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Abstract. A liquid jet follows a curved trajectory when the orifice from which
the jet emerges is rotating. Surface tension driven instabilities cause the jet to lose
coherence and break to form droplets. The sizes of the drops formed from such
jets are in general not uniform, ranging from drops with diameters of the order of
the jet diameter to droplets with diameters which are several orders of magnitude
smaller. This presentation details a theoretical investigation of the effects of changing
operating parameters on the break-up of curved liquid jets in stagnant air at room
temperature and pressure. The Navier-Stokes equations are solved in this system
with the usual viscous free surface boundary conditions, using an asymptotic method
based upon a slender jet assumption, which is clearly appropriate from experimen-
tal observations of the jet. We also present nonlinear temporal simulations of the
breakup of the liquid jets using our slender theory. These simulations based upon
both a steady trajectory assumption, and the more general equations which allow for
an unsteady trajectory, show all the breakup modes viewed in experiments. Satellite
droplet formation is also considered.
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1. Introduction

In Wallwork et al. [1] we presented asymptotic and numerical results
for an inviscid liquid emerging from a rapidly rotating container. Also,
experimental results were given for a low viscosity liquid, showing good
agreement between theory and experimental data. This work has appli-
cations to prilling (Anderson & Yttri [2]) which is a common industrial
technique for producing pellets (for example, fertiliser and also mag-
nesium pellets). In this process thousands of liquid jets emerge from a
rapidly rotating drum. Each jet is curved due to the rotational forces on
it, and each jet breaks up into droplets due to a surface tension driven
instability. These droplets cool and solidify forming pellets. There are
numerous economic reasons for wanting to control this instability pro-
cess (including the optimization of the process, the uniformity of the
product, and the minimization of satellite drop formation to decrease
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waste), and no progress can be made on this front until a thorough
understanding of the instability has been achieved.

Previous work presented on this prilling scenario has examined
inviscid liquids (Wallwork et al. [1] , Decent et al. [3], Părău et al.

[4]). In industrial settings, the liquids used are viscous. We concentrate
on the Newtonian model for viscosity here due to the complexity of
the equations produced even in this situation, though non-Newtonian
models are of considerable engineering interest and is the subject of
current work. A series of experiments was performed to see how altering
various parameters affects trajectory, stability and droplet formation of
the jet. A detailed description of these experiments carried out in the
School of Chemical Engineering, University of Birmingham, is given in
Wong et al. [31]. A stability analysis for a viscous jet was performed
by Decent et al. [6].

One of the first to study the capillary break-up of axisymmetric
inviscid liquid jets was Rayleigh [7]. Rayleigh [8] and Weber [9] incor-
porated viscosity into the linear instability calculation for a straight
jet. Nonlinear one-dimensional models for axisymmetric inviscid jets
have been developed, by assuming a periodic disturbance along the
infinite jet, by many authors (see Lee [10], Mansour and Lundgren
[11], Schulkes [12], Papageorgiou and Orellana [13]). The presence of
the orifice has also been included, first by Keller et al. [14], Pimbley
and Lee [15], and by Bogy [16, 17] in the context of the one-dimensional
Cosserat theory. There are more recent jet simulations, which consider
the jet having a finite length (see Eggers and Dupont [18], Hilbing
and Heister [19], Cheong and Howes [20]). An extensive review of the
work on axisymmetric liquid jets is given by Eggers [21]. Curved liquid
jets and sheets have been studied before by Weber [9], Vanden-Broeck
and Keller [22], Dias and Vanden-Broeck [23], Finnicum et al. [24],
Cummings and Howell [25], Entov and Yarin [26], Yarin [27] and others.

In this paper, the equation of motion are presented in Section
2 and an asymptotic analysis is performed in Section 3, in order to
obtain a coupled partial differential equation system at leading order.
In Section 4 a numerical method is presented to solve the leading order
equations for steady-state solutions. Typical nonlinear temporal results,
showing the influence of various parameters, are presented in Section
5. The more general equations, when the centreline is time-dependent,
are obtained in Section 6 and some conclusions are made in Section 7.
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2. The equations of motion

We consider a circular cylindrical container of radius s0 rotating about
its axis with rotation rate Ω. A viscous jet emerges from an orifice on
the surface of the cylinder.

We derive non-dimensional equations of motion following Wallwork
et al. [1] but incorporating viscosity. We work in a rotating reference
frame in which the orifice is fixed, we switch off gravity (so that we
assume rotational forces are much greater than gravitational ones, as
in prilling) and we use a curvilinear coordinate system (s, n, φ) where
s is the arclength along the centreline of the jet from the orifice, and
(n, φ) are plane polar coordinates in any cross-section of the jet. The
centreline of the jet is at (X, 0, Z) in Cartesian coordinates with the
origin at the centre of the orifice, where the x-axis is directed normal
to the surface of the container in the initial direction of the jet and the
z-axis is orthogonal to the x-axis in the plane of the centreline of the
jet. The positive z-axis points in the opposite direction to the motion
of the container. Also, X = X (s, t) and Z = Z (s, t) where t is time.

We show in detail only the deduction of the boundary conditions:
more detail is given in Wallwork [5]. Following Batchelor [28], p. 600,
the components of the stress tensor σij in the orthogonal curvilinear
coordinate system are:

σ11 =
1

h1

∂u1

∂ξ1

+
u2

h1h2

∂h1

∂ξ2

+
u3

h3h2

∂h1

∂ξ3

,

σ23 =
h3

2h2

∂

∂ξ2

(

u3

h3

)

+
h2

2h3

∂

∂ξ3

(

u2

h2

)

,

and the four other expressions are obtained by cyclic interchange of
suffixes. In our case ξ1 = s, ξ2 = n, ξ3 = φ, and h1 = hs = 1 +
n cos φ(XsZss − XssZs), h2 = 1, h3 = n, (see [1]) so

σss = −p + 2µ ·
1

hs
·
[

∂u

∂s
+ (v cos φ − w sin φ)(XsZss − XssZs)

]

,

σnn = −p + 2µ
∂v

∂n
,

σφφ = −p + 2µ ·
1

n
·
(

∂w

∂φ
+ v

)

,

σsn = σns = µ

[

1

hs

∂v

∂s
+

∂u

∂n
−

u

hs
cos φ(XsZss − XssZs)

]

,

σnφ = σφn = µ

(

∂w

∂n
−

w

n
+

1

n
·
∂v

∂φ

)

,

σsφ = σφs = µ

[

1

n
·
∂u

∂φ
+

u

hs
sin φ(XsZss − XssZs) +

1

hs
·
∂w

∂s

]

,
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where the liquid velocity is ues + ven + weφ, es, en and eφ are the
unit vectors tangential, normal and azimuthal to the jet’s centreline
respectively, defined in [1]. The position of the free-surface is given by
n = R(s, φ, t). The pressure is p and the viscosity is µ.

The unit normal vector to the surface of the jet n − R(s, φ, t) = 0
is

n =
1

E

(

−
∂R

∂s
·

1

hs
· es + en −

∂R

∂φ
·

1

R
· eφ

)

,

and the tangent vectors, obtained as t1 =
∂rP

∂s
and t2 =

∂rP

∂φ
(where

rP is the position vector of a particle P on the free surface):

t1 = es +
∂R

∂s
·

1

hs
· en, and t2 =

∂R

∂φ
·

1

R
· en + eφ,

where

E =

(

1 +

(

∂R

∂s

)2

·
1

h2
s

+

(

∂R

∂φ

)2

·
1

R2

)

1/2

.

The normal stress condition is n · σ · n = σκ, where κ is given by

κ =
1

nhs









∂

∂s









−
n

hs

∂R

∂s
E









+
∂

∂n

(

nhs

E

)

+
∂

∂φ









−
hs

n

∂R

∂φ

E

















,

for n = R(s, φ, t) and the surface tension is σ. The tangential stress
condition(s) are ti · σ · n, i = 1, 2.

After some algebraic manipulations, the normal stress condition
can be written as

p − 2
µ

E2

{

(

∂R

∂s

)2 1

h3
s

[

∂u

∂s
+ (v cos φ − w sin φ)(XsZss − XssZs)

]

+
∂v

∂n
+

(

∂R

∂φ

)2 1

R3

(

∂w

∂φ
+ v

)

−
∂R

∂s
·

1

hs

[

∂v

∂s

1

hs
+

∂u

∂n

−
u

hs
cos φ(XsZss − XssZs)

]

−
∂R

∂φ

1

R

(

∂w

∂n
−

w

R
+

∂v

∂φ

1

R

)

+
∂R

∂s

∂R

∂φ

1

hs

1

R

[

∂u

∂φ

1

R
+

u

hs
sin φ(XsZss − XssZs) +

∂u

∂s

1

hs

]}

= σκ. (1)

The first tangential stress condition is
(

1 −
(

∂R

∂s

)2 1

h2
s

)

[

∂v

∂s

1

hs
+

∂u

∂n
−

u

hs
cos φ(XsZss − XssZs)

]

+2
∂R

∂s

1

hs

[

∂v

∂n
−

∂u

∂s

1

hs
−

v cos φ − w sin φ

hs
(XsZss − XssZs)

]

= 0, (2)
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and the second tangential stress condition, corresponding to stress in
the φ direction around the jet is

(

1 −
(

∂R

∂φ

)2 1

R2

)

(

∂w

∂n
−

w

R
+

∂v

∂φ

1

R

)

+2
∂R

∂φ

1

R

(

∂v

∂n
−

1

R

(

∂w

∂φ
+ v

))

= 0. (3)

As an observation, for an axisymmetric jet without azimuthal
velocity the normal stress condition becomes

p − 2
µ

E2
1

[

(

∂R

∂s

)2 ∂u

∂s
+

∂v

∂n
−

∂R

∂s

(

∂v

∂s
+

∂u

∂n

)

]

= σκ1,

where E1 =

(

1 +

(

∂R

∂s

)2
)

1/2

and κ1 =
1

n









∂

∂s









−n
∂R

∂s
E1









+
∂

∂n

(

n

E1

)









= −
∂

∂s









∂R

∂s
E1









+
1

RE1

,

and the tangential stress condition is

(

1 −
(

∂R

∂s

)2
)

(

∂v

∂s
+

∂u

∂n

)

+ 2
∂R

∂s

(

∂v

∂n
−

∂u

∂s

)

= 0,

which are exactly the boundary condition found by Eggers & Dupont
[18], Garcia & Castellanos [29] and others.

The unit vectors are

es = Xs · i + Zs · k

en = cos φZs · i− sin φ · j − cos φXs · k

eφ = − sinφZs · i− cos φ · j + sin φXs · k,

the position vector is

r :=

∫ s

0

esds+nen = (X +n cos φZs) · i−n sinφ · j+(Z−n cos φXs) ·k,

so the velocity field is

dr

dt
= ues + ven + weφ.
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On the other hand we have

dr

dt
=

[

Xs
∂s

∂t
+ Xt +

∂n

∂t
cos φZs −

∂φ

∂t
n sin φZs + n cos φZss

∂s

∂t
+ n cos φZst

]

·i

−
[

∂n

∂t
sin φ +

∂φ

∂t
n cos φ

]

· j

+

[

Zs
∂s

∂t
+ Zt −

∂n

∂t
cos φXs +

∂φ

∂t
n sin φXs − n cos φXss

∂s

∂t
− n cos φXst

]

·k

and

ues+ven+weφ = [uXs+v cos φZs−w sinφZs] ·i+[−v sin φ−w cos φ] ·j

+[uZs − v cos φXs + w sin φXs] · k,

so

u =
∂s

∂t
(1+n cos φ(XsZss−XssZs))+XtXs+ZtZs+n cos φ(XsZst−XstZs),

v =
∂n

∂t
+ cos φ(XtZs − XsZt), (4)

w = n
∂φ

∂t
− sin φ(XtZs − XsZt).

The kinematic condition is

D

Dt
(R(s, φ, t) − n) = 0 for n = R(s, φ, t)

or
∂R

∂t
+

∂R

∂s

∂s

∂t
+

∂R

∂φ

∂φ

∂t
−

∂n

∂t
= 0

which gives us, after using the relations (4),

(1 + n cos φ(XsZss − XssZs))

(

∂R

∂t
+ cos φ(XtZs − XsZt) − v+

∂R

∂φ

w

n
. +

∂R

∂φ

1

n
sin φ(XtZs − XsZt)

)

+ u
∂R

∂s

−
∂R

∂s
(XtXs + ZtZs + n cos φ(XsZss − XssZs)) = 0.

We non-dimensionalise using the transformations

ū =
u

U
, v̄ =

v

U
, w̄ =

w

U
, p̄ =

p

ρU2
, n̄ =

n

a
, ǫ =

a

s0

,

R̄ =
R

a
, s̄ =

s

s0

, t̄ =
tU

s0

, X̄ =
X

s0

, Z̄ =
Z

s0

, (5)
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where U is the exit speed of the jet in the rotating frame, ρ is the
liquid’s density, s0 the radius of the drum, a the radius of the orifice, ǫ
is an aspect ratio, p is the pressure, R is the jet radius and u, v and w
are the tangential, radial and azimuthal velocity components relative
to the centreline of the jet respectively. The bars denote dimension-
less quantities in the above expressions. Dropping overbars and using
standard methods we obtain the continuity equation

ǫn
∂u

∂s
+ hs

(

v + n
∂v

∂n
+

∂w

∂φ

)

+ǫn (XsZss − XssZs) (v cos φ − w sin φ) = 0, (6)

the Navier-Stokes equations

hs

(

ǫ
∂u

∂t
+ ǫ(v cos φ − w sin φ) (ZstXs − XstZs) + v

∂u

∂n
+

w

n

∂u

∂φ

)

+ǫu
∂u

∂s
+ ǫu (XsZss − XssZs) (v cos φ − w sin φ)

= −ǫ
∂p

∂s
+

(

2ǫ

Rb
(v cos φ − w sin φ) +

ǫ

Rb2
((X + 1)Xs + ZZs)

)

hs

+
1

Re

1

ǫn

{

−ǫ3n2 cos φ (XsZsss − XsssZs)

h2
s

(

∂u

∂s
+ v cos φ (XsZss − XssZs)

−w sin φ (XsZss − XssZs)) +
ǫ2n

hs

(

−u (XsZss − XssZs)
2 +

∂2u

∂s2

+2
∂v

∂s
cos φ (XsZss − XssZs) + v cos φ (XsZsss − XsssZs)

−2
∂w

∂s
sin φ (XsZss − XssZs) − w sin φ (XsZsss − XsssZs)

)

+

(1 + 2ǫn cos φ (XsZss − XssZs))
∂u

∂n
+ nhs

∂2u

∂n2

−ǫ
∂u

∂φ
sin φ (XsZss − XssZs) +

hs

n

∂2u

∂φ2

}

,(7)

hs

(

ǫ
∂v

∂t
+ ǫu cos φ (XstZs − ZstXs) + v

∂v

∂n
+

w

n

∂v

∂φ
−

w2

n

)

+ǫu
∂v

∂s
− ǫ cos φ (XsZss − XssZs) u2

=

(

−
∂p

∂n
−

2ǫ

Rb
u cos φ +

ǫ cos φ

Rb2
((X + 1)Zs − ZXs + ǫn cos φ)

)

hs

+
1

Re

1

ǫn

{

−ǫ3n2 cos φ (XsZsss − XsssZs)

h2
s

(

∂v

∂s
− u cos φ (XsZss − XssZs)

)
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+
ǫ2n

hs

(

−v cos2 φ (XsZss − XssZs)
2 +

∂2v

∂s2
− 2

∂u

∂s
cos φ (XsZss − XssZs)−

−u cos φ (XsZsss − XsssZs) + w sin φ cos φ (XsZss − XssZs)
2
)

+ (1 + 2ǫn cos φ (XsZss − XssZs))
∂v

∂n

+nhs
∂2v

∂n2
− ǫ

(

∂v

∂φ
− w

)

sin φ (XsZss − XssZs) +
hs

n

(

∂2v

∂φ2
− v − 2

∂w

∂φ

)}

(8)

and

hs

(

ǫ
∂w

∂t
+ ǫu sin φ (ZstXs − XstZs) + v

∂w

∂n
+

w

n

∂w

∂φ
+

vw

n

)

+ǫu
∂w

∂s
+ ǫ sin φ (XsZss − XssZs)u2

=

(

−
1

n

∂p

∂φ
+

2ǫ

Rb
u sin φ +

ǫ sin φ

Rb2
(ZXs − (X + 1)Zs − ǫn cos φ)

)

hs

+
1

Re

1

ǫn

{

−ǫ3n2 cos φ (XsZsss − XsssZs)

h2
s

(

∂w

∂s
+ u sin φ (XsZss − XssZs)

)

+
ǫ2n

hs

(

−w sin2 φ (XsZss − XssZs)
2 +

∂2w

∂s2
+ 2

∂u

∂s
sin φ (XsZss − XssZs)

+u sin φ (XsZsss − XsssZs) + v sin φ cos φ (XsZss − XssZs)
2
)

+ (1 + 2ǫn cos φ (XsZss − XssZs))
∂w

∂n

+nhs
∂2w

∂n2
− ǫ

(

∂w

∂φ
+ v

)

sin φ (XsZss − XssZs) +
hs

n

(

∂2w

∂φ2
− w + 2

∂v

∂φ

)}

.(9)

The dimensionless boundary conditions (at n = R(s, φ, t)) are the
kinematic condition

hs

(

ǫ
∂R

∂t
+ cos φ(XtZs − XsZt) − v +

∂R

∂φ

w

n
+

∂R

∂φ

1

n
sin φ(XtZs − XsZt)

)

+ǫu
∂R

∂s
− ǫ

∂R

∂s
(XtXs + ZtZs + ǫn cos φ(XsZss − XssZs)) = 0, (10)

the tangential stress conditions
(

1 − ǫ2

(

∂R

∂s

)2 1

h2
s

)

[

ǫ
∂v

∂s
+ hs

∂u

∂n
− ǫu cos φ(XsZss − XssZs)

]

+2ǫ
∂R

∂s

[

∂v

∂n
− ǫ

∂u

∂s

1

hs
− ǫ

v cos φ − w sin φ

hs
(XsZss − XssZs)

]

= 0,(11)
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(

1 −
(

∂R

∂φ

)2

·
1

R2

)

(

∂w

∂n
−

w

R
+

∂v

∂φ
·

1

R

)

+2
∂R

∂φ
·

1

R

(

∂v

∂n
−

1

R

(

∂w

∂φ
+ v

))

= 0, (12)

and the normal stress condition

p −
2

Re

1

E2

{

ǫ2

h3
s

(

∂R

∂s

)2 [∂u

∂s
+ (v cos φ − w sin φ)(XsZss − XssZs)

]

+
1

ǫ

∂v

∂n
+

1

ǫR3

(

∂R

∂φ

)2 (∂w

∂φ
+ v

)

− ǫ
∂R

∂s

1

hs

[

∂v

∂s

1

hs

+
1

ǫ

∂u

∂n
−

u

hs
cos φ(XsZss − XssZs)

]

−
1

ǫ

∂R

∂φ

1

R

(

∂w

∂n
−

w

R
+

∂v

∂φ
·

1

R

)

+ ǫ
∂R

∂s

∂R

∂φ

1

hsR

[

1

ǫ

∂u

∂φ

1

R

+
u

hs
sinφ(XsZss − XssZs) +

∂u

∂s

1

hs

]}

=
κ

We
, (13)

where

κ =
1

hs

(

ǫ2
∂

∂s

(

−
1

hsE

∂R

∂s

)

+
1

n

∂

∂n

(

nhs

E

)

+
∂

∂φ

(

−
hs

n2E

∂R

∂φ

))

,(14)

hs = 1 + ǫn cos φ (XsZss − XssZs) , (15)

E =

(

1 +
ǫ2

h2

(

∂R

∂s

)2

+
1

n2

(

∂R

∂φ

)2
)

1/2

. (16)

The arclength condition is

X2

s + Z2

s = 1 (17)

and v = w = 0 on n = 0, (18)

since on the centreline of the jet there must be purely tangential flow.
The dimensionless parameters in these equations are the Weber number
We = ρU2a/σ, the Rossby number Rb = U/ (s0Ω), the aspect ratio
ǫ = a/s0 and the Reynolds number based on radius of the cylinder
Re = ρUs0/µ.
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3. Asymptotic analysis

We assume that the jet is a long, slender object and we expand u, v,w, p
in Taylor series in ǫn (see Eggers [21], Hohman et al. [30]) and R,X,Z
in asymptotic series in ǫ:

u = u0(s, t) + (ǫn)u1(s, φ, t) + (ǫn)2u2(s, φ, t) + · · ·
v = (ǫn)v1(s, φ, t) + (ǫn)2v2(s, φ, t) + · · ·

w = (ǫn)w1(s, φ, t) + (ǫn)2w2(s, φ, t) + · · ·
p = p0(s, φ, t) + (ǫn)p1(s, φ, t) + · · ·

R = R0(s, t) + ǫR1(s, φ, t) + · · ·
X = X0(s) + ǫX1(s, t) + · · ·
Z = Z0(s) + ǫZ1(s, t) + · · · (19)

We suppose that the radius and the axial component of velocity
do not depend on φ at leading order, as should be expected in a slender
jet theory. We further assume that the position of the centreline is not
affected by the small perturbations, and at leading order, it is not time-
dependent. This is as observed in the experiments of Wong et al. [31]
when the instability is convective and travels downstream as a growing
wave, as assumed here. In fact, in all the experimental observations
[31], where the instability was convective, the centreline was always
observed to be steady in a frame moving with the rotating container.
(However in [31], there was another set of experimental observations,
so-called “mode 4” observations, where the instability was an absolute
instability, and in that case the centreline was observed to be unsteady.)
In section 6, we consider an unsteady centreline and verify the steady
centreline assumption computationally, but for now we assume the cen-
treline of the jet to be steady. From now on, we write X0 and Z0 as X
and Z respectively, for simplicity and we denote S(s) = XsZss−XssZs.
We then substitute these expansions into equations (6), (8)-(9), (11)-
(16) and (18) and, after a few manipulations (see Partridge [32] for
details), we obtain that

u1 = u0S cos φ, u2 =
3

2
u0s

R0s

R0

+
u0ss

4
and v1 = −

u0s

2
.

A solvability condition is also obtained by requiring R1 to be periodic
in φ, as in the inviscid case [4], giving

u2

0S −
2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
−

3

Re
u0sS −

S

WeR0

= 0. (20)
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Is is worth noting that the difference in the solvability condition be-
tween the inviscid case and the viscous case is given by the term
3

Re
u0sS.

The first Navier-Stokes equation (7) at order ǫ can be written as

u0t + u0u0s = −
1

We

(

1

R0

)

s
+

(X + 1)X + ZZs

Rb2
+

3

Re

(R2
0
u0s)s
R2

0

, (21)

From the kinematic condition (10), we obtain at leading order ǫ the
equation

R0t +
u0s

2
R0 + u0R0s = 0. (22)

The last equation to be solved is the arclength equation (17) at leading
order

X2

s + Z2

s = 1. (23)

So we obtained the equations (20)-(23) for the unknowns u0, R0, X and
Z. A comparison between these equations and the ones for a viscous
bending jet, derived using a different method, by Entov and Yarin [26]
and Yarin [27] is presented in the Appendix.

4. Steady state solutions

First we will search for steady-state solutions of the previous equa-
tions. Now we consider all the variables to be only functions of s. The
equations in the steady case are

u0u0s = −
1

We

(

1

R0

)

s
+

(X + 1)X + ZZs

Rb2
+

3

Re
·
(R2

0
u0s)s
R2

0

, (24)

u0s

2
R0 + u0R0s = 0, (25)

(XsZss − XssZs)

(

u2

0
−

3

Re
u0s −

1

WeR0

)

−
2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
= 0, (26)

X2

s + Z2

s = 1. (27)

From equation (25) we observe that R2
0
u0 is constant and, by using

R0(0) = 1 and u0(0) = 1, we have

R2

0
u0 = 1, (28)
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so we can substitute R0 in the previous equations, which now become

u0u0s = −
1

We

u0s

2
√

u0

+
(X + 1)X + ZZs

Rb2
+

3

Re

(

u0ss −
u2

0s

u0

)

, (29)

(XsZss − XssZs)

(

u2

0
−

3

Re
u0s −

√
u0

We

)

−
2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
= 0, (30)

X2

s + Z2

s = 1. (31)

The unknown for the equations (29)-(31) are X,Z, u0. For the
inviscid case we were able to use a Runge-Kutta method to calculate
the steady states numerically. In the viscous case the method does not
work, so we built a different scheme which uses a second order centred
finite difference discretization of the equations.

The boundary conditions at the nozzle are X(0) = Z(0) = Zs(0) =
0, u0(0) = Xs(0) = 1. The unknowns used in the scheme were in fact
Xs, Zs and u0 and the values of X and Z are obtained by trapezoidal-
rule integration. The downstream boundary conditions are obtained
by quadratic extrapolation of the last internal mesh points. The initial
guess is taken as a straight cylinder of constant radius, without rotation,
and then we put small amounts of rotation and viscosity until we obtain
the desired values of parameters Rb and Re. The nonlinear equations
are solved at each step using Newton’s method or a modified Newton’s
method (the Jacobian is computed only for the first iteration). The
guess at next step uses the previously calculated solution. We usually
obtain in only a few iterations solutions for very viscous flows, which
rotate very fast. A similar method was used by Hohman et al. [30] in
a different context, to solve the equations for a electrically forced jet
(see also Reneker et al. [33], Yarin et al. [34] for a derivation of the
quasi-one dimensional equations for this case). The numerical accuracy
was checked by varying the number of mesh points M and the grid
interval ds. Usually, the results were found to be independent of M
and ds, within graphical accuracy, for M ≥ 200 and ds ≤ 0.1.

The solutions in the inviscid case were compared with the solutions
obtained using a Runge-Kutta method, as in Wallwork et al. [1], and a
very good agreement was found (see Fig. 1).

Figure 2 shows the centreline of the steady jet for various Reynolds
numbers, the other parameters being fixed. As viscosity increases, the
centreline becomes more tightly coiled, but only for small Reynolds
numbers the deviation from the inviscid centreline is significant. It is
worth noting that in the experiments the range of Reynolds number
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was between 100 and 300,000. The effect of viscosity is to slow the
decrease of steady jet radius with arclength, along the jet.

The influence of the Weber number and Rossby number for a
viscous jet, shown in Fig. 3, is the same as in the inviscid case: the cen-
treline becomes more tightly coiled when the Weber number decreases
(the surface tension increases) or when the Rossby number decreases
(the rotation rate increases).

It was previously found (see Wallwork et al. [1]) that there is a
singularity at We = 1. We present two numerical solutions for the
Weber number close to one, in the inviscid case in Fig. 4. The radius
seems to be a periodic function of the arclength, as in the case of the
annular liquid membranes subject to gravity where similar solutions
were found (see Ramos [35], Fig. 2). The centreline has the form of a
self-intersecting curve. For We > 1 the jet tends to go in the clockwise
direction and for We < 1 the jet will move anti-clockwise (the container
rotates anti-clockwise). Both solutions have no physical significance,
which was also mentioned by Ramos [35] for his solutions for annular
liquid membranes.

5. Nonlinear temporal solutions

The nonlinear system to be solved is (21)-(22). We replace the leading
order pressure p0 = 1

We
1

R0
by the expression for the full curvature which

contains only R0 and is not φ-dependent, namely

p =
1

We

[

1

R0(1 + ǫ2R2
0s

)1/2
−

ǫ2R0ss

(1 + ǫ2R2
0s

)3/2

]

. (32)

This method, abandoning the formal asymptotic analysis on physical
grounds, was applied with good results by many authors to prevent
instability to wave modes with zero wavelength (see for example Lee
[10], and, latter, Papageorgiou and Orellana [13], Eggers & Duppont
[18]). Including this full expression for the curvature, the linear instabil-
ity of this model gives results which agree with experiments; without
this expression for the full curvature the linear instability results do
not agree with experimental instability results even for a straight jet.
It is also worth noting that Entov and Yarin [26, p.46] and Yarin
[27] have obtained the pressure in the form (32) in their derivation
of the quasi-one-dimensional equations for bending jets, using physical
arguments.

The main difference between our equations and the reduced ax-
isymmetric jet is the term containing Rb.
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If we denote A = R2
0

and u = u0 the system (21)-(22) can be
rewritten as

At + (Au)s = 0 (33)

ut +

(

u2

2

)

s

= −
1

We

∂

∂s

4(2A + (ǫAs)
2 − ǫ2AAss)

(4A + (ǫAs)2)3/2

+
(X + 1)Xs + ZZs

Rb2
+

3

Re
·
(Aus)s

A
(34)

We solve the system (33)-(34) for s ∈ [0, l] where l is the length
of the (numerical) jet. A suitable numerical method can be obtained
by modifying the method of Zhu et al. [36], which was used to solve
numerically a liquid jet falling into a liquid pool. This system is solved
using a finite-difference method. The spatial grid is fixed and uniform,
as we define M equally spaced points s0 = 0 (the nozzle), si = s0 + ids,
i = 1,M where ds is the spatial grid interval. The magnitude of the
time step is denoted by dt. The time integration method is based on a
explicit scheme, using the Lax-Wendroff method two-stage scheme (see
e.g. [37, p.835]).

The initial conditions at t = 0 were given by the steady solutions
calculated using the method described in the previous section

A(s, 0) = R2

0
(s), u(s, 0) = u0(s).

The value of ǫ = a/s0 can be measured from experiments. In the
calculations we used ǫ = 0.01 which is typical in experiments and
in industrial problems [2],[31]. For a straight uniform jet A(s, 0) =
1, u(s, 0) = 1.

We impose the upstream boundary conditions at the nozzle

A(0, t) = 1, u(0, t) = 1 + δ sin(K
t

ǫ
).

We should note also that the non-dimensional wave numbers are
equivalent to disturbance frequency, so K (which is the disturbance
frequency) fixes the wavelength of the perturbation. We can also change
the initial conditions, to make an initial perturbation of radius, rather
than of velocity.

The downstream boundary conditions are obtained by quadratic
extrapolation of the last internal mesh points. The specification of
(numerical) boundary conditions at the nozzle is not simple. Sirignano
and Mehring [38] present a more detailed discussion for annular sheets,
which is close to our problem. The boundary conditions at the far end of
the liquid jet have an influence only in a narrow region close to it, except
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for small Weber numbers (see Yarin [27]). For small Weber number an
absolute instability can develop on the jet and the numerical simulation
becomes rather difficult. Similar problems were found by Mehring and
Sirignano [39] for annular or conical liquid sheets. Earlier work on the
absolute instability in the context of Cosserat fluid jet equations can
be found in Bogy et al. [40]. The question of the absolute instability
and its relation to the dripping/jet transition for small Weber numbers
(close to 3 or less) is discussed in detail by Lin and Reitz [41].

In the simulations we choose that the jet-breakup occurs when
the minimum dimensionless radius of the jet is less then a small value,
arbitrarily chosen (usually 5% of the initial radius). Downstream of
breakup point, the jet solution no longer has physical meaning, since
the jet in that region will have broken up into droplets, which cannot
be described by this approach, as is also the case in other works.

The accuracy of the numerical simulations is checked by refining
the mesh and changing the time-step. An example is presented in Fig.
5.

The breakup length against a dimensionless viscosity scale (namely
the Ohnesorge number Oh = µ/

√
σaρ) is plotted in Fig. 6 and, as

for the axisymmetric case, it can be observed that it increases with
viscosity. The breakup length against the Rossby number is also plotted
and it is observed that it increases with the rotation rate. The breakup
length is dimensionless, after being divided by the initial radius a.

The jet profile and the radius for two different Reynolds numbers
are presented in Fig. 7. The trajectory is almost the same, as the viscos-
ity does not have a big influence on it, but the breakup length is quite
different. It can be observed how the viscosity diminishes the growth
factor of the disturbance at the most unstable wavenumber and so the
breakup is delayed. The most unstable wave number also decreases with
the viscosity. For example, when the magnitude of disturbance δ = 0.1,
for the inviscid jet the most unstable wavenumber is approximately
0.94, while for a viscous jet (Re = 1000) it is approximately 0.835 and
for a more viscous jet (Re = 600) the most unstable wavenumber is
approximately 0.795.

The jet profile and the radius for two different Rossby numbers are
presented in Fig. 8. We observe that, down the jet, the wavelength of
the perturbation increases with the rotation rate and the growth factor
of the disturbance diminishes.

In Fig. 9-11 we compare the drop sizes predicted by the model,
for a fixed oscillation magnitude, when the frequency K is varied from
0 to 1. The main drop and the satellite drop volume were obtained
by numerical integration of the jet profile at the breakup time, using
the trapezoidal rule. The satellite drop was defined by two minima of
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the radius, when they exist. Where there are more satellite droplets,
we consider that all satellite droplets merge into one satellite droplet.
The satellite and the main drop were supposed to become spheres after
jet rupture and their radius is plotted in these graphs. In Fig. 9(a)
all the parameters were kept constant, except for the Rossby number.
We observe that the satellite droplet radius increases with increasing
rotation rate (i.e. decreasing Rb) and the main drop radius decreases
with increasing rotation rate. It is worth noting that this behaviour has
been observed in experiments (see Wong et al. [31] and Partridge et al.

[42]). In particular, we reproduce Figure 9 from Partridge et al. [42] here
as Figure 9(b). The graph shows an experimental drop size distribution
diagram. The shape of the distribution can be seen to be bi-modal, with
the satellites shown on the left of each bi-modal distribution curve. It
can be seen that the qualitative behaviour in Figure 9(b) is the same as
in our theoretical results shown in Figure 9(a) with regard to how the
sizes of the main and satellite drops vary with Rb (i.e. compare how
the location of the two maxima in the bimodal distribution vary with
rotation rate in 9(b) with the theoretical results). Note, in experiments
it is not possible to fix the wavenumber k, and a random distribution
of a set of k’s located about the most unstable wavenumber occurs
creating a distribution. Because of this, we are currently extending
the experiments of Partridge et al. [42] by exciting a single particular
value of k using acoustic insonification via a loudspeaker located inside
the container. Preliminary experimental results are shown in [32], and
further experiments will be reported at a latter date. This will lead to
a more detailed comparison between theory and experiments.

In Fig. 10 the Reynolds number is varied and we obtained that the
main drop radius increases with the viscosity and the satellite droplet
radius decreases. This conclusion was also true for the (temporal) insta-
bility analysis for an axisymmetric jet, given by Ashgriz and Mashayek
[43]. For small values of k the ’satellite’ droplet radius can be sometimes
bigger than the ’main’ drop radius. In Fig. 11 the influence of the Weber
number is studied. In this case, the satellite droplet radius seems to
increase with the Weber number and the main drop radius decreases;
but the influence of the Weber number is not as important as that of
the other parameters.

The effect of the disturbance amplitude δ on main droplet and
satellite droplet radius is investigated in Fig. 12 for two different sets of
parameters. We observed that the main droplet radius and the satellite
droplet radius varies slowly when the disturbance amplitude increases,
for a fixed disturbance frequency. It can be observed that for δ greater
than some δ0, which depends on the parameters of the problem, the
main droplet radius decreases and the satellite droplet radius increases
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when the disturbance amplitude increases. A similar behaviour was
obtained by Hilbing and Heister [19] (see their Fig. 5) for axisymmetric
finite-length jets, who used a boundary element method to solve the
full nonlinear problem. This behaviour reverses for δ smaller than δ0.

We also compared the breakup length obtained in numerical simu-
lations with ones obtained in a set of experiments [31]. In these experi-
ments, the radius of the orifice a is 0.5 mm, the radius of the container
s0 is 145 mm, and the viscosity of the liquid ≈ 4 mPas. The container
was rotated at 4 differents rates, from 50 to 250 rotations per minute.
To compare the numerical simulation with the experiments, we fixed
K to be the most unstable frequency in all cases (i.e. the one which
gives the shortest jets in each case) and we fixed the magnitude of
the disturbance δ such that the theoretical and experimental breakup
length in one of the cases was identical. This gave the fitting parameter
δ = 0.0001. The results, shown in Fig. 13, are encouraging, with the
numerical simulations capturing quite well the experimental results.

6. Asymptotic analysis when the centreline is

time-dependent

We now consider the leading order components X and Z of the centre-
line coordinates to be time-dependent and denote E = XtZs − XsZt.
To balance the kinematic condition at the leading order, we should
consider leading order terms in the expansions of v and w. They are
now

v = v0(s, φ, t) + ǫnv1 + ..., w = w0(s, φ, t) + ǫnw1 + ...,

with the other expansions being unchanged from (19).
From the kinematic condition at leading order and the conserva-

tion of mass equation we obtain

v0(s, φ, t) = E cos φ and w0(s, φ, t) = −E sin φ.

Following the previous asymptotic analysis, we will obtain, by consid-
ering the second tangential stress condition

v1φ = 0, w1φ = 0.

From the continuity equation and from the first tangential stress con-
dition we find

v1 = −
u0s

2
−

SE

2
, u1 = (u0S − Es) cos φ, and
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u2 =
3

2
(u0s + SE)

R0s

R0

+
u0ss + (SE)s

4
.

From the normal stress condition we obtain the new solvability condi-
tion, by requiring that R1 is periodic in φ, namely

Et + u0(XstZs − ZstXs) + u0Es −
E

2
(u0s + SE) +

3

Re
ES2 =

= u2

0
S −

2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
−

3

Re
u0sS −

S

WeR0

, (35)

and w1E = 0. The right-hand side of this equation is exactly equation
(20). In the second equation, we can take w1 = 0. The first Navier-
Stokes equation (7) at order ǫ becomes

u0t + E(ZstXs − XstZs) + u0u0s + 2u0ES − EEs =

−
1

We

(

1

R0

)

s
+

2

Rb
E +

(X + 1)Xs + ZZs

Rb2
+

3

Re

(R2

0
(u0s + SE))s

R2
0

,(36)

The kinematic condition (10)at order ǫ is

R0t +
u0s

2
R0 +

S

2
ER0 + u0R0s − R0s(XtXs + ZtZs) = 0,

or, using (u0 −XtXs −ZtZs)s = u0s +SE, which can be obtained after
a few calculations, we can put it in the equivalent form

R0t + (u0 − XtXs − ZtZs)s
R0

2
+ R0s(u0 − XtXs − ZtZs) = 0. (37)

The equations (35)-(37) and the arclength condition (23) are the new
equations for the unknowns u0, R0, X and Z .

We do not solve these full equations, but we consider some small
perturbations of the steady centreline from section 4 by writing X(s, t) =

X0(s)+X̂(s, t) and Z(s, t) = Z0(s)+Ẑ(s, t) and then linearize in X̂ and

Ẑ. Figure 14 shows the perturbation of the trajectory of the jet from
its initial conditions plotted against s for two times t up to the time
of break-up. The maximum deviation is of order 10−2 and is relatively
small compared to the O(1) values of X0(s) and Z0(s) (e.g. see figures 1
to 4): hence the trajectory is effectively steady. The maximum deviation
increases with viscosity (see Fig. 15).
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7. Conclusions

The evolution of a disturbance on a rotating, slender viscous jet em-
anating from a small orifice up to the breakup point has been stud-
ied. The nonlinear partial differential equations which describe this
evolution were obtained by using an asymptotic approach.

A numerical method based on finite differences and the Newton
method was developed to solve the nonlinear differential equations for
the steady-state solutions. The viscosity was shown to have a small
influence on the trajectory of the centreline and on the steady radius
of the jet, except for the very viscous fluids when it becomes more
important.

The numerical method used to solve the time-dependent system
was described and the influence of various parameters on the solutions
have been quantified. It was found that the breakup length increases
with viscosity and with the rotation rate. The satellite and the main
drop radius were also computed and a good agreement was found in
some cases with the experimental results of Partridge et al. [42]. The
experiments carried out by Partridge et al. [42] are currently being
extended by using acoustic insonification via a loudspeaker to control
the most unstable wavenumber and will be compared in the future with
the analytical model.

When the centreline is assumed to be time-dependent, a new sys-
tem of nonlinear partial differential equations is derived, but the devia-
tions from the steady trajectory are found to be small, except for very
viscous jets (see the experimental results [31]).

The methods developed here can be applied for other physical
problems. Uddin et al. [44], who studied the linear instability of rotat-
ing power law non-Newtonian liquid jets, is currently extending this
nonlinear model to his case. Also, the full three-dimensional problem
with both gravity and rotation can be studied in the same manner.

Appendix

We compare in this Appendix the quasi-one-dimensional equations
derived by Entov & Yarin [26] for a bending jet with the equations
obtained in our asymptotic derivation. Their quasi-one dimensional
equations, when the jet axis is a curve lying in a plane [Entov & Yarin
[26, p.101] eq (4.17)], are

∂λf

∂t
+

∂fW

∂s̆
= 0, (38)
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∂λfVτ

∂t
−

fVn

λ

∂λVn

∂s̆
+

∂fVτW

∂s̆
−λfWkVn =

1

ρ

∂P

∂s̆
+λfFτ +

1

ρ
λqτ , (39)

∂λfVn

∂t
+

fVτ

λ

∂λVn

∂s̆
+

∂fVnW

∂s̆
+λfWkVτ =

1

ρ
λkP+λfFn+

1

ρ
λqn, (40)

λ =

[

1 +

(

∂H

∂s̆

)2
]

1/2

, k =
∂2H

∂s2
λ−3,

∂H

∂t
= λVn, W = Vτ−Vn

∂H

∂s̆
.

Here f = πR2(s̆, t) is the area of the jet cross-section and Fτ , Fn are
the components of the external force F per unit mass. The resultant
action of the external loads is specified by the linear density of forces
q applied to the jet axis and is taken to be zero.

Assuming the jet motion to be such that the tangent to the jet axis
at any instant and at all points makes an acute angle with a straight line
O1ξ, the jet axis in their case is described in the Cartesian coordinate
by

R = is̆ + kH(s̆, t),

while our jet axis, which does not have to satisfy such a restriction, is

R = iX(s, t) + kZ(s, t).

The relations between the coordinates systems is

s̆ = X(s, t),H(s̆, t) = Z(s, t),

and it follows
∂H

∂s̆
=

Zs

Xs
, λ =

1

Xs
, k = ZssXs − XssZs(= S),

∂H

∂t
=

Zt −
Zs

Xs
Xt = −

E

Xs
. Generally, for a function ă(s̆, t) = ă(X(s, t), t) :=

a(s, t), we have
∂ă

∂s̆
=

1

Xs

∂a

∂s
,

∂ă

∂t
=

∂a

∂t
−

Xt

Xs

∂a

∂s
.

The velocities Vτ and Vn are the components of the velocity fields
on the centreline, in tangential and normal direction

τ = es = Xsi + Zsk and n = −Zsi + Xsk,

and are found to be Vτ = u, Vn = −E. The longitudinal force P on the
cross-section becomes in the inviscid case (see Entov& Yarin [26], eq.
(4.16), after a few manipulations)

P = σπR2

(

1

R(1 + R2
s)

1/2
+

Rss

(1 + R2
s)

3/2

)

+ 3µπR2(us + SE).

The equations (38)-(40) can be rewritten as

∂

∂t

(

R2

Xs

)

−
Xt

Xs

∂

∂t

(

R2

Xs

)

+
1

Xs

∂

∂s

(

R2

(

u + E
Zs

Xs

))

= 0, (41)
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∂

∂t

(

R2u

Xs

)

−
Xt

Xs

∂

∂s

(

R2u

Xs

)

−R2E
∂

∂s

(

E

Xs

)

+
1

Xs

∂

∂s

(

R2u

(

u + E
Zs

Xs

))

+
1

Xs
R2

(

u + E
Zs

Xs

)

SE =
1

ρ

∂

∂s

(

P

πXs

)

+
R2

Xs
Fτ (42)

∂

∂t

(

R2E

Xs

)

−
Xt

Xs

∂

∂s

(

R2E

Xs

)

+R2u
∂

∂s

(

E

Xs

)

+
1

Xs

∂

∂s

(

R2E

(

u + E
Zs

Xs

))

−
1

Xs
R2Su

(

u + E
Zs

Xs

)

=
1

ρ
S

P

πXs
+

R2

Xs
Fn. (43)

After nondimensionalizing the equations, and using our asymptotic
expansion, at leading order R can be replaced by R0 and u by u0.
Assuming that the centreline is not time-dependent at leading order, it
can be observed that equation (41) is exactly equation (22) multiplied
by 2R0/Xs. Again, by multiplying equation (21) with R2

0
/Xs and sub-

tracting equation (41), we will obtain equation (42), with the mention
that the term containing Rb is included in Fτ and on the right hand

side the leading order term −
1

WeR0 s
will appear instead of the pressure

term Ps containing the full curvature, which is a common feature for
any asymptotic analysis with surface tension (see Eggers [21]). The
solvability condition (20) can be recovered from the equation (43),

with the same observation as above, with the term −
(XsZss − XssZs)

WeR0

instead of
(XsZss − XssZs)

We
P corresponding to full curvature.

A comparison between the above equations and our equations ob-
tained when the centreline is time-dependent (section 6) can also be
performed, with similar conclusions.
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Figure 1. The steady centreline (z, x) and the steady radius R0 vs. s in the inviscid
case obtained with the Newton method (dotted line) and with the Runge-Kutta
method (dashed line). The parameters are for this case We = 20, Rb = 1,
M = 400, ds = 0.1, Re = ∞.
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Figure 2. Top: centreline for various Re. The circle represents the container. Bottom:
R0 vs. s for various Re.
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Figure 3. Top: centreline for various Rb. Bottom: centreline for various We.
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number is close to one: Rb=1, We=1.2 (dashed line) and Rb=1, We=0.8 (solid line).
The star marks the exit orifice.
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other parameters are We = 20, Rb = 1, Re = 3000,δ = 0.01,K = 0.89,dt = 10−6 and
the final time tf = 0.697325.
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√
σaρ. The breakup length increases with viscosity.

Bottom:the breakup length vs. Rossby number. The breakup length increases with
the rotation rate.
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Figure 7. Top: the profiles for an inviscid jet (dashed line) and a viscous jet (solid
line). The parameters are We = 20, Rb = 1,δ = 0.01, Re = ∞ or Re = 1000.
Bottom: the radius R0 vs. s for an inviscid jet (dashed line) and a viscous jet (solid
line).The steady radius is also shown(dotted line).
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Rb=10. The other parameters are δ = 0.01, K = 0.8, Re = 3000, We = 20. Bottom:
the radius R0 against s. We observe that, down the jet, the wavelength of the
perturbation increases with the rotation rate.
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Figure 9. (a) The main drop/satellite droplet radius vs. K for
δ = 0.1, We = 10, Re = 3000, Rb = 2 (solid line), Rb = 1 (dashed line) and
Rb = 0.5 (dotted line). The satellite droplet radius increases with the rotation rate
and the main drop radius decreases. (b) The figure 9 from Partridge et al. [42]
showing drop size distributions for three rotational rates.
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Figure 10. The main drop/satellite droplet radius vs. K for
δ = 0.1, We = 100, Rb = 1, Re = 3000 (solid line) or Re = 300000 (dashed
line). The main drop radius increases with the viscosity and the satellite droplet
radius decreases.
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Figure 11. The main drop/satellite droplet radius vs. K for
δ = 0.1, Rb = 1, Re = 3000, We = 100 (solid line) or We = 20 (dashed
line). In this case, the satellite droplet radius seems to increase with the Weber
number and the main drop radius to decrease.
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Figure 12. Droplet radii vs. disturbance amplitude δ for
We = 100, Rb = 1.2, Re = 30000, K = 0.7 (dotted line) and
We = 50, Rb = 1, Re = 30000, K = 0.7 (solid line). The main droplet
radius and the satellite radius are shown in both cases.
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Figure 13. Experimental breakup length (circles) compared with the numerical
breakup length(solid line) against the Weber number. The magnitude of the dis-
turbance δ was chosen so that the theoretical and experimental results matched
exactly in the case We = 92: this gave δ = 0.0001 for our fitting parameter.
The experimental breakup length was calculated as a mean after repeating the
experiments 50 times, the scattering of data being of about 5%.
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Figure 14. The deviation X̂ and Ẑ of X0 and respectively Z0 plotted against s for
two different times t for δ = 0.5, We = 50, Rb = 1, Re = 600, K = 0.7. The solid
lines show X̂ and the dashed lines show Ẑ. The lines moving away from the central
axis for larger times. The times show times half-way to breakup (1) and the breakup
time (2).
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Figure 15. The deviation Ẑ of Z0 plotted against s at the same time for two different
viscosities for δ = 0.5, We = 50, Rb = 1, Re = 600, K = 0.7. The solid lines show Ẑ
for Re = 1500 and the dashed lines show Ẑ for Re = 600. The other parameters are
δ = 0.5, We = 50, Rb = 1, K = 0.7. The behaviour of X̂ is simillar.
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