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Abstract

Boundary integral equation methods for computing two and three dimensional
nonlinear free surface flows are presented. In two dimensions, integral formulations
can be derived by using complex variables or Green’s functions. Both formulations
are shown to yield the same level of accuracy. The formulation based on Green’s
functions is extended to three dimensions by following Forbes [1] and accurate
numerical results are presented for moving distributions of pressure and moving
submerged disturbances.

1 Introduction

Over the last 150 years, important progress has been achieved in the calculation of
two dimensional free surface waves. This success is largely based on the fact that two
dimensional potential flows can be formulated in terms of complex variables and analytic
functions. Therefore conformal mappings can be used to map the flow domain (with a free
surface) into another convenient domain (without a free surface). Furthermore, Cauchy
integral formula can then be used to reformulate the problem as a system of singular
nonlinear integro-differential for the unknown shape of the free surface. This equation
cannot usually be solved analytically. It is also often difficult to solve this equation
numerically, too, but this formulation at least has the advantage that it involves a one-
dimensional system (in contrast with the original problem which is two dimensional).
This means that very accurate solutions can be obtained with relatively few mesh points.

Boundary integral equation methods for two dimensions can also be derived by
using Green’s functions. This approach has the advantage that it can be extended for
three dimensions.

In this paper we first consider the two dimensional problem of moving pressure and
solve it by using boundary integral equations methods based on complex variables and
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on Green’s functions. We then consider the extension of the Green’s function approach
to three dimensional problems and present numerical results. The three dimensional
scheme is similar to Forbes [1], except that we do not use splines. Other methods for
three-dimensional steady problems can be found in Scullen and Tuck [2], Tuck et al.
[3]. There are also papers which study the three-dimensional unsteady free-surface flows,
as in Cao et al. [4], Scorpio et al. [5] which use a desingularized method, Grilli et al.
[6], Xue et al. [7] where higher-order three-dimensional boundary element methods are
used. These algorithms are based on a mixed Euler-Lagrange approach to solve the time
dependent boundary integral equation formulation. The method was originally developed
for two-dimensional unsteady waves by Longuet-Higgins & Cokelet [8]. Other method to
study the steady and unsteady potential flows can be found in Nakos and Sclavaunos [9]
which use a Rankine Panel method. A recent extensive review of the computations of
nonlinear free-surface flows is given by Tsai & Yue [10].

The two dimensional problem for a moving distribution of pressure is considered in
Section 2, the two dimensional problem of a piercing object is then considered in Section
3. The numerical results for the three dimensional problems are presented in Section 4.

2 Two dimensional pressure distribution

2.1 Formulation

We consider the two dimensional free surface flow generated by a distribution of pressure
moving at a constant velocity U at the surface of a fluid of infinite depth. The fluid is
assumed to be inviscid and incompressible and the flow to be irrotational. We choose
a cartesian frame of reference moving with the distribution of pressure and assume that
the flow is steady. We introduce the potential function Φ(x, y) so that the velocity is
given by (Φx,Φy). In the flow domain, Φ satisfies

∇2Φ = 0, x ∈ R, y < η(x), (1)

with the condition
(Φx,Φy) → (U, 0), y → −∞. (2)

We denote by y = η(x) the equation of the free surface. The kinematic and dynamic
boundary conditions give

Φxηx = Φy, y = η(x), (3)

and
1

2
(Φ2

x + Φ2
y) + gη +

p

ρ
=
U2

2
, y = η(x). (4)

Here g is the acceleration of gravity, ρ is the fluid density and p the prescribed distribution
of pressure. The choice of the Bernoulli constant on the right hand side of (4) fixes the
origin of y. The upstream radiation condition gives

(Φx,Φy) → (U, 0), η → 0, as x→ −∞. (5)
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The physical quantities are made dimensionless by using U as the unit velocity and
the length L of the support of the distribution of pressure as the unit length. The Froude
number is defined by

F =
U√
gL

. (6)

We now describe the two integro–differential equation reformulations mentioned in
the introduction.

The first reformulation relies on complex variables and uses Cauchy integral formula
(see for example Asavanant & Vanden-Broeck [11] and Vanden-Broeck & Dias [12]). We
introduce in addition to the potential function Φ, the streamfunction Ψ. We choose
Ψ = 0 on the free surface. We seek the complex function x′ + iy′ as an analytic function
of Φ + iΨ in the lower half plane Ψ < 0. Here primes denote derivatives with respect to
Φ. The method used here is an inverse type method, in which the spatial variables are
obtained in terms of the velocity potential and the streamfunction. Applying Cauchy
integral formula to x′ + iy′−1 on a contour consisting of the free surface and a half circle
of arbitrary large radius in Ψ < 0 we obtain

x′ + iy′ − 1 = − 1

2iπ

∫ ∞

−∞

(x′(ξ) − 1 + iy′(ξ))

ξ − (Φ + iΨ)
)|Ψ=0dξ (7)

Since x′ + iy′ − 1 tends to 0 as ψ → −∞, there is no contribution from the half
circle. Taking the limit ψ → 0 in (7) and then the real part we obtain

x′ − 1 = − 1

π

∫ ∞

−∞

yξ

ξ − Φ
dξ (8)

Next we rewrite (4) as

1

2

1

x′2 + y′2
+

y

F 2
+ εP = 0 (9)

where εP is the (prescribed) dimensionless pressure. The integral in (8) is a Cauchy
principal value. Substituting (8) into (9) yields a nonlinear integro differential equation
for y′. This equation is solved numerically in the next Section.

The second reformulation does not rely on complex variables and involves Green’s
second identity

∫

V
(α∆β − β∆α)dV =

∫

C
(α
∂β

∂n
− β

∂α

∂n
)ds (10)

Here C is a closed curve bounding a region V of the plane. The curve C is characterised
by its arclength s and its outward normal n. Assuming that α satisfies Laplace equation
and that β is the two dimensional free space Green function g = 1

4π
ln[(x−x∗)2+(y−y∗)2],

(10) gives

α(x∗, y∗) = r
∫

C
(α
∂g

∂n
− g

∂α

∂n
)ds (11)

Here r = 1 when (x∗, y∗) is inside C and r = 1/2 when (x∗, y∗) is on C. We now choose
α = Φ − x and assume that C consists of the free surface and a half circle of arbitrary
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large radius in the region y < η(x). Using the arclength s and describing the free surface
parametrically by x = X(s) and y = Y (s) we obtain

1

2
F(s∗) =

∞
∫

−∞

[

F(s)
∂G

∂n
(s, s∗) −G(s, s∗)

∂F(s)

∂n

]

ds. (12)

Here φ(s) = Φ(X(s), Y (s)), F(s) = φ(s) − X(s), G(s, s∗) = 1

4π
ln[(X(s) − X(s∗))2 +

(Y (s) − Y (s∗))2] and n = (−Y ′(s), X ′(s)). The definition of the arclength requires that

X ′2 + Y ′2 = 1, (13)

Many authors have used the above parametrization in the recent years (see for example
Forbes [13], Vanden-Broeck [14]).

The kinematic and dynamic boundary conditions on the free surface are rewritten
as

∂φ

∂n
= 0, (14)

and
1

2
φ2

s +
Y

F 2
+ εP =

1

2
, (15)

where εP is the dimensionless pressure. In this paper we choose

P (s) =

{

e
1

s2−1 , for |s| < 1
0, otherwise.

(16)

The unknown functions φ(s), X(s) and Y (s) are obtained by solving the nonlinear
equations (12)-(15), subject to the radiation condition.

2.2 Numerical scheme

The integro differential equations (8) and (9) were solved numerically by following the
procedure outlined in Asavanant & Vanden-Broeck [11]. The reader is referred to that
paper for details.

We shall describe the numerical procedure used to solve (12)-(15). We define N
equally-spaced points s1 = −e(N − 1)/2, si = s1 + e(i − 1), i = 2, ..., N , where e is
the interval of discretization. We chose N to be odd. Here s1 approximates −∞ and
sN = −s1 approximates +∞. We use the notation xi = X(si), yi = Y (si), etc. The
domain of integration for (12) is (s1, sN).

In order to satisfy the Bernoulli equation at the first point, we impose

y1 = 0, x′1 = φ′
1 = 1, x1 = φ1 = s1. (17)

Equations (13)-(15) and the trapezoidal rule yields

x′k =
√

1 − y
′2
k

xk = xk−1 + 1

2
e(x′k + x′k−1)

yk = yk−1 + 1

2
e(y′k + y′k−1)

φ′
k =

√

1 − 2 yk

F 2 − 2pk

φk = φk−1 + 1

2
e(φ′

k + φ′
k−1)

(18)
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for k = 2, ..., N .
The values of the functions at the midpoints are calculated by interpolation with

two or four points (xk−1/2 = 1

2
(xk−1 + xk) etc.). The equation (12) is evaluated at

midpoints si−1/2, i = 2, ..., N − 1. The integral is approximated by the trapezoidal rule
with a summation over the mesh points si, i = 2, . . . , N . Substituting (18) yields N − 2
nonlinear algebraic equations. The last two equations are obtained by imposing the
radiation condition by the relations

y′1 = 0 and − 3y′1 + 4y′2 − y′3 = 0. (19)

The second of these relations imposes approximately y ′′1 = 0. This system of N nonlinear
equations for the N unknowns y′1, . . . , y

′
N is solved by Newton’s method. A similar

numerical scheme, but used for another problem which involves Cauchy integral formula
can be found in Forbes [13].

The initial guess for the unknowns y′i is zero when ε � 1 or previous computed
solutions obtained for slightly different values of F and ε when ε is large.

2.3 Results

The numerical accuracy of the scheme described in the previous section for solving (12)–
(15) was checked by varyingN and e (see Figure 1). We found that the solutions presented
here are independent of N and e within graphical accuracy for N ≥ 200 and e ≤ 0.1. In
the numerical calculations, the integral from −∞ to ∞ in (12) is replaced by an integral
from s1 to sN . We found that these upstream and downstream truncations only affects
the first and last half wavelength of the free surface profiles. A similar numerical behavior
was found in Asavanant & Vanden-Broeck [11].

We compared our numerical solutions with those obtained by using the method of
Asavanant & Vanden-Broeck [11] (i.e. by solving (8) and (9))). A typical comparison is
shown in Figure 1. Similar results were found for other values of ε and F . The conclusion
of the comparison is that numerical results as accurate as those of Asavanant & Vanden-
Broeck [11] can be obtained without using complex variables. This suggests that accurate
results for three dimensional free surface flows can be obtained by generalising the Green
formulation of Section 2 to three dimensions. This is done in Section 4.

3 Two dimensional surface piercing object

Once a solution of (12)–(15) or of (8), (9) has been computed for a given pressure distri-
bution (16), we can replace the free surface under the support −1 < s < 1 of the pressure
distribution by a rigid surface. Therefore the schemes described in the previous sections
provide an inverse method to calculate free surface flows past surface piercing objects
or two dimensional “ships”. The shape of the ship is given at the end of the calcula-
tions by the shape of the streamline under the support of the pressure distribution. One
drawback of this approach is that the shape of the ship depends on F . It is therefore
desirable to have approaches which enable a direct calculation of the free surface flow
past a given surface piercing object. This was achieved by Asavanant & Vanden-Broeck
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[11] using complex variables. In this section we explore the corresponding approach using
the Green function formulation.

3.1 Formulation and numerical procedure

We shall present results for a parabolic object defined by the equation

y =
ε

2
(x2 − 1). (20)

In general we might expect a spray or splash at the front of the object (see for example
Dias & Vanden-Broeck [15]). Here, we restrict our attention to flows which separate
smoothly from the object. The calculation of flows past bodies in finite of infinite depth
has received much interest in recent years. Madurasinghe & Tuck [19], Tuck & Vanden-
Broeck [20], Farrow & Tuck [17] have computed flows past bodies of arbitrary shape
which have either a smooth separation from the body, or a stagnation point on the body
in water of infinite depth. Hocking [16] has computed bow flows with smooth separation
in water of finite depth. McCue & Forbes [18] have presented computations of bow and
stern flows with constant vorticity in finite depth. All these papers computed flows past
a two-dimensional semi-infinite body having only one point of separation, whereas in our
paper we study flows past finite bodies which have two points of separation: one in front
and one at the end of the body.

Let’s denote by sa and sb the values of s at the left and right separation points.
Since we need to find sa and sb as part of the solution, we introduce the new variable t
by

s = sa + (sb − sa)t. (21)

The relation (21) maps the unknown interval (sa, sb) into the fixed interval (0, 1).
The new unknown functions are φ̃(t) := φ(s), X̃(t) = X(s), Ỹ (t) = Y (s), where s is
defined by (21).

The system of nonlinear equations to be solved is now obtained by substituting (21)
into (12), (13), (15). This yields the integrodifferential equation

2π(φ̃(t∗) − X̃(t∗)) =

∞
∫

−∞

[

2(φ̃(t) − X̃(t))
(X̃(t) − X̃(t∗))(−Ỹ ′(t)) + (Ỹ (t) − Ỹ (t∗))X̃ ′(t)

(X̃(t) − X̃(t∗))2 + (Ỹ (t) − Ỹ (t∗))2

− ln[(X̃(t) − X̃(t∗))2 + (Ỹ (t) − Ỹ (t∗))2]Ỹ ′(t)
]

dt, −∞ < t∗ <∞ (22)

the Bernoulli equation,

1

2

(

φ̃t

sb − sa

)2

+
Ỹ

F 2
=

1

2
, for t < 0 or t > 1 (23)

and the arclength equation
X̃ ′2 + Ỹ ′2 = (sb − sa)

2. (24)

In addition the kinematic condition boundary condition on the object gives

Ỹ =
ε

2
(X̃2 − 1), for 0 < t < 1. (25)
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At the separations points t = 0 and t = 1 we must satisfy both (23) and (25), so
we have

1

2

(

φ̃t

sb − sa

)2

+
ε(X̃2 − 1)

2F 2
=

1

2
, for t = 0 or t = 1. (26)

For the numerical computation we introduce again N equally-spaced points t1 =
−e(N − 1)/2, ti = t1 + e(i− 1), i = 2, ..., N and use the notation xi = X̃(ti), yi = Ỹ (ti),
φi = φ̃(ti),x

′
i = X̃ ′(ti), y

′
i = Ỹ ′(ti) and φ′

i = φ̃t(ti).
The values of φ̃t at the surface of the object cannot be determined as in (18), by

using Bernoulli equation. At the surface of the object, between t = 0 and t = 1 there are
M = 1

e
− 1 mesh points ( we choose e such that 1/e is integer, but this is not a necessary

condition). At each of them then are two unknowns φ′
i and y′i. So we have N + M + 2

unknowns: y′1, ..., y
′
N , φ′

N+1
2

+1
, ..., φ′

N+1
2

+M
and sa, sb.

The integral equation is evaluated at midpoints ti−1/2, i = 2, ..., N − 1 as before, so
we obtain N − 2 equations. Another M equations are given by

yN+1
2

+j =
ε

2
(x2

N+1
2

+j
− 1), j = 1, ..M. (27)

The equations at the separation points (26) gives us another two equations and
the radiation condition (19) gives us the last two equations. It should be noted that
the values of φ̃′ at the separation points (φ′

N+1
2

and φ′
N+1

2
+M+1

) are obtained using an

extrapolation formula with 4 points (taken from the object).
The usual initial guess is y′i = 0, i = 1, ..., N , sa = −1, sb = 1, φ′

N+1
2

+j
= sb − sa,

j = 1, ...,M .
At the first point we impose

y1 = 0, x′1 = φ′
1 = sb − sa, x1 = φ1 = sa + (sb − sa)t1, (28)

and the remaining functions are calculated as before, using the equations (23)-(24) and
the trapezoidal rule. The values of functions at midpoints are calculated again by inter-
polation with two points.

The numerical scheme described above was used to calculate solutions for various
values of F and ε. The accuracy of the results was checked by varying N and e. We
present typical free-surfaces for ε > 0 and for ε < 0 in Fig. 2. It can be observed that if
we keep F constant and we vary the value of ε, the wavelength of the waves downstream
does not change much, only the amplitude is affected.

Our calculations cannot be directly compared with those of Asavanant & Vanden-
Broeck [11] because their study is for finite depth. Also they choose the position of the
separation points and obtain the position of the vertex of the obstacle as part of the
solution. In our case the position of the vertex of the object is known and we calculate
the position of the separation points as part of the solution.

4 Three dimensional free surface flows

The results of the previous section shows that two dimensional free surface flows can be
computed accurately by using the Green formulation. In this section we extend the ap-
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proach for three dimensional flows. We present explicit results for pressure distributions
and submerged objects.

4.1 Formulation

We consider a three dimensional distribution of pressure moving at a constant velocity
U at the surface of a fluid of infinite depth. The sketch of the flow is given in Fig. 3.
As in Section 2, we choose a frame of reference moving with the pressure distribution
and assume that the flow is steady. We introduce cartesian coordinates x, y, z with the
z-axis directed vertically upwards and the x-axis in the opposite direction of the velocity
U . We denote by z = ζ(x, y) the equation of the free surface. The potential function
Φ(x, y, z) satisfies Laplace equation

∇2Φ = 0, x, y ∈ R, z < ζ(x, y), (29)

in the flow domain.
The kinematic boundary condition (3), the dynamic boundary condition (4) and

the radiation condition (5) can now be rewritten as

Φxζx + Φyζy = Φz, z = ζ(x, y), (30)

1

2
(Φ2

x + Φ2

y + Φ2

z) + gζ +
p

ρ
=
U2

2
, z = ζ(x, y), (31)

no waves as x→ −∞. (32)

Equation (10) holds in three dimensions where V represents a volume bounded with
the surface C. Proceeding as in Section 2 and using the three dimensional free surface
Green function

G =
1

4π

1

((x− x∗)2 + (y − y∗)2 + (z − z∗)2)1/2
(33)

we obtain

1

2
(φ(x∗, y∗)−Ux∗) =

∫ ∫

R2
(φ(x, y)−Ux) 1

4π

ζ(x, y)− ζ(x∗, y∗) − (x− x∗)ζx − (y − y∗)ζy
((x− x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)3/2

dxdy+

+
∫ ∫

R2

1

4π

Uζx
((x− x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)1/2

dxdy (34)

where φ(x, y) = Φ(x, y, ζ(x, y)).
We choose the pressure as

p(x, y) =







P0e
L2

(x2
−L2)

+
L2

(y2
−L2) , |x| < L and |y| < L

0, otherwise

We introduce dimensionless variables by using U as the unit velocity and L as the
unit length. Combining equations (30) and (31) and using the chain rule of calculus we
obtain

1

2

(1 + ζ2
x)φ2

y + (1 + ζ2
y )φ2

x − 2ζxζyφxφy

1 + ζ2
x + ζ2

y

+
ζ

F 2
+ εP =

1

2
(35)
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where F = U/(gL)1/2 and ε = P0

ρU2 . Now P (x, y) is e
1

x2
−1

+
1

y2
−1 for |x| < 1 and |y| < 1,

and 0 otherwise.
Equation (34) is now rewritten as

2π(φ(x∗, y∗) − x∗) = I1 + I2 (36)

where

I1 =

∞
∫

0

∞
∫

−∞

(φ(x, y) − φ(x∗, y∗) − x + x∗)K1dxdy, (37)

I2 =

∞
∫

0

∞
∫

−∞

ζx(x, y)K2dxdy (38)

K1 =

[

ζ(x, y)− ζ(x∗, y∗) − (x− x∗)ζx − (y − y∗)ζy
((x− x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)3/2

+

+
ζ(x, y) − ζ(x∗, y∗) − (x− x∗)ζx − (y + y∗)ζy

((x− x∗)2 + (y + y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2)3/2

]

K2 =





1
√

(x− x∗)2 + (y − y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2
+

+
1

√

(x− x∗)2 + (y + y∗)2 + (ζ(x, y)− ζ(x∗, y∗))2



 (39)

In deriving (36) we used the fact that the solutions are symmetric in y direction.
We note that the integral I2 is singular whereas I1 is not.

4.2 The numerical scheme

We truncate the intervals −∞ < x < ∞ and 0 < y < ∞ to x1 < x < xN , and
y1 < y < yM and introduce the mesh points xi = x1 + (i − 1)dx, i = 1, . . . , N and
yj = (j − 1)dy, j = 1, . . . ,M . Following Forbes [1] the integral I2 is written in the form
I2 = I

′

2 + I
′′

2 :

I
′

2 =

yM
∫

y1

xN
∫

x1

(ζx(x, y)K2 − ζx(x
∗, y∗)S2)dxdy

I
′′

2 = ζx(x
∗, y∗)

yM
∫

y1

xN
∫

x1

S2dxdy

where

S2 =
1

√

A(x− x∗)2 +B(x− x∗)(y − y∗) + C(y − y∗)2

+
1

√

A(x− x∗)2 − B(x− x∗)(y + y∗) + C(y + y∗)2

9



where
A = 1 + ζ2

x(x∗, y∗), B = 2ζx(x
∗, y∗)ζy(x

∗, y∗), C = 1 + ζ2

y (x∗, y∗).

The integral I
′′

2 (which contains the singularity) can be calculated using

∫ ∫ dsdt√
As2 +Bst + Ct2

=
t√
A

ln(2As+ Bt+ 2
√

A(As2 +Bst+ Ct2))+

+
s√
C

ln(2Ct+Bs+ 2
√

C(As2 +Bst + Ct2)).

The 2NM unknowns are

u = (ζx11 , ζx12, . . . , ζxN,M−1
, ζxNM

, φx11, . . . , φxNM
)T .

The integrals and the Bernoulli equation are evaluated at the points (xi+1/2, yj),
i = 1, ..., N − 1, j = 1, ...,M so we have 2(N − 1)M equations. Another 2M equations
are obtained from the radiation condition ζx1j

= 0, φx1j
= 1, j = 1, . . . ,M . The values of

ζ and φ are obtained by integrating ζx and φx with respect to x by the trapezoidal rule.
The integration is started by using the values derived from the radiation condition (32)
and the free-surface condition (35) satisfied at the first row

ζ1j = 0, ζy1j
= 0, φ1j = x1, φy1j

= 0, j = 1, ..,M.

The values of ζy and φy are then calculated by central differences. The values of the
variables ζ and φ at (xi+1/2, yj) were obtained by interpolation

The 2nm nonlinear equations are solved by Newton’s method. In most calculations
we choose ζxij

= 0, φxij
= 1 for i = 1, . . . , N , j = 1, . . . ,M as the initial guess.

4.3 Results

We used the scheme of the Section 4.2 to calculate solutions for different values of the
Froude number F and of the parameter ε. We found that the results are qualitatively
similar. We present a typical free-surface profile for F = 0.7 and ε = 1 (see Fig. 4). The
wake and the two different family of waves (transverse waves and short-length divergent
waves) can be easily observed. When F increases the amplitude of the divergent waves
becomes more important than that of the transverse waves (see Fig. 5). The wavelength
of the transverse waves increases with the Froude number (see Fig. 6). Nonlinear so-
lutions can be calculated close to the maximum height of waves allowed by Bernoulli
equation.

The influence of the truncation upstream and downstream is seen to be negligible
(see Fig. 7). Here we show the centerline (i.e. the intersection of the free surface with
the plane y = 0). Two curves corresponding to different truncations x = (−3, 12) and
x = (−6, 6) are shown.

The accuracy of the solutions have been tested by varying the number of grid points
and the intervals dx and dy between grid points (see an example in Fig. 8). The upper
part of the Figure, y > 0 is calculated with N = 61, M = 17, dx = dy = 0.3 and the
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lower part y < 0 is calculated with M = 89, M = 13, dx = dy = 0.2. The values of the
parameters are the same in both cases (F = 0.7, ε = 1).

The algorithm can be easily modified to include two or more pressure distributions
and to study the interaction of the wakes produced by each of them. We present an
example in Figure 9 for two pressure disturbances moving parallely. The V-shape of the
waves downstream becomes in that case a W-shape. This case can be viewed as the wave
interactions between ships moving parallely in deep water. A numerical study of wave
interaction of two moving pressure disturbances in shallow water was done in Jiankang
et al. [21], using a wave equation model.

There are various possible generalisations of our code. One of them is to calculate
solutions in finite depth. In that case G should be replaced by

G =
1

4π

1

((x− x∗)2 + (y − y∗)2 + (z − z∗)2)1/2
+

1

4π

1

((x− x∗)2 + (y − y∗)2 + (z + z∗ + 2h)2)1/2

where h is the depth of the fluid.
Another is to consider submerged objects. An inverse method to compute them is

by superposing singularities. An example of the waves generated by a source and a sink
is given in Fig. 10.

5 Conclusion

We have calculated two dimensional and three dimensional free surface flows generated
by moving pressures. This models in an inverse way free surface flows past ships. For
two dimensions we have presented a direct method using a parabolic object. The cor-
responding problem in three dimensions is left for future work. Generalisation for two
pressure distributions and submerged disturbances were also presented.
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Figure 1: (top) Computed free-surface profiles obtained with the same parameters F =
0.7, ε = 0.001 but with different grids: N=721,e=0.025 (-) and N=361,e=0.05 (–) (bot-
tom) Computed free-surface profiles obtained with this algorithm (-) and with an algo-
rithm based on complex potential formulation (:). The parameters are F = 0.7, ε = 0.001
and the grid used: N=721, e=0.025.
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Figure 2: (top) Computed free-surface profiles obtained with F = 1.5, ε = 0.004
N=421,e=0.1. The parabolic object (:) and separation points (×) are also showed. (bot-
tom) Computed free-surface profiles obtained in the case ε < 0. The values of the
parameters are F = 1.5, ε = −0.006(:); ε = −0.004(−−); ε = −0.001(−).
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Figure 3: Sketch of the flow in the three dimensional case
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Figure 4: The solution for the wave field due to a moving pressure advancing at F = 0.7
and ε = 1. The grid used: N=75, M=25, dx=0.2, dy=0.2. The transverse waves are
perpendicular to the direction of the velocity U (i.e. the x-axis). The divergent waves
have crests roughly parallel to the direction of velocity, moving outward. In this graph
and in the following three-dimensional figures the darker colors correspond to the troughs
and the brighter colors to the peaks of the waves.
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Figure 5: The waves generated for a higher Froude number (F = 1.2). The grid used:
N = 61, M = 19, dx = dy = 0.6. The divergent waves can be observed more easily and
their amplitudes are more important than those of the transverse waves.
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Figure 6: The wake in the cases F = 0.7 (lower half) and F = 0.5(upper half). In both
cases ε = 1.
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Figure 7: The free surface elevation at the plane y = 0 for two different truncations.
Two curves corresponding to different truncations x = (−3, 12) (the dashed line) and
x = (−6, 6) (the solid line) are shown. In both cases F = 0.7, ε = 1.
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Figure 8: The accuracy check. F = 0.7, ε = 1 × 10−4, N = 89, M = 13, dx = dy = 0.2
(lower half), N = 61, M = 17, dx = dy = 0.3 (upper half).
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Figure 9: The case of two moving pressures (F = 0.4).
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Figure 10: The waves generated by a pair source-sink (F = 0.7). The source is in (0,0,-1)
and the sink in (1,0,-1)

23


