left-hand pressure difference fixed at 5. This is for the network
in (a) with one particular distribution of resistances and area changes. (c) As in example (b) but
left- and right-hand pressure differences are maintained at 5; right-hand vessels have their cross-
sections increased by a factor F and lengths adjusted to maintain the original resistances.
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branch by a uniform plug flow with the same mass flux. This assumption
approximates the second above as Smith & Jones (2003) shows that it emerges
naturally for increasingly large numbers of downstream branches for N above
approximately three. Additional comparisons by N. C. Ovenden (personal
Phil. Trans. R. Soc. A (2005)
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communication) show that this simplification gives results similar to those from
the full equations in cases where the flow remains forward and, equally
important, is asymptotically correct in the limit of an equal division of the
oncoming mass flux into the downstream vessels. In addition, we restrict
consideration to junctions with net cross-sectional area decrease to prevent
separation (see figure 1). Nevertheless, area increase can be accommodated here
by means of the longer-scale (far-field) geometry, where the model allows slow
variation in an individual vessel width over its length where the flow remains
attached, thereby accommodating networks where the net area increases.

The network thus consists of a concatenation of units, with a single parent
vessel upstream. A unit has the downstream end of that parent vessel, splitting
into two over a short scale, and the full extent of the two downstream vessels.
A vessel identified by subscript n (with the original mother having nZ1) has
upstream width sn and downstream width sn. The pressure drop along its length
(effectively in the far-field) is Unrn say, where Un is the cross-sectionally
averaged velocity at the upstream end and

rn Z
12snð0Þ
Re

ðln
0

dx

snðxÞ3
(3.1)

is the vessel resistance. The integration is along the vessel length ln, measured by
x, and sn(x) is the local cross-section. Lengths are normalized on the network’s
mother vessel cross-section d*, so that s1Z1. We require ln[1, and now
ReZd*U*/n, so that ln/Re is presumed to be 0(1) or more. The scale U * is
implicitly defined through an insistence that r1Z1. The far-field result in
equation (3.1) then stems from the Reynolds lubrication equation. In contrast,
across a junction (the near-field) the pressure head pCU2/2 is constant, where
U is the averaged velocity. The pressure drop between the downstream ends
of the parent, with subscript n, and of a daughter, with subscript m, is

Pm Z
1

2
ðU 2

m KU 2
n=e

2
nÞCrmUm; (3.2)

where enZsn/sn, which is greater than unity if a vessel widens along its length.
The similar drop for the other daughter vessel, with subscript l, and mass
conservation respectively give

Pl Z
1

2
ðU 2

l KU 2
n=e

2
nÞCrlUl ; snUn Z smUm CslUl : (3.3)

These equations determine Un, given a knowledge (or guess) of Pm, Pl.
Knowing the total pressure drop across the network allows the simultaneous
calculation of these local pressure drops and the velocities in each vessel. The
resulting system is quadratically nonlinear and may be solved by Newton
iteration.

Analytical progress may be made if the imposed pressure drops across the
network are identical and the vessels at each generation i are similar. The limit
N/N, with N now the total number of generations and iZqN, 0%q!1,
2si=siK1Zð1K�bðqÞ=NÞ, riZ �rðqÞ=N , eiZ1C �eðqÞ=N , yields the ordinary diffe-
rential equations dP=dqZ �ruCð�bC �eÞu2, du=dqZ�bu, with UiZu(q) and with
Phil. Trans. R. Soc. A (2005)
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P(q) denoting the pressure drop between the mouth and the current generation,
as illustrated by equations (3.1)–(3.3). The change in subscript is to distinguish
between generations rather than between vessels. The velocity U0 into the
parent is therefore related to the pressure drop DP across the network through
the quadratic relation

DP ZU0

ð1
0
�r �g dqCU 2

0

ð1
0
ð�bC �eÞ�g2dq; �gðqÞZ exp

ðq
0

�bðq 0Þdq 0
� �

; (3.4)

in this simple example. In less simple cases, computation is necessary.
In two calculations here, based on equations (3.1)–(3.3), a single input vessel

splits into 32 downstream (see figure 2a). In figure 2b, the viscous resistance r for
each vessel is half that at the previous generation, and at each bifurcation, the
total cross-section of the network is reduced by a factor of 0.9. We should recall
that the individual vessel resistance depends on both width and length. Further,
the pressure drop across the left-hand side of the tree is fixed at 5, while that
across the right, DP3, is varied. The fluxes through each half, Q2, Q3, and
through the whole network, Q1, are plotted together with the velocities into each
vessel U1,2,3. The minimum DP3 is approximately 1.25, corresponding to no flow
through the right side (zero flow at the first bifurcation). The upper value is
approximately 6.65. Above this value, the flow decelerates into the left half and
we can expect flow separation. In figure 2c, the pressure drop is 5 for all vessels,
but in the right half each vessel has its cross-section increased by a factor F.
The vessel lengths are varied so that the viscous resistance remains unaltered.
The velocities at corresponding generations through the two halves of the
network remain equal, although the fluxes do not. As F/0, the flux into the
right branch vanishes as expected, although the velocity does not. For F O1.22,
the flow decelerates into both halves at the first junction.
4. Further comments

Although this article has treated the cases of a multi-branching junction (type I)
and a bifurcating network (type II) as almost separate issues, they have common
features as well as distinctions. First, the comparisons of type I in §2 are a
potential boost to the theoretical and numerical aspects of the modelling. Next,
forward flow can occur within a daughter despite a pressure rise, according to
both theory and the present simulations. This may seem counter-intuitive;
however, it arises because of combined pressure gradient effects on the complete
motion. Under different conditions, those effects can provoke back flow according
to the simulations, in which case theory (Smith & Jones 2003) requires
modification owing to the vorticity associated with the back flow. Again, on
broader scales, the mother and daughter end pressures depend on longer-scale
pressures whenever the total vessel lengths exceed the representative viscous
length-scale, a feature in common with the type II context. Then, local pressure
differences (as discussed in §2) can readily be set up by the total differences
imposed over the longer scale. In the type II context, on the other hand, the
model cannot allow the above counter flow, and issues remain on such junction
Phil. Trans. R. Soc. A (2005)
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properties. Nevertheless, simulations as in figure 1 provide some guidance.
Moreover, the network response altogether is perhaps not unlike that in type I.
Naturally, the real physiological and other systems, such as those with
arteriovenous malformations and cranial networks, are extremely complicated.
Although, as remarked earlier, cranial blood flow may be relatively steady,
three-dimensional effects are important, as is wall flexibility. The specific flow
solutions given in this study, coupled with earlier analyses and extensions
(e.g. inserting context type I in a type II network), are aimed at promoting wider
understanding of these complicated systems.

Thanks are due to NSERC of Canada and EPSRC of the UK for financial support.
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