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Abstract

This thesis is comprised of two parts, covering the modelling of the Cunningham map

and Brighton map in three-dimensions using Autodesk 3ds Max and the development

of a novel road extraction algorithm.

Extraction of roads from images is of major interest in image analysis. Road

extraction is possible because they have unique features that make them stand out

in an image. Once extracted, the road data can be represented in many forms, such

as in a Global Positioning Satellite (GPS) system for calculating lengths of roads.

The Cunningham map was drawn by William Cunningham in 1558; it shows

Norwich from the east side. The Brighton map was created in 1778, the map is colour

coded and unlike the Cunningham map it is drawn from a top down perspective.

While creating these virtual models, it was found that much of the modelling was

repetitive and predictable, for example the creation of buildings and roads. This

pattern allowed the development of a novel road extraction algorithm. By passing a

circle through the road network and recording its radius and position, it is capable of

finding the skeleton of the road network and the width of the roads within the network.

An advantage of this algorithm over others is that it only searches for major roads

and can ignore small errors within an image such as noise, without slowing down the

algorithm drastically.

From the testing completed on both synthetic and real-world cases, it is shown

that the proposed algorithm can extract a skeleton from an image. This skeleton can

also be imported into Autodesk 3ds Max for the re-creation of the road network in

three-dimensions.
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Chapter 1

Introduction

1.1 Background

In the past, many maps were drawn by hand. These maps hold vital information for

cultural heritage sites, such as locations of specific buildings or road layouts. This

information in turn can explain how the people lived within those areas.

The Cunningham map (Figure 4.1) was created by William Cunningham in 1558;

this map shows how Norwich appeared from his perspective, on top of a hill viewing

from the east.

The Brighton map (Figure 4.3) is a more recent map created by Thomas Budgen

in 1788, this map depicts the layout of Brighton at the time. This map differs from

the Cunningham map in that it is drawn in colour and is a top-down view showing

the building footprints.

Building three-dimensional models on computers was pioneered by General Motors

since they created the first modelling package in 1959, called DAC-1 [Kru94]. They

invited IBM to become a partner as at the time IBM was the leading computer

developer and the DAC-1 ran faster and had more flexibility on the IBM 7090. The

DAC-1 was limited to what it could accomplish because of the hardware it ran on.

For example, the IBM 7090 had 50,000 transistors [IBM10] while modern day central

processing units(CPU) have hundreds of millions of transistors. In addition, more

2



3

than a single CPU can coexist within a single computer. For instance, servers using

Intel Xeon processors can bring the transistor count to well over a billion.

1.2 Motivations and Research Objectives

Substantial research has been completed in developing techniques to extract buildings

and roads from two-dimensional images. There are two main sets of road extraction

algorithms, “Road tracing”, for instance, G. Vosselman and J. Knecht [VK95] and

“Dynamic programming”, for example, A. P. CAl Poz and G. M. DO Vale [PV03].

This thesis proposes a new type of algorithm of the “Road tracing” type. The

proposed algorithm extracts road geometry from images or hand-drawn maps. Unlike

previous techniques, this algorithm is based on the principle that if there is a two-dimensional

tunnel and a circle is placed inside, if that circle touches two unique edges then the

centre of the circle is at the mid-point between the two opposite tunnel walls.

The proposed algorithm has two main advantages over current road extraction

algorithms. Firstly it can record width at every point within each section of road

accurately. Secondly it is able to ignore sections of the map that do not fit the

specification for a road. For instance, when all road paths are greater than 40 pixels,

but a path is found with just 2 pixels, in this case the 2 pixel wide road would be

ignored.

1.3 Problem Definition in the Cunningham and

Brighton Maps

Modelling within Autodesk 3D studio Max (3ds Max) is an intuitive way to create

a virtual environment. Using the tools available within the program it is possible to

create any models, this is why it was used for the modelling of both the Cunningham

and the Brighton maps.
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The Cunningham map model is a joint collaboration between the Urban Modelling

Group (UMG) and Professor Carole Rawcliffe (History Department, University of

East Anglia). There are many problems involved when developing a virtual model

with limited information, for example, how the buildings appeared on the reverse of

what W. Cunningham drew on the map (Figure 4.1), as there is only one map from

his one perspective.

The aims of the Cunningham map model, is to show audiences how the city

appeared in 1558 from W. Cunningham’s perspective. Using the specifications given

by Professor C. Rawcliffe, a single video should be rendered fly over the city with a

pan around the St Andrews hall. As well as the video the 3ds Max file containing

the entire scene needs to be provided, so that if there are any future improvements

or implementations it can be done without remaking the entire model.

The Brighton map model, although based on a more modern map with more

defined footprints for the buildings and roads, has its own set of unique problems.

These problems include how the buildings are built within the map - none of them

are uniform or similar to each other in any way - this means that each building has to

be modelled bespoke for each footprint. A more fundamental problem is that within

the map there is no way to find the heights of any of the buildings on the map.

The aim for the Brighton map is similar to the Cunningham map in that a video

is to be provided but only a pan around the virtual model is needed. The map is also

be used within the road extraction algorithm, so that manually modelled roads can

be tested against the algorithms results.

Within both maps it is clear that modelling the buildings will be easier than

modelling the roads, because, unlike the buildings, the roads appear to be everything

that is not either a building or grassland; this is especially true for the Cunningham

map model where it is unclear where some roads start and end because of buildings
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obstructing the view. Within the Brighton map it is not clear which types of roads are

used, because obviously larger roads are used to accommodate vehicles while smaller

alleys cannot, both of these roads would appear very different.

1.4 Problem Definition in the Road Extraction

Algorithm

There are many ways to model real-life objects in virtual environments. For example,

the simplest way, is to use a three-dimensional modelling package, such as Autodesk

3D studio Max (3ds Max) which supports the creation of any virtual object. Procedural

modelling is a method for creating a virtual model, with little or no interaction

with the operator. The advantage of procedural modelling is that it speeds up the

process of creating large complex scenes, such as cites. Using procedural modelling

algorithms, such as that developed by R. G. Laycock et al. [LD03a], it would be

possible to model a large city many times faster than using a traditional three-dimensional

modelling package.

Being able to extract accurate road geometry from two-dimensional sources, such

as scanned images, photographs and diagrams quickly, has been the goal of many

researchers such as S. O. Elberink and G. Vozzelman [EV07]. Having the data

represented as a set of Cartesian coordinates allows the road network to be separated

from the image. The data can then be imported into a modelling package, such as 3ds

Max, where the data can be used to create a three-dimensional road network within

a virtual environment.

Current algorithms for road tracing are based on a two step principle, segmentation

of the road from a map and then thinning of the road. Thinning algorithms developed

so far can be classified into two main types, sequential and parallel algorithms. All

thinning algorithms work by removing all non-critical pixels. A critical pixel is one
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that lies on the medial axis of the road network.

Parallel algorithms calculate the position of all non-critical pixels and then remove

them all at once. Sequential algorithms calculate the boundary pixels while removing

non-critical pixels. Although research has gone into removing non-critical pixels in

groups to speed up the process [SES95], removing non-critical pixels individually

remains a computationally expensive process, because the algorithm has to be recursive.

This thesis proposes a new algorithm which instead of using a thinning algorithm to

obtain the skeleton, passes a dynamic circle through the road network to find the

skeleton of the road network.



Chapter 2

Cultural Heritage and Virtual
Reconstruction

2.1 Abstract

The use of Virtual Reality by museums such as the Louvre in France allows prospective

visitors and scholars to view their exhibits without actually going there. The Louvre’s

website attracted an audience of nearly six million visitors between 2002 and 2004.

This is nearly the number of visitors the actual museum attracted during the same

period [Lou10]. With the development of modern technology and increasing number

of people with high speed internet, it can only be assumed that these numbers are

now substantially higher than they were back then.

With Virtual Reality becoming ever more popular, with uses ranging from museums

like the Louvre to video games, it is apparent that the immersion in a virtual world is

the future. Cultural heritage sites will only last as long as we protect them, but some

sites like ancient Rome are already gone. Using existing modelling techniques, it is

possible to recreate such sites as virtual models. These models can be used to show

audiences what the cultural heritage sites looked like, but also to test existing and

new theories about them. For example, B. Frischer [Fri10] describes the possibility

of using a virtual model to simulate visitors entering the “Trajan Forum” in ancient

7
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Rome.

2.2 Applications for virtual heritage sites

2.2.1 Dudley Castle

Being at the forefront of technology, Colin Johnson [Joh10a] developed a virtual tour

system that allowed visitors to interact with a three-dimensional reconstruction of

Dudley Castle as it was in the year 1550. This system was launched in 1994, at the

visitor’s centre of Dudley Castle in England, with the first user being H.M. the Queen

of England [Joh10b].

2.2.2 Rome Reborn

Rome Reborn is run primarily by the University of Virginia’s Institute for Advanced

Technology in the Humanities (IATH) [Vir10b]. Since 1997, IATH has been working

towards the creation of a high quality digital model of Rome as it appeared in 320

A.D, which is close to the climax in the development of the city, in terms of its

population [GFS+05]. Their secondary goal is to create the cyber-infrastructure

needed for updating, correcting and augmenting the model. This involves knowledge

about how the city was reconstructed digitally, such as bridges, walls and streets.

Sources of archaeological information or speculative reasoning are made available to

the public when necessary. Beyond its primary functions, the model can be used for

teaching the general public or students about how ancient Rome looked.

In the latest iteration, version 2.0 [Vir10c], Procedural and Mental Images were

invited to join the Rome Reborn project. Rome Reborn 2.0 further develops the

quality of the virtual model, by using procedural techniques to create features, such

as using geometry to model windows and doors. Previous versions used textures to

show position of windows and doors. Using Mental Image’s RealityServer platform
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Figure 2.1: Shows a render from the RealityServer, of the Rome Reborn 2.0 model
(Image provided by IATH).

[Ima10c], it is possible for users to view the model on the internet, unlike previous

versions, where the model needed to be on their workstation. Although demonstrated

[Vir10d], it has not been implemented for general public use, Figure 2.1 shows the

quality of the images produced from RealityServer’s solution.

With the collaboration of Google [Vir10a] in 2008, the model was imported into

the Google Earth platform, as shown in Figure 2.2. Using Google Earth allows anyone

with access to the Google Earth application to view the Rome Reborn model in three

dimensions. The buildings within the city are of variable quality, from high quality

models for larger models like the Colosseum, to low polygon models for the houses.

The buildings have been textured on the inside as well as the outside; this goes to

show the quality of the model and the time taken to create it.

2.2.3 Treasures of King Tutankhamum

Heritage Key [Key10a] allows users to view cultural heritage sites, such as the treasures

of King Tutankhamun. This site is built by modelling each item using a manual
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Figure 2.2: Illustrates how the Rome Reborn model can be viewed using the Google
Earth application. The view is of the Colosseum.

modelling package [Key10b], then using an open source Application Program Interface

(API) called OpenSimulator [Ope10] to create the virtual environment, so that it can

be accessed by anyone. Using OpenSimulator is not as user-friendly as other solutions,

such as Google Earth, because before the user can view the cultural heritage sites,

they need to download specialist software to view it; although users have to download

Google Earth, Google’s platform is widely used and well known unlike OpenSimulator.

2.3 Manual Modelling

2.3.1 Manual modelling packages

Modelling packages have come a long way since General Motors invented DAC-1.

Current modelling packages such as Autodesk 3D Studio Max 2010 (3ds Max) [Aut10a]

and Autodesk Maya 2010 (Maya) [Aut10b] contain features that make modelling fast

and easy, such as intuitive design for modelling. Although created by the same
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company, 3ds Max and Maya are designed for two different types of modelling.

3ds Max is an excellent program for creating virtual environments such as cities,

because of the outstanding features it offers to the graphics designer . For instance, the

material library contains a special set of materials called “architectural and design”.

These materials are programmed shaders that allow for accurate representation of

surfaces such as copper or masonry, when combined with the Mental Ray rendering

engine. Using these materials means it is easier to represent a more realistic scene,

because the materials react correctly to light. 3ds Max offers features for speeding

up the creation of virtual environments. For example, the “Day light” system can

accurately calculate the colour and intensity of sunlight when given a date and

location.

Although Maya has similarities to 3ds Max, it offers more features geared towards

the creation of dynamic models, such as characters and non-uniform environments like

a jungle. Special effect groups use Maya instead of 3ds Max when working on movies

such as Avatar [Aut10c] and Monsters Vs. Aliens [Ani10]. One reason why special

effect artists working on films prefer Maya to 3ds Max is because of the animation

suite that comes with Maya.

While both programs can accomplish the same tasks, using 3ds Max to model a

city would be easier than using Maya but, to model an animal, Maya would be better

suited. An open source modelling package called Blender [ble10] was developed as

an alternative to what Autodesk has to offer. Although Blender is not as popular as

Autodesk’s offerings, it is still a viable alternative to professionals. For example,

ProMotion’s studio created a series of short animations called Kajimba using it

[Stu10].

The reason for creating virtual models of an environment instead of building

physical models is the greater flexibility offered by virtual models. For example, if
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Figure 2.3: a) Illustration of a scene rendered using Maxwell. (b) The same scene
rendered using Mental ray. (c) The same scene rendered using Scanline.

a model of a city needs to be passed to another person to work on: if the model is

virtual it can be sent by email, this would not be possible for a scaled physical replica

model of the city.

Once a virtual model has been created it is possible for the model to be imported

into another modelling package. This is possible because mainstream modelling

packages, such as 3ds Max and Maya, can save the geometry of a scene in the “.3ds”

format which can be read by all modelling packages.

2.3.2 Rendering engines

A rendering engine can be defined as a system used to calculate the effects of light

within the scene. This includes lighting effects such as reflections, refractions and

caustics. There are many types of rendering engines in existence. For example,

Mental Ray [Ima10a], Vray [Sof10], Maxwell [S.L10] and Brazil [Spl10]. All of these

rendering engines can be grouped into three different types: unbiased, biased and

hybrid.

Unbiased rendering engines initially start off with more noise within the image

but generally produce more realistic renders. For example the rendering equation
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developed by J.T. Kajiya [Kaj86]. Unbiased algorithms work produce better results

the more iterations of the algorithm can complete this is because more light rays

are traced back to the camera, leading to more of the initial noise is removed. This

means that the longer a single image is left to render using an unbiased algorithm,

the clearer the resulting image. Having to wait for all the pixels in the image to

be filled in by random ray tracing means that the rendering of a single image using

unbiased rendering engines such as Maxwell can take up to 40 minutes for a small

image. This is especially true if we set up a scene where a light source and camera are

separated by an opaque screen with only a single hole wide enough for one photon to

pass though. Such a scene would take a very long time to render using an unbiased

rendering engine.

Biased rendering engines represent light by using approximation algorithms, Using

approximations of light can produce artefacts when unexpected situations occur

within the scene. For example, where both edges of the wall overlap, light can leak

out. Biased rendering engines can render images at a much faster speed than unbiased

rendering engines, because they do not try to calculate the exact paths that light

beams would take. Using a biased rendering engine, such as the Default Scanline or

standard Ray Tracing rendering provided by 3ds Max, allows the same scene to be

rendered in 7 seconds (Scanline) compared to 40 minutes on an unbiased rendering

engine. Although faster, the results do not look as impressive when compared with

other renders 2.3(b).

Hybrid rendering engines like Mental Ray, take the best from both biased and

unbiased designs. They incorporate unbiased algorithms such as the one proposed

by J.T. Kajiya [Kaj86]and to speed up the process, they use other algorithms such

as final gather (FG) or global illumination (GI). Using techniques like these can

decrease the rendering time of a scene, while keeping the lighting effects realistic.
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The main problem with using a hybrid engine is that they must be set up correctly

to be effective. If set up incorrectly, they can take longer or the rendering engine can

even crash in extreme cases. When using the correct settings, it is possible to render

the same test scene in 7 minutes for the first frame, and then subsequent frames are

rendered much faster at 10 seconds per frame. The long render time for the first frame

is due to the calculation of the FG and GI maps which can be re-used in subsequent

frames. Mental Ray produces high quality renders while keeping the render times

reasonable, as shown in Figure 2.3(b).



Chapter 3

Procedural Modelling techniques

3.1 Introduction

A procedural modelling algorithm is a form of automatic modelling using a set of

predefined rules. Many procedural modelling packages are now available, for example

CityEngine and CityScape both come with comprehensive tools for creating urban

environments. Using these programs it is possible to drastically cut down the amount

of manual modelling that needs to be done. For instance, Figure 3.1 shows an entire

city created in CityEngine, consisting of over 24,000 buildings; creating such a scene

manually would have been a colossal task taking weeks, instead of minutes.

There are limitations to what a procedural modelling algorithm can do, because

each algorithm is designed to handle a single aspect of procedural modelling, so cases

that fall outside the scope of these algorithms will fail. A good example would be key

buildings that define a city, such as the London Eye and Big Ben, in London, these

buildings would have to be created using manual modelling techniques, so that they

can be placed within the city generated by procedural modelling.

15
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Figure 3.1: Shows a screen dump from CityEngine. The model consists of 24,124
buildings and an extensive road network.

3.2 Automatic / Semi-Automatic Modelling

3.2.1 Procedural Generation of Cities

Using aerial photography as the only source of input can lead to problems for procedural

algorithms. For example, the heights of individual buildings are unknown. Research

conducted by T. K. Javzandulam et al. [JL07] shows how the heights of a building can

be extracted from their shadows when using an aerial photograph. If the geometry of

the roof is unknown, then it would be modelled with a flat roof, but this is not true

for the majority of buildings. Techniques researched by R. G. Laycock and A. M.

Day [LD03a] use a straight skeleton of the building’s footprint to recreate the roof,

this allows unknown roof geometry to be calculated.

Having more information about the site to be modelled means fewer unknown

variables have to be estimated or calculated from the image. Using a combination of

a map based on the footprints of the buildings in Koblenz and a height map for the
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buildings, R. G. Laycock and A. M. Day [LD03b] developed a technique to extract the

buildings in three-dimensions. Firstly, each building footprint on the map was drawn

with a single dot in the middle to represent a building, using these as seeds the areas

where flood filled in and their two-dimensional polygons extracted. Secondly using

the heights from the height map, the two-dimensional polygons were extruded into

three-dimensional polygons representing the buildings. In the final stage, a generic

set of textures was used to texture each side of the building. The result is a complete

set of buildings that can accurately represent the buildings on the Koblenz map.

Although much research has been conducted into procedural modelling, there is

still a large difference between models created using procedural modelling algorithms

and models created using manual modelling packages such as 3ds Max. The main

differences are caused either by failure of the algorithm, or insufficient quality of data

supplied to the algorithm. For instance, when modelling from an aerial photograph,

some features such as tall buildings or bridges can obstruct the view, leading to gaps

in the map that can be problematic. One example, is the resultant breaks in the

connectivity of a road network when a tall building obscures the view from where

the image was taken. Another problem with the procedural generation of cities is

that textures and models are reused many times over, giving the scene an artificial

appearance, because all objects seem too uniform, as can be seen in Figure 3.1.

3.2.2 Procedural.inc

Founded by P. Muller et al., Procedural.inc [Pro10a] developed CityEngine which is

capable of generating virtual cities procedurally. Although creating virtual environments

can be accomplished in more detail when using manual modelling packages such as

3ds Max, it requires more time to create the scene. CityEngine is already used

by major games developers, like Blizard and Square Enix for the creation of their
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virtual environments. Although CityEngine can only take three types of input data

[Geographical Information System (GIS), AutoCad (“.dfx” export format) and OpenStreetMap

data [Coa10]] for procedurally creating roads, it can export to many types of modelling

packages, such as 3ds Max or Maya. CityEngine is an excellent tool for speeding up

the development process of modelling cities, but with a high cost (entry price of $3450

[Pro10b]) and with the ability to only model urban environments, it is clearly targeted

at professionals needing to create large virtual cities. To expand up on the work done

by pioneers like P. Muller, others developed algorithms for extracting road data from

other sources such as satalite photography, this is discussed within the next Chapter.

3.3 Procedural Road Junction Extraction

There are two main approaches to road extraction: road tracing algorithms and

dynamic algorithms. Both will be explained in subsequent chapters.

3.3.1 Road Tracing Algorithm

G. Vosselman and J. Knecht [VK95] propose a typical road tracing algorithm. The

algorithm requires an initial section of the road network to be defined by the operator.

Once this section has been defined, the algorithm uses a single observation Kalman

filter to create the initial state of the road profile. From the state profile, it is possible

to predict the next section of road. Applying the Kalman filter recursively to update

the state of the road profile, the entire road network can be found. G. Vosselman

and J. Knecht made some assumptions about roads, which are more suited to aerial

photography, such assumptions [VK95] are incorrect when working with some maps

and hand drawn diagrams, for example:

• Roads are elongated (geometry)

• Roads have a maximum curvature (geometry)
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When using G. Vosselman and J. Knecht’s algorithm for road extraction, problems

can occur. For example, where the curvature of the road is greater than the predicted

value from the road profile, this would cause breaks in the connectivity of the road

network. J. Zhou et al. [ZBC05] developed their work further by using a particle

filtering system, which estimates the current profile and past profile states, this

is used to predict the next position to move towards. J. Zhou et al.’s algorithm

requires that an operator be present while the algorithm is running, this is because

human interaction is needed to select the correct particle filter when the current one

fails. Having the operator present while the algorithm is running would increase the

accuracy of the algorithm, but this makes the algorithm semi-automated, rather than

fully automatic like the original algorithm of G. Vosselman and J. Knecht.

The outcome of procedural modelling varies between algorithms and quality of

input data. Having a cleaner source of input data can increase the quality of the

outcome. For instance, using a flat bed scanner instead of a digital camera to take a

picture of a map would increase the quality of the input.

C. Zhang et al. [ZMB99] passed a grey scaled aerial photo through a histogram

to determine the approximate intensity values of the road. Once these ranges of

values are found, the roads could go through segmentation in order to be extracted.

Although segmentation extracts the roads from an image, it also extracts noise with

it, because anything with a colour intensity similar to the road is also extracted.

Every extracted object is then tested using a minimum ellipse along their longest

axis (see Figure 3.2), in this way it is possible to remove the smaller features within

the map. As roads are elongated, they would be preserved but smaller features such as

houses would be ignored. If the road network has gaps, C. Zhang et al. also created a

method to connect such roads to preserve the connectivity of the road network. After

connecting all parts of the network, the image is passed through a thinning algorithm
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Figure 3.2: Illustrates a set of objects with their minimum bounding ellipses along
the long axes.

to produce a skeleton of the road network.

3.3.2 Road Extraction using a Dynamic Programming

A dynamic programming approach like the one proposed by A. Gruen and H. Li

[GL97] uses a set of control points to define the skeleton, as shown in Figure 3.3 (a).

As only some of the control points are within the road network, each control point

scans perpendicularly to the vector of the line in a one-dimensional grid, to check

where the road is in relation to the centre of the road 3.3 (b). When a control point

is found to be outside the road, it is interpolated and moved within the threshold

boundaries, so it becomes closer to the centre of the road 3.3 (c). The algorithm then

iteratively repeats until all nodes are within threshold boundaries.

3.4 Mathematical morphology

These techniques are designed to change the geometry of the objects within the image

as explained in this book by J. Serra [Ser83], the sub-chapters of this thesis will discuss

ones relevant to road extraction.
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Figure 3.3: Diagram showing A. Gruen and H. Li’s approach using dynamic
programming.

3.4.1 Binary Dilation

This is a mathematical morphology technique which is designed to grow objects within

a binary image. A structured object is chosen such as a square or circle to grow the

object, then a point is searched for on the boundary of the object. The centre of

the structured object is moved to the boundary pixel, where it traverses around the

boundary edge until it reaches back to the beginning. When the structured object

stops moving, all the marked pixels become part of the object, as shown in Figure

3.4.

3.4.2 Binary Erosion

This can be seen as an opposite operation to the Binary dilation in that instead of

adding the pixels that have been marked it removes them. This is shown in Figure

3.4. Using a combination of dilation followed by erosion can leave the image the same

size, but smooth out any rough edges. For example Figure 3.5.

3.4.3 Skeletonization

There are two main types of algorithms that can produce a skeleton from an image,

they are called sequential and parallel skeletonization. A skeleton is the complete set

of critical pixels; a critical pixel is a pixel that is located either within the centre of
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Figure 3.4: Diagram showing how erosion and dilation affects the shape of the
origional shape, using a circle as the structured object.

Figure 3.5: Figure showing how an image can be dilated then eroded to remove noise.



23

the object or to preserve connectivity. Sequential algorithms remove one pixel at a

time, while calculating non-critical pixels within the image. Parallel algorithms work

in two stages, firstly by recording all non-critical pixels then in step two removing all

non-critical pixels.

Sequential algorithms are easier to implement as the most basic uses a 3x3 matrix,

which moves around the boundary of the object removing all pixels under the matrix.

While the boundary layer is removed recursively, if there exists only critical pixels in

a single iteration then the algorithm terminates.

Examples of parallel algorithms are those due to R. W. Hall [Hal89] and C. M.

Holt et al. [HSCP87]. Although C. M. Holt et al. developed an improved parallel

thinning algorithm that manages to cut down the number of iterations the algorithm

must complete, there is still a form of recursion until the skeleton is found. Single pass

algorithms such as the algorithms of C. Neusius and J. Olszewski [NO94] firstly label

all pixels within the object noting their distance from an edge. This initial pass forms

the preliminary skeleton; this skeleton is not deemed complete because connectivity

is not preserved. To improve connectivity, C. Neusius and J. Olszewski developed an

algorithm to join the sections of the skeleton to form a completely connected skeleton.



Chapter 4

Theory and Design for
Cunningham Map and the
Brighton Map

4.1 Introduction

This Chapter discuses the specification of both the Cunningham map and the Brighton

Map and the foreseeable problems with their implementations. The Cunningham map

is a hand-drawn map created in 1558 and showing how Norwich looked at that time,

while the Brighton map was created more like a modern map from a top down view

showing only the footprints of the houses and roads.

4.2 Cunningham Map Specification

The Cunningham map model was produced in collaboration with Professor Carole

Rawcliffe (School of Histroy, University of East Anglia). The main purpose of the

model is to provide the audience with a fly-through of the city according to the

view that W. Cunningham saw back in 1558. For the model to be able to meet this

objective, a set of specifications were established as follows:

• Represent the Cunningham map as accurately as possible.

24
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• Video of a fly-through from the view drawn by W. Cunningham in St. Andrew’s

Hall.

• Low polygon count (So that if needed it could be expanded on to work in real

time).

4.2.1 Cunningham Map Analysis

To be able to create an accurate virtual environment, accurate data for the site is

needed, for example photographs showing the scene from different perspectives or

data about the positions of buildings. The problem with the Cunningham map (see

Figure 4.1) is that there is only one perspective of the scene and that perspective

is from a hand-drawn source. This means that the virtual model is based on an

interpretation of W. Cunningham’s representation of Norwich. The problem of the

map being hand-drawn can be seen, for instance, by looking at the right-hand side of

the Figure 4.1, where sheep can be seen having the same size as a wall.

4.2.2 Cunningham Map Model Design

The virtual model will concentrate on recreating all the architectural features of the

Cunningham map such as buildings, churches and road network. This is because the

map drawn by W. Cunningham focuses mainly on these aspects.

To render a fly-through video of the Cunningham map, a virtual 3D model of

the drawn Cunningham map would have to be created to scale. Modelling of the

Cunningham map leads to problems such as the skewed height of walls that can be

seen in Figure 4.1, the walls would have to be much taller on the east side of the city

compared to the west, as the east side wall appears to be of the same height as the

west even though it is farther away. A decision was taken in order to keep the virtual

model realistic and features such as oddly skewed wall heights were made uniform.
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Figure 4.1: Presents the full Cunningham map.

The Cunningham map does not contain much information about the site. For

instance, the dimensions of houses and their colours within the Cunningham map.

The problem with a lack of detail led to the styles of the houses being taken from other

known historical buildings within the same time period; this method was approved

by Prof C. Rawcliffe.

The only accurate information within the Cunningham map is the position of

churches and the general shapes of buildings. Although some buildings look out of

proportion compared to real life, such as the cathedral which seems much larger than

it actually is in real life.

The Cunningham map only offers a single view of the site, a lot of detail cannot

be seen, for example features behind houses. Things that are missing from the map

need to be modelled by reference to other sources in order to keep the model realistic.

An example of where detail is missing can be seen in Figure 4.2. In this figure it is
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Figure 4.2: Shows the small road gaps within the Cunningham Map.

hard to see if the road ends or if it goes behind the houses.

4.2.3 Cunningham Map Modelling Approach

Creating the entire virtual environment in three-dimensions would take a long time

due to the high level of detail needed in the scene. 3ds Max was chosen as the

modelling package because of the excellent features it contains for modelling architectural

scenes. For the creation of textures, Adobe Photoshop CS3 (Photoshop) was chosen

for its comprehensive tools for image manipulation and editing.

4.3 Brighton Map Specification

The Brighton map model unlike the Cunningham map model does not need to show

the entire area of the map, because only a section of the map was requested. This cuts

down the development of the virtual model drastically, as unlike the Cunningham map

model each building has to be modelled individually owing to their irregular shapes.

The Brighton map follows similar specifications to those of the Cunningham map;

they are both low polygons and should represent the map as well as possible. A video

is shown flying around the virtual model, instead of flying over it, as shown by the

Cunningham map.
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Figure 4.3: Illustrates the entire Brighton map.

4.3.1 Brighton Map Analysis

The Brighton map (Figure 4.3) was created by Budgen in 1788: the map is drawn in

colour whereby yellow represents roads, blue represents buildings, green represents

fields and the pale orange colour represents gardens and open space. This map

has many similarities with the Cunningham map (Figure 4.1) in that both are of

residential areas and are historical maps. However the differences between the two

maps are also apparent, for example, the Brighton map is drawn in colour while the

Cunningham map is drawn in black and white.
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Figure 4.4: Illustrates the section of the Brighton map modelled.

The section of the map that is actually modelled is shown in Figure 4.4. This

section of map is a good representation of the entire map, in that it covers a large

area where roads, buildings and open space are included.

Towards the bottom right of Figure 4.4 there is a lot of noise. This is because

when the Brighton map was photographed, it was not completely flat so the creases

are clearly visible. Although this does not affect the modelling of the Brighton map

model it could affect the automatic road extraction on such a map, as shown in
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Chapter 5.5.

4.3.2 Brighton Map Model Design

As regards the design of the buildings it can be seen that the majority of them have

irregular shapes, which means that each building has to be bespoke for that single

building footprint. As there is no information as to the height of the buildings they

are approximated by reference images; this is explained in greater detail in Chapter

§5.5.

4.4 Lighting Design for the Cunningham Map and

the Brighton Map models

After creating the virtual model, it needs to be illuminated, 3ds Max by default

illuminates a scene using a global light source, which does not cast any shadows or

do anything else with the light. Such a solution is inadequate for illuminating a scene

that is supposed to be realistic.

Within 3ds Max there are two types of lights, called “Standard” and “Photometric”.

“Photometric” lights allow an accurate representation of light sources such as a “35

watt halogen” light blub, as shown in Figure 4.5. Using “Photometric” lights allow

the operator to easily set up realistic lighting. There are two types of “photometric”

lights, “Target light” and “Free light”, although they are basically the same type, one

contains a target while the other has no target point. “Standard” lights have three

different types, Spot light, Directional light and Omni light. Although they have

fewer functions, these are good enough for simple scenes. By using a combination of

these lights, it is possible to create any illumination required within a scene.

When creating a virtual model, there are two main factors that contribute to the

amount of time a scene takes to render, the complexity of the scene and number of
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Figure 4.5: Illustrates photometric lighting options.

light sources. If a single frame takes many hours to render, a video running at 30

frames per second (FPS) could take many days to render. This is why when creating

the virtual model it has to be designed to be illuminated with the smallest number

of light sources. Within the Cunningham map, there is only a single main source of

illumination, the sunlight. To recreate sunlight, a system is built into 3ds Max called

the “Day light” system, which when set to “Photometric”, can accurately recreate

the sunlight’s colour and intensity. Using the “Day light” system does not increase

the render time significantly because it only contains two light sources, the sun and

sky light.
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4.5 Rendering Design for Cunningham Map and

Brighton Map

Once a virtual environment has been created and its lighting set up, the next step is to

render the scene. 3ds Max has Mental Ray V3.5 built into it. Mental Ray was chosen

because it is fast to implement, provides good results and does not require additional

software to be installed. Although Mental Ray does not need special materials like

Vray or Maxwell, it does have a special set of materials called the “architectural

and design materials”, these materials have been optimised to represent metals, matt

surfaces and water.

Mental Ray incorporates many algorithms for advanced lighting, it also has programmable

shaders that can be added in the form of C or C++ code. Writing code for shaders

can be time-consuming. An alternative is to use existing shaders written by others,

which can be bought or downloaded freely at [Mat09].

GI is used to calculate the indirect illumination of a scene. Indirect illumination is

usually more important than direct lighting, because, without indirect illumination,

an object within a scene is either lit or not, causing very sharp shadows. Many GI

algorithms exist such as the one proposed by X. Granier [GD04].

FG is a method used by Mental Ray to create accurate renderings. It works by

tracing one ray from the camera onto the scene for every pixel within the output

image. When a ray reaches any geometry within the scene, it traces more rays from

that point called final gather rays, see Figure 4.6, these rays are traced out in all

directions away from the surface of the object. Once the final gather rays reach a

light source, using the distance of the ray and other variables it is possible to calculate

the intensity of the ray. Any light calculated from the final gather rays is added to

the direct illumination to form the total illumination. As can be seen, calculating FG

is a very time-consuming process, tracing numerous rays and finding intersections,
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Figure 4.6: Illustrates how the “final gather” feature works.

because of this Mental Ray lets the operator save the FG map. The FG map should

only be saved if the scene is static, because any movement in the scene would change

the effects of indirect illumination causing the FG map to be useless.

When enabling features such as GI and/or FG, the rendering time for a single

frame is increased, this is because of the extra computational power needed to calculate

such effects.

Photon mapping is an algorithm that is used for calculating the interaction of

light and objects within a scene. Developed by H. W. Jensen [Jen96], it is possible

for photon mapping to simulate refraction, diffuse reflection and caustic. Photon

mapping is a two-pass algorithm. The first pass is for emitting photons from the light

sources within the scene. After all photons have been emitted, the positions of the

intersections between the photons and objects are recorded. If a ray is reflected off

a diffuse surface, the direction of the reflected ray is calculated using the surfaces’

bidirectional reflectance distribution function (BRDF). Once the first pass is completed,

all intersections and related data are saved in a file called the photon map. In the
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second pass, rays are traced out for every pixel of the output image, these rays are

traced until they meet a surface. When a ray finds a surface, the radiance is calculated

in a three step procedure:

• 1: Gather all photons within a sphere “S”, let these nearest photons be called

“N”.

• 2: For each photon, divide the amount of flux (real world photons) that the

photons represent, by the volume of S and multiply it by the BRDF applied to

it within the first pass.

• 3: The sum of the results for each photon represents the total surface radiance.

After calculating this, the rendering equation [Kaj86] is used to calculate the light

leaving the intersection point. A caustic is a pattern that is focused on the surface of

a translucent object, where the original light path has been altered. Photon mapping

can recreate realistic caustics, by using the two pass method.

Rendering complex virtual environments consumes large amounts of resources. If

a single frame takes 30 minutes to render, a single second of video running at 30

FPS would take 15 hours to render. To reduce render times, Mental Ray supports

multithreading with near 100% scaleability [Ima10b]. To further decrease render

time Mental Ray also supports network rendering, where more than one computer

can work on a single rendering job. Larger jobs can be outsourced to others with

faster computers. Using companies with render farms such as “Rebus”[REB10], who

have 250 workstations available for network rendering, can greatly speed up render

times.



Chapter 5

Implementation of Cunningham
Map and Brighton Map

5.1 Introduction

The Cunningham map model was created for the UMG (Urban Modelling Group),

who specialise in the creation of three-dimensional virtual models from either two-dimensional

reference images or real world sites.

The specification for the Cunningham map model was that it needed to have a

low polygon count and look visually attractive, for use in a fly-pass render. The

Cunningham map model represents a whole city. As most of the buildings are

duplicates of themselves, the geometry of each house is similar, with small changes

in their X,Y,Z skews. To make the buildings more unique a large set of predefined

textures are applied to them. The roads within the Cunningham map can only be

described as all the areas where no building can be seen or grass because there are

no road edges defined.

After developing the Cunningham map model the Brighton map model was created.

The Brighton map was created by T. Budgen in 1788, so it looks more like a modern

day map compared with the Cunningham map. The main difference between the two

maps is that the Brighton map only offers a two-dimensional view from top-down while

35
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the Cunningham map offers a three-dimensional perspective view. Another difference

between the two is that the Brighton map is in colour while the Cunningham map is

drawn in black and white.

Unlike the Cunningham map model only a section of the Brighton map would be

modelled, this would follow the same specifications of the Cunningham map model, of

using low polygon models. Because the roads are defined better within the Brighton

map it is possible to create them more accurately.

5.2 Cunningham Map Preparation

There are three main problems when using photographs as textures within a virtual

model, they are lighting, perspective of image and lens distortion.

Lens distortion is apparent when a camera is used to take pictures of a standard

grid of lines as shown in Figure 5.1. To correct lens distortion, there are filters within

Photoshop to reverse the process.

As the image is two-dimensional, it contains no depth data. This can cause

problems if the surface within the image is not directly in front of the camera and is

perpendicular to the camera. To correct the perspective of the image, Photoshop has

a tool which uses the four corners of the map to realign and skew the image correctly.

Lighting is much harder to correct using post-processing techniques. When taking

a photograph of a surface to be used as texture, the best source of lighting would be

a uniform diffuse light source, such as a diffused flash. Although hard to accomplish

when using a point shoot camera, a modern Digital Single-Lens Reflex (DSLR) camera

can have an adjustable flash.

The only texture taken from the real life source was of the original Cunningham

map, as illustrated in Figure 4.1. This image was provided by the UMG.
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Figure 5.1: Illustrates the effects of lens distortion. (a) Barrel distortion. (b) Pin
cushion distortion.

5.3 Modelling Cunningham Map

5.3.1 House Modelling

Each house consists of nine polygons, representing a cube with a prism merged on

top, this compound object forms the basic house as shown in Figure 5.2. Using these

basic houses, additional features can be added to the house such as chimneys or loft

extensions with windows, these are the two predominant features of the houses within

the Cunningham maps. To make the geometry of the houses more unique, each house

is skewed slightly differently to represent the fact that houses built within this time

period where initially created straight but changed overtime.

A generic set of ten master houses were created, these houses could accommodate

the majority of houses within the Cunningham map. These master houses are unique

to each other in that their geometries or textures are different. Once these master

houses were placed, all the houses were skewed individually to further increase the

diversity of the houses. The houses not covered by the generic set were all created as

bespoke houses in each situation.
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Figure 5.2: Illustrates the simple use of polygons within each building. Note the
irregularities in the roof shapes, to make the houses more unique.

5.3.2 Modelling of Landmark buildings

The Cathedral is one of the main buildings within the Cunningham map and as the

UMG already has a model of the cathedral it was requested for this project, but

their model was found to have a very high polygon count of over 280,000 polygons as

shown in Figure 5.3 (a). After heavy editing of the model’s geometry to delete hidden

polygons and simplify the model, its polygon count was reduced to 85,000 polygons

as shown in Figure 5.3 (b).

The cathedral is one of four models which if left unedited would have increased

the complexity of the scene drastically, the other three models being, St Andrew’s

Hall, the Cross building and the Castle, these models like the cathedral were edited

to have low polygon counts. All of these models had to have the complexity of their

geometry reduced. After reducing the complexity of these models, they could fit

within the virtual environment without affecting the overall polygon count as much

as they did when unaltered.
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Figure 5.3: Diagram showing the high polygon cathedral (a) and the modified low
polygon version (b). To remove unnecessary polygons, any internal polygons that
could not be seen from the outside were removed first. After this any areas of high
details, for instance, the roof was simplified then any geometry that could be replaced
with textures was done.
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Figure 5.4: Diagram comparing the difference between the three-dimensional model
of the gate house and the original Cunningham map gate house.

5.3.3 Modelling Walls

To create the walls, the dimensions of the walls must be measured, but because the

whole image is warped and the height of the wall is uniform throughout the image,

which would mean that the wall would have to be substantially taller at the east side

than the west. To compensate for this effect, the Cunningham map was only used

as the basis of where the walls should be placed, the height of the outer wall was

kept constant so that the model would look realistic from all perspectives. The wall

is created by first creating a single section of wall which is a cube, this single section

of wall is then extruded to create the next section and then that section is extruded

to create the next, repeating this process until the whole wall is created. By this

method, the number of polygons used to create each section of wall can be monitored

and each wall section can have more detail when the wall is curved and less detail

when the wall is straight.

Other more unique sections of wall such as keeps and gate buildings require

more complex modelling, these buildings were created to look as they did within

the Cunningham map, as shown in Figure 5.4.
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5.3.4 Modelling Trees

A lot of research has gone into the modelling of trees using L-systems, but for the

purposes of this model only low polygon trees are required so a much simpler solution

was needed to keep the polygon count low.

Previous work on this problem was conducted prior to taking on of this project,

with the outcome being that it could be possible to model low polygon trees using

basic shapes. The solution is to use two ellipsoids with one inside the other, and

a cylinder for the tree trunk as illustrated in Figure 5.5, to represent the branches

and leaves of the tree. The two ellipsoids are textured using a texture created in

Photoshop, then this texture is used in conjunction with an opacity map so that

parts of the ellipsoid seem to become transparent. Using this low polygon model

which consists of 856 polygons, it is possible to create entire forests at a relatively

low polygon count unlike a tree system such as the one built into 3ds Max which

would use more than ten thousand polygons per tree.

A low polygon tree was needed because on the far side of the Cunningham map

there is a forest as shown in Figure 4.1. Using a high polygon model to represent

the trees would have been a waste of polygons but using a static back drop would

have meant that the model could only be viewed from a single perspective. For these

reasons, the entire forest was created using low polygon count trees. Much like the

set of master houses used to create all the houses within the virtual environment, a

set of master trees was used, with different heights and sizes. As only the dimensions

of the tree were changed, not their complexity, the polygon count remains the same

for both large and small trees.
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Figure 5.5: Diagram showing use of polygons within a single tree.

Figure 5.6: Diagram showing how the pull modifier can create simple hills.

5.3.5 Ground Modelling

The ground model is created to represent the ground within the Cunningham map.

This model has to represent the texture of the ground as well as the hills shown in the

Cunningham map. There are three main sources of height deformation in the map,

these are located in the bottom right corner where the sheep are, where the castle is

and in the top left corner where there are two windmills (see Figure 4.1).

To create these height deformations, the “Paint Deform” tool built into 3ds Max

was used, this allows for the pushing or pulling of vertices to create smooth mountain

ranges quickly and effectively, see Figure 5.6.
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5.3.6 River Modelling

Within the Cunningham map, there is a river that runs from the bottom left of the

image in an “S” pattern towards the top right corner. As well as a river, there are

another two sources of water, the moat that runs around the outside of the city and

a smaller moat that runs around the castle. As the sources of water are not viewed

close up and there is no detail about how deep they are, they are modelled using a

spline which has been extruded into a two-dimensional polygon. After creating the

river geometry, they are textured using a texture that replicates the surface of water,

this is accomplished using the built-in materials library within 3ds Max.

5.3.7 Road Modelling

A major problem was found when creating the road network within the Cunningham

map. This is because, unlike other features within the image, the roads have no

defined size, the road network seems to be the area where there is an absence of a

building or wall or farm. Another problem with the road network is that parts of it

are hidden from view when the Cunningham map was created as illustrated in Figure

4.2. After consulting with C. Rawcliff, a historian, it was determined that the main

roads would be paved with a rubbish gutter running down the middle, but smaller

roads would just be dirt tracks. Although this was not shown in the Cunningham

map, it was modelled in this way.

5.4 Texturing Cunningham Map

5.4.1 House Texturing

As the specification of the virtual environment stated that it should have a low

polygon count, most of the detail in the model would have to be created with textures.

Textures being images also use up memory so the smaller the texture the faster the
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render time will be, but using small textures that are tessellated across a large area

looks very unrealistic. When using larger textures, more memory is required, also

the time taken to render the scene is increased although not as much as with an

increase in geometry. The textures used for the houses have to be of sufficiently high

resolution as a single texture must be stretched across the whole face of each house,

this image cannot be tessellated because otherwise two doors end up on the same

side of the house. The actual resolution of textures used range from 120 x 130 pixels,

to 1800 x 1300 pixels. Using large textures and with each house requiring four large

textures, and four small textures with the bottom plane left un-textured, each house

has a large memory footprint when rendering. To compensate for this increase in

memory, rendering of the virtual environment is done using an Intel Xeon quad core

with 8 GB of RAM, although this scene could be rendered on a much more modest

computer, using a faster computer meant that videos could be rendered in a matter

of hours.

The textures are created in Photoshop, then saved as bitmap images to be used

in 3ds Max. The textures are applied to the model by either using “Face Definition”

or “UVW mapping”. “Face Definition” is when each face is assigned a value from

“1” to “n”, these values represent the texture ID linked to that face. For “UVW

mapping”, the texture is first mapped onto an intermediate object, then this object

is mapped onto the object that is to be textured, using this method it is possible to

create seamlessly textured surfaces.

To create normal maps, a third party program called CrazyBump [Rya10] is

used, this tool allows for real-time manipulation and creation of other maps such

as displacement, occlusion, specular and diffuse.

While a normal map would normally contain RGB channels, displacement, occlusion

and specular maps are all monochrome, this is because they are a measure of intensity
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per pixel of the texture instead of vector per pixel of texture as in the case of a normal

map.

5.4.2 Textures of Other Buildings

The texturing of the walls is also done using “UVW mapping”, using a stone texture

similar to the church texture. Using this simple method, it is possible to keep the

complexity of the model to a minimum, so that if the model needs to be changed

later on by another user, it can be done without learning many techniques.

5.4.3 Tree Texturing

The leaves of the tree are simulated using an opacity map on a green/brown texture,

the opacity map allows the camera to see though some parts of the ellipsoid but not

others and, since the two ellipsoids overlap each other, they form what look like leaves

from a distance, see Figure 5.7.

5.4.4 Ground Texturing and Other Figures

The ground was textured using a grass texture that was tessellated across the whole

ground, then the roads were textured with paved stones if it was a main road,

otherwise they were textured using a brown mud texture to represent a dirt track

road.

5.5 Modelling the Brighton Map

The Brighton map has a different set of problems compared with the Cunningham

map, the main one being that there is no accurate reference to the heights of the

buildings or what the buildings look like in this area as the map only shows the

footprints of the buildings. To assess the heights of the buildings measurements were

taken from images such as those shown in Figure 5.9. If we estimate the average height
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Figure 5.7: Diagram showing how texturing can be used to create a tree that is
acceptable when viewed at a great distance.

for a tall door is 250.00 cm, it is possible to calculate the approximate height of the

building as 1632.00 cm; although it is not possible accurately to relate the dimensions

of the heights acquired from the image and the dimensions of the footprint, it gives

a rough guide to how tall the buildings should appear.

To model the houses a simple block modelling technique was used because the

majority of the buildings within the map are irregular shapes with convex as well as

concave parts. Using this method gives a fast and accurate result. Starting with a

cube, extra sections are extruded out and then the vertices moved onto the perimeter

of the footprint, as shown in Figure 5.8. This is repeated until the whole building is

created. The height is easily modified by simply moving the top faces of the building.

This technique is different from the one used in the Cunningham map in that

each building has to be created specifically for that purpose owing to its irregular

shape. This meant that only a section of the map was modelled unlike the entire
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Figure 5.8: Screen dump illustrating how a building is created using box modelling.

Cunningham map.

5.6 Texturing the Brighton Map

Due to insufficient data on the appearance of buildings on the Brighton map, several

scanned images were requested from Philip Brown (UEA Researcher). These scanned

documents show buildings of a similar time period, and some of the images such as

those in Figure 5.9 are good enough to be used as textures within the Brighton map

model.

Other scanned images show generally how uniform the buildings appear as shown

in the appendix A.1. This means that the buildings were probably constructed at the
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Figure 5.9: Screen dump illustrating how a building is created using box modelling.
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Figure 5.10: Screen dump illustrating how a building is created using box modelling.

same time and therefore were painted in similar colours to each other, a supposition

further supported by a photo as shown in the Figure A.2.

Applying the textures to the buildings requires a different approach from that in

the Cunningham map because each face within the model is of different size, which

causes problems if each face is assigned a single texture because it could cause the

texture to appear squashed on one face and elongated on another, producing an

unrealistic appearance. The way in which the face of the polygon was created also

matters when UVW mapping is used, as this can cause problems as shown in Figure

5.10. To solve these problems a different UVW setting is used, UVW mapping by

box, which uses the texture first to map onto an intermediate object, in this case

a cube, then mapping this cube onto the surface of the model. This approach is

perfect for texturing a model which contains many flat sides which lie perpendicular

or parallel to each other. The results of UVW mapping by box as compared with

UVW mapping by face are shown in Figure 5.10

The modelling of the roads was accomplished in a similar way to how they

were created in the Cunningham map. This gives a two-dimensional road network;
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Figure 5.11: Screen dump showing how the texture errors appear when UVW mapping
is applied per face, on a joined road network modelled by hand within 3ds max.

creating a three-dimensional road network would require the box modelling method

as described in Section §5.5. Instead of modelling a building for a road network,

doing this would take a very long time because all the vertices of the road have to

be positioned by hand. Although using a process like this where the entire road

network is joined together limits how the roads can be textured, because polygon

orientation causes textures to be rotated 90 degrees in some sections compared with

others, see Figure 5.11. Using an automated approach for extracting and modelling

the roads would speed up the modelling process, and this is discussed in Chapter §3

and implemented in Chapter §8.
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5.7 Lighting Cunningham Map and Brighton Map

5.7.1 Day Light Illumination

The “Day light” system is based on two light sources, the sun and the sky. Using

this system offers many advantages over setting up the lights manually, for example

there is a built-in system that allows the user to specify a time and location so that

the “Day light” system automatically recreates the lighting effects, by positioning the

sun in the correct place as well as the colour of the sun and sky.

5.7.2 Omni Light illumination

Omni lights are needed within the scene because, once a light source is introduced

into the scene, the standard global illumination is turned off. To get an even spread

of light on all surfaces, the use of four Omni lights positioned at various heights at

the four corners of the scene, with their decay rates set to infinity and set to cast

no shadows, give a uniform global illumination to the model, much like how a scene

is lit when the sky is cloudy. Using Omni lights like this is a fast and effective way

of increasing the realism within a scene, because calculating the exact paths of light

using an unbiased rendering algorithm would only increase the time taken to render

the scene, also the models are not of very high detail so the result would be similar

to using Omni lights.

5.7.3 Shadows

There are many ways to calculate shadows within 3ds Max, the method chosen for

this virtual environment is called ray tracing. Based on the ray tracing rendering

technique, it calculates the shadows by tracing rays. Although this takes longer

than other methods, it can produce accurate shadows and this is important so as to

increase the realism of the scene without greatly affecting the complexity of the scene.
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Figure 5.12: Illustration of the difference between using a daylight system with and
without FG and GI used and not. (a) Scene rendered without FG or GI (b) Scene
rendered using FG and GI.

A problem when using ray tracing shadows is that the shadows it produces although

accurate in shape are unrealistic in tone. As shown in Figure 5.12(a), ray tracing

shadows are of pure black, this is an unrealistic representation of how shadows look

in real life, because there is illumination from other sources that needs to be taken

into account. To calculate the other sources, both FG and GI are used so that the

shadows are more realistic as they are no longer pure black, as illustrated in Figure

5.12(b).



Chapter 6

Results of the Cunningham and
Brighton Maps

6.1 Cunningham Map Renders

With the entire Cunningham map model and lighting set up, a single image at a

resolution of 640 X 480 takes 50 seconds to render on an Intel Quad Core 2.4 GHz

with 6 GB of RAM, this is a reasonable amount of time as this is a worst case situation

where the camera can see the entire model. This worst case situation render is shown

in figure 6.1.

As shown in this top-down render, all the features of the Cunningham map have

been recreated in three dimensions. Figure 6.2 shows how the model fits on top of

the original Cunningham map. Within this render it can be seen that the position

of the models do not fit exactly with their positions on the Cunningham map, this

is because of various factors. For instance, if the model were recreated exactly as

the map looks, then houses would appear on top of each other due to the skewed

perspective of the original Cunningham map.

To render the final video, a series of bitmap images are rendered first, because

a video is really just a sequence of images shown at a speed greater than 30 FPS.

The main reason for rendering out bitmap sequences instead of the video file straight

53
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Figure 6.1: Render showing the entire Cunningham map virtual model, from a top
down view.

Figure 6.2: Render showing the entire Cunningham map virtual model, super imposed
onto the original Cunningham Map.
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away, is that 3ds Max tends to crash frequently when rendering large scenes in the

final gather. The most common crash is when Mental Ray runs out of memory, using

bitmaps the render sequence can continue from where it crashed while rendering a

video file would mean restarting again from the beginning. The final video lasts 1

minute and 25 seconds, it comprises three separate cameras:

1. Initial splash screen and fading from map to virtual model.

2. Fly across Cunningham map.

3. Around St. Andrews building in a 360 degree arc.

The total number of frames needed for this video is 2251, because the first 10

seconds is a single frame with text. With close-up renders of St. Andrews taking 43

seconds, while long distance renders take 50 seconds, using a single computer it took

over 29 hours to render all the bitmaps. The sequence of bitmap images was stitched

together using RadVideo [RAD10], this program allows for the stitching of images

into a video sequence and the compression of such files. Compression is needed as the

uncompressed video size is well over 2.7 GB. Using compression options available in

RadVideo, it is possible to compress it down to 22.5 MB, although there is a drop in

the quality of the video compared with the uncompressed video which is really just

playing all the bitmap images in sequence. Although it is possible to compress the

file to an even smaller file size, doing this would dramatically reduce the quality of

the video.

As can be seen in a comparison of the two images in Figure 6.3 (a) and (b)

there is a slight difference between the compressed screen dump of the video and

the uncompressed bitmap image, the main difference is the washout of colours and

the image appears to be more blurred even at the native resolution of the video.

Although slightly blurred, the video still works really well in showing the geometry
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Figure 6.3: (a) Shows how the original bitmap render looks like (note how sharp
the image appears). (b) Shows how the same scene appears within the video after
compression.
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Figure 6.4: Illustrates how the text appears during the initial 10 seconds of the video.

of the houses, their colour and also the position of each building. Using the mixture

of low polygon houses and the reduced polygon version of the important buildings

like St. Andrews, it creates a scene where these buildings can blend in, as shown in

Figure 6.3 (a) where in this render both St. Andrews and the cathedral model can

be seen.

As three cameras are used, there are three short video sections that have to be

laced together to form the final video. To do this, Windows movie maker was used,

using this also allows for the text in the splash screen to be added easily as shown in

Figure 6.4.

6.2 Brighton Map Renders

Like the Cunningham map model the Brighton map model was rendered by the same

settings, and on the same computer, but since the scene is much less complex it only

takes five seconds per frame in the worst case, as shown in Figure 6.5.

Comparing the two pictures, one given by the automatic road extraction and the

other not, we can see in Figure 6.6, the geometry in the manual modelled roads is
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Figure 6.5: Showing the entire virtual model of Brighton

more complete as there are gaps within the automatically created ones.

The time taken to create the manually extracted roads was 30 minutes, and

running the automatic road extraction algorithm (Chapter §8) and fixing any polygon

overlaps took 20 minutes; on a larger map the gap between manually modelling the

road network and using this semi-automated approach would increase even more, this

is because fixing small errors is easier than creating new sections of roads and manually

texturing them. If we used a method that allows for texturing like the automated

approach the time gap would increase further because such roads would have to be

individually built, much like the way in which the max script code reconstructs each

section of the road independently.

Another way to compare the two sets of roads is to see how accurate the automatic

road extraction algorithm is, this is discussed in Chapter §9.

The final video for the Brighton map model lasts 20 seconds, and the video pans

around the perimeter of the Brighton map showing how the model appears to be

superimposed on the actual map, much like the Cunningham map video. As the

video path is less complex than the Cunningham map model it is possible to produce
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Figure 6.6: Illustrates the difference between manually modelled roads (a) in 3ds Max
and automatically generated roads (b) using the road extraction algorithm and the
max script described in Section §8.5.
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the entire video with a single camera locked to a single path, leading to a faster

post-production time. As noted in Section §6.1, compression can cause a loss of

picture quality. This is also the case with the Brighton video, because it is not easily

possible to use a multi-gigabyte; compression is needed.



Chapter 7

Theory and Design for the Road
Extraction Algorithm

7.1 Introduction

This Chapter discusses the design of a novel algorithm for road extraction.

7.2 Possible Solutions to Road Extraction

7.2.1 Manual Creation

Modelling road networks using three-dimensional modelling packages such as 3ds Max

is the most intuitive way to recreate road networks. Although using manual modelling

packages gives a high degree of accuracy, it takes a much longer time to recreate large

road networks compared with procedural algorithms.

7.2.2 Procedural Creation

Procedural modelling of a road network is done in two stages. Firstly, the road is

separated from the rest of the image through segmentation. Secondly, the straight

skeleton of the segmented road section is searched. Doing this would result in a set of

points representing the centre of the roads. In real world applications, the algorithm

may be deflected by noise within the image, as well as varied thickness within the
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road. A new algorithm is proposed in this thesis which is based on a circle expanding

and contracting. The skeleton of the road network is found by moving the circle

around the road network. By limiting the input variables, it is possible to create a

solution more quickly:

• Binary coloured image, where roads are white (colour images can be used, if the

roads are significantly lighter in colour than the background. The image the be

passed though a filter to make it binary, making the roads white).

• Buildings surrounding the roads are filled in.

• Small picture size 256 x 256, this is to reduce computational time as well as

reduce memory footprint. Larger maps can be processed by simply dividing

them up into sections.

Applying the above rules to the input data, the initial position of the circle must

be on a white pixel. From this starting position, the circle would expand until it finds

the adjacent edge of the road network. As the circle moves, the position and width of

the circle are recorded. These values represent the skeleton of the road network and

the width of the road at that point.

The benefit of the proposed algorithm over ones such as C. Zhang et al. [ZMB99]

is that it always tries to preserve connectivity, as such they will inherently accept all

widths of roads as legitimate road sections, as long as they are over a certain length

defined within their algorithm. The algorithm proposed within this thesis is also more

robust when compared with straight skeleton algorithms because, as can be seen in

Figure 7.1, the circle moves through noise with minimal effect on its path. Current

road extraction techniques also do not take into account the widths of roads, this

means that when reproduced the roads would have a uniform width.
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Figure 7.1: Shows how the circle moves though the road network avoiding narrow
pathways.

7.3 Procedural Road Extraction Algorithm Design

The road network can be thought of as a complex polygon that is undefined in size

and shape, until it has been extracted. Using a straight skeleton for the road network

would be possible, if the roads do not contain much noise or errors. Any errors within

the input map would cause errors within the output data.

The algorithm proposed in this thesis can be split into three distinct sections:

• Circle dynamic size.

• Junction / large area handling.

• Circle movement.

Each section handles a specific aspect for extracting the skeleton of the road

network.
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7.3.1 Circle Size

The size of the circle is directly proportional to the size of the road, as the road gets

wider the radius of the circle increases, if the road gets thinner the radius of the circle

decreases. The circle can track changes of road size, because at the start of every

iteration, the algorithm performs a size check to make sure the radius of the circle is

correct.

A circle is said to be at the correct width when the edge of the circle touches two

unique sites of collision. If the edge of the circle goes over the boundary of the road

edge, the circle should shrink to remain inside the road network. If only a single edge

is found, it should expand to search for other road edges. To prevent it growing and

shrinking out of control, a limit is placed on the maximum and minimum size of the

circle.

7.3.2 Junction Handling

Junctions are defined as where the circle checking can see more than two unique

paths. Once a junction is found its location, as well as details about all the paths

leading away from this junction is recorded within the rooted linked list structure.

Once all the paths have been recorded the circle is moved to a new empty path to

start mapping out the road section from there.

Using a rooted linked list structure, allows for the algorithm to efficiently map out

all the junctions within the map. If a new junction is found that exists already within

the data structure, this new junction is not recorded instead the existing junction

should be updated with the relevant information from the path leading towards it.
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7.3.3 Large Area Handling

Large open areas cause algorithms that perform sequential thinning to slow down

dramatically. This is because thinning an area twice the size takes approximately

four times as long, because the area it covers contains four times as many pixels.

Parallel algorithms would also slow down, but only because they have to mark extra

pixels for removing. The new approach taken in this thesis can be broken down into

three steps:

• Check to see if the previous six iterations were growing. Six was chosen by use

of trial and error to find the optimal number of iterations to capture the find

large areas, but enough iterations to prevent false events.

• Scan area for possible unique exits.

• Mark area as a junction and all possible exits as new paths.

A special case exists when no exits are detected. When the circle detects this

situation, instead of classifying it as a junction it classifies it as a dead end.

7.3.4 Circle Movement

The path of the circle represents the shape of the skeleton of the road network. As

the circle moves around the map, it increases the size of the skeleton. During each

iteration of the algorithm, the circle checks to find the next possible directions. Legal

paths for the circle to take can be calculated in four ways:

• If two unique collision sites are found, combine the two unique collision site

angles to form a resultant angle, see Figure 8.2.

• If the circle is too close to a road edge, then move perpendicular to the road

edge.
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• If the circle has only one collision site, predict the next possible move by checking

what the circle can see along its line of sight.

• If the circle has just moved to a junction, force it to move by the predetermined

angle saved when the junction was calculated.

Using these methods it is possible to guide the circle around the map and keep

the circle as close to the centre of the road as possible.

7.3.5 Circle Visibility of Surroundings

When the circle moves around the map, there will be places where it can only be

in contact with a single unique collision site. In this situation, the circle will check

its surroundings. The circle would start by expanding the circle and testing to see

if two or more unique collisions exist. Once two unique collision sites are found, the

resultant vector can be calculated. The radius of the circle is then restored back to

its original radius.



Chapter 8

Implementation of the Road
Extraction Algorithm

8.1 Introduction

This chapter describes the implementation of the individual parts of the novel road

extraction algorithm.

8.2 Image Pre-processing

8.2.1 Binary Filter

To convert a colour image into a binary image, every pixel in the image is sequentially

converted into its grey scale counterpart then into its binary counterpart. Using a

scanline method initiated from the bottom left to the top right, each pixel is analysed

using its RGB channels to determine their grey scale values (Grey Value = 0.3*Red

+ 0.59*Green + 0.11*Blue). To convert into binary, the final step is to perform a

simple test to see if the grey scale value is greater than 100, if it is then the pixel is

said to be white (255) otherwise the pixel is taken to be black (0). A threshold of 100

was chosen to be the threshold as this was the value used within the Brighton map.
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1 2 3
8 0 4
7 6 5

Table 8.1: 3x3 Matrix cells labelling

8.2.2 Dilation and Thinning

Using a combination of dilation and thinning algorithms, it is possible to smooth out

the results of an image, removing small errors on the edges of the objects within the

image. An object’s edge can be defined by using a 3 x 3 matrix (see Table 8.1) with

the centre of the matrix “0” on a black (0) pixel, if three or more adjacent pixels are

found to be white (255), then pixel “0” is said to lie on the object’s edge.

Both dilation and thinning algorithms have much in common, both algorithms

affect the edges of objects within the image, while dilation increases the size of the

object, thinning will make the object decrease in size.

Both dilation and thinning algorithms have been implemented using a 3 x 3 matrix

which moves around the image, by a scanline method, from the bottom left to top

right. If an edge is found, then it records its initial position and follows the edge of

the object, recording all pixels it passes through, this continues until it reaches the

edge of the map or returns to its initial position. When it finds the end of that specific

edge, it carries on moving through the map by the scan line method, searching for

new edges. It ignores all edges that have been marked, to prevent edges being thinned

multiple times within a single iteration.

8.2.3 Text removal

As text removal is beyond the scope of this thesis, all text that was found within an

image was manually removed using Photoshop before the image was used.
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8.3 Procedural Road Extraction

Previous road extraction algorithms worked in two stages; first they segmented the

road network from the image. Next, an algorithm (usually a thinning algorithm) is

used to search for a skeleton of the road network. The novel road extraction algorithm

presented here works differently from previous algorithms, in that it does not use a

thinning algorithm to search for the skeleton.

The novel road extraction algorithm can be broken down into three main sections

as shown in Figure A.3. The three sections are: “Circle size checking and angle

calculation”, “Junction calculation and hierarchy storage and usage” and “Circle

movement and data storage”. The algorithm works sequentially, but could be used in

a multi-threading manner if there were multiple start points and they used the same

data tree.

8.3.1 Road Network Data Structure

Because the road extraction happens sequentially, there is a possibility that a section

of the road that has been searched through could be found again. To prevent this,

there needs to be a data structure that can store all the sections of roads that have

been found, the most efficient way of storing this data is to use a rooted tree of linked

lists. This type of tree is used because it allows for the easy insertion, deletion and

rearrangement of any of the nodes. Each node within the tree represents a single

junction within the road network. The data stored at each node is the position of

their parent node as well as data relating to that node, such as the number of paths

from that node.

Using this structure allows the algorithm to efficiently manage the memory used

and speeds up the insertion of road sections. This approach makes the algorithm run

faster than if structures such as static arrays were used, as these would need resizing
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each time a new road section was added.

The data structure actually consists of a set of four lists each designed for their

own data handling, these are as follows:

• Junction Cartesian coordinates.

• “Junction paths to take” in the form (0, 90, 180, 270) where each value represents

a legitimate path direction in degrees.

• “Junction paths taken or not”, this holds a list of equal size to the “Junction

paths to take” but instead holds data in binary form where “0” represents a

path that can be taken while “1” means the path has already been taken.

• Junction parent node, this is to search for a parent node when the child node

has no other paths that can be taken.

As linked lists are defined in the standard library within C++, there is no need

to rewrite these base functions (push, pop, insert, etc.)

By combining the lists “Junction paths to take” and “Junction paths taken or

not”, all the data needed to prevent the circle from entering a route that has already

been taken are stored.

8.3.2 Circle Dynamic Size

The “Circle size checking and angle calculation” part of the algorithm, as illustrated

by the light blue area in the flow chart shown in Appendix A.3, handles the dynamic

size of the circle as well as predicting the next possible position to move to.

First, it must determine the number of collision sites on the perimeter of the circle

(see red part of the circle on Figure 8.1). Each set of unique collision sites has a set of

pixels that make up that site; these pixel locations are stored within a two-dimensional
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Figure 8.1: Diagram showing how the centre point is calculated using the minimum
and maximum points

list. To determine the centre of each collision site the list that relates to that collision

site is searched through, to find the maximum (X, Y) and minimum (X, Y) positions.

Knowing this, it is possible to triangulate the centre point, by calculating the half

waypoint between the minimum and maximum X and then to do the same with their

Y components (see Figure 8.1). Doing this will give a centre point which can be used

for calculating if the collision is unique, a unique collision site is when:

1. The angle between each unique collision site is greater than 20 degrees.

2. Each unique collision site has a normalised size value greater than 0.1.

Another rule is that if there are more than two collision sites, then the sites that

are the closest are merged until there are at most two remaining collision sites. Using

the two collision sites, it is possible to calculate whether the circle should grow or

shrink, this is illustrated in the Algorithm 1. As shown, the circle can only change its

size by one pixel, this is to prevent the size of the circle from changing dramatically
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within a single iteration, which is possible if this limitation is not in place. Using

a one pixel limit is appropriate for processing sections of maps that are 256 x 256

pixels, because the roads being processed would also be limited in there width. After

calculating the width of the circle, it has to calculate in which direction to move next.

There are two ways of calculating this direction, if there are less than two collisions

then the “Circle sight” algorithm is called as shown in Section §8.3.4, otherwise the

direction is calculated using the “Direct calculation” algorithm explained in Section

§8.3.3.

Algorithm 1 Calculate CircleWidth

1: if NumOfUniqCircleEdgeCollisions ≥ 1 then
2: CircleWidth = CircleWidth − 1
3: else if NumOfUniqCircleEdgeCollisions ≤ 1 then
4: CircleWidth = CircleWidth + 1
5: end if
6: return CircleWidth

8.3.3 Direct calculation

As the circle moves round, ideally the circle would be in constant contact with two

unique collision sites. If this is true, it is possible to calculate the resultant direction

by using the collision sites and the centre of the circle. The resulting direction is

halfway between the two unique collision sites, by default the smaller of the two

angles is chosen to be the resultant direction initially, as shown in Figure 8.2. After

the resultant direction is calculated, it is checked to see if it is pointing towards an

area it came from, this is explained in Section §8.4. When a direction is found to

be facing the wrong way, the larger of the two angles is used to calculate the new

resultant direction.
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Figure 8.2: Diagram showing how the circle moves when in contact with two unique
edges.

8.3.4 Circle Sight

When the circle moves round the road network, there is a chance that the circle is

in contact with a single contact site or no contact site at all. This is caused by the

circle being too small to touch both edges of the road at once. If this situation occurs

the “Circle sight” algorithm (see Algorithm 2) is called to search for the two unique

collision sites.

Algorithm 2 Calculate NumberOfUniqueCollisions

1: while NumberOfUniqueCollisions ≤ 2 do
2: SearchingRadius + 1
3: check perimeter for number of unique collisions
4: end while

As shown in the pseudo code, the algorithm only stops when more than one unique

collision site is found. If more than two collision sites are found, the angular gaps

between each of the unique collision sites midpoints are calculated. The two sites with

the smallest angular gap between them are merged and a new midpoint is calculated.

This process is repeated recursively until only two unique collisions sites remain.

To calculate the exact direction, two factors are taken into account, the size of
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each collision site and the location of its midpoint. Using the two midpoints and

the centre of the circle, it is possible to calculate the resultant direction as shown in

Figure 8.3. Once the maximum and minimum angles are calculated, the sizes of the

collision sites are used to calculate the exact resultant direction.

The size of the unique collision is important because having a large site means that

more of the SearchingRadius pixels overlap non-road areas, while a small size means

that it is further away from the centre of the circle than the larger site. Using the

normalised values of the two unique sites, it is possible to calculate the exact resultant

direction which must lie between the maximum and minimum already calculated, this

is shown in the Algorithm 3.

Once the exact resultant direction is found, it is checked to see if it faces the

correct direction, this is explained further in Section §8.4, if the direction is found to

be facing the wrong direction then the maximum and minimum values are swapped

and the calculation of the exact resultant angle is repeated.

Algorithm 3 Calculate the finalDirection

1: maximum belongs to collisionSite0, minimum belongs to collisionSite1
2: normalise collisionSite0 and collisionSite1 so that we can find the actual

direction, the circle should move towards.
3: if collisionSite0 leq collisionSite1 then
4: finalDirection = maximum − collisionSite0 / (maximum-minimum)
5: else
6: finalDirection = minimum + collisionSite1 / (maximum-minimum)
7: end if

8.4 Check backtracking

It is necessary to check whether a resultant direction is legitimate because both

algorithms for calculating the resultant direction can produce two different directions

in each case. To check whether the resultant direction faces towards the area that

the circle came from, Algorithm 4 is used.
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Algorithm 4 Calculate if movingBackwards

1: for i = 0 to 7 do
2: itt = NumberOfIterations-i
3: if tempX[itt] ≤ minX then
4: minX = tempX[itt]
5: else if tempX[itt] ≥ maxX then
6: maxX = tempX[itt]
7: else if tempY [itt] ≤ minY then
8: minY = tempY [itt]
9: else if tempY [itt] ≥ maxY then
10: maxY = tempY [itt]
11: end if
12: end for
13: calculatedX = minX + ((maxX −minX)/2)
14: calculatedY = minY + ((maxY −minY )/2)
15: deltaX = calculatedX − currentX
16: deltaY = calculatedY − currentY
17: deltaX2 = calculatedX − futureX
18: deltaY 2 = calculatedY − futureY
19: deltaX3 = futureX − currentX
20: deltaY 3 = futureY − currentY
21: tempDeltaSumH=

√
deltaX1 ∗ deltaX1 + deltaY 1 ∗ deltaY 1

22: tempDeltaSumO=
√
deltaX2 ∗ deltaX2 + deltaY 2 ∗ deltaY 2

23: tempDeltaSumA=
√
deltaX3 ∗ deltaX3 + deltaY 3 ∗ deltaY 3

24: top = (tempDeltaSumA2) + (tempDeltaSumH2) - (tempDeltaSumO2)
25: bottom = 2 ∗ tempDeltaSumA ∗ tempDeltaSumH
26: theta=arccos (top/bottom) ∗ 180/PI
27: if theta ≤ 60 then
28: movingBackwards=true
29: end if
30: if movingBackwards then
31: run “Direct calculation” or “Circle sight” again depending on which one gave

input
32: end if
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Figure 8.3: Diagram showing how the circle picks next direction from circle sight.

The algorithm can be broken down into three stages. First, it calculates the

maximum and minimum (X, Y) coordinates, using these coordinates it is possible to

get the midpoint as shown in lines (13-14). The second step is to use the COSINE

rule to calculate the angular difference between the newly calculated midpoint and

the predicted direction which has been converted into a set of (X, Y) coordinates.

Finally, if the calculated angle is less than 60 degrees, then the direction is classed

as backtracking. When a direction is found to be backtracking, it calls the algorithm

which sent the input data, either “Direct calculation” §8.3.3 or “Circle sight” §8.3.4.

Because there are only two possible directions, and the first is found to be backtracking,

the next direction calculated from the algorithm is forced to be correct, so it skips

the backtracking step once it has calculated the direction.

8.4.1 Junction Detection

To search for a junction during each iteration, rays are traced at 5 degree increments

around the centre of the circle, the rays only stop once they reach the edge of a road

or their maximum length which is twice the radius of the circle. Each adjacent ray

which successfully traces to its maximum length stores the position of that point; a
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Figure 8.4: Illustration of a situation where verification of path legitimacy is needed.

new list is created once a ray is found that does not trace its maximum length. Doing

this creates a set of lists that holds the maximum coordinates (X, Y) of each ray that

traced its maximum length, each set of coordinates are used to triangulate the centre

point of that set, in a similar way to how the centre point is calculated in Section §??.

A ray with a length three times the size of the radius is passed through this point to

verify that a path is legitimate. This is needed because, as shown in Figure 8.4, it is

possible for a junction to be detected even when there clearly isn’t one.

If a junction is found, this is entered into the junction list, with the paths visible

from that point and the path taken to get to that junction, this is to prevent the

circle from taking the same path twice.

8.4.2 Large Area Detection

Large areas can throw off the circle expansion code which is designed for moving along

roads and meeting junctions. A large area is defined as a section of the road network

which suddenly grows three times its width over six iterations of the algorithm. When

this situation is triggered, the algorithm reacts by tracing rays from the centre of the
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Figure 8.5: Figure showing how the initial rays are traced; the pink lines mark the
area where no rays are traced.

circle to the edges of the roads at one degree increments; to prevent the circle from

tracing rays to positions it has already been to, they are excluded from an area defined

by a 60 degree cone, so a total of 300 rays are traced. Using these preliminary rays

it is possible to calculate the centre of the large area approximation from the view of

the entrance. This is shown in Figure 8.5.

When this preliminary centre point is found, a second set of rays are traced as can

be seen in Figure 8.6, this time using the entrance point of the large area to define the

direction of the cone. To prevent rays being traced in that direction, the length of the

rays are recorded and checked against their neighbouring rays to check for any sudden

changes in their lengths, as this indicates an exit. Once all the exits are found, any

errors that may have been produced are corrected by calculating the angle between

the rays, if the angles are too close together the exit points are merged together

forming a new exit point. These exit points are entered into the data tree, but they

only contain a single path which can be used. The predetermined path which the

circle should take is calculated by expanding the exit point until two unique collision



79

Figure 8.6: Diagram showing how the second set of rays are traced and how the large
gaps relate to the exits from the junction. The pink area shows where rays are not
traced.

sites are found, then the smallest non collision site is the path which should be taken.

Large areas can also be dead ends, such as cul-de-sacs. To take this into account,

if a large area has no other path it can take besides the one that entered the area in

question, then it is declared as a dead end and marked accordingly in the data tree.

8.4.3 Dead End Handling

Much like junctions, dead ends have an algorithm to handle this special case. A dead

end is defined as a point within the path where there is only a single contact point

on the circle and the circle has expanded so that it is touching both opposite edges of

the path edge walls. Only when these circumstances are met is a dead end declared.

Once a dead end is declared, the current (X, Y) points of the circle become the

dead end junction, such a junction is denoted within the data structure as having

junction paths (0, 0, 0), and junction paths available as (1, 1, 1).

After a dead end is found, the algorithm searches for other nodes within the data
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StartOfLine
29 30 4
30 31 5
33 31 4
36 31 4

StartOfLine
48 31 4
51 31 4
54 31 4
57 31 4

Table 8.2: Output saved data

tree which have a path that has not been taken yet. If a node with a path cannot

be found, then the algorithm terminates, as the whole network is found, this is the

legitimate way for the program to terminate.

8.4.4 Exporting Coordinates

As each road length section is calculated, it is assigned a unique ID representing its

position within a two dimensional array which holds all points of all paths within

the road network, a separate array is used to store the “heads” and “tails” denoting

which path joins with which path. The points are then saved into a special format

which can be read by the Max Script code, the format allows the saving of multiple

2D splines. A sample of the format is shown in Table 8.2.

The term “StartOfLine” is placed at both the start and termination point of a

path, so when the Max Script scans through the .txt file and comes across such a

term, it initiates the creation of a line, when it comes across the next “StartOfLine”

it knows it should stop adding any more points to the spline and instead create a new

spline. The three values represent the X, Y, W values for the road to be represented

in 3ds Max, where X and Y are the Cartesian coordinates within 3ds Max and the W

represents the width of the road at that point. Because of how the Max Script works
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there are two copies of this .txt, with one of them omitting the “StartOfLine” when

a new line is created, as only one of these files need to declare where a spline should

start and end.

8.5 Max Script Importer

To recreate the roads in 3ds Max, a script was written that can import the data

produced by the C++ program. The script works by firstly setting up pointers to start

reading from both text files, the main text file being the one with the “StartOfLine”

commands present, this text file is used to position the roads. The second text file

is used for calculating the widths of the roads. Algorithm 5 explains briefly how the

Max Script works. There are two loops one for creating the number of road sections,

the second is for going through each road section calculating the width of the roads.

Algorithm 5 Max Script pseudo to calculate road position and widths

1: pointerA = positionDataF ile(begin)
2: pointerB = widthDataF ile(begin)
3: faceA = 2
4: faceB = 4
5: while pointerA 6= positionDataF ile(end) do
6: if pointerA = “StartOfLine′′ then
7: faceA = 2
8: faceB = 4
9: Create new Spline
10: else
11: Read X, Y
12: Add X, Y to spline
13: pointerA move next line
14: Select faceA and faceB
15: Move faceA and faceB by amount pointerB in the direction of their

normals
16: pointerB move next line
17: faceA+ = 2
18: faceB+ = 2
19: end if
20: end while



Chapter 9

Results for the Road Extraction
Algorithm

9.1 Procedural Road Extraction Algorithm

To test the road extraction algorithm a combination of synthetic and real-world

inputs where used. By using these test cases it is possible to find the strengths and

weaknesses of the proposed algorithm. There are three main aspects to the algorithm

that need to be tested: circle movement, circle growth and junction handling. The

Cunningham map is not used to test this algorithm because, the Cunningham map is

not from a top down view and there are many obstructing objects that cause breaks

within the road, this is why the Koblenz and Brighton maps are used.

9.1.1 Circle Movement

To test for circle movement, all possible directions in which the circle can move were

taken into account, this can account for all roads that have a linear width, but having

a road that changes its width when it makes a turn can cause the circle to deviate

from the centre of the road as shown in Figure 9.1. Although these deviations initially

cause the road to appear to be incorrectly traced, when the road is recreated in 3ds

Max it is able to reduce this effect by the sampling frequency it uses, as the max

script only uses every fifth point that the C++ program outputs. Different values
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Figure 9.1: This image shows how the circle can move away from the true centre of
the road network in some cases.

were tested and for the optimal results, the fifth point was chosen be the parameter

because it gave the best results, by smoothing out noise within the road and still

keeping enough detail about the path of the road. Although this value is set as a

default, the user could modify.

Having many functions to move the circle means that all types of situation are

covered and that there are no situations where the circle cannot move, as it will

always move towards an empty space and away from where it came from.

To show that the circle can travel around a road network with turns in the road,

a test image was used to force the circle to move in 90 degree increments so as to test

the tracking ability of the circle as it moves through the image, the results are shown

in Figure 9.2

As the circle will not always be moving and turning in 90 degree increments,

another test map was used to test the function to see how it would perform when the

circle approaches a turn less than 90 degrees (see Figure A.4) and greater than 90

degrees (see Figure A.5).

Another common problem with input data is the clarity of the image. If the image

has blurred edges, this can cause the edges of roads to appear very irregular, the worst

case being when a thin road edge bordering two sections of road is completely lost.
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Figure 9.2: Image illustrating how the circle tracks around a road network with 90
degree turns within it.

Although the problem can be reduced by using a threshold when converting the image

from colour (RGB) into a binary image, if any noise gets through it will affect the

straightness of the road traced as shown in Figure 9.3(b). Figure 9.3(a) shows the

original image where there is a layer of 1 pixel thick noise around the edge of the

road. Because of the small size of the road with an average width of 10 pixels having

2 pixels worth of noise, this means that the road width can only be accurate to plus

or minus 20%, which is a substantial amount of the road width.

9.1.2 Circle Growth

While this is a small part of the entire algorithm, this part keeps a record of the current

width of the road, which can be used by max script in the creation of three-dimensional

roads. As explained in the design and implementation chapters, the width of the circle

expands and contracts depending on the number of unique contact points of the circle

and depending on whether the circle perimeter overlaps the edges of the road network.

To test the circle to see how the circle changes size, a test input with a single road
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Figure 9.3: (a) Shows the input image for the algorithm. (b) The pink line shows the
path of the circle and that it managed to extract the road successfully.

of varying road widths was used, the initial size of the circle is shown in Figure 9.4(a),

the contraction stage in Figure 9.4(b) and finally the expansion stage in Figure 9.4(c).

9.1.3 Junction Handling

This part of the algorithm is the most important because missing a junction can

mean that entire sections of the map can be missed or traced over twice or more. To

minimize the chance of tracing over road sections twice, there are many dedicated

functions such as the back tracking function which prevents the circle moving back on

itself. To search for junctions, the circle uses the circle sight technique as explained

in the implementation chapter. When all these techniques come together, they form

the junction handling part of the algorithm. As shown in Figure A.6 a junction has

been detected with three exits, not all junctions are detected as clean as this one, this

can be caused by factors such as the existence of numerous road entrances at odd

angles (see Figure A.7) or different road widths (see Figure A.8).
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Figure 9.4: (a) Shows the original starting width of the circle. (b) Shows the circle
contracting as it moves through a small gap within the road network. (c) Shows the
circle expanding as the road width increases, note how the pink line remains close to
the centre of the road network.

Sometimes, the algorithm will miss a junction for one of two reasons:

• The connecting road is much smaller in width compared with the current road.

• The connecting road is of insufficient length.

This can be seen clearly in Figure 9.5. In cases such as these, the user would have

to either reposition the circle to start off where it missed off or create the section of

road in 3ds Max after the virtual model has been created.

Another main part of the junction handling section is the ability to detect and

handle large areas, as shown in Figure A.12. It can be seen that the algorithm can

detect these large areas then mark them accordingly. As these will leave large gaps

within the road network, the user would have to fill in these gaps once the roads have

been reconstructed in 3ds Max.
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Figure 9.5: (a) Illustrates the original input for the algorithm. (b) Shows the
algorithm can miss junctions if they are substantially smaller than the current road
width or of insufficient length.
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9.1.4 Synthetic Input Examples

Figure A.9 shows how the circle traces the paths around a map with many junctions,

which do not interconnect.

Figure A.10 shows how the circle reacts when it comes into contact with a junction

that it has already encountered.

With an image such as shown in Figure A.11 a conventional technique such as

those proposed by G. Vosselman and J. Knecht [VK95] or J. Zhou et al. [ZBC05]

would include all the thin single pixel lines as part of the road network but, as the

figure shows, the proposed algorithm is only slightly affected by all the noise within

this image.

9.1.5 Koblenz Map and Brighton Map as Proof of Concept

As a proof of concept, the algorithm was used on two maps, the Koblenz map which

started off as a black and white image and the Brighton map which is in colour.

To input the data into the program correctly, as the map is at a much larger

resolution than the program can accept, the image is subdivided into sections where

a section of road lies at the starting position of the circle. These sections of road

networks once found are superimposed onto the final image, pink lines represent the

path followed by the circle, while a blue line represents a section of road that the

algorithm has missed. Gaps exist between sections of the pink traced lines because

of cutting up the map into sections.

9.1.6 Koblenz Map Road Extraction

As shown in Figure A.13, the areas that were processed by the algorithm are all shown

in pink. The input data for the program was created based on this map. Because

this map has houses in the same colour as the road, the algorithm is unable to use
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segmentation techniques to extract the road only from this map, which is why each

section of the map was individually coloured in using a paint bucket tool and paint

brush tool in Photoshop to make the image compatible with the algorithm, a typical

input image is shown in Figure A.14. Although filling in the houses manually is not

an optimal technique for the Brighton map because it is in colour, the algorithm is

able to automatically segment the road from the background.

Using this algorithm, the majority of the roads where traced, although four roads

were missed towards the top of the Koblenz map with blue lines showing where the

roads should be. These problems can be identified by the positions of the junctions

and the width of the entrance of the roads at the junctions, this is shown in Figure 9.6.

These errors occur because of the inherent nature of the algorithm, which ignore roads

that are much smaller in width this is shown in Figure 9.6(a) and (b). Figure 9.6(c)

shows a unique case where the circle enters a much large junction than the width of

the road causing the circle to expand and therefore miss calculate the “Cross junction”

as a single section of road. Errors like these would have to be corrected by the user

after running max script.

9.1.7 Brighton Map Road Extraction

The Brighton map (see Figure A.16) was taken using a digital camera, this is evident

by looking at the image as the brightness of the image changes from bottom to top,

also there is more noise within the image in the form of creases within the paper map.

As the image is coloured and segmentation can extract the road from the background,

the raw image of the map can be used as input for the algorithm, as shown in Figure

A.17. Within the Brighton map, it can be seen that there are two paths that are

missed by the algorithm marked by the two blue lines, towards the top of the image.

This case is used as an example of junction handling.
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Figure 9.6: This figure shows three cases where the algorithm failed within the map.
(a) and (b) Illustrates a junction where the entrance is too small. (c) Shows a “Cross”
junction where neither roads leaving the current path is detected.

To compare the manual modelling methods to the automatic extraction method

there are two things to take into account:

• Speed (Time taken to create the virtual road model).

• Accuracy (How many roads are accurately traced and number of errors within

the roads).

Using the Brighton map as the test case, it took over two hours to accurately

model and texture the road using manual modelling methods. Using the automatic

extraction method it is possible to cut down the time taken to develop the model

as the sections that are extracted by the algorithm can be easily used within the

final virtual model with little editing. This is shown in Table 9.1; the map names

correspond to Figure A.15, where each individual part of the image is numbered.

Each section was used as an input for the road extraction algorithm sequentially.

The resultant time taken to construct the whole map was 240 seconds. The reason

for such a long execution time, is because of the ’cout’ and ’println’ statements within

the code which, prints between 20 to 100 lines text for each pixel of the road extracted.
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Map name run 1 run 2 run 3 average run time
Brighton 1 13 12 13 13 sec
Brighton 2 13 13 15 14 sec
Brighton 3 3 3 2 3 sec
Brighton 4 8 8 8 8 sec
Brighton 5 8 9 9 9 sec
Brighton 6 8 9 8 8 sec
Brighton 7 5 5 4 5 sec
Brighton 8 3 4 3 3 sec

Table 9.1: Table showing time taken to extract each section of map.

This is useful when debugging and finding out more specific information about the

roads extracted, for example lengths of each road.

Once the roads have been extracted using the proposed algorithm it is possible

to use the max script, as described in Section §8.5. Using this combination it is

possible to create the entire road network, as shown in Figure 9.7. This complete

process takes 20 minutes from the divisions of the original map to having the complete

three-dimensional model. Most of the time is spent dividing the map into appreciate

sections so that the algorithm can read it and correcting the errors produced by the

max script by overlapping polygons; this is explained in more detail in Section §9.2.

9.2 Max Script output

Using the max script proposed in Section §8.5, it is possible to import the two .txt

files from the C++ program and these text files can be used to reconstruct the road

network in three-dimensions. The roads are reconstructed in three-dimensions to

allow for future development, such as kerb sides and other features of the roads to

be added easily. Figure 9.9 shows how the roads appear when rendered using Mental

Ray in 3ds Max. Figure 9.8 shows how the roads are extracted if no width modifiers

are applied to the road sections. When a width modifier is applied, small errors can

occur when polygons overlap, as shown in figure 9.9.
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Figure 9.7: This screen shot within 3ds max, shows the road network once the max
script has finished running. Pink lines indicate where the centre of the roads are.
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Figure 9.8: Illustrates how the road network looks before calculating road widths.

Figure 9.9: Illustrates how the road network looks after adding in real road widths,
the black areas show overlapping polygons.
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Figure 9.10: This image shows how the 3ds Max virtual road model appears when
superimposed on top of the original input image.

To show how effective the algorithm is, the output data from Figure 7.1 was used to

generate a three-dimensional road network, the result can be seen in Figure 9.10 where

the virtual model of the road network is superimposed on top of the original input

image. Although there are a few geometrical errors with some polygons overlapping,

the whole road section remains a single object without any holes within it and the

UVW texture maps correctly. The blue lines that lace through the entire road network

show the edges of each polygon.

To reconstruct larger maps, they are broken down into smaller sections which are

then joined back together by the user within 3ds Max. Letting the user join the

sections of roads is important because if the input size of maps have different aspect

ratios it can cause the model to become skewed in a one or more axes. A section of

the Koblenz map was used to show how max script is able to reconstruct large maps

as well as smaller ones, the results for the Koblenz map are shown in Figure A.18

showing how the polygons are used within the model and in Figure A.19 which shows
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Figure 9.11: (a) This image shows how the polygons overlap after calculating road
widths. (b) This image shows how the vertices can be moved to avoid overlapping
polygons.

a render of the entire Koblenz map using Mental Ray.

The total polygon count for the Koblenz map is 4830 polygons which consist of

9556 triangles. This is a low number considering that this is for the entire road

network built in three-dimensions and such a model could be used within a virtual

environment scene with a few changes where polygons overlap, this is a simple change

which involves moving a few vertices so that the polygons no longer overlap, as shown

in Figure 9.11 (a) where the highlighted area shows where polygons overlap. Figure

9.11 (b) shows how the road looks after two vertices have been moved so that the

polygons no longer overlap.

To further show how effective the max script code is at converting the C++ output

into three-dimensional models, it was tested on the Brighton map data set, the results

for this can be seen in Figure A.20 which again shows where polygons are used and

Figure A.21 which shows how the model looks when rendered and superimposed on

top of the original map with the roads traced marked on it.



Chapter 10

Conclusion

10.1 Summary

The aim of this study was two-fold as described in Chapter §1, one aim was to

recreate the Cunningham and Brighton maps in three-dimensions, this lead onto the

development and implementation of the novel road extraction algorithm.

Current applications of virtual cultural heritage sites are explored in Chapter

§2, many well-known examples already exist such as Rome Reborn [Vir10b] which

was developed by IATH and show-cases Rome as it was in 320 A.D. This chapter

also explores the benefits of manual modelling while Chapter §3 discusses procedural

modelling techniques and their benefits, such as using mathematical morphology for

segmentation and skeletonization.

Chapter §4 goes though the design and justification of the design of both the

Cunningham map and Brighton map, because there are many similarities between

them, such as both have roads and houses. But there are also many differences

between them, for example, the Cunningham map is a map drawn from the perspective

of W.Cunningham while the Brighton map was created using a top down view like

modern day maps.

The implementation of the Cunningham map is detailed in Chapter §5 which goes

into detail about how each aspect of the model that was created, such as roads, houses
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and rivers. Because the final model had to have a low polygon count, this chapter also

discusses the polygon reductions performed manually on some buildings, such as the

Cathedral model. As well as modelling, this chapter also explains how the lighting

was set up to represent how the lighting would have appeared back in the time when

Cunningham drew the map, as shown in Section §5.7.1.

The implementation of the Brighton map is explained in Chapter §5.5 which

describes each aspect of how the model was created. As the final model is a section

of the map that is used to compare manual modelling methods and the efficiency of

the automatic road extraction algorithm.

Chapter §6 goes though the results of both the Cunningham map and Brighton

map models. The final products of the Cunningham map model are a single video

lasting 1 minute and 25 seconds and a 3ds Max archive which stores all the data

about the scene, for example geometry and textures.

Chapter §7 goes though in detail how the road extraction algorithm was conceived

and developed. All the core aspects of the road extraction algorithm are explained

such as the circle sizes in.

The implementation of the road extraction algorithm is explained in Chapter §8.

The algorithm is split into two parts, pre-processing and the actual run time of the

algorithm. During pre-processing, any imperfections in the image are removed, such

as converting an image into a binary image from a RGB colour image, this is necessary

to reduce the number of variables before running the image though the algorithm to

minimize the number of errors. The algorithm can be broken down into three separate

sections, expansion, movement and data recording, all of these parts are explained in

Section §8.3 and §8.4.

A max script was developed in order to import C++ data to be converted into

three-dimensional geometry within a virtual environment; this is explained in Section
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§8.5. The script works by reading two files, one used for the positions of roads while

the other is used for calculating road widths.

Chapter §9 shows the results from the road extraction algorithm with many test

cases including two real-world cases. This Chapter also shows how the data from the

road extraction algorithm can be used to recreate the roads in three-dimensons.

10.2 Performance Overview

As shown in Chapter §6 it can be seen that the Cunningham map model was created

within the specification specified by C. Rawcliffe. This model has been used by the

UMG on one of their websites [UMG10] showing the public how Norwich looked

within the past.

The results of the road extraction algorithm show that although the algorithm is

restricted in what it can detect because of how the algorithm works, some roads can

be missed because the algorithm deems them to be errors, this is shown in Section

§9.1.3 where roads are missed because their widths are much smaller than the width

of where the circle currently is. Even with this restriction, the proposed algorithm

can calculate the widths of roads and, when combined with the max script, can

create three-dimensional roads which is not possible using algorithms such as that of

G. Vosselman and J. Knecht [VK95] because these do not determine the widths of

roads, only the position of the road skeleton.

10.3 Future Work

The development of the Cunningham map went according to specification, any future

modifications of the model can be completed by editing the original 3ds Max file and

such an edit could be completed by anyone with a copy of 3ds Max. From the research

and the results, there are a number of improvements that could be made to the road
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extraction algorithm, these are listed below:

• Increasing the robustness of the algorithm so that it never misses a section of

road would be the next step. Using a combination of skeletonization techniques

that preserve connectivity and the proposed algorithm for calculating road

widths, it may be possible to achieve a complete road network which preserves

connectivity and gets all road widths as well as ignoring small errors.

• Currently the algorithm is designed to work with images that are 256 x 256

pixels large, this could be changed by letting the user can adjust the parameters

of the algorithm. For example, the minimum width of the roads that are

accepted as real roads.

• Working through the image moving sequentially from pixel to pixel is time

consuming. To speed up the process, the algorithm could be seeded at multiple

times, either at random or at predetermined locations. Each seed could then

run on a single CPU core, this could be implemented using OpenMP or using

CUDA for implementation on an NVIDIA GPU. Each thread would operate

independently but use a central storage for data to store centrally the data tree

and the paths that each circle has traced over.

10.4 Final Thoughts

This study presents two final products, the model of the Cunningham map which is

already being used within the commercial world and a novel approach to extracting

roads. The road extraction algorithm has been demonstrated to work within its

confined input, when roads do not dramatically change in size. The algorithm

proposed is shown to be viable for extracting roads from any map then converting

these data into a three-dimensional model within 3ds Max, no current algorithm
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provides such an easy way to create a virtual model from an image. In this regard,

the objectives of this study have been completed as the results in Chapter §9 show

how well the algorithm performs and how it is a viable option for users who wish to

extract roads from an image where the road size does not change dramatically.



Chapter 11

Nomenclature

3ds Max: Autodesk 3D studio max.

API: Application program interface.

BRDF: Bidirectional reflectance distribution function.

CPU: Central processing unit.

DSLR: Digital single-lens reflex.

FG: Final gather.

FPS: Frames per second.

GIS: Geographical information system.

GI: Global illumination.

GPS: Global positioning satellite.

IATH: Institute for advanced technology in the humanities.

Maya: Autodesk maya.

RGB: Red, green, blue.

UMG: Urban modelling group.
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Figure A.1: Image showing Brunswick, a part of Brighton appeared in 1820.

Figure A.2: Image showing how houses appeared in Brunswick square.
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Figure A.3: Diagram showing how the algorithm finds paths.
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Figure A.4: Image illustrates how the circle performs when there is an acute angle
within the road network.

Figure A.5: Image illustrates how the circle performs when there is a reflex angle
within the road network.
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Figure A.6: Illustrates a single “T” junction, where the pink line is the path traced
by the algorithm.

Figure A.7: Shows a “Cross” junction, where the pink line is the path traced by the
algorithm.
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Figure A.8: Illustrates a more complex junction, where the pink line is the path
traced by the algorithm.

Figure A.9: Shows how the algorithm traces though an image where it needs to go
back through its data structure to find previous open paths.
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Figure A.10: Illustrates how the algorithm moves through a grid network of roads.

Figure A.11: Illustrates how the proposed algorithm performs where the current road
extraction algorithms would fail.
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Figure A.12: Image showing how a large area is traced, with the pink paths being
found leading away from the large area.
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Figure A.13: This image shows how the algorithm performs on the Koblenz map and
the paths found.
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Figure A.14: This illustrates a typical input image for the Koblenz map. As the map
contains many imperfections such as houses with the same colour as the road surface,
To make the map suitable for the algorithm the houses where blacked out manually
within Photoshop.
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Figure A.15: This image depicts how the Brighton was divided into sections before
using as input for the algorithm.
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Figure A.16: This image shows how the algorithm performs on the Brighton map and
the paths found.
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Figure A.17: Shows a typical input image from the Brighton map.
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Figure A.18: This image illustrates how the Koblenz road network appears in 3ds
Max.
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Figure A.19: This image shows how the 3ds Max model of Koblenz appears
superimposed on top of the original map.
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Figure A.20: This image shows how the Brighton road network appears in 3ds Max.
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Figure A.21: This image illustrates how the 3ds Max model of Brighton appears
superimposed on top of the original map.



Bibliography

[Ani10] DreamWorks Animation. Autodesk - film - dreamworks animation skg.

http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=

13186278&linkID=10164097, [accessed 2010].

[Aut10a] Autodesk. Autodesk - autodesk 3ds max. http://www.autodesk.co.uk/

adsk/servlet/index?siteID=452932&id=12341413, [accessed 2010].

[Aut10b] Autodesk. Autodesk - autodesk maya. http://www.autodesk.co.uk/

adsk/servlet/pc/index?siteID=452932&id=13742919, [accessed 2010].

[Aut10c] Autodesk. Autodesk - film - avatar. http://usa.autodesk.com/adsk/

servlet/item?id=14270942&siteID=123112, [accessed 2010].

[ble10] blender.org. blender.org - home. http://www.blender.org/, [accessed

2010].

[Coa10] Steve Coast. Openstreetmap. http://www.openstreetmap.org/,

[accessed 2010].

[EV07] Sander Oude Elberink and George Vosselman. Quality analysis of 3d

road reconstruction. International Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences, 36:305–310, 2007.

[Fri10] Bernard Frischer. The rome reborn project. how technology is helping us

to study histroy. http://www.romereborn.virginia.edu/rome_reborn_

2_documents/papers/Frischer_OpEd_final2.pdf, [accessed 2010].

119



120

[GD04] Xavier Granier and George Drettakis. A final reconstruction approach for

a unified global illumination algorithm. ACM Trans. Graph., 23:163–189,

2004.

[GFS+05] Gabriele Guidi, Bernard Frischer, Monica De Simone, Andrea Cioci,

and Alessandro Spinetti. Virtualizing ancient rome: 3d acquisition and

modeling of a large plaster-of-paris model of imperial rome. Proceedings-

spie the international society for optical engineering, 5665:119–133, 2005.

[GL97] Armin Gruen and Haihong Li. Semi-automatic linear feature extraction by

dynamic programming and lsb-snakes. Photogrammetric Engineering and

Remote Sensing, 63(8):985–995, 1997.

[Hal89] R.W. Hall. Fast parallel thinning algorithms: parappep speed and

connectivity preservation. ACM, Commun, 32(1):124–131, 1989.

[HSCP87] Christopher.M Holt, Alan Stewart, Maurice Clint, and Ronald H Perrott.

An improved parallel thinning algorithm. ACM, Commun, 30(2):156–160,

1987.

[IBM10] IBM. Ibm archives: 7090 data processing system. www.ibm.com/

ibm/history/exhibits/mainframe/mainframe_PP7090.html, [accessed

2010].

[Ima10a] Mental Images. Mental images: home. http://www.mentalimages.com/

index.php, [accessed 2010].

[Ima10b] Mental Images. Mental images: Technical specification.

http://www.mentalimages.com/products/mental-ray/

technical-specifications.html, [accessed 2010].

[Ima10c] Mental Images. Realityserver 3.0 white paper. http://www.

mentalimages.com/fileadmin/user_upload/PDF/RealityServer_

White_Paper1212.pdf, [accessed 2010].



121

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In

Proceedings of the eurographics workshop on Rendering techniques ’96,

pages 21–30. 1996. 3-211-82883-4.

[JL07] Taejung Kim Javzandulam and T. Tae-Yoon Lee. Semiautomatic

reconstruction of building height and footprints from single satellite images.

Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE

International, pages 4737–4740, 2007.

[Joh10a] Colin Johnson. About exrenda and colin johnson. http://www.exrenda.

net/about_exrenda.htm, [accessed 2010].

[Joh10b] Colin Johnson. Exrenda - dudley castle c1550 visualisation. http://www.

exrenda.net/dudley/index.htm, [accessed 2010].

[Kaj86] James T Kajiya. The rendering equation. ACM SIGGRAPH Comput.

Graph, 20(4):143–150, 1986.

[Key10a] Heritage Key. Heritage key — unlock the wonders. http://

heritage-key.com/, [accessed 2010].

[Key10b] Heritage Key. A reason for rezzing: how and why we built

king tut virtual. http://heritage-key.com/blogs/pavig-lok/

reason-rezzing-how-and-why-we-built-king-tut-virtual, [accessed

2010].

[Kru94] Fred N Krull. The origin of computer graphics within general motors.

IEEE, 16(3):40–56, 1994.

[LD03a] Robert.G Laycock and Andy.M Day. Automatic generating roof models

from building footprints. Proceedings of WSCG, Poster presentation, 2003.

[LD03b] Robert.G Laycock and Andy.M Day. Automatically generating large

urban environments based on the footprint data of buildings. In SM



122

’03: Proceedings of the eighth ACM symposium on Solid modeling and

application, pages 346–351. ACM, 2003. 1-58113-706-0.

[Lou10] Louvre. History of the project — louvre museum. http:

//www.louvre.fr/llv/apropos/fiche_apropos.jsp?CONTENT%

3C%3Ecnt_id=10134198673232603&CURRENT_LLV_FICHE%3C%

3Ecnt_id=10134198673232603&FOLDER%3C%3Efolder_id=

9852723696500916&bmLocale=en, [accessed 2010].

[Mat09] MR Materials. Welcome to mr materials! http://www.mrmaterials.

com/, [accessed 2009].

[NO94] Christian. Neusius and Jan. Olszewski. A noniterative thinning algorithm.

ACM Transaction on Mathematical Software, 20(1):5–20, 1994.

[Ope10] OpenSimulator. Main page - opensim. http://opensimulator.org/

wiki/Main_Page, [accessed 2010].

[Pro10a] Procedural.Inc. Procedural - features. http://www.procedural.com/

cityengine/features.html, [accessed 2010].

[Pro10b] Procedural.Inc. Procedural - purchase. http://www.procedural.com/

purchase/purchase.html, [accessed 2010].

[PV03] A.P.Dal Poz and G.M.do Vale. Dynamic programming approach for

semi-automated road extraction from medium-and hig-resolution images.

The International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, 34:87–91, 2003.

[RAD10] RAD. Rad game tools. http://www.radgametools.com/default.htm,

[accessed 2010].

[REB10] REBUS. Render farm 3d renderfarm rebusfarm render farm service. http:

//www.rebusfarm.com/, [accessed 2010].

[Rya10] Ryan. Crazybump. http://www.crazybump.com/, [accessed 2010].



123

[Ser83] Jean Serra. Image Analysis and Mathematical Morphology. Academic

Press, Inc., 1983.

[SES95] Zhu Y. Seneviratne, L.D. Earles, and S.W.E. New line-based thinning

algorithm. Vision, Image and Signal Processing, IEE Proceedings,

142(6):351–358, 1995.

[S.L10] Next Limit S.L. Maxwell render :: The next generation in rendering

technology capable of simulating light exactly as it behaves in the real

world. http://www.maxwellrender.com/, [accessed 2010].

[Sof10] Choas Software. Choas group / software offical website offical website -

home. http://www.chaosgroup.com/en/2/index.html, [accessed 2010].

[Spl10] SplutterFish. Splutterfish: Brazil rendering system for 3ds max — home.

http://www.splutterfish.com/sf/WebContent/Index, [accessed 2010].

[Stu10] ProMotion Studios. Kajimba. http://www.kajimba.com/, [accessed

2010].

[UMG10] UMG. Virtual past - brining histroy to life. http://www.virtualpast.

co.uk/, [accessed 2010].

[Vir10a] Univeristy of Virginia. Rome reborn press release. http:

//www.romereborn.virginia.edu/rome_reborn_2_documents/

project_news/google_earth_ancient_rome_release_final.pdf,

[accessed 2010].

[Vir10b] University of Virginia. Rome reborn. http://www.romereborn.virginia.

edu/index.php, [accessed 2010].

[Vir10c] University of Virginia. Rome reborn 2.0. http://www.romereborn.

virginia.edu/rome_2.0.php, [accessed 2010].

[Vir10d] University of Virginia. Rome reborn 2.0 interface. http://www.youtube.

com/watch?v=PhzzjBPB25s, [accessed 2010].



124

[VK95] George Vosselman and Jurrien de Knecht. Road tracing by profile matching

and kalman filtering. In Automatic Extraction of Man-Made Objects from

Aerial and Space Images, volume 1, pages 265–274. Birkhauser Verlag

Basel, 1995.

[ZBC05] J. Zhou, W.F. Bischof, and T. Caelli. Robust and efficient road tracking in

aerial images. In In International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, volume 36, pages 35–40. 2005.

[ZMB99] Chunsun Zhang, Shunji Murai, and Emmanuel Baltsavias. Road network

detection by mathematical morphology. Bulletin of SFPT (French Soc. of

Photogrammetry and Remote Sensing), 103:3–14, 1999.


