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ABSTRACT

FACULTY OF SCIENCES
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Doctor of Philosophy

by Konstantinos Bougioukos

In biological systems, gene expression takes place when genes generate gene prod-

ucts and gene expression levels correspond to concentration levels of these prod-

ucts. Gene expression levels within a single cell are determined by a network of

regulatory interactions among genes mediated by gene products. In spatially ex-

tended systems consisting of multiple cells gene expression levels within a cell are

also affected by gene activity taking place in neighbouring cells. The interplay

between spatial interactions among neighbouring cells and the gene regulatory

network (GRN) within each cell may qualitatively alter the gene expression dy-

namics and affects spatially extended essential biological processes such as cell

differentiation, pattern formation and morphogenesis.

This thesis dealt with:

1. Computational modelling of the interplay between GRN and cell spatial

interactions and simulating the spatially organised gene expression dynamics.

2. Reproduce phenomena of gene expression heterogeneity in a spatially ex-

tended system and not in a null model and scoring GRNs according to their

capacity to organise these phenomena.

3. Investigate associations between network topological properties of GRNs and

the capacity of networks to organise gene expression heterogeneity in spa-

tially extended systems.
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Network density is significantly correlated to the GRNs potential to generate het-

erogeneity in spatially extended systems, small network diameter also constitutes

a characteristic of spatial heterogeneity. Several networks that scored for higher

spatial heterogeneity, individual element measures such as gene centralities and

membership in cycles have correlated with the capacity of spatial heterogeneity.

Initial condition choices exert limited impact on GRNs capacity to organise spa-

tial heterogeneity and it is the network topology together with the parameters

specifying gene interactions and properties of gene products that account for the

spatial heterogeneity generation.

GRNs with smaller diameters have identified to have greater degree of robustness

to initial conditions. The “small world” network phenomenon is associated with

the capacity biological gene regulation networks to generate spatial heterogeneity.
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Chapter 1

Introduction

“Verily, very first of all Chaos came into being”

Hesiod, Theogony 116–25

Every living entity uses nucleic acid macromolecules (DNA, RNA) to store and

transmit information essential to any process that characterise life (energy ex-

change, respiration, metabolism, development, reproduction). DNA and RNA

hold the information that is needed to encode for another class of biological macro-

molecules, proteins. Proteins are biological polymers, consisting of amino acid

chains, that constitute the building blocks of structure and control the functions

that characterise living organisms. The particular genetic constitution of a living

entity is known as the genotype and the particular biochemical procedures, or mor-

phological characters the phenotype. The total of DNA molecules of an organism

makes up its genome and encompasses the majority of the genetic information.

There exists certain regions of the genome which are central in terms of the in-

formation they contain and are called genes. What characterises genes is that

through a process called transcription the nucleotide (DNA) sequence of a gene

serves as a template for the formation of an RNA sequence called the messenger

RNA (mRNA). The mRNA sequences then, through a process called translation,

provide the information for the formation of amino acid sequences that is proteins.

The whole process of transcribing DNA to RNA and translating RNA to proteins

is also called gene expression. Gene expression has been encapsulated to what is

known as the central dogma 1 in molecular biology (figure 1.1). The direct link

1The central dogma with its additions (DNA and RNA replication, RNA editing, ribozymes
and prions) is still a representative scheme of the way that biological information is disseminated.

1
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Figure 1.1: The central dogma of molecular biology. Arrows depict the
flow of information between biological macromolecules. (image taken from

http://mlkd.csd.auth.gr/TIS/background.html)

between DNA and proteins implied by the central dogma signifies one more rela-

tionship central to biology, that that protein function can be attributed to genes

and their expression. Whether of not a protein is present in the cell –in a broad bi-

ological sense the function of a protein can be assigned to a particular phenotype–

is strictly related to whether or not a gene –which is a part of the genotype– is

expressed. Thus the expression of a gene is a prerequisite for the function of the

protein encoded by this gene. At least two distinct regions can be identified in a

gene. One is the region that gets transcribed to RNA (and consecutively trans-

lated to a protein) which is the structural region of the gene. The second is the

region, situated usually upstream the structural region, which controls the rate

and the time of the expression of a gene and is called the regulatory region. In

addition to the regulatory region various other regions, not necessarily situated

close or upstream the structural region of a gene, control the amount of gene

expression. The information incorporated in the regulatory region together with

other regions scattered around the genome constitutes the regulatory information

of a gene. The genome contains the full set of all the genes and their respective

regulatory information that encode for proteins which build up and carry out all

the processes that constitute a living entity.

In multicellular organisms each cell contains a copy of the same genome 2, at

the same time cells have a variety of different functions and morphologies. For

instance, in animals, a hair cell shares the same genome with a cell in the liver,

however the morphology and the functions that each cell sustains are different.

These profound differences in cells are the product of the process of cell differenti-

ation. Genes are either expressed or not, or expressed differently in different cells

corresponding to the existence of different proteins with different concentrations

in different cells leading to different functions. In unicellular organisms there is

only one type of cell however unicellular organisms respond to their environment

by changing the expression of their genes, e.g. in order to feed or to move towards

nutrients or light. The expression of genes is not a static phenomenon distinct cells

2This statement neglects somatic mutations which are not the concern of this thesis
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express different sets of genes in differential expression levels and even within a

single cell that responds to environmental changes numerous signals are realised by

differentiating gene expression. Gene expression is regulated by numerous factors.

The regulatory information of a gene determines the expression of the gene. The

regulatory region incorporates a significant amount of the regulatory information.

A constitutional part of the regulatory region of a gene is the promoter, the pro-

moter contains numerous specific nucleotide sequences that can be recognised by

factors that initiate transcription. Transcription of DNA to RNA is carried out

by an enzyme called RNA polymerase II (RNApolII). In order for this enzyme to

reach the regulatory region of the gene a set of factors (coenzymes, proteins) need

to bind in the promoter of the gene and facilitate the binding of the RNApolII.

An additional set of factors, i.e. proteins, can identify characteristic sequences in

the promoter of the gene and elsewhere in the genome and enhance the activity of

the RNApolII increasing the transcription rate of the gene. Conversely there are

factors that recognise other specific regions of the regulatory information of a gene

and decrease the transcription rate. Most of these factors are proteins and the

function of these proteins is to regulate the transcription, these proteins are de-

fined as transcription factors (or trans-regulatory elements). The specific regions

where these proteins bind in the genome are called cis-regulatory elements.

Transcription factors are proteins that are encoded by genes called regulatory

genes which have also promoters that other transcription factors can bind on and

regulate the expression of regulatory genes and so forth. Therefore there are

regulatory genes which control the expression of other genes through the activity

of the products the regulatory genes encode for. The regulatory relationships

between genes (through the transcription factors which genes are encoding for)

can be represented by a network of genes and gene products. These networks are

called Gene (or Genetic) Regulatory Networks (GRNs) and comprise genes and

gene products, where genes, through their products, are controlling the expression

of other genes. In this thesis a GRN is represented by a graph (or a network)3

where a gene is represented by a node in the network and regulatory interactions

between genes by edges4.

The more activating transcription factor bound on a gene (both different types

or more molecules of the same one) the higher the expression of this gene will

3The terms graph and network refer to the topological object and the GRN respectively. How-
ever, will be treated as topologically equivalent in this thesis and might be used interchangeably

4the graph representation is just one of numerous mathematical abstractions that are em-
ployed to describe and study GRNs
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be, and more repressing transcription factors lead to a decrease and can finally

abolish the gene’s expression. Thus the arrangement and the nature of the interac-

tions between genes on a GRN are crucial determining factors for gene expression.

This arrangement of interactions which is known as the topology (glossary entry:

Topology) of the network is a central property that determines gene expression

and it is the reason why topological studies of networks have attracted a consid-

erable amount of research the last years ((Barabási and Oltvai, 2004; Bray, 2003)

for a general introduction to biological networks studies).

1.1 Gene Expression Regulation in Detail

Each gene encodes a product, either a protein or an RNA molecule (assuming that

there is an one-to-one relationship between gene and gene products). The process

of generating a gene product begins by the binding of the enzyme RNApolII on

the promoter of the regulatory region of a gene. Several factors that are needed for

the transcription also bind in the regulatory region, these factors are called gen-

eral transcription factors and are essential for the assembly of the transcriptional

apparatus. In the absence of any other transcription factor, transcription takes

place in a relatively low rate, the basal transcription rate. If only these general

transcription factors are bound in to the regulatory region the gene is constitutiv-

elly expressed. The general transcription factors are not taken into account when

one refers to GRNs however the constitutive gene expression is often incorporated

in GRN realisations.

Gene expression is not a static process. A molecule of an activating transcrip-

tion factor binds to a specific site of the regulatory region of a gene, increases

the probability for the RNApolII to bind to the promoter and actively assists the

transcription apparatus to move on and transcribe the DNA. After that the tran-

scription factor binding site will remain free and another molecule must bind on it

for the transcription to be continuously enhanced. The higher the concentration

of the transcription factor the faster the empty cis-regulatory position will be oc-

cupied again and the faster a transcription event will initiate again. The rate at

which the gene will be expressed depends positively on the concentration of the

activating transcription factor (respectively for repressing factors the transcription

rate depends negatively on the factor concentration).

When a gene is actively transcribed, the rate by which its product is synthesised is

increasing and consequently the concentration of the factor that this gene encodes
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for is also increasing, the factor concentration is associated to the expression level of

this gene. On the contrary when a repressing regulator is bound on the promoter of

a gene the rate of transcription is decreased and the factor concentration decreases

as a result. Therefore the levels of gene expression are subject to variation in terms

of time.

Factors mostly consists of protein molecules, however there are cases where other

biological macromolecules like RNA can be the gene products and consequently

regulate the expression of genes. Some novel classes of RNA molecules called

generally small RNAs are currently under increasing attention from the scientific

community for their role as regulatory elements. In addition a plethora of post-

transcriptional and post-translational modifications mechanisms contribute to the

regulation of the gene expression levels. Gene expression levels can be affected by:

regulation in the splicing level (and alternative splicing in higher eukaryotes), post-

transcriptional regulation, including microRNAs, post-translational regulation e.g.

protein phosphorylations, proteolysis and also protein degradation, to mention

a part of the numerous processes that cells are using in order to regulate the

concentration of gene products. However this thesis approaches the phenomenon of

regulation as a general biological process regardless of the underlying mechanism.

GRNs in this thesis take into account factors that increase the rate by which a

gene gets expressed and are called activating factors (or enchancers) and factors

that decrease the rate by which a gene gets expressed and are called repressing

factors (or inhibitors).

The amount of gene product after a gene gets transcribed is actually an approx-

imation of the concentration of the protein, however the two terms here are used

and treated as equivalent. As described, several additional regulatory mechanisms

can be involved after a gene gets transcribed and affect a factor’s concentration,

however transcription regulation is the principal one. Evidence suggests that the

mRNA level (the product of transcription that which is predominantly determined

by the GRNs) and the degradation rate are essentially the two mechanisms that

determine the concentration of a protein (Ben-Tabou de Leon and Davidson, 2009).

Furthermore, analysis of collections of microarray experiments has revealed that

the gene expression profiles (mRNA levels captured by microarray experiments)

characterise much better the state of a cell than protein concentrations levels

(Hughes, Marton, Jones, Roberts, Stoughton, Armour, Bennett, Coffey, Dai, He,

Kidd, King, Meyer, Slade, Lum, Stepaniants, Shoemaker, Gachotte, Chakraburtty,

Simon, Bard, and Friend, 2000).
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1.1.1 Importance of transcription regulation

Transcription regulation constitutes an absolutely central process in biological sys-

tems. It organises responses to intracellular signals (metabolism), extracellular sig-

nals and various environmental stimuli. Transcription regulation also orchestrates

the complex phenomena of cell differentiation, morphogenesis and development in

multicellular organisms, regulates the cell cycle and maintains the internal state of

the cell (homoeostasis) in every single life form. The apparatus that implements

transcription regulation is a gene regulatory network.

1.1.2 Gene expression dynamics

Gene expression is a dynamic phenomenon, as the rate a gene is expressed is deter-

mined by the concentration of the transcription factors of this gene. In addition to

that, the degradation rate of the gene product also affects the factor concentration.

These two processes (synthesis and degradation) are shaping the concentrations

of gene products in terms of time. So the term gene expression dynamics refers

to the variation of factor concentrations in terms of time and is an omnipresent

phenomenon in biological systems. Cells alter factor concentrations to respond

to changes in the environment, to metabolise different substances and to control

internal processes (including cell cycle). Characteristic studies of a case of gene

expression dynamics that follow an oscillatory pattern and the role of GRNs in

organising the oscillatory behaviour of the circadian clocks can be found in (Locke,

Millar, and Turner, 2005; Rand, Shulgin, Salazar, and Millar, 2006).

1.1.3 Gene expression heterogeneity

The phenomenon of cells having different states resulting form different gene ex-

pression levels (or different factor concentration levels) is generally called gene

expression heterogeneity. Gene expression is a dynamic process, the state of all

the factor concentration values in a given time determines the state of the cell at

that particular time. Factor concentrations, as described, change over time and

consequently the cell state changes over time. States with characteristic different

concentration sets may correspond to different cell types.

The difference between cell differentiation and gene expression heterogeneity is

that heterogeneity is a prerequisite for cell differentiation, and that not all the
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different cell states correspond to a distinct and characterised cell type. Cell dif-

ferentiation is based in the changes in the cell states and on the gene expression

heterogeneity, and consequently on the networks regulating the gene expression.

A motivating introduction to the mathematical background of transcriptional reg-

ulation, degradation rates and the role of GRNs in cell differentiation can be found

in (Ben-Tabou de Leon and Davidson, 2009).

Furthermore, two aspects of gene expression heterogeneity have particular im-

portance for biological systems. First, homoeostasis (Homeostasis) pertains to

the property of cells to retain their biochemical stability under limited external

perturbations. The term “limited” refers to the limits that the biological organisa-

tion of the matter imposes. For instance is impossible for the phenomena (due to

constructional and thermodynamical limitations) to occur in temperatures much

lower than the freezing point (0oC) or in temperatures that will break biolog-

ical membranes and cause the proteins to denature. Second, multistationarity

(Multistationarity) refers to the existence of more than one stable state in a dy-

namical system. Multistationarity in biological systems has been found in bistable

switches, memory switches –apparatuses that maintain the response to a transient

initial signal stable– and –perhaps the most notable– the cell cycle organisation,

where the G1 phase has been suggested to be a bistable switch (Tyson, Chen, and

Novak, 2001).

1.2 Gene Regulatory Networks

A gene regulatory network (Gene Regulatory Network), as described, comprises

gene and gene products: the gene products regulate the expression of genes and

the interactions between genes (mediated by their respective gene products) can

be represented by a graph. The vertices of the graph represent genes and the graph

edges the regulatory interactions. GRNs represent biological networks known with

more specific names, like genetic regulatory networks, gene transcription networks

and gene expression networks. All these networks are subclasses of GRNs. Other

widely known biological networks like protein-protein interaction networks, neu-

ronal networks, ecological networks and food webs and phylogenetic networks con-

stitute different types of biological networks and are not the subject studied in this

thesis.

Two aspects of GRNs are central for understanding the properties of these systems,

the one is already described, is the is the arrangment of the interactions between
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genes or the topology (Topology) of the graph in graph theoretical terms; and the

second is the dynamical parameters of the network (Dynamical Parameters). The

dynamical parameters of a GRN consist of a set of real valued parameters that

specify the nature and the strength of the regulatory interactions as well as other

properties of gene products like the degradation rate and the ability of a gene

product to diffuse between different cells.

Therefore, both properties of the topology of GRNs ((Longabaugh and Bolouri,

2006)) and properties of the dynamical parameters of the interactions ((Kim, 2006;

Prill, Iglesias, and Levchenko, 2005)) need to be included for any qualitative model

of GRNs to simulate gene expression dynamics.

GRNs are organising the complex dynamics of gene expression heterogeneity and

cell differentiation. Moreover GRNs, it is suggested that, are behind complex bio-

logical phenomena like gene additivity, dominance and epistasis (Omholt, Plahte,

Øyehaug, and Xiang, 2000). Phenomena that however important are outside of

the scope of study of this thesis.

1.3 Spatial Organisation

Many biological systems are spatially extended. A tissue is a collection of cells

that is extended in a spatial structure. The notion of spatial extension in this

work is close to the general mathematical definition of space which is a set with

an added structure. So in a biological context a spatially extended system is a set

of cells with an added spatial structure. Spatially organised cells form tissues and

spatially organised tissues form more complex structures like organs and organ-

isms. Gene expression levels can vary along a tissue as neighbouring cells exchange

gene products through a number of different physical process (e.g. diffusion, active

transport, osmosis). Gene expression heterogeneity induces changes in cells states

leading to cell differentiation and that together with spatial organisation constitute

a mechanism able to generate more complex biological phenomena like develop-

ment and morphogenesis. In such spatially extended systems, GRNs (comprising

the topology and the dynamical parameters) alone are not sufficient to determine

the dynamics of gene expression, as gene expression levels are determined by the

process of gene regulation and exchange of factors together.

Numerous biological processes, such as pattern formation, can only take place

in spatially extended systems and as such spatial organisation can impact the
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dynamical properties of these systems. In a classical example of the hypercycle,

a system of linked chemical reaction cycles, Boerlijst and Hogeweg have studied

the qualitatively different dynamical properties of a spatial extended version of

the system, in terms of the number and the nature of its attractors (Boerlijst and

Hogeweg, 1995).

Studying dynamical properties of systems where gene expression dynamics in spa-

tially organised systems are determined by both the exchange of factor concentra-

tions –realised as diffusion– and by the regulatory network is a central objective

of this thesis.

1.3.1 GRNs and development

Different cell states may correspond to different cell types and links between GRNs,

different cell types and cell differentiation has been establish early by Stuart Kauff-

man in (Kauffman, 1987) suggesting that different cell states can be associated

with stable states of gene expression. Arguably, the fundamental level of under-

standing developmental processes is the level of cell differentiation and GRNs are

able to organise differential gene expression. Within the biological development

community this level of organisation is called the developmental program and gene

networks and network modules which perform a set basic functions, are considered

to be the fundamental building blocks of this developmental program. The time

activation of these blocks organises the complex processes behind development in-

cluding regulatory state maintenance, exclusion of alternative fates, and subcircuit

shutoff (Ben-Tabou de Leon and Davidson, 2007).

GRNs have the capacity to control whether a gene will be expressed, at what time

window, in which level and at what part of a tissue. GRNs consisting of time or

site (or tissue) specific transcription factors are organising the processes required

for the development from an undifferentiated embryo to an adult organism with

hundreds of different cell types both in animals (Davidson, Rast, Oliveri, Ran-

sick, Calestani, Yuh, Minokawa, Amore, Hinman, Arenas-Mena, Otim, Brown,

Livi, Lee, Revilla, Rust, Pan, Schilstra, Clarke, Arnone, Rowen, Cameron, Mc-

Clay, Hood, and Bolouri, 2002; Stathopoulos and Levine, 2005) as well as plants

(Mendoza and Alvarez-Buylla, 1998).
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1.4 Modelling and Dynamics

The process of transcription of a gene can be represented by an enzymatic chem-

ical reaction. A transcription factor can be represented by an enzyme and the

DNA cis-regulatory elements as the substrate of this enzyme. Then using the

well established abstractions from the theory of chemical and enzyme kinetics the

dynamics of gene transcription can be simulated. Taking also in to account the

degradation rate, gene expression dynamics can be simulated in terms of time

and incorporating a factor exchange mechanism (diffusion) the dynamics of gene

expression can be simulated on spatially extended systems.

Models, as abstract representations of biological systems, are subject to mathe-

matical, ontological and computational constraints. To address these constrains

every model should come up with a set of clearly defined assumptions. In this

thesis the modelling assumptions are designated as follows:

• Factor concentrations levels calculations are deterministic.

• Only transcription factors are considered as gene products and not other

biological macromolecules (e.g. RNAs).

• Gene expression levels are equivalent to factor concentrations.

• Gene expression levels are real valued.

• Time and space are discrete.

1.5 Motivation

This work is related to and motivated by the field of network biology (Barabási

and Oltvai, 2004), is also motivated by the role of GRNs in complex biological

phenomena (Omholt et al., 2000) and envisages to model and study phenomena

that organise developmental processes (Davidson and Levine, 2008; Davidson, Mc-

Clay, and Hood, 2003). The behaviour of biological systems is not only depending

on the parts but on how and on the way its parts are linked together (Motter,

Mat́ıas, Kurths, and Ott, 2006) and thus the aspect of topology of GRNs and how

it is connected with complex dynamical processes in biological systems is central

in the course of this thesis.
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Cell differentiation is an elementary processes for the organisation and develop-

ment of multicellular organisms and modelling of cell differentiation has captured

the interest of many researchers since quite a while ago. A necessary condition for

cell differentiation is spatial heterogeneity of gene expression and mechanisms to

generate that include (Turing, 1952) and as studied and extended further in (Gierer

and Meinhardt, 1972; Meinhardt, 1982) are is generaly known as Turing-Meinhardt

systems. Research of GRNs in development is focused on the reconstruction of

the regulatory interactions, on the understanding of the role of topological features

of GRNs in biological systems and on how these elements of topology have been

shaped by evolution.

The turning point in the motivation of this thesis is the fact that gene expression

on spatial systems is determined both by the GRN as well as by the exchange

of gene products in neighbouring cells, and that spatial organisation has impacts

on the dynamical properties of the systems organised by the GRN. In chemical

reaction systems (Boerlijst and Hogeweg, 1995) space lead the hypercycle sys-

tem to additional attractors, in plant cells (Espinosa-Soto, Padilla-Longoria, and

Alvarez-Buylla, 2004) spatial organisation and the direction of diffusion changes

the attractors of the system and controls hair root formation and stem hair in

plants. Finaly, on developmental biology (Jaeger and Martinez-Arias, 2009) –for

a revision of the classical example of positional information– spatial organisation

together with gene expression fluctuations generate patterns.

There is an interplay between the network topology and the spatial organisation

that coordinates biological processes related to cell differentiation and pattern

formation and this work looks forward to systematicaly elucidate it.

1.6 Central Aims of the Thesis

The central aim of the work presented in this thesis is to characterise network topo-

logical properties, both whole network properties as well as local network elements

properties, of gene regulatory networks that are capable for generating gene ex-

pression heterogeneity higher in two-dimensional spatially organised systems than

in systems which lack spatial organisation.

This broadly defined central aim of the thesis has informed a set of secondary

specific objectives that are summarised as follows:
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1. Model and study spatial gene expression heterogeneity phenomena that arise

from the interplay of network structure together with the spatial structure.

The phenomenon of interest is the emergence of gene expression hetero-

geneity in spatially organised systems that falls in the category of Turing-

Meinhardt systems. Reproduce simulated instances of phenomena of that

type.

2. Devise a measure to characterise and quantify gene expression heterogeneity

in a spatial extended system and not in systems that lack spatial structure.

The measure should take in to account heterogeneity in a spatially organ-

ised system compare to a background model of a system that lacks spatial

organisation.

3. Characterisation of GRN topologies based on network statistical properties.

Employ the measure for spatial gene expression heterogeneity to associate

network statistical properties with the capacity of GRNs to exhibit gene

expression heterogeneity.

4. Investigate the effects of modifications in the capacity of GRNs to generate

spatial heterogeneity. Modifications constitute changes in network topologal

characteristics as well as external perturbations. Assess the robustness of

GRNs to such modifications.

1.7 Outline

This thesis constitutes one block of work organised in alignment of the central

aims and objectives introduced in the above section 1.6. The respective chapters

are organised as follows:

Chapter 1 Sets the introduction and motivation of this work in an –as possible–

non-technical style.

Chapter 2 More formal and technical motivation and connection of this thesis

with the rest of the universe of publications. Review and discussion of the

relevant literature and setting of the area where this thesis can be related

to. Systematic review of GRN modelling approaches and network sciences

theory, tools and advances.
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Chapter 3 Formal introduction to the computational modelling framework devel-

oped to conduct all the experiments and generate the data.

Chapter 4 Description and motivation of the analytical tools and methodological

framework developed to interpret the generated data.

Chapter 5 Presentation and discussion of the experimental results of network

properties studies.

Chapter 6 Presentation and discussion of the experimental results of the initial

reactor state studies.

Chapter 7 Presentation and discussion of the experimental results of robustness

and network pruning studies.

Chapter 8 Conclusions, outlook and potential future research directions.



Chapter 2

Literature Review

“Standing on the Shoulders of Giants”

Bernard of Chartes, c. 12th century

2.1 GRN Modelling

This section will cover a critical review and outline of GRNs’ modelling approaches

published in the literature. Work that has established the field of modelling of

gene regulation and have a significant impact on the network modelling in biology

for historical reasons, as well as analytical studies and modelling approaches of

specific biological systems that inspired key elements of the work in this thesis,

will be presented and critically discussed.

2.1.1 Models lacking spatial structure

The models discussed in the first part of this section have been considered clas-

sical both for their level of abstraction, which captures significant properties of

regulatory systems, as well as for their pioneering systems perspective that have

introduced.

The early models of Stuart Kauffman and René Thomas will be described for

historical reasons, as the work on Boolean networks and on logical analysis of gene

regulation has paved the way for a systems perspective in biology. Before reviewing

individual models it is worthwhile mentioning three books which epitomise the

14
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work of these two researchers and demonstrate the pioneer nature of early models

which provide novel approaches in the description of biological systems. The books

of Stuart Kauffman “The Origins of Order” (Kauffman, 1993) and “At Home in

the Universe” (Kauffman, 1996) and Réne Thomas “Biological Feedback” (Thomas

and D’Ari, 1990) have motivated and heavily inspired the work of this thesis.

2.1.1.1 Discrete state space models

In some discrete models, gene expression is considered binary and is assigned ei-

ther binary (0, 1) or logical values (On // Off, or True // False in a Boolean

representation). A gene is represented as active if it is in a 1 (or On) state and

as ceased otherwise. The expression of the gene is determined by a Boolean func-

tion with input the binary values of its regulators. The initial attempts to model

GRNs was as randomly connected networks of genes, as the lack of any large scale

data prevented any representation of a specific biological system. In the Random

Boolean Network model developed by S. Kauffman (Kauffman, 1969b), a GRN

is represented by a randomly constructed network of N genes where each gene

has a specified number of K regulators. The number of inputs can either vary

among all genes or be a fixed value for each gene in the case of NK networks.

There is a potential of 22
K

number of different Boolean functions for a gene with

K inputs, Kauffman in the original NK model has assigned one of the potential

Boolean functions randomly to each gene. An NK network is generated randomly

by two means: the regulatory Boolean function of each gene and the topology of

the network that connects genes. The network is placed at an arbitrary state T

and the state at time T + 1 is calculated after each Boolean function consults its

input. The model has one control parameter and this is the number of inputs

K per gene. Variation of the K parameter enables the study of the dynamics of

various NK networks. Networks with minimum inputs per gene (K = 1) have

extraordinary long state cycles (the length of a cycle is the time the system needs

to reach the same state) and fully connected graphs (N = K) a cycle length of

2N also extremely long for relatively small number of genes N . However networks

with K inputs between 2 and 3 have most of their cycle lengths heavily skewed

towards small numbers. Moreover, the number of attractors of these networks

was approximately equal with the number of different cell types in higher organ-

isms Kauffman (1987). The studies of RBNs by S. Kauffman (also in (Kauffman,

1969a) for an equivalent “continuous” deterministic model) provided for the first

time (although influenced by some earlier results of (Walker and Ashby, 1966) on

random Boolean networks) a description of biological phenomena based on a high
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level statistic of the system the number of regulatory inputs K of a gene. Yet

additional striking observations were enabled by the Boolean network abstraction,

when the majority of Boolean functions were assigned a certain type –functions

called canalising functions (Kauffman, 1974). An NK network with its genes regu-

lation controlled by a randomly chosen canalising function, exhibits a cycle length

of
√
N and the same number of distinct recurrent patterns as well as robustness

to random perturbations (homoeostasis) (Kauffman, 1974).

The Boolean formalism has been used extensively in the work of a second re-

searcher, R. Thomas. He has introduced a Boolean approach to model gene regu-

lation, genes have a logical value and the state of a cell is represented by a logical

vector. Thomas has employed principles from logical analysis and formal methods

to unambiguously represent regulatory systems (Thomas, 1973) and proposed the

use of simplification techniques, known to logical analysis, for biological systems.

The logical analysis of Thomas lead the way to systematically characterise GRN’s

behaviour in terms of circuits and make the first attempt to analyse feedback in

biological systems. In (Thomas, 1978) a comprehensive logical analysis of nu-

merous feedback mechanisms (e.g. positive feedback loop) can be found and the

first attempts for converging to laws of biological circuits are presented. These

laws, briefly, that positive feedback is responsible for cell differentiation and neg-

ative feedback for homoeostasis, are formalised in (Thomas, 1998) and constitute

one of the major contributions of the application of formal methods in modelling

biological regulation.

Beyond the Boolean discrete network formalism for GRN modelling, there exists

attempts to study and explore the dynamics of more complex events of gene reg-

ulation. In cases where the effect of TFs in gene regulation is not additive but

additional phenomena are taking place, phenomena like synergy or antagonism in

the transcription factor binding. The “logic” behind these phenomena is surveyed

in (Schilstra and Nehaniv, 2008) and concludes that the rules for combinatorial

logic apply only for the independent binding of TFs, in other cases the behaviour

is similar to logical operators and when there is competition for the binding site a

whole non-Boolean continuum of behaviours is observed.

Discrete modelling of biological systems. Boolean networks have been

extensively used to model gene regulatory networks and simulate the dynamics

of biological systems. Two classical examples are presented here the Arabidopsis
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thaliana flower morphogenesis network and the cell cycle network of the yeast

Saccharomyces cerevisiae.

Modelling the A. thaliana flower morphogenesis: Using a binary ap-

proach to gene expression and the Boolean network abstraction, Mendoza and

Alvarez-Buylla have modelled the dynamics of the gene regulatory network that

controls the flower morphogenesis in A. thaliana (Mendoza and Alvarez-Buylla,

1998). The topology of the network comprising 11 genes and 24 regulatory inter-

actions as well as the regulatory strengths of the interactions have been retrieved

from the literature and an exhaustive analysis of the network dynamics has repro-

duced the 4 distinct states of the ABC model for flower morphogenesis, implied

as 4 stable attractors in the model. The model has also revealed a 5th attrac-

tor that corresponds to the vegetative state and a 6th that is not present in wild

type flowers but exists in laboratory strains. The group has moved forward the

study of the GRN that underlies the ABC model and a recent review collects

all the refinements of their models (Chaos, Aldana, Espinosa-Soto, León, Arroyo,

and Alvarez-Buylla, 2006) and an extensive version –including 15 genes and 29

regulatory interactions– of the A. thaliana flower morphogenesis GRN.

Modelling the yeast cell cycle: Cell cycle regulation is one of the most well

studied biological systems. Based on the accumulated knowledge build up over

years of research the network topology of the yeasts’ cell cycle key regulators can be

mined form the literature. Knowledge of the topology of the network is sufficient

to simulate the dynamics of the system in terms of successive stable states of

biological activity. Indeed by using a discrete Boolean approach (Li, Long, Lu,

Ouyang, and Tang, 2004) and (Davidich and Bornholdt, 2008) have been able to

simulate the dynamics of the yeasts S. cerevisiae and Schizosaccharomyces Pombe

cell cycle respectively. The cell cycle network in both organisms has a robust

design, with the majority of the initial conditions to be members of the largest

basin of attraction of the system which equilibrates to a fixed point attractor

corresponding to the G1 control point of the cell cycle. The biological pathway

of the cell cycle corresponds to one of the attracting trajectories of the Boolean

network dynamical trajectories.
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2.1.1.2 Continuous state space models

Factor concentrations, transcription activation and repression coefficients are rep-

resented and measured as positive real values, gene expression levels are also mea-

sured as continuous real variables, therefore it is natural that continuous state

space models of GRNs have been developed to represent and study such systems.

Continuous modelling is based on the premise of sets of Ordinary Differential

Equations (ODEs) that are coupled and are used to calculate the changes in gene

products concentrations with regard to time. Modelling is based on principles of

chemical reaction kinetics, with the Michaelis-Menten kinetics (extended by the

Hills equations) to be regularly used to derive the functions which simulate gene

expression. The systems of ODEs are either solved numerically, by numerical in-

tegration in discrete time intervals, or solved analytically. In numerical simulation

approaches, a timeseries of simulated gene expression levels is generated by the

model and then is subjected to analysis by established methods of gene expression

data analysis, (Eisen, Spellman, Brown, and Botstein, 1998) –is a mainstream

example of gene expression data analysis. Analytical approaches are focused on

finding steady state solutions to the equations, reveal oscillatory dynamics and

characterise critical points, these are points where relatively minute perturba-

tions can lead the system to quantitatively different dynamics and potentially

correspond to stable cell states in biological systems. The analytical approaches

reviewed here have inspired the design of regulatory systems with anticipated

dynamics and have also inspired the study of GRN properties, both topological

properties and dynamical parameter settings, in this thesis.

Early work to model and analyse the dynamics of regulatory control circuits in-

clude the studies by J. Tyson and A. Othmer (Tyson and Othmer, 1978), where a

comprehensive analysis of the dynamics of biochemical networks as well as genetic

control circuits were modelled as continuous systems. The work studied activat-

ing and repressive systems separately and derived formal mathematical conclusions

for steady states and local and global stability of GRNs. Continuous modelling of

GRNs provides insights that logical models are unable to capture. This advantage

is facilitated by the extensive body of dynamical systems analysis tools which are

used to study the dynamics of gene regulation. Tyson and Othmer have described

invariants of the dynamics of regulatory systems that only continuous modelling

can derive including that one unique steady state is asymptotically stable in acti-

vating and repressing systems and when 3 steady states exist in activating systems

the second one is always unstable. In an equivalent approach Berding ((Berding
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and Harbich, 1984)) has modelled the dynamics of the operon by a set of ODEs,

as a system itself and also as part of a cascading pathway. The dynamic analy-

sis include the calculation of the Lyapounov exponents of the system for a range

of different dynamical parameters and constitutes an early analytical study that

the feedback loop is able to express a variety of different dynamics depending on

different parameter settings for the regulatory strengths.

A recurrent topic in continuous modelling of GRNs is the application of dynamical

systems analysis to relate invariant sets (such as equilibrium points and periodic

orbits) to biological questions relating gene regulatory mechanisms. Analytical

studies of the dynamics of gene regulation with respect to the regulatory elements

organisation have shown that the number and the stability of equilibria relates to

the number of binding sites of a transcription factor (TF) in the regulatory region

of a gene (Wolf and Eeckman, 1998). This work attempts an early connection

between structure of regulatory networks (the number of cis-regulatory sites) and

the dynamics of gene expression. The authors have drawn a theoretical conclusion

for the minimal mechanism that exhibit an “on-off” switching behaviour, that is

a two gene and two binding sites per gene system where one gene acts as a switch

for the other, and suggested that this might be a constituent part of networks

controlling cell differentiation and development.

The concept of gene switches was analytically studied by Cherry and Adler (Cherry

and Adler, 2000)) as a ”flip-flop” switch system. A two genes system that has two

stable states one where the first gene in “on” and the second “off” and another in

which the states are reversed. This work has introduced a functional to characterise

the shape of functions that are able to give rise to “flip-flop” phenomena, certain

criteria regarding the dynamical parameters should be met for a system to act as

a switch. Functions based in Michaelis-Menten type of repression alone can not

generate a switch-like behaviour in a two genes system, but functions incorporate

cooperativity, effects from multiple binding sites (i.e. Hills coefficient higher than

one) or depletion of the repressor should be employed such that a system will

exhibit a “flip-flop” behaviour.

Stochastic modelling: Continuous state space modelling by using systems of

coupled ODEs provides a realistic representation of most gene regulatory systems.

However there are cases where the phenomena that control a gene’s regulation

appeared to have a random and infrequent nature. Small number of regulatory
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molecules (transcription factors, RNApolII) and the random intervals of transcrip-

tion initiation events result in a considerable degree of biological noise that any

ODE approach can not capture due to its deterministic nature. Therefore, mod-

elling approaches based on stochastic differential equations (SDEs) have developed

with (McAdams and Arkin, 1997) to be one of the earlier and most characteristic

ones. In this study the authors model a single gene where the time interval for

transcription initiation events was random. The stochasticity of the system incur

significant differences in temporal mode of gene expression. The random expres-

sion of factors can lead to probabilistic behaviour of regulatory switches and thus

generate different cell types. The random nature of gene regulation can generate

diversity on gene expression by non genetic means, a stochastic type of regulation.

Continuous modelling of biological systems. Continuous models have

employed to study numerous biological systems, as a comparison example with the

discrete approach discussed before (section 2.1.1.1) the A. thaliana root and leaf

hair development modelling and the yeast cell cycle modelling based on continuous

models will be discussed here.

Modelling the A. thaliana root and leaf hair: The A. thaliana root and

leaf hair development has been modelled in an activator / inhibitor continuous

model by the same group that model the flower morphogenesis in the same plant

(Beńıtez, Espinosa-Soto, Padilla-Longoria, Dı́az, and Alvarez-Buylla, 2007) (dis-

cussed in section 2.1.1.1). The pattern generated by the continuous model was in

agreement with patterns generated by the logical equivalent of the model, support-

ing the conjecture that stable states found by logical models are always present

in the equivalent continuous model (a further discussion on discrete-continuous

modelling comparisons follows in section 2.1.1.3).

Modelling the yest cell cycle: One of the major applications of continuous

modelling of GRNs is the yeast cell cycle analysis using tools from dynamical

systems. In the work of J. Tyson and B. Novak the dynamics of one of the most

well studied physiological systems of the cell –the cell cycle– were analysed in terms

of networks and dynamical systems properties ((Tyson et al., 2001) for a review on

the work of the group). Critical points in the yeast cell cycle are characterised as

steady states of the dynamical system and bifurcation analysis reveals that the G1

control point is a bistable switch. These results are in an extent in agreement with

the discrete modelling of the yeast cell cycle that were discussed in section 2.1.1.1.
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Results from the application of continuous state space modelling, which is rou-

tinely accompanied by analytical studies of the invariant sets of the underlying

dynamical systems, demonstrate that dynamical systems analysis when is coupled

with elementary concepts of network theory (at least for relatively small networks)

can pave the way for a unified theory for modular cell physiology according to

(Hartwell, Hopfield, Leibler, and Murray, 1999)

Software packages Here software suites which are based on continuous mod-

elling and computational simulations of the dynamics of gene expression are re-

viewed. The packages are composed of a computational representation of a gene

regulatory systems and a numerical simulator of the dynamics of the represented

networks.

The group of Pedro Mendes has developed two software packages, Gepasi to model

and simulate gene expression (Mendes, 1997) and Copasi to simulate complex

pathways and parameter optimisation (Hoops, Sahle, Gauges, Lee, Pahle, Simus,

Singhal, Xu, Mendes, and Kummer, 2006). The underlying models of the Mendes

group software are presented in Mendes, Sha, and Ye (2003) and consist of random

network generation algorithms to produce GRN topologies and a set of ODEs for

reaction kinetics, incorporating the Hill’s coefficients (Gepasi also includes SDE

modelling capabilities). The system design requirements were focused to facilitate

topological studies of GRNs as well as studies of their dynamical parameters.

An artificial gene expression data generation software named SynTReN has been

developed by T. van de Bulcke et. al. (van den Bulcke, van Leemput, Naudts,

van Remortel, Ma, Verschoren, de Moor, and Marchal, 2006). SynTReN uses a

sampling from biological networks approach to generate different GRN topologies,

then assigns a regulatory function to each interaction and calculates the systems

steady state, it needs to be pointed out that SynTReN calculates directly the

steady state gene expression of a GRN as it accepts only acyclic graphs as network

topologies and does not calculate any dynamics. However SynTReN has been

successfully used to assess the accuracy of several GRN reconstruction algorithms.

The BioComputing group in the University of Hertfordshire has developed a soft-

ware package able to represent and simulate the dynamics of continuous and dis-

crete GRN models. The package is called NetBuilder, is reviewed in Titus Brown,

Rust, Clarke, Pan, Schilstra, De Buysscher, Griffin, Wold, Cameron, Davidson,

and Bolouri (2002), it comprises of a Petri-Net approach to model gene regulatory
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systems and can simulate the dynamics of GRNs using both deterministic as well

as stochastic equations sets.

2.1.1.3 Comparisons between discrete and continuous models

Here approaches which incorporate discrete together with continuous systems will

be discussed, in the contet of the studies of (Kappler, Edwards, and Glass, 2003)

which have pointed out discrete systems are able to predict the number of attrac-

tors of continuous systems, for GRNs of relatively small size.

The central point in comparing the Boolean network approaches to continuous

modelling is the ability of the model to adequately capture the dynamical prop-

erties of the biological system. A straightforward remark is that in the lack of

detailed knowledge for the parameters that control the strengths of gene regula-

tion for relatively large systems the Boolean formalism becomes a favourable way

to study the behaviour of biological systems. Indeed this is valid if one considers

that the first attempts were discrete models (Kauffman, 1969b; Thomas, 1973).

However, as the knowledge of biological systems become more detailed continuous

models have gradually started to develop, especially for relatively small and ex-

haustively studied systems (e.g. λ-phage, lactose operon). Continuous modelling

is apparently more biologically realistic as the measured quantities in biological

systems are taking continuous values. Moreover, continuous modelling offers a

competitive advantage, that is it can capture the full spectrum of dynamics that

otherwise is lost to 0, 1 or On, Off in discrete modelling. However, analytical stud-

ies of systems modelled by both a discrete and a continuous approach (Glass and

Kauffman, 1973), tried to analyse continuous models by their logical equivalents

have shown a degree of agreement between the two modelling approaches. Effec-

tively, every stable state in a logical (Boolean) models corresponds to an attractor

in the continuous equivalent and every transient to transitions in the logical sys-

tem, e.g. oscillations will correspond to cycles in the logical mapping. Analysis

of the dynamics of discrete systems in terms of equivalence with the continuous

systems suggests that all the steady states of a discrete system qualitatively cor-

respond to steady states of a continuous system but not the opposite.

These results can be summarised in the following two individual publications deal-

ing with equivalent systems both continuous and logical.
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A theoretical study by R. Thomas in both continuous (Thomas and Kaufman,

2001a) and discrete (Thomas and Kaufman, 2001b) systems with time delays sug-

gested that there exists qualitatively similarity between continuous and discrete

approaches regarding the laws of regulatory circuits (as they appeared first in

(Thomas, 1973) and are discussed in section 2.1.1.1). In (Thomas and Kaufman,

2001a) the concepts of a full (a circuit that takes into account all the variables

of the system) and an ambiguous (a circuit that its sign depends on the loca-

tion in the state space) circuit were introduced. A formal mathematical survey

of the dynamics explored the requirements for multistationarity, periodicity and

deterministic chaos. Subsequently, in (Thomas and Kaufman, 2001b) groups of

logical parameter settings for GRNs were shown to have qualitatively equivalent

dynamics with the continuous approach above. Note also that most of the work of

Thomas has been theoretically corroborated further and proved by the studies of

Christoph Soulé, including formal requirements for multistationarity (Soulé, 2006)

and (Soulé, 2003) which is a proof that negative circuits is a sufficient condition

for multistationarity.

Furthermore, a motivating review to the discussion of comparisons between Boolean

and continuous regulatory network models can be found (Hasty, McMillen, Isaacs,

and Collins, 2001). A more exhaustive review of various different methods of the

discrete and the continuous approaches as well as for an introduction to methods

that combine modelling elements from both the approaches (e.g. piecewise dif-

ferential equations) is published by (de Jong, Gouzé, Hernandez, Page, Sari, and

Geiselmann, 2004). Finally, in (Smolen, Baxter, and Byrne, 2000) a formal mathe-

matical account of the differences between the Boolean and continuous approaches

to modelling is rigorously explored.

2.1.2 Models including spatial component

All the models reviewed so far were referring to modelling GRNs and gene expres-

sion dynamics in individual cells or were pertaining to averages of gene expression

along tissues. However, numerous biological processes in multicellular organisms,

such as cell differentiation and morphogenesis, are taking place in collections of

cells that are spatially organised and where genes are expressed differently in dif-

ferent cells. Therefore models that take into consideration the notion of space have

been developed to model such biological systems. Furthermore, as the processes

taking place during the development of an organism shape the mapping from geno-

type to phenotype, modelling and understanding developmental processes can shed
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light on determining the relation between genotype and phenotype (Solé, Salazar-

Ciudad, and Newman, 2000).

The process of pattern formation was the first that attracted the interest in mod-

elling. Which mechanisms are able to reproduce the phenomenon where a col-

lection of cells organised in a 2-dimensional sheet and having minute differences

in their factor concentration can generate patterns. Allan Turing has been moti-

vated by this problem and he was the first that introduced a mathematical model

of partial differential equations able to generate patterns in a 2-dimensional space

(Turing, 1952). The model was based on the principle of differences in the diffu-

sion of two molecules. An inhibitor molecule could diffuse an order of magnitude

faster than an activator molecule and this disproportion between activation and

repression was the generating factor of patterns in a 2-dimensional space. The lat-

eral activation global inhibition principle was further extended and examined by

Hans Meinhardt and Alfred Gierer, who established a mathematical framework of

pattern formation mechanisms (Gierer and Meinhardt, 1972) and connected their

theoretical work with aspects of developmental biology and GRNs (Meinhardt,

2006).

An innovative approach for spatial modelling of biological systems was introduced

by Franco Bignone who was the first who introduced the concept of discrete or-

thogonal 2-dimensional lattices in order to model cells spatial organisation. His

work, (Bignone, 1993), has incorporated gene regulation and diffusion to simulate

gene expression dynamics and it has been very inspirational for the development

of the spatial models in this thesis.

Studying the mechanisms that give rise to developmental phenomena has been

motivating for researchers from the artificial neural network community. A cell

interaction model, which combines chemical, electrical, cellular and genetic inter-

actions to model development has been developed by Kurt Fleischer (Fleischer and

Barr, 1993). The open development of the computational framework of this model

provides a testbed for the study of numerous mechanisms of cell differentiation,

pattern formation and multicellular development (e.g. genetic coupled with phys-

ical interaction between cells). A variety of results from experimentations with

the model are reported in (Fleischer, 1996). Although the core motivation behind

this work (as well as the work of (Geard and Wiles, 2005) to model cell lineages

in Caenorhabditis elegans) were to develop better models of artificial neural net-

works which imitate biological developmental networks and are capable of solving
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problems in perception and control, some fundamental insights and principles of

biological development have been examined from their analyses.

2.1.2.1 GRNs in developmental biology

Gene regulatory networks constitute the key mechanism to orchestrate the com-

plex processes that control biological development, as introduced in section 1.3.1.

Consecutively, modelling developmental processes has always attracted consider-

able efforts from the modelling scientific communities. In an insightful approach

(von Dassow, Meir, Munro, and Odell, 2000) have modelled the segment polarity

GRN in the D. melanogaster embryo development using non-linear ODEs. The

modelling approach included the reconstruction of the network topology from the

literature, the assignment of a non-linear ODE to each interaction and the inclu-

sion of a spatial component as a string of cells with periodic boundary conditions.

The insightful findings of this study were that the segment polarity GRN has

found to be, after an extensive search of the parameters spaces, a robust network

in terms of the dynamical parameters choices and in terms of the modelling initial

conditions. Results that have motivated a series of experiments in this thesis.

The majority of the work in developmental GRNs is conducted by collaborations

between biological laboratories which have a strong interest in deciphering the

networks of gene regulation of one specific biological system with computational

groups. Arguably the most comprehensive work in developmental GRNs in animals

has been carried out by the group of Eric Davidson for the sea urchin Strongylocen-

trotus purpuratus embryonic development GRN. In an approach by incorporating

computational modelling (using continuous ODE modelling) of the GRNs dynam-

ical properties and data integration from multiple sources (proteomics, transcrip-

tomics), the group has reconstructed and modelled the dynamics of the GRN that

controls the specification of the endoderm and the mesoderm in the sea urchin

embryonic development. The need for high quality computational models has lead

to the development of a software suite for modelling the dynamics of developmen-

tal networks in animals (Longabaugh, Davidson, and Bolouri, 2005). The close

collaboration of computational modelling with bioscientists can improve our un-

derstanding of biological processes that span various levels of complexity such as

the evolution of development (evo-devo), see (Davidson and Erwin, 2006) for a

characteristic key work on the subject.

Equally comprehensive work with animals has been conducted by the group of

Elena Alvarez-Buylla in modelling plants developmental GRNs using A. thaliana
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as a model organism. The group contributed to the extension of the well studied

ABC model for flower morphogenesis (Coen and Meyerowitz, 1991) and proposed

an extended gene network for the ABC flower morphogenesis molecular mech-

anism (Espinosa-Soto et al., 2004), which was based in previous computational

and logical analysis of the dynamics of the flowering network (Mendoza, Thief-

fry, and Alvarez-Buylla, 1999). The concept of the meta-GRN, a network of gene

regulatory networks which are connected together via diffusion of proteins be-

tween neighbouring cells, has been introduced as a means to model phenomena

which combine space. Simulating the dynamics of this meta-GRN has revealed

mechanisms that control the hair morphogenesis in stems (Beńıtez, Espinosa-Soto,

Padilla-Longoria, and Alvarez-Buylla, 2008) and also the equivalent network for

hair morphogenesis in plant roots (Beńıtez et al., 2007), where a contrasting pat-

tern between stem and root hairs can be generated by equivalent networks and

that a spatial parameter (the cell space) can affect the patterns on the roots.

Moving form the 2-dimensional modelling to the 3rd dimension a comprehensive

model of continuous ODEs embedded in a 3-dimensional lattice has been used to

model differentiation in gene expression levels in the shoot apical meristem (SAM)

of a system of morphogens that control the development of the SAM (Jönsson,

Heisler, Reddy, Agrawal, Gor, Shapiro, Mjolsness, and Meyerowitz, 2005).

Evo - Devo The models of this section, apart from including a representation

of space, introduce a further component in the developmental aspect of modelling

that of a model of biological evolution.

Using the lattice modelling abstraction proposed by (Bignone, 1993) a model of

a lattice with periodic boundaries has been developed by (Keränen, 2004). The

lattice represented an early embryo and the motivation was to study the complex-

ity of embryo cell differentiation. A set of ODEs were used for simulating gene

expression data on a discrete toroidal lattice. The study links the differentiation

patterns with gene connectivity and gene interaction strengths. The complexity

(in terms of differential gene expression) of the patterns and the complexity of the

network (both in terms of topology and dynamical parameters) are explored and

the implications of evolution in the mode and the increase of network complexity

are studied. The topologies of GRN were the focus of the study by Salazar-Ciudad

(Salazar-Ciudad, Garcia-Fernandez, and Sole, 2000), topologies that are capable

for pattern formation in a reaction-diffusion model. The model comprises ODEs

to simulate gene expression data and a string of cells as the spatial pattern, an
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evolutionary algorithm has been employed to search the topologies’ space for can-

didates that generate patterns on the string of cells and the study proposed a set of

converged topologies of small (2-3 genes) to medium size (7-9 genes) as candidates

for generating spatial patterns. The work developed in the last two papers has

motivated the development of the spatial models and the optimisation approach

in this thesis.

In line with the last model, using again a string of cells as the spatial representation

(Munteanu and Solé, 2008) have been able to exhaustively search the whole space

of topologies of a relatively small (2 genes and 2 hormones) system of a GRN

that controls the stripe formation in the Drosophila melanogaster embryo. They

were able to identify stages of the stripe patterns of the Drosophila embryo in the

string and derive some conclusions about evolutionary neutrality and robustness

of the D. melanogaster stripe formation GRN, in accordance with von Dassow

et al. (2000).

Arguably one of the most well known abstractions in the evolution of development

is the concept of the “French flag” that L. Wolpert has introduced in (Wolpert,

1969) and it represents three different cell states, like the three different colours

in the flag, which are specified by a morphogen gradient. Since then, numerous

computational models have had as an objective to reproduce this pattern, using

different computational approaches. Two representative papers that use an evolu-

tionary algorithm approach to optimise network topologies so that the system can

reproduce the desired pattern of a “French flag”, one uses a cellular automata to

realise space (Chavoya and Duthen, 2008) and the second a 2-dimensional cellular

potts model (Knabe, Nehaniv, and Schilstra, 2008b).

2.1.3 The transsys framework

The computational background upon which all this work is developed is transsys.

Transsys is a computational framework developed to comprehensively represent

GRNs and simulate the gene expression dynamics organised by the network. The

transsys software consists of the transsys language, a formal language to unambigu-

ously describe GRNs, a facility for computational simulation of gene expression

dynamics and a collection of various tools for analysing, visualising and develop-

ing specific regulatory network models. Transsys had been initially used to model

a gene regulatory network for flower morphogenesis (the ABC model (Coen and

Meyerowitz, 1991)) by (Kim, 2001).
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Two constructs are central in transsys, the transsys program containing a set

of transsys language instructions to represent a GRN and the transsys instance

of a transsys program containing the gene expression state vector. A concise

presentation of the key elements of the framework follows.

2.1.3.1 The transsys language

The transsys language is a formal language for the representation of GRNs. A

set of valid statements from the transsys language formal specifications constitute

a transsys program. A transsys program represents a GRN. Conceptually, two

biological entities of regulatory networks are central -and thus present- to any

GRN representation the gene and the product of the gene (or factor) and these

two constitute the two central transsys language elements. A transsys program

contains the declarations of gene definitions and factor (gene product) definitions

that comprise a GRN.

transsys Factor A factor (or a gene product, which can be protein, RNA,

etc.) is specified within a transsys program by the word factor immediately

followed by the name of the factor (technically a transsys identifier). The body

of a factor declaration consists of one block containing the decay and diffusibility

expressions. The decay expression represents the rate of degradation of a factor

as the aggregated result of many biochemical processes. Decay rate is denoted

by the keyword decay followed by an expression. The expression can either be

simple (e.g. a real number representing the decay rate) or complex (i.g. involving

interactions with other gene products). The factors diffusibility is denoted by the

keyword diffusibility and followed by a real value parameter. The diffusibility

represents a general ability of a factor to diffuse and it can be used to implement

various different diffusion models.

transsys Gene Genes are fundamental units of genetic information and follow-

ing a straightforward biological representation are partitioned into the regulatory

part and the structural part (section 1.1). The structural part encodes for a gene

product (which can be linked with a specific biological activity, that is a func-

tional molecule like an RNA or a protein). The regulatory part –a component of

the regulatory information of the gene– determines the expression rate of the gene

by cis-acting elements placed in the promoter of the gene upstream the structural

part (however cis-elements of the regulatory information of a gene are scattered
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around the genome) which interact with a class of proteins called transcription

factors (trans-elements).

In transsys a gene declaration begins with the keyword gene followed by the gene’s

name. The regulatory / structural partitioning is represented by the promoter

block and the product block respectively. The product block contains the specifi-

cation of the factor which this gene encodes for, that is the name of the factor and

its type (currently only default type corresponding to a protein is implemented).

The promoter block comprise a list of promoter elements which describes the

transcriptional conditions of the gene, the elements are of three types constitu-

tive, activating and repressing. The constitutive promoter element represents the

basal transcriptional activity of a gene and specifies the constitutive expression,

which can be a real number representing the basal amount of gene product concen-

tration or a complex expression (including interactions with other factors). The

activation / repression promoter elements are representing the regulatory inter-

actions of transcription factors that bind to the promoter. Declaration of every

activation or repression element includes the keyword activation or repression

respectively, preceded by the name of the factor that is regulating the gene and

followed by a list of two expressions as arguments. The arguments determine the

kinetic parameters or the regulation. The first specifies the binding specificity of

the regulating factor with the element αspec and the second the maximal rate of

regulation that this element can cause amax. αspec and amax are analogous to the

Michaelis-Menten chemical kinetics parameters KM and vmax respectively. Both

the parameters are specified by transsys expressions which allows apart from sim-

ple designation of a real value the modelling of more complex phenomena such as

protein-protein interactions, where a protein can control the activity of another

protein.

transsys Expressions In the expression parts of the statements of transsys

genes and factors complex expressions are allowed apart from real numbers. Transsys

expressions are designed to be similar to that of standard programming languages

(like C/C++ or Java), thus the transsys arithmetic and logical operators are

identical with those of most of the standard programming languages. With one

exception, the usage of identifiers, transsys identifiers in transsys expressions refer

to factor concentrations Cfactor. Complex expression statements can be used to

model interactions that can not be represented by a simple regulatory interaction

concept (e.g. one transcription factor binds in one cis-regulatory element). Com-

plex transsys statements are mentioned here to give a complete account of the
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transsys language specifications however they have not been used in the models

presented in this work.

transsys Components A transsys program can be divided into two major

components, the network topology and the dynamical parameters. A transsys

program network topology comprises the set of genes and the set of all the regula-

tory interactions between factors and genes, that is the transsys promoter elements

for activating and repressing (sec. 2.1.3.1). The network topology can straightfor-

wardly be represented by a graph where the set of transsys program genes G is

the vertex set and each regulatory interaction between a factor and a gene forms

an equivalent graph edge from the factor encoding gene to the regulating gene.

Figure 2.1 illustrates the topology of an example GRN represented by a transsys

program.

Figure 2.1: Illustration of a GRN topology. The arrows show the direction
of the regulation, (base of the arrow at the regulatory factor, tip of the arrow
indicates the regulating factor). Activating interactions are depicted in green

and repressing in red.

The transsys program dynamical parameters are all the real number transsys ex-

pressions that quantitatively describe the properties of the genes and factors of a

transsys program. The set of all the decay rate, diffusibility, constitutive, amax,

and αspec parameters for all the factors and genes of a transsys program consists
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the dynamical parameter set. A demonstration of the lexical structure of transsys

and an example of a dynamical parameter set can be found in the appendix A.

2.1.3.2 transsys instance

The second fundamental construct of the transsys framework is the transsys in-

stance. A transsys instance can be generated once a transsys program is declared.

For a transsys program P specifying a set of factors F , a transsys instance p holds

the following information: The list of the concentrations of all factors f ∈ F , this
list represents the state of the instance p, is also referred as the sate vector in

dynamical systems, and the transsys program.

A transsys instance (in an Object Oriented programming language analogy) has

the same relationship with the transsys program as an instance of a class has with

a class and the factor concentrations may be considered as the member variables of

the transsys instance. A transsys instance provides an update method which takes

the instance at time t and using information from the transsys program computes

a transsys instance at time t+ 1, thus simulating gene expression dynamics.

2.1.3.3 Simulating gene expression dynamics

The simulation of artificial gene expression, in a biological analogy, receives in-

formation from the regulatory part of the gene which is the promoter block in

transsys. Each of the three possible different types of promoter elements described

in section 2.1.3.1 are contributing to the expression of a gene, let qi denote the

contribution of an individual promoter element i. Thus for a promoter element

the amount of gene expression for each type will be:

Constitutive Constitutive is a generic type of promoter element represent the

basal transcriptional activity of the promoter. The evaluation of the con-

stitutive expression determines the rate qi at which the gene product will

be synthesised. Thus the contribution of a constitutive promoter element to

the synthesis of a factor is:

qi = result of evaluating expression

Activation Activation promoter elements are preceded by a factor name f fol-

lowed a list of two expressions as arguments. The arguments represent the
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αspec and the amax parameters respectively as described in section 2.1.3.1.

The synthesis is calculated according to the Michaelis-Menten equation for

chemical reaction kinetics. The contribution of an activating promoter ele-

ment into the rate of synthesis qi of a product U relative to the concentration

of the regulating factor Cf is given by the formula:

qi =
amax · Cf

αspec + Cf

Repression For a repression promoter element the same equation applies however

with a minus symbol representing the negative impact that repression has

in the rate of synthesis of a product U , thus:

qi = −
amax · Cf

αspec + Cf

For a promoter of a gene g consisting of a set I of different promoter elements

the total contribution of all the promoter elements of g that affect the rate of

synthesis of the product U that is synthesised by the expression of this gene in a

given timestep t is:

∆gCU(t) =

{

qtotal :=
∑

i∈I qi if qtotal > 0

0 otherwise
(2.1)

The overall change in the concentration of the product U that is encoded by a set

of genes EU in this particular timestep t constitutes the first step to the calculation

of the gene expression level, thus:

∆CU(t) =

(

∑

g∈EU

∆gCU(t)

)

− rU(t)CU(t) (2.2)

Where the term rU denotes the decay rate of the product U .

Having calculated the change in the concentration of product U at timestep t from

2.2, the concentration in the next timestep will be given by the equation:

CU(t+ 1) = CU(t) + ∆CU(t) (2.3)
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Equation 2.3 constitutes the update function which calculates factor concentra-

tions for the next time-step (i.e. gene expression dynamics).

For all factors belong to the factor set F of a transsys program P the above

equation 2.3 can be written using set notation for all products U ∈ F :

CF(t+ 1) = CF(t) + ∆CF(t) (2.4)

The term CF(t) represents the set of factor concentrations of a transsys instance

of the state of the transsys instance at time t as described in section 2.1.3.2.

The equations described in this section (sec. 2.1.3.3) constitute the mathematical

representation of the update function as described in section 2.1.3.2, which takes

the state of a transsys instance in time t (CF(t)) computes the expression of all the

genes and returns the state of the transsys instance at time t+1, that is CF(t+1).

To conclude, the transsys framework has been used as the main modelling software

for a set of publications including: (Bouyioukos and Kim, 2009; Kim, 2001,0,0;

Repsilber and Kim, 2003). For further details, a user manual and a copy of the

current version of transsys one can visit (Kim, 2009)

2.1.4 Further Reading

For a more comprehensive coverage of the numerous approaches in GRN modelling

the following reviews of different categories of modelling are characteristic.

The most recent review paper in computational modelling (Karlebach and Shamir,

2008) is a major and recent review, focused on computational methods for mod-

elling GRNs a comprehensive supplement of tables is reviewing current computa-

tional tools for modelling. In another review (Smolen et al., 2000) are presenting

studies motivated by the modelling of specific biological systems to highlight the

need for further analytical and computational studies of genetic regulatory systems

in parallel with the experimental ones.

A review that connects the fields of evolutionary biology with systems biology

through computational modelling (Loewe, 2009), contains a summary of the strong

and weak points of computational modelling in general (without references to

individual models). The insight of this review is that is focused on describing a

framework for systems biology and evolutionary biology crosstalk. The work is

more focused on the evolutionary question and hierarchical organisation, however
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is engaging is a very good discussion on the benefits of modelling. What are

the pros and cons of abstract models how one balances between abstraction and

realistic representation, which are the connections with theoretical evolutionary

questions are all aspects that are answered by this review.

Hidde de Jong in (de Jong, 2002) has a comprehensive review of most of the

available mathematical approaches to model gene regulatory systems. The review

provides a table to categorise mathematical model following similar principles to

the one used for the categorisation of the models in this thesis.

A comprehensive comparison between the Boolean and the continuous approaches

to model networks as well as analyses of the role of time-delays and expression

noise in qualitatively changing the dynamics of gene networks are reviewed in

(Smolen et al., 2000).

2.2 Networks

Based on the fundamental work on graph theory and discrete mathematics an

explosion of the studies of networks and dynamical systems represented by net-

works has been seen the past decade. These advances, spanning among sciences,

arts and humanities and social sciences disciplines have characterised as the “new

science of networks” by some of the most cited researchers in the field (Barabási,

2003; Watts, 2004a,0). The “new” to the new science of networks is justified in

(Newman, Barabasi, and Watts, 2006) as:

1. The fact that deals both with networks constructed from observations (real

world networks) as well as with the underlying theory

2. Networks are not static but an (explicit or implicit) dynamical procedure

alters their topologies.

3. It aims not only to study networks as topological object but to understand

principles of dynamical systems that can be represented by networks.

A network is a high level mathematical abstraction that can be used to represent

a vast number of phenomena and elements of the physical world. Therefore, here

after setting up the background and discussing some of the central publications in

network sciences, the focus will concentrate on network studies in gene expression
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regulation and more precisely in studies of network topology and its relationship

with function in biological systems.

2.2.1 Network generation

The traditional model to describe the topology of a network is the random graph

theory of Paul Erdös and Alfred Rényi (ER Network) (Erdös and Rényi, 1959),

where a network is generated by assigning edges to a node according to a pre-

determined fixed probability p (for a full description (Bollobás, 1985)). According

to the ER random network model the distribution of the degree (the number of

edges that are connected to a vertex) is expected to follow a Poisson distribution

when the number of nodes n tends to infinity and the average degree 〈k〉 to be

〈k〉 = n·p. The ER model has provided a random mechanism to generate networks

with certain topological features. The huge data acquisition of several modern

large scale projects (like genome projects in biosciences, or the fast expansion of

the Internet) has made possible the study of topological properties of networks

generated by natural processes. What the first studies of real world networks

revealed was that the degree distribution was characterised by a fat tail and indeed

follow a power low distribution instead of a Poisson. A power law characterises

phenomena that lack a characteristic size (or scale) and thus the term scale-free

is also used to characterise the topology of several complex networks. Scale-free

topologies were observed in the routers connecting WWW servers in (Faloutsos,

Faloutsos, and Faloutsos, 1999) and in actor collaboration, power grid and the

C. elegans neural network data in (Barabási and Albert, 1999). The scale-free

property of network degree distribution has been suggested to be the result of a

procedure called preferential attachment, where a vertex acquires new edges with

a probability proportional to its current degree. The preferential attachment is the

generation mechanism of a random graph model that is able to reproduce a power-

law degree distribution, the model is also known by the initials of the authors of the

publication (Barabási and Albert, 1999) (the BA model). These studies revealed

properties that systems with many interacting parts have in common regardless

of the background generating mechanisms.

In addition to the power-law degree distribution characteristic, another topological

principle of complex networks has been discovered at the same period. That many

biological, technological and social networks have small paths like random graphs

yet are highly clustered like regular lattices. By using a rewire mechanism (Watts

and Strogatz, 1998) were able to generate networks lying between regular and
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random and they introduce the clustering coefficient as a measure to quantify

clustering in networks (Watts and Strogatz, 1998, figure 2). The “small world”

phenomenon –named after the famous social experiment by Stanley Milgram– has

been found in the topologies of numerous examples of networks reconstructed from

the real world.

2.2.2 Topological properties

Following the advances on the new science of networks, comprehensive studies of

topological properties of complex networks have developed. Three are the gen-

eral characteristics of complex networks: high clustering coefficient, small-world

phenomena and degree distribution that deviates form Poison. In (Albert and

Barabási, 2002) additional properties inspired by statistical mechanics and spec-

tral theory have been used to analyse a group of 15 real world networks (Albert and

Barabási, 2002, table 1). The preferential attachment network evolution mecha-

nism is also analysed and the statistical properties of networks generated accord-

ing to this mechanism are compared with those of real networks. More structural

properties of networks, random generation models and dynamical processes that

taking place on the networks are presented in the comprehensive review of (New-

man, 2003) and discussed as tools to understand the function of systems build

upon complex networks. Topological structure thus, provides evidences for the

dynamical properties of systems that can be modelled by networks and measures

of these properties valuable tools for the analysis of systems behaviour as it is

suggested in (Barabási, 2005). It is not by chance that the structure vs. function

relationship has been initially studied in a random Boolean network model context

(the NK model reviewed in section 2.1.1.1).

Studies that relate the topological structure of networks to the dynamics of sys-

tems that can be represented by networks are giving insights into the dynamics

of biological systems and also are essential for the transition from molecular to

systems descriptions in the biosciences. The population structure (May, 2006),

the dynamics of epidemic spread (Pastor-Satorras and Vespignani, 2001), the or-

ganisation of metabolic networks (Jeong, Tombor, Albert, Oltvai, and Barabási,

2000) and of transcription regulation networks (Farkas, Jeong, Vicsek, Barabási,

and Oltvai, 2003) constitute just a sample of studies that connect topological

properties and organisation of large complex networks of biological entities with

dynamical properties. Furthermore, in an explicit connection between topology

and dynamics Aldana has studied the dynamical robustness against variations of
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the internal parameters of Boolean networks with regards to their topology (Al-

dana and Cluzel, 2003) and conclude that scale-free networks of certain parameters

are more robust than the NK alternatives.

However several studies have raise some issues regarding the generalisations that

have followed the analysis of large scale high-throughput data with regards to

sampling. (Stumpf, Wiuf, and May, 2005) explore the sampling properties in

the degree distribution of networks. The paper shows that the sample degree

probability distribution is expected to be the same with the original network,

however in networks with scale-free topology it is shown that this is not the case.

Similarly a study by (Han, Dupuy, Bertin, Cusick, and Vidal, 2005) has simulated

the partial sampling at yeast two-hybrid (Y2H) high throughput data. Sampling

biases can result in the appearance of scale-free topologies. Four different network

types have been used to sample from and all resulted to networks with the same

characteristics. Scale-free topology cannot be confidently assigned to complete

interaction networks.

In addition to sample bias the generality of power-law has been criticised in

(Fox Keller, 2005) as not been the universal architecture of complex biological

networks, that numerous context specific mechanisms are able to generate power

law degree distributions and that preferential attachment is one among them. In a

work discussing the variability of complex phenomena (Willinger, Alderson, Doyle,

and Li, 2004), debates the “emergence of scaling” property of power law networks

and supports that non-normal distribution is a typical phenomenon for systems

with complex behaviours. Additionally, the preferential attachment is not con-

sidered to be a universal mechanism of power-law degree distribution as (Salathé,

May, and Bonhoeffer, 2005) proposed a diametrically different generation mech-

anisms the “selective removal” able to generate power law degree distributions,

and considered its biological implications such as attack tolerance to mutations as

debatable.

Therefore, despite some initial enthusiasm that studies of topological structures

of complex biological networks can contribute to a systems level of understand-

ing of biological systems and reveal some universal organisational principles, this

conclusion is still far to reach. As discussed, both experimental biases based on

the current methods used for data acquisition as well as methodological reasons

based on the generality of the mechanisms that are used render the structure vs.

function studies in biological systems a central, however still open, question.
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2.2.3 Network topological measures

A variety of measures have been devised to capture the characteristics of complex

networks, (da Costa, Rodrigues, Travieso, and Villas Boas, 2007) have presented

a comprehensive and exhaustive survey of measures that are used to analyse com-

plex networks. In a similar fashion (Boccaletti, Latora, Moreno, Chavez, and

Hwang, 2006) are reviewing a large array of studies of the structure of dynamical

systems, as represented by networks of interacting parts, and their dynamics. The

work reviewed in (Boccaletti et al., 2006) consists of a considerable account of the

current state of the art research that aims to use topological measures of complex

networks to understand the function and the dynamics of the underlying systems.

This section reviews network measures that pertain to global properties of the

network as well as network measures pertaining to local properties and individual

elements of the network (genes, regulatory interactions) that have been used to

analyse the dynamics of biological systems.

2.2.3.1 Global network measures

Characteristic properties of the topology of a network include: the degree distri-

bution, the diameter and the clustering coefficient. For the rest of this section

the standard graph notation is used and a graph G is defined as the tuple (V , E),
where V is the vertices and E the edges set.

Degree and degree distribution: The degree dG(v) = d(v) of a vertex v is

the number of edges incident to that vertex, an edge e and a vertex v are incident

if the vertex v is on edge e. The number:

d(G) = 1

|V|Σv∈Vd(v)

is the average degree of G (Diestel, 2005, Sec:1.2), which essentially is the ratio of

edges over vertices or the |E|/2|V| for directed graphs. The nature of the distri-

bution of the degrees of all the vertices in a graph is distinctive of the generating

mechanism of the graph. The Erdös-Rényi (ER) network mechanism generates

networks with Poisson degree distribution (Erdös and Rényi, 1959) and the pref-

erential attachment is one of the mechanisms to generate a power-law (PL) degree

distribution (Albert and Barabási, 2002).
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Diameter and clustering coefficient: The diameter of a graph diamG is the

largest distance among all the vertices pairs diamG = max dG(x, y). The distance

dG(x, y) between vertices x, y is defined as the shortest path that connects the

two vertices. The clustering coefficient is a graph measure with two versions, one

referring globally to the whole graph and the other locally to individual vertices.

The local clustering coefficient Cv of a vertex v is a measure of the of the cliqueness

of the neighbourhood of the vertex and it is given for undirected graphs by the

ratio of the number of edges between all the neighbours of a vertex Ejk over the

number of edges that could potentially exist within the neighbourhood of a vertex

with degree kv

Cv =
2|Ejk|

kv(kv − 1)

. The network clustering coefficient is the average of all local clustering coeffi-

cients of each vertex v ∈ V (Watts and Strogatz, 1998). Networks with equal

number of vertices and edges that have been generated with the ER model have

on average larger diameter than networks generated with the PL process (Albert

and Barabási, 2002), the small-world phenomenon is observed more frequently on

power-law degree distribution networks. In addition small-world networks tend to

be more clustered than their random graph equivalents and tend to have higher

average clustering coefficients. The network transitivity has also been suggested

by (Newman, 2003) as an alternative which is defined as the density of triplets on

a network, is also considerably higher in complex networks.

Cycles In the context of this study a cycle is considered as a directed path where

the last vertex on the path is connected to the first vertex of the path, the cycle

thus is a directed cycle and all edges are pointing to the same direction. Cycles in

regulatory networks have been studied since the early models of gene regulatory

networks (Thomas, 1978) (also reviewed in section 2.1.1.1). The role of cycles in

the dynamics of regulatory systems has been studied theoretically, leading to the

formalisation of a set of simple laws for feedback circuits in biology. Cycles are

characterised as positive or negative depending on the parity of the negative inter-

actions in a cycle, positive cycles have even number of negative interactions and

negative odd. The laws for the dynamics of regulatory circuits are summarised in

(Thomas, 1998) as follows: positive cycles are a prerequisite for multistationarity

and thus for differentiation and memory; negative cycles are required for the exis-

tence of a single attractor (either a stable steady state or a limit cycle) and thus

homoeostasis in biological systems. Theoretical extension of R. Thomas work has
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provided a general proof that positive feedback is a necessary condition for the

existence of multistationarity and differentiation (Soulé, 2003) and an extension

of this proof for differentiable systems in (Soulé, 2006). In terms of positive and

negative feedback loops (NFLs and PFL respectively) cyclic structures have been

evolved in an evolutionary computation approach to favour hysteresis and multi-

stationarity (Kim, Kim, Jung, Kim, Park, Heslop-Harrison, and Cho, 2008). The

computational simulation results have revealed that GRNs decrease the number of

NFLs to enforce hysteresis and to accomplish multistationarity GRNs have been

evolved to decrease the number of NFLs and increase the number of PFLs, results

that come as a computational reproduction of the theoretical work of R. Thomas.

Cycles have also been studied in known biological networks (as well as to other

known complex networks) and dynamic behaviours have been connected with the

characteristics of cycles. In studies of gene regulation in the yeast S. cerevisiae

(Luscombe, Babu, Yu, Snyder, Teichmann, and Gerstein, 2004) have revealed that

cycles are involved in endogenous activities of the cells (such as the cell cycle) and

(Jeong and Berman, 2008) have more strongly associate cycles with the regula-

tion of the cell cycle and stress response. In modelling studies the transmission of

signals in biological systems have been associated with cycles, negative cycles are

enabling robust signal processing (Ziv, Nemenman, and Wiggins, 2007). Ma’ayan

et. al. have introduced the concept of ordered cyclic motif and found that cy-

cles where consecutive edges have opposing directionality are overrepresented in

real complex networks (Ma’ayan, Cecchi, Wagner, Rao, Iyengar, and Stolovitzky,

2008), this topological property appears to increase dynamic stability of large net-

works. The study of cycles and their topological properties as regulatory features

in complex biological networks constitutes an active topic in network biology.

2.2.3.2 Local network properties

Motifs The concept of motifs as characteristic patterns of complex networks

has introduced to the topological studies of complex networks by (Milo, Shen-Orr,

Itzkovitz, Kashtan, Chklovskii, and Alon, 2002). Network motifs are relative small

(3 or 4 nodes) connected subgraphs that have been found to be overrepresented

in numerous real world complex networks. Motifs are considered to be formed

by common design principles in biological, ecological or engineered networks and

specific motif classes are represented in higher frequencies in these real world

networks than in randomised networks of the same size. Network motifs have

been identified by the same approach in the transcription regulatory network of
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the bacterium Escherichia coli, most motifs comprise feed-forward loops which is

considered as an information processing mechanism that filters transient signals

and responds only to persistent ones (Shen-Orr, Milo, Mangan, and Alon, 2002).

Relatively small families of motifs additional to the 3 or 4 nodes motifs discovered

above are considered the building blocks for the regulatory networks of yeast and E.

coli. Feed forward loops (FFLs), single input motifs (SIMs) and dense overlapped

regulons (DORs) appeared to shape the GRNs for signal transduction in these

organisms and form the design principles of networks that require fast responses

to external signals (Alon, 2007). Regulatory networks that control developmental

processes, as these processes are spanned to longer time periods, use all the motifs

described above plus positive feedback loops, longer transcription cascades and

larger, and more complex FFLs organised in modules (Alon, 2007).

The family of size-3 motifs, the motifs that comprise 3 vertices, that are not

structurally isomorphic to each other is depicted in figure 2.2.

However simulation studies have suggested that motif function is not determined

by the motif structure. Motifs exhibit a functional variability depending on the

dynamical (kinetic) parameters of the system (Ingram, Stumpf, and Stark, 2006;

Prill et al., 2005), or on the network context that the motif is embedded within

(Knabe, Nehaniv, and Schilstra, 2008a).

2.2.3.3 Individual elements measures

Individual element (either vertex or edge) topological properties take into account

the positioning of an element in the topology of the whole network. Measures

that capture significant information of the importance of an element within the

network structure are reviewed here.

Vertex / Gene Centralities Centrality measures for individual vertices are

used in the network literature to describe the topological properties of an individ-

ual element in a graph (da Costa et al., 2007). Formally a centrality is a function

that assigns a real number value to an individual element of a network, the formal

definition of a centrality function can be found in the respective (Centrality) entry

of the glossary. Vertices with high centralities play a prominent role in the dynam-

ics of a network and this is the case for biological networks. The first application

of centrality measures in biological networks involved protein-protein interaction
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Figure 2.2: Enumeration of all the possible, distinct and non-isomorphic net-
work motifs of size 3 (13 in total).

networks (PPI) where the essentiality of proteins (in terms of the survival rate of

the single knock-out mutant) found to be correlated with the centrality measures

of the protein in the PPI (Yu, Kim, Sprecher, Trifonov, and Gerstein, 2007) and

a biological explanation of this property, that is that high centrality proteins are

involved in essential biological modules has been demonstrated recently (Zotenko,

Mestre, O’Leary, and Przytycka, 2008). Here the application and tools to study

gene centralities in GRNs will be reviewed with a focus on the degree, closeness,

betweenness and eigenvector centrality vertex properties. A vertex degree is the

elementary centrality measure and it has been defined in section 2.2.3.1. Closeness

centrality of a vertex is defined as the average shortest path between the vertex

and all the vertices that can be reached from it. Betweenness centrality of a vertex

v is the number of all the shortest paths between all the rest of pairs of vertices on
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the network that pass through vertex v over the number of all shortest paths (ex-

cluding vertex v). In this thesis the random-walk betweenness algorithm is used to

calculate betweenness (Newman, 2005). Eigenvector centrality for each vertex in

a network equals with the respective component of the eigenvector of the biggest

eigenvalue of the adjacency matrix. A set of centrality measures, namely the

degree, the eccentricity, the closeness, the betweenness centrality and the eigen-

vector centrality has been used to characterise genes in the transcription regulatory

network of E. coli (Koschützki and Schreiber, 2004). This initial work on gene

centralities of GRNs has identified significant correlations between different cen-

trality values and paved the way for additional research that relates centralities

with biological functions. A software tool is available for calculating a set of 17

different centralities in biological networks centralities (Junker, Koschützki, and

Schreiber, 2006). The latest work (del Rio, Koschützki, and Coello, 2009) is iden-

tifying essential genes in GRNs by systematically measure 16 different centralities

(del Rio et al., 2009, table 2), none of the measures alone is able to identify es-

sential genes however combinations of 2 or more centrality measures can separate

essential genes in S. cerevisiae.

To my knowledge, there is a lack of measures that connect individual genes with

cycle measures. And as reviewed in section 2.2.3.1 cycles have a role as regulatory

futures in GRNs that requires further investigation. Contributing to that direction

this thesis proposes the concept of participation of a gene (vertex) in a cycle and

uses the number of cycles a gene is a member of, as an additional individual gene

measure (formal definition follows in section 4.4).

Edges / Regulatory interactions Centralities Vertex centralities are mea-

sures of the information flow that takes place in an individual node. The edge

equivalent centrality measure is the edge betweenness centrality. The measure has

been developed by Girvan and Newman (Girvan and Newman, 2002) to detect

communities in social directed and biological networks. Edges with high between-

ness tend to connect communities and thus by removing them network commu-

nities can be identified. In biological networks edge betweenness is used for the

identification of modules and an extension to the Girvan-Newman community de-

tection algorithm that is able to deal with directed and weighted networks has

been proposed (Yoon, Blumer, and Lee, 2006).

The lack of a measure to connect individual regulatory interactions with cycles

has also been observed for edges centralities. Therefore this thesis introduces
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the concept of regulatory interaction (edge) participation to a cycle and proposes

the number of cycles a regulatory interaction participates in, as an additional

topological measure for individual interactions (see section 4.4 for an introduction

to this measure).

As a final remark, the current graph abstraction that is widely used to represent

interconnected biological entities starts to become inadequate to incorporate the

increasing details of biological systems descriptions that become available in an

increasing rate. Thus, groups of researchers concentrating on the developing the

next abstraction, one of them have proposed the use of hypergraphs as a represen-

tational object for a more accurate and complete description of complex biological

relationships. For an extension of the graph based abstractions to hypergraph rep-

resentation a paper by S. Klamt (Klamt, Haus, and Theis, 2009) introduces the

concepts. The same group has developed a tool for analysing biological networks

based on hypergaphs (Klamt, Saez-Rodriguez, and Gilles, 2007).

2.2.4 Biological networks

The notion of robustness and evolvability are central concepts in studies of ge-

netic regulation (Wagner, 2005). Robustness as a generic term refers to resilience

to change, in biological systems is a multilevel property and appears with differ-

ent definitions in different levels of biological organisation. In the gene regulatory

networks level, robustness is realised by various aspects including: robustness to

network topological perturbations, that is robustness to gene knock-outs, regu-

latory interaction deletions or network rewiring; robustness to alterations in dy-

namical parameters, that is variations to dynamical parameters of regulation by

mutations of the transcription factor coding gene or single nucleotide substitutions

of the transcription factor binding site; and robustness to noise or external per-

turbations, that is robustness to random perturbations in factor concentrations

(noise) and/or robustness to factor concentrations fluctuations from to environ-

mental changes (although GRNs should also be capable to elicit responses out of

a cell/organisms from several environmental signals).

Characteristic early studies that connect the gene regulatory network structure

with dynamics and function of biological systems can be found on (Mjolsness,

Sharp, and Reinitz, 1991), where a modelling framework for development was in-

troduced and a model combined discrete (for cell differentiation) with continuous
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(for variables updates) time and grammatical rules to model growth and differ-

entiation. The model was used for the study of the segment polarity network in

D. melanogaster, by the two morphogens bicoid and hatchback in (Reinitz, Mjol-

sness, and Sharp, 1995), and highlight the underlying biochemical relationships

of the regulation as important to study the dynamics of the model. In another

early work, central for this thesis, Mendoza and Alvarez-Buylla study (Mendoza

and Alvarez-Buylla, 1998), motivated by the ABC model for flower morphogene-

sis, have suggested a more comprehensive network of gene regulatory interactions

compatible with the ABC model and studied the dynamics in a discrete state

model.



Chapter 3

Modelling Framework

“What I cannot create, I do not understand”

Richard Feynman

This chapter formally introduces the full complement of the computational frame-

work developed to study GRN gene expression dynamics in spatially extended

systems and discusses and motivates the control parameters set.

3.1 Spatial Model

Space in the modelling framework is represented as a 2-dimensional discrete or-

thogonal lattice with periodic boundaries. Similar types of spatial structures have

been used in previous studies to represent the spatial organisation of cells and to

study the gene-cell interaction dynamics in coupled maps (Bignone, 1993), the ef-

fects of signalling networks in the developmental complexity (Keränen, 2004) and

analytical studies of pattern formation (Plahte, 2001). The equivalent topological

object of this structure is a torus (a doughnut shaped arrangement of discrete el-

ements). Every site in the lattice is occupied by a cell, that is a transsys instance

in the model (introduced in section 2.1.3.2) which comprises the transsys instance

state, the (x, y) coordinates in the discrete space and the transsys program. All

the cells in the lattice are occupied by a transsys instance of the same transsys

program. The set of all the transsys instances P occupying a lattice constitute a

lattice reactor and is denoted by Plattice.

Each transsys instance on a lattice reactor exchanges gene products with all its

nearest neighbours in a 5-cell von Neuman cellular automata neighbourhood. The

46
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gene product exchange is based on a diffusion mechanism where the diffusibility df

of a factor f is used to calculate the amount of factor concentration that is diffused

to the 4 neighbours as illustrated in figure 3.1. In each timestep the amount Df of

Figure 3.1: Illustration of a 5 cells neighbourhood on a lattice. The arrows
indicate the net diffusion from the site with higher factor concentration in the

middle, to the four neighbouring sites with lower concentration.

a factor f with concentration C(f, p), in a transsys instance p(x,y) located in the

(x, y) position of the lattice, which is diffused to each of its 4 neighbours (p(x+1,y),

p(x−1,y), p(x,y+1), p(x,y−1)) is given by the formula:

Df =
C(f, p) · df
(4df + 1)

(3.1)

The diffused quantity Df of factor f from the transsys instance p(x,y) is added to

the factor concentration values of each of its neighbours. The volume of the sites

in the lattice remains constant and the concentration of all factors inside each

lattice site is considered uniform. This discrete diffusion mechanism is designed

such that it will not generate any heterogeneity, meaning that the state of a

lattice reactor where factor f has the same concentration in every transsys instance

(homogeneous) will remain homogeneous and identical after the calculation of the

diffused amounts Df .

The update method of a lattice reactor comprises the synchronous calculation of

diffusion for each transsys instance as described before followed by the invocation

of the update function as specified in section 2.1.3.3, for each transsys instance.

Gene expression within each transsys instance is not determined solely by the

regulatory interactions of genes, as instructed in the transsys program, but also

from the factor concentrations in its 4 neighbouring cells. Thus spatial organisa-

tion is materialised through the exchange (by diffusion) of gene products among

neighbouring cells.
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3.1.1 Null model

As a null model, a model that lacks spatial organisation, a well stirred reactor has

been designed. The well stirred reactor is constructed the same way as a lattice

reactor, 2D orthogonal space, occupied with a set of transsys instances (denoted

Pwellstirred), periodic boundary conditions and the same diffusion mechanism. The

fundamental difference is in the update method, which, in addition to calculating

diffusion and simulating gene expression, randomly shuffles the position of each

transsys instance in the reactor at the end of each invocation at each timestep.

Therefore a 5 cell neighbourhood does not consist of the same instances at two

consecutive timesteps. Thus any notion of spatial organisation is distorted in the

well stirred reactor.

To delineate further the last statement, consider a case where a factor has a very

high concentration in only one instance of a lattice (a peak) and the same for a

well stirred reactor, there is only diffusion in the system and no gene expression

or decay is taking place. After diffusion calculations for a sufficient amount of

timesteps the factor concentration of the transsys instances around the peak will

gradually be lower as one moves away from the peak, whereas in the well stirred

reactor the factor concentration in the transsys instances (apart from the peak)

will approximate the average amount of factor concentration that has diffused.

3.1.2 Spatial gene expression dynamics

Both the lattice and the null model reactors are central objects in every experi-

ment of this study, with the lattice representing systems with spatial organisation

and the well stirred reactor the control ‘9or background) experiment. For all the

experiments both the lattice and the well stirred reactor have to have the initial

factor concentrations of all the factors in all the instances initialised. Each factor

in both reactors takes the same initial factor concentration value, drawn out of a

random uniform distribution, to sample uniformly and unbiased the set of possible

initial states of a reactor. The initial factor concentration state of the lattice is

always identical with the one of the well stirred reactor. The range of the ran-

dom uniform distribution is a user control parameter and it represents the initial

inhomogeneities that are inherent into most biological systems. For instance the

factor concentrations along a tissue exhibit stochastic variations that may be used
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from pattern formation mechanisms to generate patterns. A factor f has a hetero-

geneous gene expression profile if its concentration levels vary along the different

instances of cells in a reactor.

The objective of the computational model so far is to be able to reproduce phenom-

ena where gene expression is more heterogeneous in the lattice (spatially organised

model) than in the well stirred reactor (null model) as they have been introduced

in the objectives of the thesis in section 1.6. To measure the level of heterogeneity

of gene expression in both the lattice and the well stirred reactor and be able

compare them, a measure to quantify heterogeneity of gene expression levels has

been devised.

3.2 Quantifying Gene Expression Heterogeneity

To quantify heterogeneity in factor concentration in a set of transsys instances

a Shannon information based measure is induced. The measure is inspired by

the concept of information in biology as described by J. Maynard-Smith (May-

nard Smith, 1999, 2000) and is based in the information theory by Claude Shan-

non (Shannon, 1948). Shannon introduced the concept of entropy in a tele-

communications based context as a measure of the information content of a mes-

sage, however this concept has been extended and Shannon entropy is used as

a statistic measure in different contexts and also in biosciences. Shannon en-

tropy measures have been used in biosciences, among other applications, to de-

scribe heterogeneously expressed genes in different treatments and identify poten-

tial drug targets (Fuhrman, Cunningham, Wen, Zweiger, J., and Somogyi, 2000).

A factor with homogeneous distribution of gene expression levels throughout a

set of transsys instances is in maximum entropy state and contains no informa-

tion. Whereas distributions of factor concentrations that exhibit heterogeneous

expression profiles among different transsys instances on a reactor have a positive

information content. Shannon entropy is expressed in terms of the the relative fre-

quency of each individual factor concentration level. Thus, in a transsys instance

p from a set of transsys instances P , a factor f has relative concentration:

R(f, p) =
C(f, p)

Ctotal(f,P)
(3.2)
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where Ctotal(f,P) is the sum of concentrations of factor f in the set P . The

Shannon entropy of this factor f in P is then calculated by:

H(f,P) = −
∑

p∈P

R(f, p) log2 R(f, p) (3.3)

The maximum Shannon entropy is reached when a factor concentration is equal

among every transsys instance p of the set P and is given by:

Hmax(P) = log2 |P|

Having calculated the Shannon entropy and the maximum entropy of factor f then

the information content I(f,P) of a factor f in the set P is:

I(f,P) = Hmax(P)−H(f,P) (3.4)

Equation 3.4 provides a measure of heterogeneity of the gene expression of factor f

in a set of transsys instances P . If the gene expression of f is homogeneous among

P , the I(f,P) will be equal to zero. The unit of the information based measure

I(f,P), as the logarithm with base 2 is used, is bits, therefore a homogeneous

factor expression profile carries 0 bits of information. In another trivial case, a

factor which exhibit a zero concentration level in half the instances of a transsys

instance set P and a concentration level of 1 in the other half will carry 1 bit of

information.

For a set of transsys instances P of a transsys program with factor set F , the
information based measure for all the factors in a transsys program I(P) is:

I(P) =
∑

f∈F

I(f,P) (3.5)

The last equation (eq. 3.5) is a measure of heterogeneity of gene expression of a

particular transsys program from which all the elements of the set P have been

instantiated. P is an arbitrary set of transsys instances. If P is constituted by

a reactor (either a lattice or a well stirred reactor), the level of gene expression

heterogeneity of the particular transsys program in the reactor Preactor will be

returned. The measure is used as the basis to compose an objective function to

be used in an optimisation approach.



Chapter 3 Modelling Framework 51

3.2.0.1 Heterogeneity measure discussion

The heterogeneity measure described in section 3.2 is able to quantify the het-

erogeneity on a collection of transsys instances where factors acquire different

concentrations in a fraction of the available instances and differentiate this score

from a collection where factors have homogeneous concentration levels.

However, the information based heterogeneity score is unable to distinguish be-

tween transsys instance collections where a factor is differentially expressed at the

same number of transsys instances regardless the arrangement of these instances

in the grid. The information based heterogeneity measure is invariant to spatial

arrangement of heterogeneity and therefore will be unable to quantify spatial pat-

terns on lattices, even though is able to distinguish heterogeneous transsys instance

collections.

Measures that captures the spatial arrangement of differential factor concentra-

tion values are spatial correlation types of measures. Spatial correlation (specified

formally in the glossary entry Spatial Correlation) measures the tendency for sites

that are near to each other to have more similar or dissimilar values of their statis-

tics. Spatial correlation measures therefore will be able to quantify the difference

between the pattern in the middle of fig. 3.2 -no spatial pattern- and the top of

fig. 3.2. Here a spatial correlation measure is used, which calculates the Pearson

correlation coefficient between the Manhattan distance of each pair of cells in the

lattice and the Euclidean distance of their respective factor concentrations (i.e.

the gene expression profile).

Figue 3.2 illustrates examples of transsys instance collections arranged in a lat-

tice which result to the same information content but exhibit different spatial

arrangement and therefore their respective spatial correlation measures are differ-

ent. However as this thesis is concerned with the emergence of gene expression

heterogeneity in general and not particularly with the studies of types of spatial

patterns that can be risen the need to use a spatial correlation based measure

is limited. In conclusion the heterogeneity measure as it is defined in the equa-

tion 3.5 is a measure that can be applied to distinguish heterogeneous collections

of transsys instances and not spatial patterns of factor concentrations.
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Figure 3.2: Greyscale images of three distinct spatial patterns on a 5x20
lattice. Top a pattern of two highly expressed stripes, middle a random pattern
bottom a pattern of a stripe exactly twice the size of the stripe on top. All the
above patterns have exactly the same information based score I = 1.821 bits,
however their respective spatial correlation scores are: for the stripy pattern on
top 0.036 for the random arrangement in the middle -0.037 and for the blob

pattern in the bottom 0.311.

3.2.1 Objective function

A central objective in this thesis is to devise a measurement of difference of het-

erogeneity of gene expression on a spatially organised system compared to the

null model. To quantify this difference an objective function has been devised

to calculate the difference of the information content of a lattice from that of a

well stirred reactor (WSR). For a lattice and a well stirred reactor populated with

instances of the same transsys program p, initialised with identical initial reactor
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states and both updated for equal number of timesteps t, the objective function

is defined as:

O(p, t) = I(PWSR)t − I(PLattice)t (3.6)

or using function notation and expressing the objective score as a function of the

transsys program and the gene expression simulation parameters the objective

function f is defined as:

f : SimParams× TranssysPrograms→ R (3.7)

or

f(s, t) 7→ objectiveScore (3.8)

Also, as the log2 is used Shannon information is calculated in bits, the objective

score units are bits of information as an indication of the difference in hetero-

geneity between different reactors. To observe higher information content in the

lattice than in the well stirred reactor, and thus having higher gene expression

heterogeneity, the score in equation 3.6 should be negative, the largest the gene

expression heterogeneity in the lattice than in the well stirred reactor the more

negative the objective score is.

3.2.1.1 Objective function evaluation

A transsys program P enters the objective function evaluation procedure. Two

sets of identical initial reactor states are generated one for the lattice and one for

the well stirred reactor. Gene expression levels are simulated in both the lattice

and the well stirred reactor for as many timesteps t as required such that any

initial transients will vanish. Then the information content measure is calculated

for both the lattice and the well stirred reactor according to the equation 3.5.

Each objective function evaluation returns the difference of the objective score

in the lattice form that on the well stirred reactor (eq. 3.6, following the process

illustrated in the objective function evaluation activity diagram in figure 3.3).

This objective score is a quantification of the property of a transsys program to

exhibit heterogeneous gene expression patterns on spatially organised systems. As

the transsys program is the same in both the lattice and the well stirred reactor

and all the other parameters of the experiments are kept constant in each objective
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Figure 3.3: Activity diagram of the objective function evaluation procedure.
The information based heterogeneity score (equation 3.6) is calculated for both a
lattice and the a stirred reactor starting from the same initial random conditions.

function evaluation, the difference in the information content between the lattice

and the null model will be the result of the spatial organisation only. This result

of spatial organisation, as it is quantified by the objective score, constitute the

score for an optimisation approach.

As more negative scores imply higher heterogeneity in the lattice than in the

WSR, the optimiser operates with an objective to minimise this score. Thus the

optimiser is technically a minimiser trying to minimise the objective score as much

as possible. I hypothesise that the mechanics of the optimiser are able to separate

network topologies which have an increased capability to generate heterogeneity

of gene expression in lattices than in well stirred reactors. The following section

will formally introduce this optimisation approach.

3.3 Optimisation

The computational framework involves a transsys program optimisation approach.

The aim of this approach is to reproduce the biological property described in
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section 3.1.2, that is to find transsys programs such that the gene expression

heterogeneity is higher in the lattice than in the well stirred reactor. In terms of the

information based measure, the I(Plattice) should be higher that the I(PwellStirred).

3.3.1 Optimiser

The motivation behind the design of the optimiser is that networks with topo-

logical properties such that can exhibit higher gene expression heterogeneity on a

lattice than in a well stirred reactor will be able to be distinguished by the opti-

misation procedure. For that purpose the optimiser gets a transsys program as an

input and keeps the topology unchanged throughout the whole optimisation pro-

cedure. The optimiser operates on the dynamical parameters space of a transsys

program (sec. 2.1.3.1), and searches for certain parametrisations such that the ob-

jective score is minimised. By optimising the transsys dynamical parameters only,

networks with the capacity to generate higher gene expression heterogeneity in a

lattice than in a well stirred reactor will be parametrised more efficiently by the

optimiser. By keeping the topology stable and try to optimise big collections of

transsys programs with topologies generated by random graphs generation mech-

anisms, the optimiser will pick up the particular networks whose topology enable

them to generate heterogeneity in lattices and not in well stirred reactors.

3.3.1.1 Optimisation approach

The optimiser belongs to the Random Local Search family of optimisation ap-

proaches. The objective function score for a transsys program is evaluated as

follows: I(Plattice,t)

Random Local Search Optimisation The optimiser performs a user specified

number of optimisation rounds. Each optimisation round consists of the following

steps:

1. Any transsys program, with numerical expression values as its dynamical

parameters enters the optimiser. The dynamical parameters are kept as the

current best solution.

2. A copy of the current best parameters are randomly perturbed, by a specified

displacement range to generate the current alternative set of parameters.
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3. The current best and current alternative sets of parametrisations are evalu-

ated according to the objective function as described in section 3.2.1

4. If the objective score of the current alternative is lower or equal to the

objective score of the current best then the current alternative parameters

set is becoming the current best.

5. If the specified number of optimisation rounds is reached the current best

transsys program is returned else the current best is set to enter a new

optimisation round.

The random local reach optimiser described above is illustrated with the activity

diagram in figure 3.4.

More analytically the step 2 of the random local search optimisation approach

specified above consists of the addition on the current best dynamical parameters

sets (current best parametrisation) of a randomly generated displacement. The

displacement is a random number drawn from a symmetric uniform distribution.

The range for the displacement has been chosen based on both the potential of

the optimiser to explore the parameter space as well as possible and on the ability

to distinguish between transsys programs with higher capacity to generate het-

erogeneity on the lattice than on the null model, from transsys program that lack

this capacity.

3.3.2 Transformation functions

The optimiser generates the alternative parametrisation by imposing a random

perturbation (the range of which is specified by the displacement parameter optStep).

This displacement comes from the [−optStep, optStep[ interval. The random ap-

plication of this displacement to a transsys program dynamical parameter is equiv-

alent with an one dimensional random walk starting from the initial dynamical pa-

rameter value. An one dimensional random walk of n steps of [−optStep, optStep[
range has a displacement expectation E =

√
n ·optStep. However the optimiser is

a random local search optimiser and always searches on the vicinity of the which

is the current best solution, therefore the optimiser performs a directed walk (op-

timally towards the best solution) and not a random walk in the parameter space.

In a good approximation, the directed walk applied in the optimiser, would ex-

pected to have a larger expected displacement than the pure random walk. It is
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Figure 3.4: Activity diagram of the random local search optimisation proce-
dure. Each optimisation round entails two evaluations of the objective function
(illustrated in figure 3.3), one for the current best transsys program parame-
terisation and one after applying a random perturbation to the current best

parameterisation.

evident that the expected value of a dynamical parameter can grow relatively fast

to biologically implausible negative values after only a few of optimisation rounds.

To avoid this unrealistic behaviour of the optimisation process, a family of func-

tions the transformation functions have been applied. The key role of these func-

tions is to get the dynamical parameters out of a transsys program, transform them

to an unconstrained domain, (then the optimisation displacement will be applied

on the unconstrained domain) and then transform the unconstrained values back
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to the constrained domain of the transsys dynamical parameters. The transfor-

mation functions operate within limits for the transsys dynamical parameters and

are either upper or lower bounded (or most of the times both, with a trivial lower

bound of zero) in the dynamical transsys parameters domain. It is self-evident

that a function should be one-to-one and onto and thus to be invertible in order

to be a transformation function. Numerous transformation functions are available

in the transsys optimisation software package, here in all of the experiments an

arc tangent transformation function has been used.

3.4 Random Networks Generation

The random network generation was based on the two random network mecha-

nisms discussed in section 2.2.1 the Erdös-Rényi Erdös and Rényi (1959) random

network process (ER) and a precess generating power-law degree distribution based

on the preferential attachment method described in Barabási and Albert (1999)

(PL). ER networks represent an unbiased generation of networks by sampling the

network space and have been used as the baseline model for random networks.

PL networks represent a class of networks that although generated with a random

process manifest characteristics (see 2.2.1 for description of the network charac-

teristics and measures) that resemble more networks that are present in the real

world, refer to (Barabási and Albert, 1999; Faloutsos et al., 1999; Jeong et al.,

2000) for particular examples. Networks with power-law degree distribution have

been reported to describe more accurately the topological architecture of various

biological networks such that protein-protein interaction networks and -more im-

portant for this thesis- GRNs. Thus here we treat the ER random graphs as the

baseline case of random network generation and the PL as the case that resembles

more networks in biological systems.

3.5 Control Parameters

This section contains a description for the random network generation, the simu-

lation and the optimisation control parameters. There is a reference parameters

set which was used to generate the majority of the results of this thesis and will be

explained in detail however, certain values of these three parameter sets may vary

among different experiments. An explanatory background for each of the parame-

ter in the parameters sets will be given here, the reference set will be introduced in



Chapter 3 Modelling Framework 59

the experimental procedures chapter and whenever there is an experiment where

there is a deviation from the reference parameter set it will be individually in-

troduced and discussed in the relative experimental context. The transformation

functions parameters are kept stable for all of the experiments and the motiva-

tion, description and discussion behind the particular parameters choices can all

be found in this section.

3.5.1 Network generation parameters

Every experiment is starting by generating a population of random networks which

constitute the input data of the computational procedure described in chapter 3.

Transsys programs that represent GRNs are generated according to the following

control parameters:

Number of genes: Specifies the number of genes (vertices in a network) of a GRN.

Number of regulatory interactions: Specifies the number of regulatory interac-

tions among genes (edge in a network) of a GRN.

Network seed: Is the random seed of the network generator and specifies the

number of different topologies that will be constructed.

Parametrisation seed: Is the random seed of the random number generator for

the dynamical parameters of a transsys program. Specifies the number of

different initial dynamical parametrisations for a given network topology.

Generation mechanism: Specifies the random network model that will be used

for the network generation. For this study the Erdös-Rényi random graphs

model (ER) and a random network procedure that generates networks with

a power-law degree distribution similar to (Barabási and Albert, 1999) (PL)

are used. In both the random network generation algorithms the direction-

ality of the connecting edges is randomly chosen with equal probability, thus

on average a network has equal number of incoming and outgoing edges.

3.5.2 Simulation control parameters

The simulation control parameters are specifying each objective function evalua-

tion computation and consist of:
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Timesteps: The number of timesteps that a reactor’s update function will be

evaluated. (integer)

Lattice width: The width, in terms of cell number of a reactor. (integer)

Lattice height: The height, in terms of cell numbers of a reactor. (integer)

Initialisation random seed: The random seed of the random number generator

for the initial factor concentration state of a reactor. (integer)

Initialisation range: The interval out of which the random uniform values of the

initial factor concentrations will be drawn. (a pair of real values)

Objective Function: The name of the objective function. Throughout all the

experiments presented in this thesis only the Shannon information based

objective function has been used (as described in section 3.2.1). However

the transsys framework provides a collection of different objective functions

that can be specified by their names. (string, the name of the objective

function)

Null model: The type of the null model that will be used. Throughout all

the experiments in this thesis the well stirred reactor null model has been

used. However one more null model, an individual collection of cells is also

available. (string, the initials of the null model)

3.5.3 Optimisation control parameters

The optimisation control parameters are setting up the optimiser, each one has

the following semantics:

Optimisation rounds: The number of rounds of optimisation that the optimiser

will perform. (integer)

Optimiser random seed: The random seed for the random number generator of

the optimiser’s perturbation procedure. (integer)

Displacement: A number specifying the range of an interval from where a random

uniform number will be drawn and serve for the perturbation of the current

best parametrisation. If a number s is specified then the interval is in the

[−s, s[. (real)
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3.5.4 Transformation parameters

The following transformers, all based on the arctangent function and the with

respective options have been used to transform each dynamical parameter:

Decay transformer: As the decay rate affects the speed a factor concentration

reaches equilibrium (according to equation 2.2), it should have a sufficiently

large value to allow equilibration. However, very large decay rates are not

desired because the system will perform relatively large leaps in the state

space and thus avoid to enter attractor basins that might exhibit some of

the desired dynamics. Therefore the decay rate has been bounded to 0.50%.

Decay is also lower bounded as rates equals to zero will render the system

unable to equilibrate, thus a 0.01 lower bound for the decay rate is used.

The decay rate transformer is the arc tangent function, applied in a (0.01,

0.5) interval.

Diffusibility transformer: Diffusibility, or the general ability of a factor to diffuse,

needs to be bounded as very high diffusibility values will render the system

to a homogeneous state relatively quick and will have a strong homogenis-

ing effect on any heterogeneous gene expression might appear. An upper

bound of 0.3 has been chosen (the 0.0 lower bound is self-evident as negative

diffusibility values are not plausible).

The diffusibility transformer is the arc tangent function, applied in a (0.0,

0.3) interval.

Constitutive transformer: Constitutive expression was chosen to be at relatively

low value to represent the basal promoter activity of biological promoters.

Thus it is expected that has a relatively small effect on the factor concen-

trations and most of the activity dynamics of a gene will be a result of gene

regulation rather than basal promoter activity.

The constitutive expression transformer is the arc tangent function, from a

(0.0, 0.1) interval.

amax activate transformer: The maximal level of expression rate amax value is

bounded to the unit, (between 0 and 1). By keeping the amax in he unit one

can construct transsys programs with equivalent dynamics by fine-tuning

other parameters such as decay rate and αspec. Effectively, this reduces

the degrees of freedom of the parameter choices by 1 and provides better

estimations of the potential factor concentration values a system can exhibit.
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The amax activation transformer is the arc tangent function, applied in a

(0.0, 1.0) interval.

αspec activate transformer: The factor’s binding specificity αspec determines (ac-

cording to equation 2.1.3.3) the speed to which the gene expression rate will

reach the maximal value amax. The larger the value of αspec the more time a

factor requires to saturate the binding site. The need to bound is to prevent

very slow equilibration times and weak interactions. The αspec upper bound

is approximately one order of magnitude higher than the amax upper bound

to allow for smoother Michaelis-Menten dynamics.

The αspec activation transformer is the arcus tangent function, in a (0.0, 8.0)

interval.

amax repress transformer: Identical with the amax activation transformer.

αspec repress transformer: Identical with the αspec activation transformer.

3.6 Network Elements Deletion Procedures

To study the effects of individual graph elements (i.e. vertices or edges) an element

deletion framework has been developed. The framework consists of single element

deletion approaches for genes (vertices) and regulatory interactions (edges) and

two respective sequential element deletion approaches one for genes and one for

regulatory interactions.

3.6.1 Single element deletion

The single element deletion, for both genes and regulatory interactions alike, is

performed by deleting a single element from the original transsys program at a

time. In a wet-lab biological experiment analogy, single gene deletion represents

a single gene knock-out experiment and the single regulatory interaction deletion

represents either a transcription factor protein modification or a transcription fac-

tor binding site mutation experiment. After the element deletion, the objective

function for the mutant transsys program is evaluated, as it is described in sec-

tion 3.2.1 using an identical set of control parameters as the wild type transsys

program. The operation is repeated for each of the elements of the transsys pro-

gram. The difference of the objective score of each single element mutant from the
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original transsys program is then calculated together with a set of network related

measures for the individual element that has been deleted.

3.6.1.1 Gene knock-outs

A single element deletion operation that is implemented on a graph node is equiv-

alent to a single gene knock-out mutant in a biological experiment. The single

gene knock-out operation is repeated for all the genes in a ranssys program and at

the end of the procedure the following are returned: The objective score difference

between the single gene knock-out mutant and the wild type transsys program,

the centrality measures of the gene together with the number of cycles that the

gene is a member of, as specified in section 2.2.3.3, as well as the information

content of the individual factor that the gene encodes for (calculated according to

equation 3.4).

3.6.1.2 Regulatory interaction deletion

For single element deletions implemented on a graph edge the operation is equiv-

alent to the deletion of a regulatory interaction in a biological experiment. The

single regulatory interaction deletion operation is repeated for all the regulatory

interactions in a transsys program and the following are returned: The objective

score difference of the edge reduced transsys program from the wild type together

with the edge network centralities and the number of cycle the edge participates

in describe in section 2.2.3.3, as well as the dynamical parameters amax and αspec

of the deleted edge.

3.6.2 Sequential element deletion (pruning)

The sequential element deletion approach is based on the cumulative application

of the single element deletion operation on a transsys program. The procedure

is the equivalent for both gene and edge sequential deletion and consists of the

following steps:

1. The elements are sorted according to the effect the single element deletion has

procured on the wild type transsys program objective score. The element

that its single deletion has procured the smallest difference from the wild

type objective score comes first and the rest follow in an ascending order.
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2. The first element in the ordered list is deleted from the wild type transsys

program and then the objective score and a series of network related mea-

sures (described in section 2.2.3.1) are calculated. The transsys programs

generated by a sequential element deletion procedure are called pruned transsys

programs.

3. For each of the next element in the ordered elements list a single element

deletion operation is performed on the pruned transsys program, resulting

in a new pruned transsys program. The objective function score is evaluated

and network measures are calculated for the new pruned transsys program.

At the end of each execution of this step the new pruned transsys program

enters the beginning of step 3 as the current transsys program.

4. The operations of step 3 are repeated until the ordered element list is empty.

The sequential element deletion procedure is followed by both the implementations

for both gene and for regulatory interactions sequential deletions as follows:

3.6.2.1 Vertices (genes) pruning

The gene pruning procedure returns the objective score difference of the gene

pruned transsys program from the wild type one, together with the individual

element topological parameters of the gene that has been knocked-out. Including

the degree, closeness, betweenness, eigenvector centrality and the number of cycles

the gene is a member of, which are returned together with the objective score

difference in a tabular format. A transsys file containing all the gene pruned

transsys programs is also returned. Note that by the cumulative pruning of genes

the transsys program that will be returned last is an empty gene-less and factor-less

transsys program.

3.6.2.2 Edges (regulatory interactions) pruning

Similarly, the regulatory interaction pruning procedure returns the objective score

difference of the edge pruned transsys program from the wild type one together

with the individual element topological properties and the dynamical properties of

the regulatory interaction that has been removed. Including the edge betweenness,

the number of cycles the edge participates in, the nature, the amax and the αspec of

the interaction, which are returned together with the objective score difference in
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a tabular format. In addition a transsys file containing all the regulatory interac-

tion pruned transsys programs is returned. Note that by the cumulative pruning

of regulatory interactions the transsys program that is returned consists only of

singleton genes.



Chapter 4

Experimental and Analytical

Framework

“It requires a very unusual mind

to undertake the analysis of the obvious”

Alfred North Whitehead

A key introduction to the experimentation principles and design will be introduced

in this chapter, the reference experiment, an experiment which has generated the

core data sets analysed in this thesis, will be introduced and motivated, as well

some analytical techniques and procedures that were developed in the context of

this thesis.

4.1 Experimental Procedure

4.1.1 Reference control parameter settings

The reference set of experiments presented in this thesis have been conducted by

using a reference set of control parameters. The values of the parameters as well as

the motivation behind any particular choice are explained in the following section.

The reference set of the parameters is used to generate the reference experiment

and the reference data. There will be an explicit statement and consequent mo-

tivation should any alternative selection of control parameters occur in any parts

of this work.

66
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Network Generation Parameters: The parameters interpretation is introduced in

section 3.5.1, the choices for the reference set are as follows:

• Number of genes: 15 The number of genes is chosen to be 15, the

number is a trade off between reasonable execution time and relatively

large network size.

• Number of interactions: 45 The number of regulatory interactions is

chosen to be 3 times the number of genes. There is evidence suggest-

ing that biological developmental gene regulatory networks have some-

where between 2 and 4 times as many edges as nodes (e.g. (Alvarez-

Buylla, Beńıtez, Dávila, Chaos, Espinosa-Soto, and Padilla-Longoria,

2007; Oliveri, Tu, and Davidson, 2008)).

• Network generation mechanisms: 2 Random network topologies are

generated according to two different generation mechanisms (section 3.4).

The Erdös-Rényi random graphs model (Erdös and Rényi, 1959) (to be

referred as the ER model thereafter) and a random network procedure

that generates networks with a power-law degree distribution (Almaas,

2007; Barabási and Albert, 1999) (to be referred as the PL model there-

after).

• Number of Topologies: 15 The reference network population consists

of 15 random networks. Again this number is a compromise between

computational time and reasonable sampling.

• Number of initial dynamical parameter sets: 30 The number of different

initial random dynamical parameter sets (parametrisations) is chosen

to be 30, which again is a compromise between sampling the parameter

space and keeping the number of transsys program relatively low for

the shake of execution time.

Simulator Control Parameters: They are described in section 3.5.2, the values of

the reference set are as follows:

• Lattice width: 60 and

• Lattice height: 5 Lattice size was chosen based on two premises that a

lattice with large radius is needed to generate patterns and the number

of instances (i.e. cells) on the lattice is kept relatively short for the sake

of computational time.

• Number of timesteps: 400 The number of timesteps for the gene expres-

sion simulation is 400. It is the minimum required number of timesteps
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so that any transient signal form the initial reactor factor concentra-

tions state will disappear. Experiments using significant larger number

of timesteps (2000 timesteps) saw the same dynamic behaviour with

the 400 timesteps ones.

• Null model: Well stirred reactor (WSR) A well stirred reactor serves as

the null model.

• Initial reactor state: [1, 3[ The initial factor concentrations on the re-

actors are drawn from a random uniform distribution on the interval

[1, 3[. The interval is chosen to start from a non-zero value so that the

information content that is initially externally injected to the reactors

is reduced (an interval including zero will increase significantly the in-

formation content of the initial reactor state). The upper concentration

limit is chosen to be a relatively small number so that it represent ini-

tial states that biological systems can be exposed to (either owing to

environmental or developmental perturbations).

Optimisation Control Parameters: They are explained in section 3.5.3 and the

values of the reference control parameter set are as follows:

• Optimisation rounds: 200 The number of rounds that the optimiser

should complete is set to 200, a trade-off between having a substantial

amount of optimisation rounds and computation time.

• Displacement: [−0.5, 0.5[ The random perturbation that the optimiser

impose in every round on the transformed values of the dynamical pa-

rameters of the current best parametrisation. The choice of a relatively

large interval has been taken after conducting a sweep experiment of

all the intervals between [−0.1, 0.1[ to [−1.0, 1.0[ by increment the step

by 0.1.

• Optimiser random seed: 1 This is the random seed that controls the

optimiser’s random number generator and is set to one for all the ex-

periments conducted in the course of this thesis.

4.1.2 Reference experiment

The experimental procedure using strictly the settings for the control parame-

ters specified in the previous section and the transformation values specified in

section 3.5.4 will be referred as the reference experiment in the rest of the the-

sis. It was conducting as follows: A population of 2 generation mechanisms ×
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20 topologies × 30 parametrisations = 1200 transsys programs ware generated.

Each transsys program has entered the optimisation procedure which returns the

optimised objective score and a table of all the factor concentrations after the

last optimisation round. Single element deletion experiments are then conducted

(as described in section 3.6.1) using the reference simulator control parameter set.

This experiment conducted using the reference control parameter set will referred

as the reference experiment for the rest of this thesis.

As a benchmark for the optimisation performance, that is to make sure that the

optimiser is actually working and is able to improve the objective score of transsys

programs that their topology is capable for generating gene expression heterogene-

ity in a lattice, a random sampling approach has been employed. Starting from

the same reference control parameters sets (excluding of course the optimisation

control parameters) a set or random initial transsys program dynamical parameter

setting has been generated of size equal to the optimisation rounds (i.e. 200). The

random sampling approach has failed to generate objective scores lower that the

ones of the optimiser, and for certain transsys programs the random local search

optimiser has managed to generate significantly lower objective score, fulfilling

its aim, which was to distinguish transsys program with a topology capable for

generating spatial gene expression heterogeneity.

4.1.3 Capture spatial heterogeneity

Transsys programs that exhibit heterogeneity in factor concentrations at the lat-

tice reactor and not in the well stirred reactor will be categorised based on their

objective score after optimisation. An optimisation score threshold has been in-

troduced for this analysis, the motivation for the level of the threshold is that at

least one factor from the transsys program can have the maximum information

content. According to the equation 3.5 and for lattices of the size of the refernce

experiment (i.e. 300 cells) the maximum information content that a single factor

can obtain is log2300 ≈ 8.22 bits.

This threshold is operationally used to detect transsys programs with low objective

scores that exhibit the “stripy lattice” phenomenon (refer to the glossary entry

Stripy Lattice for a more formal definition). To visualise this phenomenon the

factor concentration levels of a transsys program that its objective score was below

the negative value of the threshold (-8.22 bits) are depicted in figure 4.1. This is an

arbitrarily chosen limit as the information based score is unable to quantify spatial
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Figure 4.1: Greyscale images of factor concentrations from a lattice reactor
for each factor of a transsys program that exhibits the “stripy lattice” property.
A zone of cells has obtained high concentrations in several factors (e.g. f0001),
forming the “stripy lattice” property. The depicted transsys program exited the

optimisation procedure with objective score ≈ −8.30 bits.

arrangement of patterns and thus different spatial arrangements can have the same

information based score (as illustrated in figure 3.2). However, throughout all the

experiments with the 5 × 60 lattice whenever any gene expression heterogeneity

was present it was always observed in the form of stripes on the lattice due the

sort height and long width of the structure.
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Figure 4.2: Greyscale images of factor concentrations from a lattice reactor
for each factor of a transsys program that does not exhibit spatial heterogeneity
in the factor concentrations (or it exhibits a minute one). The depicted transsys
program exited the optimisation procedure with objective score ≈ −8.05 bits.

On the contrary figure 4.2 illustrates the factor concentration levels of a transsys

program that exhibit a negligible amount of heterogeneity and no “stripy lattice”

phenomenon can be observed. The difference in the objective scores of the two

afforementioned transsys programs is 0.2 bits however the defined threshold is able

to characterise and distinguish the “stripy lattice” phenomenon. Throughout the

rest of this work every reference to a “stripy lattice” pattern or “stripy lattice”
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phenomenon pertains to the description of this phenomenon as it is explained in

this section.

4.2 Network Analyses

This thesis aims to identify topological properties of GRNs which exhibit increased

gene expression heterogeneity on a spatially organised systems compared to a

null model. Most of the instances of the above phenomenon came in the form

of repetitive stripes of differential gene expression in a lattice reactor, thus this

phenomenon will be informally termed as a “stripy lattice” (glossary entry Stripy

Lattice for a full definition) in the course of this thesis. A visual illustration

from a transsys program where several of its factors on a lattice are exhibiting

the “stripy” pattern of factor concentration is presented in figure B.1. Networks

will be characterised both as collections (or ensembles) of graphs with certain

characteristics (e.g. degree distribution), or characterised in terms of topological

properties of individual network. The set of network topological properties that

is introduced and discussed at the literature review chapter (section 2.2) will be

employed for the purpose of topological characterisation of GRNs.

4.2.1 Global Network Measures

To calculate all the global network topological properties described in section 2.2.3.1

such as the clustering coefficient and the diameter the igraph library for network

analysis was employed. igraph is a set of tools to generate and represent networks

and a library for calculation and analysis of topological measurements (Csárdi and

Népusz, 2006). igraph provides interfaces to high and higher level programming

languages and for this analysis the Python interface was used.

4.2.1.1 Cycles

To calculate all the directed cycles that exist in a network a series of algorithms

have been devised, a directed network is the input of this algorithmic procedure
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and a set containing all the directed cycles as tuples of vertex indices is the output.

The algorithms are specified as follows:

Algorithm 1: Calculate all cycles on a directed graph

input : A directed graph G = (V , E)
output: A set of all the cycles as tuples of vertices

allCycles ← {}
reducedG ← G
foreach v ∈ V do

vCycles ← cyclesFromVertex(reducedG, v)
allCycles ← allCycles ∪ vCycles

remove v from reducedG
end

return allCycles

Algorithm 1 computes all the cycles in a directed graph and it is based on com-

putations of the cyclesFromVertex algorithm described below:

Function cyclesFromVertex(G, v): Calculate all the cycles that pass through a

vertex v
input : A graph G = (V , E) and a vertex v ∈ V
output: A set of all cycles as tuples of vertices

cycles ← {}
paths ← pathsFromVertices(G, (v))
foreach path ∈ paths do

lastVertex ← the last vertex in path

if (lastVertex, v) ∈ E then

cycle ← (path + v)

cycles ← cycles ∪ cycle

end

end

return cycles

The algorithm to calculate all the cycles that pass from a given vertex (as imple-

mented in the function cyclesFromVertex) depends on the computations of all the
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paths that pass from a series of vertices, described in the algorithm below:

Function pathsFromVertices(G, vSeq): Calculate all the paths that start from

the first vertex of vSeq

input : A graph G = (V , E) and a tuple vSeq containing a sequence of vertices

:∀v ∈ vSeq, v ∈ V
output: A set of all paths as tuples of vertices

paths ← {}
lastVertex ← the last vertex in vSeq

neighbourV ← (all the neighbouring vertices of lastVertex,)

foreach v ∈ neighbourV do

if v /∈ vSeq then

extvSeq ← (vSeq + v)

paths ← paths ∪ extvSeq ∪ pathsFromVertices(G, extvSeq)
end

end

return paths

The successful execution of all the algorithms described in this section will return

a set of all the directed cycles of 2 or more vertices (loops, i.e. cycles of one vertex

or self-regulatory interactions are no considered as cycles in this analysis) that

exist in a network.

4.3 Local Network Measures

For the calculation of the all the motifs and the relevant motif profiles, as intro-

duced in section 2.2.3.2, the igraph function motifs randesu have been employed

for size 3 and size 4 motifs. igraph motif finding function is based on a recently

developed fast network motif detection algorithm named FANMOD which is for-

mally described in (Wernicke and Rasche, 2006). The frequency of occurrence of

each individual of these size-3 motifs in a graph defines a vector that is referred

in this thesis as the 3-motif profile and is used as a characteristic signature of the

graph.

In addition a measure has been devised to assess the impact of individual network

elements deletions on the size-3 motifs. The measure is based on the size-3 motifs

profile which is the tuple of all the frequencies of occurrence for each of the size-3
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motifs. The euclidean distance between the size-3 motif profile of the transsys pro-

gram and the size-3 motif profile of the transsys program after a network element

deletion was calculated and serve as a measure to investigate any relationships be-

tween size-3 motifs and the loss in the objective score due to the network element

deletion.

4.4 Individual Network Element Analysis

All the individual element based network properties, as introduced in section 2.2.3.3

for both nodes (genes) and edges (regulatory interactions) on a network were read-

ily available from the relevant igraph functions.

An additional individual element measure has been introduced to connect studies

of single graph elements (nodes, edges) with cycle measures, it is the participation

of a single element in a cycle, it is defined as the the total number of cycles that

an element is a member of and it can be calculated both for edges and nodes. The

scores for the mutant transsys programs (both the gene knock-outs and the edge

deletion) were calculated at the last step of the reference experimental procedure.

4.5 Implementation

The computational framework presented in the methods chapter (ch. 3) was devel-

oped entirely using the Python (Pyhton Softaware Foundation, 1996–2010) pro-

gramming language. The reference experiment all the additional experiments pre-

sented in the next chapters were run in the UEA Linux cluster High Performance

Computer (HPC) by using shell scripts to connect the processes together and to

distribute the jobs in the cluster. The entire statistical analysis, report and results

presentation was conducted in R (R Development Core Team, 2008).



Chapter 5

Network Topological Properties

The results presented in this chapter are an updated and extended version of the

results published in the paper (Bouyioukos and Kim, 2009).

Bouyioukos, C. & Kim, J. T.

“Gene Regulatory Network Properties Linked to Gene Expression Dynamics in

Spatially Extended Systems”

Advances in Artificial Life (Proceedings of the 10th European Conference in Arti-

ficial Life),

Kampis, G. (ed.) vol. 5777/5778 LNCS/LNAI, Springer–Verlag, 2009” (in press)

5.1 Network Density Experiments

The experimental design is focused on studying the effects of network edge density

on the capacity of GRNs to generate gene expression heterogeneity on the lattice

and not on the well stirred reactor. Edge density is defined as the ratio of the edges

a network actually has over the number of edges a fully connected graph will have

(i.e. the maximum number of edges) (Diestel, 2005, Chapter 7). The glossary entry

for Density contains a formal mathematical definition of edge density for directed

graphs where, like GRNs, self-regulatory interactions (loops) are allowed.

The experiment was conducting by generating a population of random networks

starting from a relatively small number of edges, gradually increase the number of

edges by a step of 2 and run all the experimental process described in chapter 4

76
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by using all the rest of the control parameter settings (apart from the number of

edges) and the transformers equal to the reference values specified in section 4.1.1.

The number of genes was kept equal to the reference value (i.e. 15) and the num-

ber of edges vary from 16 to 72 by a 2 edges increment step, resulting to network

density varying from 16/152 = 0.071 to 72/152 = 0.32. For each edge density level

4 random network topologies were generated by the ER process and 4 topologies

by the PL process. For each of these topologies 3 different initial transsys dynam-

ical parameters settings have constructed. To summarise for each edge density

level 2 generation mechanisms × 4 topologies × 3 parametrisations = 24 transsys

programs were generated and as there are 29 different levels of density the to-

tal experiment includes 29 density levels × 24 transsys programs per level = 696

transsys programs in total.

The objective score for each transsys program after optimisation was correlated

with the network density. The correlation plots (figure: 5.1) and the Spearman

rank correlation coefficient ρ = −0.467 with a p-value (≈ 10−38), suggest a signif-

icant correlation between lower objective scores and network density. In fact as

the density increases the objective score significantly decreases. In addition more

and more networks exhibit a lower objective score and thus higher heterogeneity

on the lattice than in the well stirred reactor. To make the latter finding more

illustrative boxplots of the same data are presented in figure 5.2.

Boxplots of objective scores (figure 5.2), illustrate that the number of transsys

programs with lower objective scores out of the total for each density level is

increasing as the edge density increases. The median is getting decreased and

the sizes of the boxes (representing the inter-quartile range) are increasing as the

density increases. The finding is justified as increasing the number of regulatory

interactions in a GRN increases the complexity of its dynamical properties, there-

fore the set of dynamical properties of lower density networks is included (i.e. is a

subset) of the dynamical properties of more dense networks. It needs to be noted

that a positive bend is observed in the objective scores as the density reaches the

highest levels in this experiment. However, as little is known about the nature of

the objective function landscape the settings of the current optimisation approach

–including the type of the optimiser, the optimisation rounds and the optimisation

offset– might not be the optimal for optimising transsys programs with density

higher than 0.32. In addition to nature of the fitness landscape, the cardinality of

the space of all possible networks increases dramatically as the edges increasing

and the current sampling size might also impose limitations to the potential of low

objective score.
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Figure 5.1: Scatterplot of transsys programs objective score after optimisa-
tion vs. network edge density for the 696 transsys programs of the reference
experiment set. Circles designate transsys programs which their network topol-
ogy has generated by an Erdós & Reyńı process (ER) and × transsys programs
with power law network degree distribution (PL). The dashed line designates
the operational threshold for “stripy lattice” and networks which exhibit this
property are coloured red. The Spearman correlation coefficient ρ is -0.467 and
p-value ≈ 10−38. Network density is negatively correlated with low objective

scores.

The density findings are in a partial agreement with previous studies of density.

Most notable are the studies of edge network density in the work of S. Kauffman,

where he identified a threshold of K=2 for NK networks to begin exhibit proper-

ties characteristic for biological systems such as homoeostasis and differentiation

(Kauffman, 1993). These dynamical properties disappeared as the number of in-

coming edges K exceeds 3 (Kauffman, 1969b), this means that a gene should have
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Figure 5.2: Boxplots of objective scores after optimisation for all the 696
transsys programs of the reference set at different network edge density levels.
The medians for each density level are lower for higher densities and the num-
ber of low scoring transsys programs –depicted as outliers in the boxplots– is
increasing as the density increases. The horizontal line depicts the operational

threshold for stripy lattices introduced in section 4.1.3

an average number of regulatory interactions between 4 and 6. Although different

network generation mechanisms were used in this study and the dynamical proper-

ties of the NK networks is determined by the complexity of the Boolean functions,

in the experiments presented here (with ER and PL topologies) the density range

for a network to exhibit low objective score is between 0.14 to 0.28. This density

levels correspond to an average degree between 4 and 8.
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5.1.1 Connection with the low objective score patterns

Transsys programs which their networks have obtained low objective score have

also exhibit the “’stripy lattice” property (section 4.1.3). Indicative results are

illustrated in the following figures: In figure 5.3 an example of a transsys program

with density d = 0.1244 shows no sign of heterogeneity in the greyscale images of

all its factor concentrations.
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Figure 5.3: Greyscale images of factor concentrations from a transsys program
with 0.1244 density. The objective score is -0.002 and it is well above the

threshold (designated with the dashed line in figure 5.1.
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In figure 5.4 a selected transsys program that is below the operational threshold

for the “stripy lattice” is illustrated a considerable degree of heterogeneity can be

observed in several of its factors. The selected transsys program has got relatively

medium density d = 0.222 and show heterogeneity in some of its factors. Transsys

programs from within this medium region of density have been used for most the

experiments in this thesis as well as to form the reference control parameter set

(section 4.1.1).
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Figure 5.4: Greyscale images of factor concentrations from a transsys pro-
gram with 0.2222 density. The objective score is -9.24 and below the threshold

(designated with the dashed line in figure 5.1.
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Finaly a transsys program from the high part of the edge density range was se-

lected. In figure 5.5 the factor concentration heterogeneity of the transsys program

that obtained the highest objective score after optimisation is illustrated. Most of

the factors in this transsys program exhibit the “stripy lattice” phenomenon. The

edge density for this transsys program is d = 0.266
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Figure 5.5: Greyscale images of factor concentrations from a transsys program
with 0.266 density. The objective score is -16.69 and well below the threshold
(designated with the dashed line in figure 5.1. The highest scoring transsys
program in the density experiment has most of its factors in a heterogeneous

state, exhibiting the “stripy lattice” phenomenon.
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5.2 Global Network Properties

The relationships of global topological network properties with the capacity of

GRNs to have low objective scores have been consecutively studied. This study

is based on results generated by using the reference control parameter settings

(section 4.1.1) with the only deviation from these settings being the number of

different network topologies which has increased from 15 to 20 and all the param-

eters were kept intact. Connecting static network topological properties of GRNs

with dynamical properties the networks exhibit, is an ongoing target in network

biology (Fox and Hill, 2001; Kuo, Banzhaf, and Leier, 2006) and to address that

question an experiment was designed as follows.

A population of random networks has been generated, comprising 20 ER and 20

PL network topologies –here the number of different network topologies has been

increased compared to the reference set from 15 to 20 to obtain a larger sample of

the network topologies space– this constituted the only deviation from the refer-

ence parameters set for this experiment. The total population of transsys program

consisting of 2 generation mechanisms × 20 network topologies × 30 parametri-

sations equals to 1200 transsys programs. The network topological properties

included in the study comprise the clustering coefficient, the diameter, the total

number of cycles and the average cycle length of a network. These topological

properties, introduced in section 2.2.3.1, were calculated for each network topol-

ogy using tools and algorithms described in section 4.2. Correlation studies of

each measurement against the objective score of the transsys program after opti-

misation were conducted and the results are presented and discussed here.

The network generation mechanism, either the ER or the PL generation process

did not have any significant impact on the transsys program objective scores. The

notched boxplots or the ER and the PL networks (figure 5.6) show an overlap

on the notches of the boxes between ER and PL generated networks. Overlap

between notches suggests that there no significant difference between the medians

of the two objective score distributions.

The Wilcoxon rank sum test has been used to corroborate further the finding, it

is a non-parametric test and has been chosen as the distributions of the objective

score values are not normal. The Wilcoxon test checks for a location shift between

the two distributions and returns the Wilcoxon statistic W and the associated

p-value. The Wilcoxon test results for ER and PL obtained objective scores are:

W = 187442, p-value = 0.2151. A p-value of 0.215 suggests that there is no



Chapter 5 Network Topological Properties 84

ER PL

−
15

−
10

−
5

0

Network generation mechanism

O
bj

ec
tiv

e 
S

co
re

Figure 5.6: Notched boxplots of objective scores of transsys programs from the
reference parameters set after optimisation. The networks have been generated
by an ER and a PL process. No significant difference is observed between the

objective score medians of the two network generation procedures.

statistical significance in the difference of the objective score distributions locations

between ER and PL generated networks. Suggesting that the network generation

process does not affect significantly the objective score of transsys programs after

optimisation.

The clustering coefficient is a measure for the degree of cliqueness and the density

of triangles. Correlation studies of clustering coefficient vs. the objective score

found no correlation between those two. The Spearman rank correlation coefficient

ρ has been found very low (ρ = −0.01) and the p-value of the correlation very

high (p-value = 0.868). Therefore, as is it also illustrated in the scatter-plot of
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figure 5.7, no correlation has been observed between a transsys program objective

score and its clustering coefficient.
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Figure 5.7: Correlation scatter-plot of transsys program objective scores after
optimisation against the network clustering coefficient. For the combined refer-
ence experimental set no association is observed clustering coefficient and ob-
jective score after optimisation. The Spearman ρ is -0.01 and a p-value = 0.882
does not support any asociation between clustering coefficient and objective
score. The dashed line illustrates the operational threshold for the “stripy lat-

tice” phenomenon as introduced in section 4.1.3.

The contrary finding holds for the next global network property in the analysis, the

network diameter. As diameter takes only discrete values the diameter measures

have been grouped to each diameter level and thus notched boxplots of diameters

and transsys program objective scores after optimisation has been prepared and

presented in figure 5.8. The objective score is weakly correlated with the diameter
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–Spearman rank correlation coefficient ρ = 0.12– and a low p-value (≈ 10−4)

support the dependency.
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Figure 5.8: Notched boxplots of transsys program objective scores. Each
boxplot contains objective scores of transsys programs which have the same
network diameter –thus each boxplot contains different number of transsys pro-
grams. The networks with smaller diameter have lower median objective score
and more transsys programs under the operational threshold for the “stripy
lattice” phenomenon. The Spearman correlation ρ = 0.12 with a p-value of
2.72e-04, supports association between small network diameters and low objec-

tive scores.

Figure 5.8 illustrates a trend that networks with smaller diameter have lower objec-

tive scores and thus higher propensity to generate heterogeneity in lattices and not

in the well stirred reactor, or exhibiting the “stripy lattice” phenomenon. Smaller

diameters as well as higher clustering coefficients are characteristic of the small

world networks described in (Watts and Strogatz, 1998) and biological networks
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are among other networks that share the small world characteristics according to

(Milo, Itzkovitz, Kashtan, Levitt, Shen-Orr, Ayzenshtat, Sheffer, and Alon, 2004).

Although there has been reported from empirically generated networks that a

relatively high clustering coefficient is a characteristic of biological networks the

findings of the analysis here did not reveal any significant relationship between

clustering coefficient and transsys program objective scores. The correlations of

two of the small world properties, (i.e. the clustering coefficient and the diameter)

with transsys programs objective score suggest that, only the diameter and not the

clustering coefficient of a GRN is suitable to be a predictor for generating spatial

patterns on lattices. The last argument can also be supported by the fact that

the clustering coefficient is a well defined measure only for undirected graphs (and

is not unambiguously defined for directed (Fagiolo, 2007)) and undirected graphs

are not adequate representations of GRNs.s

Cycles in biological networks have been studied theoretically by R. Thomas (re-

viewed in section 2.2.3.1). To study potential associations between the number of

cycles in a network and the objective score after optimisation a correlation analysis

has been conducted and the scatter-plot in figure 5.9 illustrates the findings.

No correlation has been retrieved between the total number of directed cycles in

a network and the objective score value of a transsys program after optimisation.

Both the Spearman rank correlation coefficient ρ and the p-value do not suggest

any significant correlation. The number of cycles per se as an aggregate measure

can not reflect the dynamical property of “stripy lattice” that is measured by the

objective score value.

Investigating further the potential effect of cycles on the dynamics of gene expres-

sion separate correlation studies have been conducted to explore associations of

the number of positive and negative cycles -separately- on the transsys objective

scores after optimisation. The effect of positive cycles on cell differentiation and

multistationarity has been formally studied by (Thomas and D’Ari, 1990) and

discussed in section 2.2.3.1. Figure 5.10 shows correlation scatter-plots of positive

and negative, no correlation can be observed between the number of positive cycles

and the objective scores (p-value = 0.845) neither between negative cycles number

and objective scores (p-value = 0.625). These results can not support any role for

the number of cycles in generating gene expression differentiation in lattices.

A comparable result to the number of cycles has been obtained from correlation

studies of the average cycle length measure. Again the correlation scatter-plot of

the average length of cycles on a network against the objective score of transsys



Chapter 5 Network Topological Properties 88

200 400 600 800 1000

−
14

−
12

−
10

−
8

−
6

−
4

−
2

0

Number of Cycles

O
bj

ec
tiv

e 
S

co
re

ER
PL

Figure 5.9: Correlation scatter-plot of the total number of cycles per network
against transsys program objective scores after optimisation. No amount of cor-
relation has been found (p-value = 0.844 and Spearman ρ = 0.006). The dashed
line represents the operational threshold for the “stripy lattice” phenomenon as

defined in section 4.1.3

programs after optimisation saw no correlation, as it is illustrated in figure 5.11

and the Spearman ρ rank correlation coefficient and p-values are very low and very

high respectively.

The two aggregate network cycle measures that were studied, the number of cycles

and the average cycle length of the network, do not constitute adequate predictors

of a GRN’s objective score. Both the cycle based measures studied can not be

associated with the dynamical property of “stripy lattice” of several GRNs.
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Figure 5.10: Correlation scatter plots of number of positive (left) and negative
(right) cycles against the objective score after optimisation for each transsys
program of the reference parameter set. No correlation has been found (p-
value = 0.845 for the positive and p-value = 0.625 for the negative cycles
correlations respectively). The dashed line depicts the operational threshold for

the “stripy lattice” phenomenon as defined in section 4.1.3

5.3 Individual Elements Properties

The same dataset described in the previous section (section 5.2) was used to study

the impact of individual element network properties. For every transsys program

generated for the study of the global network properties the reference experiment

of a full set of single network element deletion was conducted. Single element dele-

tion experiments are designed to assess the impact of individual network elements

(genes and regulatory interactions) on the objective score and the methodology is

described in section 3.6.1. The difference in the objective score from the original

transsys program is correlated against network properties of the deleted element.

5.3.1 Gene properties

Correlation studies of individual vertex (gene) network properties against the ob-

jective score difference of the single gene knock-out transsys program from the

wild-type have been carried out. The studied measures include gene centrality

measures and cycle related measures these are the degree, the closeness, the be-

tweenness and the eigenvector centrality as well as the number of cycles a gene
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Figure 5.11: Correlation scatter-plot of the average length of all the cycles in a
network against the objective score after optimisation. No significant correlation
can be reported as the p-value = 0.317 and the Spearman ρ = 0.033. The dashed

line represent the threshold for the “stripy lattice” behaviour.

is a member of (introduced in section 2.2.3.3). Each transsys program in the set

generated in the section 5.2 after optimisation has entered the single gene knock-

out process as described in section 3.6.1. Then correlations of the difference in

the objective score of the single gene knock-out from the wild-type transsys pro-

gram against network related measures of the knocked-out gene were examined

and presented here.

Gene centrality measures are correlated with the objective score loss due to single

gene knock-out in the majority of the transsys programs that exhibit a relatively

low objective score. Transsys programs with a substantially low objective score

which is defined as less than the maximum information content that a single
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Figure 5.12: Scatter-plots of the objective score difference of the single gene
knock-out from the wild-type transsys program against gene network centrality
measures. The plots are drawn from a transsys program that has objective score

below the operational threshold depicted in figure 5.7.

factor can have in a lattice of 300 cells, that is − log2 300 ≈ −8.228 and has

been introduced as an operational threshold for the “stripy lattice” phenomenon

in section 4.1.3, were checked for gene network measures correlations. Out of the

1200 transsys programs, a set of 77 had a substantially low objective score lower

or equal to -8.228. Out of this selected transsys programs, the correlation plot of

a characteristic example is presented in figure 5.12.

All the centrality measures are significantly correlated with the objective score loss,

indicating that centrality measures of a gene on a network are reliable predictors of

the contribution of a particular gene to gene expression heterogeneity on spatially

organised systems. A second selected transsys program is also appearing to have
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Figure 5.13: Scatter-plots of the objective score difference of the single gene
knock-out from the wild-type transsys program against gene network centrality
measures. The plots are drawn from a transsys program that has objective score

below the operational threshold depicted in figure 5.7.

the centrality measures correlated as it is depicted in figure ??. The two transsys

programs that have been selected for the plots in figures 5.12 and ?? are the

two transsys programs with the lower objective score of all the 1200 transsys

programs used in this experiment. Gene centralities have been brought to interest

in the analysis of GRNs relatively recently (Koschützki and Schreiber, 2004,0)

and the results of this section are in line with the findings of this previous work.

More interestingly gene centralities have been found to be positively correlated

with the rate of evolutionary change as well as the gene expression variability

in networks of yeast transcription factors (Jovelin and Phillips, 2009). In the

experiment of this thesis centralities have been correlated with gene expression
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Figure 5.14: Scatter-plot of the objective score difference of the single gene
knock-out from two wild-type transsys program against the number of cycles a
gene is a member of. The plot is drawn from the same two transsys programs
used for figures 5.12 and 5.13, that have objective scores below the operational
threshold depicted in figure 5.7. The number of cycles a gene is a memeber of

is correlated with the objective score loss.

heterogeneity in networks that generate heterogeneity, finding close to the gene

expression variability correlation that the (Jovelin and Phillips, 2009) study has

proposed.

The number of cycles that a gene is a member of, correlates with the objective

score loss of the single gene knock-out. Figure 5.14 illustrates the scatter-plot

of the objective score differences of the single gene knock-outs from the wild-

type transsys program against the number of cycles a gene is a member of. The

Spearman correlation coefficient ρ suggests a negative correlation (ρ = −0.63)
between number of cycles and the objective score loss and the p-value supports

the statistical significance of this correlation (p-value ≈ 0.01). Comparable results

have been obtained from all the collection of networks that exhibit a substantially

low objective score (as defined two paragraphs above) with the correlation to be

either statistically significant (p-value < 0.05) or marginally statistically significant

(0.05 ≤ p-value < 0.1). No statistically significant correlation has been observed

for networks that do not exhibit substantially low objective score and thus do

not exhibit the “stripy lattice” property. The results of the cycles studies provide
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some indications that the number of cycles although found to be of no significance

as a global network measure (as discussed in section 5.2), it plays a role as an

individual gene measure in terms of the number of cycles a gene is a member of.

The more cycles a gene is member of the higher the effect of the knock-out of

this gene on the transsys program objective score and consequently on the level

of spatial heterogeneity.

5.3.2 Regulatory interaction properties

The next part of the single element deletion experiments has been designed to

assess the effects of single regulatory interaction (edge) deletion on a transsys

program objective score and study potential relationships between the objective

score difference and network edge measures. The edge network measures that have

been taken into account are the edge betweenness and the number of cycles an

edge participates in. A full set of single edge deletion experiments as introduced

in section 3.6.1 has been carried out for the whole population of transsys programs

used in the previous studies of this chapter as described in section 2.2.3.3. Then

correlations of the difference in the objective score of the single edge mutants from

the original transsys program against network related measures of the deleted edge

have been examined.

Both the network measures discussed here –the edge betweenness and the number

of cycles an edge participates in (as defined in section 2.2.3.3)– have a statistically

significant negative correlation with the objective score difference between an edge

reduced and the original transsys program. This finding holds for the majority of

the 77 transsys programs that showed a substantially low objective score (as de-

fined in section 5.3.1). Figure 5.15 depicts the scatter-plots of the objective score

differences against the edge betweenness and the participation in cycles from a

characteristic transsys program among the 77 selected. The findings indicate an

individual edge centrality (edge betweenness) measure to be statistically signifi-

cantly correlated to the objective score loss in a similar fashion with the individual

gene measures studied in the previous section (Spearman ρ rank correlation co-

efficient -0.33, p value ≈ 0.024). Edge betweenness plays a significant role in the

information flow of gene and protein interaction networks, this role has been as-

sessed in recent studies (Missiuro, Liu, Zou, Ross, Zhao, Liu, and Ge, 2009) by

using an information flow measure. Here a measure of a dynamical property, that

is the potential of generating gene expression heterogeneity in spatial organised
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Figure 5.15: Correlation plots of edge related network topological properties
vs. the objective score difference from the wild-type trannsys program owing to
edge deletion. The plots are drawn from a transsys program that has objective

score below the operational threshold depicted in figure 5.7.

systems, has been associated to the betweenness measure of individual gene reg-

ulatory interactions. Statistically significant correlation between the number of

cycles an edge participates in and the objective score loss (figure 5.15) further

corroborates the finding of the previous section that cycle measures of individual

network elements can be used to check for network dynamical properties.

For every regulatory interaction the dynamical parameters were also available,

each interaction holds two dynamical parameters the amax which is equivalent to

the maximum regulatory strength the interaction can exert and the αspec which

designates the binding specificity of a transcription factor with its DNA binding

site. For each edge deletion the relationship with each interaction’s amax and αspec

was studied by correlation scatter-plots of these dynamical parameters against the

objective score loss (figure 5.16 illustrates this for one of the 77 selected networks

with substantially low objective score).

No significant correlation has been observed for the amax, however there has been a

small number of transsys programs that have exhibit a marginally statistically sig-

nificant correlation (data not shown). Instead, for the majority of the 77 transsys

program with a substantially low objective score (as defined in section 5.3.1) the
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Figure 5.16: Correlation plots of single edge dynamical properties (amax and
αspec) vs. the objective score difference from the wild-type transsys program
owing to edge deletion. The plots are drawn from a transsys program that has

objective score below the operational threshold depicted in figure 5.7.

αspec dynamical parameter is positively correlated with the objective score differ-

ence between the edge reduced transsys program from the original. This finding

suggest that the optimiser is exploiting the αspec as a means to compensate for

unwanted interactions. The highest the αspec value for a regulatory interaction

the lowest its regulatory strength and consequently the optimiser has the option

to increase the αspec in an attempt to eliminate interactions that have a negative

effect on lower objective scores.

It is worthwhile to report that no trace of significant correlation has been found

between the devised measure to study the size-3 motifs, the size-3 motif profile

differences, and the objective score differences for both the genes as well as the

regulatory interactions deletion experiments. Therefore, the studies in this thesis

could not associate local network characteristics such as the size-3 motifs with the

“stripy lattice” phenomenon in GRNs.

All the results presented in this chapter sections (i.e. 5.2 and 5.3) are newly gen-

erated and extended data from the experiments presented in (Bouyioukos and

Kim, 2009), however comparable results have been obtained using networks with

higher number of genes (25) and edges (75). Results from this analysis further

statistically corroborate the analysis of the last two sectors by providing larger
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samples for genes (25 instead of 15) and regulatory interactions (75 instead of 45).

Indicative correlation scatter-plots from a selected transsys program with larger

number of genes and regulatory interactions can be found in the appendix C.



Chapter 6

GRNs and Initial Conditions

Initial conditions of biological systems, in terms of factor concentration variabil-

ity, affect gene expression in a number of ways. GRNs organise gene expression

dynamics in a twofold way. On one hand there are GRNs (mostly the ones that

are involved in signal transduction pathways) that have a significant degree of

sensitivity to initial conditions and are transforming initial conditions variability

to signals that elicit a response (in terms of differential gene expression) to vari-

able initial conditions. On the other hand there exist GRNs (predominantly the

ones involved in developmental processes) that are required to organised a robust

response, that is a stable gene expression pattern, to initial conditions variability.

This chapter investigates the latter property of GRNs by conducting an exper-

iment which calculates transsys programs objective scores obtained by different

initial reactor states, as a proxy to different initial conditions.

Every objective score calculation of a transsys program, as a result of the objective

function evaluation, is determined by the transsys program and the simulator

control parameters only (section 3.2.1). Here all the simulator control parameters

are kept constant apart from the initial state, thus the objective score is determined

only by the initial reactor state and the transsys program. The objective function

equation (eq. 3.7) can be expressed as a mapping from the (initial reactor states

× transsys programs) domain to R.

In this chapter the contribution of these two domains, the initial reactor state

domain and the transsys program domain will be examined. The analysis of the

experiments results aims to explain the influence of a set of different initial reactor

states and transsys programs on the variability of the objective score.

98
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6.1 Experimental Setting

The transsys program population that was used for the initial conditions exper-

iment was the one that was returned from the reference experimental procedure

and equals to 2 network generation mechanisms × 15 topologies × 30 parametrisa-

tions = 900 different transsys programs. Each transsys program after exiting the

optimisation procedure has its objective score evaluated starting from 100 different

initial factor concentration reactor states, thus the whole data set analysed in this

chapter consists of 900 transsys programs × 100 evaluations from different initial

reactor states = 90000 objective function evaluations. The data set was grouped

according to 4 different groupings: 100 initial states groups each containing 900

objective scores, 2 network generation groups with 45000 objective scores each,

30 topology groups each one with 3000 objective scores and 900 transsys program

groups containing 100 objective scores each. Each of these grouping is considered

as a contributing component of the objective score variability and each compo-

nent was treated as containing categorical data. A statistical approach based in

exploratory data analysis and standard analysis of variance techniques has been

followed to determined which component (or grouping) is able to capture more of

the observed variability of the objective score and thus has the greater impact in

determining this score.

6.2 Initial Reactor States

The core motivation in the design of this chapter’s experiment was to assess and

quantify the effects of either the initial rector state or the transsys program on

the objective scores. To study the effect of the initial reactor state the transsys

objective scores that have been calculated starting from an identical initial reactor

state have been grouped together, thus 100 different initial reactor states groups

have been formed each one containing 2 network generation mechanisms × 15

topologies × 30 parametrisations = 900 objective scores. Exploratory analysis

of these effects has been applied including boxplots generation and calculation of

descriptive statistics of the mean and variance of initial state group means. A

standard analysis of variance approach followed to quantify the impact of initial

states on the variability of the objective scores.
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Exploratory analysis of the initial reactor state grouping data has been carried

out by generating the boxplots for all the 100 groups and plot them together.

Figure 6.1 illustrates all the boxplots of each initial reactor state group.
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Figure 6.1: Notched boxplots of transsys program objective scores. Labels
on the x-axis designate the different initial reactor factor concentration states.
Each boxplot contains all the objective scores from 900 different transsys pro-
gram grouped by the same intiial reactor state. The doted line represent the
operational threshold for the “stripy lattice” phenomenon, as introduced in sec-

tion 4.1.3.

Boxplots in figure 6.1 indicate that groups of objective scores based to initial

reactor states share relatively little differences in terms of the median objective

score, suggesting that objective scores are not possibly affected by the initial state

groups. Also the boxes (representing the inter-quartile range) appeared to have

comparable sizes among all the initial states further suggesting a relatively limited

impact of the initial reactor state on the objective scores.
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Further exploratory analysis of the data supports the boxplots results discussed

above. The mean and the variance of the means of each boxplot of objective

score evaluations grouped by different initial states have been calculated. The

mean of the initial state groups means µinitStates is −2.419 and the variance of

the means σ2
initStates = 0.016. Compared to the overall variance of the objective

scores (σ2
total = 8.824) the variance of the initial reactor states means is two orders

of magnitude lower and also two orders of magnitude lower than the mean of

means, suggesting that grouping according to the initial reactor states is not able

to capture a substantial amount of the objective score variability.

Consequent analysis of variance of the initial reactor state groupings has been

conducted. The initial state grouping has been treated as a categorical variable

of 100 levels and the results from the analysis of variance of a linear model of the

grouping are as follows:

aov(formula = lmInitState)

Terms:

factorInitState Residuals

Sum of Squares 1467.7 792718.8

Deg. of Freedom 99 89900

Residual standard error: 2.969475

From the analysis of variance results the within each initial state group variability

(or the Mean Square Error (MSE)) can be calculated. The MSE is a measure of the

variability of the original data that the model under consideration has captured.

For the initial reactor state grouping is MSE = 792718.8/89900 ≈ 8.817. In the

context of calculating MSE from the rest of the groupings (aggregate results of

the statistics calculated in this chapter can be found in table 6.1), the MSE of

initial reactor state grouping has the highest value among all the rest of MSEs

from other groupings (network generation, topology, transsys program).

The ANOVA table provides indications of the significance of the grouping as a

potential predictor of the objective score and is as follows:

Analysis of Variance Table

Response: objScore

Df Sum Sq Mean Sq F value Pr(>F)

factorInitState 99 1468 15 1.6813 2.634e-05 ***

Residuals 89900 792719 9
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The p-value of the initial state model (the “Pr(¿F)” column) indicates statistical

significance, however the relatively large number of the degrees of freedom (Df =

99) diminishes the significance of this finding.

Together the last two findings indicate that the initial state although that de-

termines the objective score evaluations (according to the ANOVA table), does

not effectively capture the of variability of the objective scores (according to the

boxplots figure 6.1 and the calculation of the MSE) and therefore can be chosen

arbitrarily, that is that any choice of the initial reactor state can be arbitrary,

will have equivalent effects in the objective scores and will generate statistically

comparable results.

6.3 Effects of Network Generation Mechanism

The effect of each of the two network generation mechanisms has been studied by

grouping the objective scores obtained from the ER process and the PL process of

generating random networks in two separate groups. Exploratory analysis of the

two groups by generating the respective boxplots has revealed possible difference

between the means of the objective score distributions of the ER and PL networks,

as illustrated in figure 6.2.

The boxplots indicate a lower objective score median derived from PL networks

than the ER as the notches between the two boxes do not overlap. The latter

was not the case for the experiment reported in section 5.2. The objective scores

boxplots in figure 5.6 did not imply any significant difference in the ER and PL

medians. Further corroboration of the boxplot finding comes by performing a

Wilcoxon rank sum test. The Wilcoxon test compares the location parameters

of two distributions and applying it on the ER and PL grouping has revealed a

statistical significant difference: W = 1083968746, p-value < 2.2e − 16. The low

p-value of the Wilcoxon test indicates that the location shift in the distribution

is significantly different. Furthermore, from the boxplots figure the median of the

objective scores from PL networks is lower and the median of the ER networks,

however ER networks have more transsys programs that encoded for lower objec-

tive scores. Overall, the results favours the hypothesis that PL networks are more

robust to initial reactor states variation than ER networks.

In addition to the comparisons, the role of network generation mechanism as a

contributing factor to the objective score variability has been studied. The analysis
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Figure 6.2: Notched boxplots of transsys program objective scores. The net-
work generation mechanism (either ER or PL as introduced in section 3.4) was
used to populate the two boxplots. A significant difference in the median is
observed in the figure and it is also supported by a Wilcoxon test in the text.
(Each boxplot contains 45000 scores and thus the boxplot notches are so narrow

that rendered almost invisible in the figure).

of variance output of the ER – PL grouping has been conducted, from where the

mean square error can be calculated. The mean square error (or within groups

variability) is the ratio of residuals sum of squares over the degrees of freedom

thus MSE = 791806.7/89998 = 8.798, and it is the second larger MSE of the

study according to the aggregate table 6.1.

aov(formula = lmNetgen)

Terms:

factorNetGen Residuals
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Sum of Squares 2379.8 791806.7

Deg. of Freedom 1 89998

Residual standard error: 2.966150

Grouping the transsys program objective scores evaluation according to the net-

work generation mechanism revealed possible differences of the robustness of the

PL networks with regard of the initial reactor state. The mean squared error (or

the within group variation) when the two groups network generator groups are

considered was significantly lower than the mean of squares (or the between group

variation). The results of the ANOVA table suggested the network generation

mechanism as a potential, yet weak, predictor for the objective score evaluation

from multiple initial reactor states.

Analysis of Variance Table

Response: objScore

Df Sum Sq Mean Sq F value Pr(>F)

factorNetGen 1 2380 2380 270.49 < 2.2e-16 ***

Residuals 89998 791807 9

6.4 Network Topologies

The next level of grouping of the transsys program objective scores was carried

out according to their respective network topology. For each of the two network

generators 15 different topologies have been produced, thus resulting to 30 dif-

ferent groups each containing 300 objective scores from each distinct topology.

Exploratory analysis of the data by the boxplots of figures 6.3 & 6.4 provides an

initial picture of relatively little variability of the objective scores with regard to

the network topologies. This was anticipated as different topologies have derived

from random sampling of the space of all the potential topologies and they have

not been subject to any alteration through the optimisation process.

Continuing the exploratory mode of the analysis, the mean and the variance of

the means of objective scores from each topology group have been calculated. The

mean of means of the objective score from the 30 topology groups µtopologies is

−2.419 and the variance σ2
topologies = 1.281. Both the mean and the variance of

means are in the same order of magnitude and the variance of the means is sub-

stantially lower than the total variance (σ2
total = 8.824) indicating that an amount
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Figure 6.3: Notched boxplots of transsys programs objective scores generated
according to the Erdös-Rényi model. The objective scores are grouped according
to the 15 different different network topologies that have been generated for the

ER networks.

of variability of the objective scores was captured when scores were grouped ac-

cording to different network topologies.

The impact of the network topology in the objective score is a central objective of

this thesis (as stated in section 1.6). To further investigate potential relationships

of the network topologies with the objective score evaluations, a standard analysis

of variance approach was used. The grouping of 30 topologies was treated as a

categorical variable of 30 levels and the analysis of variances of the linear model

results were as follows:

aov(formula = lmTopology)
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Figure 6.4: Notched boxplots of transsys programs objective scores generated
by a process that results to networks with power-law degree distribution. The
objective scores are grouped according to the 15 different network topologies

that have been generated for the PL networks.

Terms:

factorNetwork Residuals

Sum of Squares 111527.3 682659.2

Deg. of Freedom 29 89970

From the analysis of variance results the mean square error (MSE) was calculated.

MSE = 682659.2/89970 = 7.588 the mean square error (or the within group

variation) is less than the MSE calculated for the network generation grouping

and indicates that grouping by topology can capture more of the variability of the

objective score that the network generation mechanism.
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Accordingly, to asses the significance of the grouping by topologies the ANOVA

table has been calculated:

Analysis of Variance Table

Response: objScore

Df Sum Sq Mean Sq F value Pr(>F)

factorNetwork 29 111527 3846 506.85 < 2.2e-16 ***

Residuals 89970 682659 8

Topology significantly determines the objective scores, however the relatively large

amount of the degrees of freedom (29) abates the highly statistical significance of

the association between topology and objective score that the low p-value indicates.

6.5 Transsys Programs

The last level of grouping is based on different transsys programs. As described in

section 6.1 for each network topology 30 transsys programs with different initial

dynamical parameter setting have been generated. Therefore the grouping that

is used to analyse the data is the one based on individual transsys programs,

this grouping consists of 2 network generation mechanisms × 15 topologies × 30

initial parametrisations = 900 different transsys program groups each containing

100 objective scores obtained from the respective different initial reactor states.

The boxplots of transsys program objective scores for each individual transsys

program will facilitate the exploratory analysis of the data. The transsys program

boxplots derived from the same network topology are plotted together in the same

figure. Form the exploratory analysis of the data the variability that is due to the

different initial parametrisations of each transsys program can be studied, the full

complement of the 900 transsys program groups boxplots divided into 30 figures

can be found in the appendix D.

Here, transsys program boxplots from two indicative topologies one representing

transsys programs with the highest objective score variability and one with the

lowest are presented. The variability has been quantified using the coefficient of

variability (that is the ratio of the standard deviation over the mean). The co-

efficient of variability has been calculated for each different topology and all the

topologies then have sorted in descending order. The topology with the highest
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coefficient of variability is illustrated in figure 6.5 (it is the 5th from the ER gen-

eration mechanism) and the one with the lowest in figure 6.6 (the 11th from the

ER mechanism).
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Figure 6.5: Notched boxplots of transsys programs objective scores grouped
by the same initial dynamical parameters. This is a selected topology which
exhibits relatively large variation for each set of dynamical parameters, most
of the parametrisations have resulted to a median objective score lower than -6

and only a couple have median objective score around zero.

Figure 6.5 depicts boxplots of objective scores from the transsys programs of the

network topology with the higher coefficient of variability. The degree of variation

of the objective scores is the highest among all the other network topologies, and

a couple of transsys programs are reaching median objective score lower than -

10. Boxplot analysis offers an initial demonstration that the transsys program

accounts for a significant amount of objective score variability.
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Figure 6.6: Notched boxplots of objective scores evaluations from different
initial conditions grouped by the same initial dynamical parameters. This is a
selected topology which exhibits relatively small variation for each set of dynam-
ical parameters, a few parametrisations have generated a low median objective

score whereas most are mainly concentrated around zero.

Figure 6.6 illustrates boxplots of objective scores of transsys programs derived

from the topology with the lowest coefficient of variability. Most of the transsys

programs have objective scores medians concentrated close and relatively little

lower than zero. However still a couple of transsys programs have generated rel-

atively low objective score median, which provides an additional indication that

the transsys program grouping can capture a substantial amount of the objective

score variability.

Moving on with the exploratory analysis the mean and the variance of the means

from each boxplot of objective scores that was grouped according to different
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transsys program were calculated. The mean of the means of the transsys programs

groups µtp was −2.419 and the variance of the medians σ2
tp = 6.604. Both these

descriptive statistics are in the same order of magnitude however the variance is

almost 3 times higher than the mean value indicating a relatively large degree

of variability at the individual transsys program groups, and compared to the

total objective score variance (σ2
total = 8.824) is relatively close. Grouping the

objective scores on the transsys program level captures the highest (compared

to the topology, section 6.4, and the initial reactor state, section 6.2, groupings)

variability of the objective score evaluations.

Boxplots of transsys programs from two indicative topologies have been presented

here. The full complement of all the data-set comprise 30 images and 900 boxplots

one for each parametrisation can be found in the appendix D, the collection of all

the Erdös-Rényi networks are in appendix D.1.1 and for networks with power law

degree distribution in the appendix D.1.2.

Comparison of the figure 6.5 from a topology that show substantial amount of

variability in objective score evaluations from different transsys programs with

the boxplots of objective scores evaluations from a topology that do not show sub-

stantial variability in figure 6.6 indicates that the network topology is a significant

factor that determines the objective score. An observation that comes in line with

the results of the network grouping section 6.4.

The analysis of variances between and within groups also reveals an equivalent to

the exploratory analysis result.

aov(formula = lmTranssys)

Terms:

factorTranssysProgram Residuals

Sum of Squares 593786.5 200400.0

Deg. of Freedom 899 89100

Residual standard error: 1.499719

The mean square error MSE = 200400/89100 ≈ 2.249 is the lowest than the rest

of MSEs calculated for the rest of the grouping (consult th aggregate table 6.1 for

comparisons), suggesting that the transsys program grouping is able to capture

the biggest portion of the variability, compared to the rest of the groupings, of the

objective scores.
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Furthermore the ANOVA table indicates that the transsys programs groups are a

significant predictor of the objective score evaluations variability:

Analysis of Variance Table

Response: objScore

Df Sum Sq Mean Sq F value Pr(>F)

factorTranssysProgram 899 593787 660 293.66 < 2.2e-16 ***

Residuals 89100 200400 2

The grouping is a statistical significant predictor of the objective score, however

the very large number of degrees of freedom (899) diminishes the statistically

significant role of transsys program as a predictor that the low p-value suggests.

6.6 Discussion

To summarise the findings of the multiple initial reactor state experiment and to

compare the results of each individual grouping with the rest a table collecting the

statistics calculated from the exploratory and the analysis of variances from each

grouping is presented:

Mean Variance
Grouping of means of means MSE D.f. p-values

Initial reactor states -2.419 0.016 8.818 99 2.634× 10−05

Network mechanisms -2.419 0.052 8.798 1 < 2.2× 10−16

Network topologies -2.419 1.281 7.587 29 < 2.2× 10−16

Transsys programs -2.419 6.604 2.249 899 < 2.2× 10−16

Whole data -2.419 8.824 N/A N/A N/A
(total variance)

Table 6.1: Summarising table of all the statistics from the exploratory and
the analysis of variances of different groupings

The table summarises what has been shown in the individual sections of this

chapter that the transsys program grouping has been found as the component

that captures the highest variability of the objective scores. This is explicable

by the fact that the transsys program is subject to optimisation, every transsys

program entered this analysis has its dynamical parameters optimised to minimise

the objective score. Therefore the transsys programs, consisting of the topology

and the dynamical parameters, that used in this experiment are not a unbiased,
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random sampling of all the population of possible transsys programs. In addition

the hierarchical structure of the transsys program generation, that each transsys

program belongs together with other in a network topology group and each net-

work topology belongs with others to a network generation mechanism group is

determining that higher levels of grouping will be able to capture less objective

score variability, for instance the network generation mechanism grouping, by con-

struction, will capture less objective score variability than the network topology

grouping. Finally, regarding the initial reactor factor concentration states and

in a biological analogy, initial variability of factor concentrations along a tissue,

although is a necessary condition for the generation of heterogeneity (as it was sug-

gested by the ANOVA table of the initial reactor state grouping), it can be chosen

arbitrarily and different initial states will have limited effects on the statistics of

the “stripy lattice” properties that the developmental GRN will generate.



Chapter 7

Exploring Robustness

Robustness as discussed in the literature review chapter (section 2.2.4) is a prop-

erty that permeates all the levels of biological organisation and in the context of

GRNs studies encompasses more than one aspect. In chapter 6 the role of transsys

programs and initial reactor states in determining the objective score variability

has been examined and indications of GRN robustness against randomly gener-

ated initial reactor factor concentration states have been pointed out. The course

of the current chapter is built upon the results and the findings of the previous

chapter (chapter 6), and is focused on further investigations of the topological

properties of transsys programs. Topological properties of a selection of transsys

programs that is compiled for robustness of their objective scores from different

initial reactor states were identified and network elements pruning experiments

were carried out to further study the GRNs topological robustness to sequential

network element deletion.

7.1 Experimental Setting and Analysis

The robustness of particular transsys programs objective scores to different initial

reactor states has been motivated by the observed variability of the transsys pro-

gram groupings (results in section 6.5, full set of results in the appendix D and

summary table 6.1), results that indicate that the differences in transsys programs

is the predominant factor to describe the variability of the objective score. In this

chapter the experiment is based in the evaluation of how robust is the low objec-

tive score generated by different transsys programs gainst network perturbations.

The transsys program objective score robustness has been quantified based on two

113
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criteria: relatively low objective score and relatively small variation of the series

of different objective scores obtained from different initial reactor states for each

transsys program. A selection process has been devised in order to distinguish

transsys programs that exhibit a robust behaviour of the objective scores from

different initial reactor states. The selection criteria were based in two descriptive

statistic measures the median of the objective scores and the Median Absolute

Deviation (MAD). The MAD is a measure of dispersion that is more robust com-

pared to the inter-quartile range (IQR) and it is defined as the median of the

absolute deviations from the data’s median.

The process for selecting the networks that have a robust –i.e. relatively small

MAD and relatively low median of objective score evaluations– introduces two

arbitrarily selected thresholds for the two selection criteria. The median should

be less than or equal to -6, so only transsys programs with objective scores low

enough to exhibit spatial heterogeneity will be selected; and the MAD should be

less than or equal to 2, so that transsys programs that have a low dispersal of their

objective scores due to differences in initial conditions will be selected. Figure 7.1

graphically represents the two thresholds and the selected transsys programs.

These two arbitrarily chosen thresholds were used to set up a proxy measure of the

robustness of the objective score. Transsys programs that fulfil the two selection

criteria have been chosen from the total population of transsys programs. 67

transsys programs (the ones outside the dashed line area of figure 7.1) have been

obtained by this selection procedure out of the 900 of the total population of

transsys programs generated by the reference control parameters set. To satisfy

the objective to characterise the network topology of these transsys programs, a set

of network topological properties have been extracted from the selected transsys

programs and their statistics were compared with topological properties of the

total transsys programs population.

7.1.1 Pruning Networks Analyses

The topological robustness of the transsys programs was examined by applying the

cumulative network elements approaches described in section 3.6.2. The approach

consists of two experiments one aims to reduce the network by knocking-out genes

the second by deleting regulatory interactions, both in a cumulative fashion. There

is a threshold when these cumulative reduction operations stop and it is set at the

50% of the wild type transsys program objective score. The 50% threshold has
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Figure 7.1: Plot of the transsys program objective scores medians against the
median absolute deviation each point represents an individual transsys program.
Medians and MADs were calculated from transsys programs objective scores
from random initial reactor states (as generated in chapter 6). The area outside
the dashed lines was the selected one. The positions of the particular transsys

programs are indicated in red.

been chosen as it is the mean of the objective score and most of the reduction

operations have either a minute effect or a very severe effect that brings the the

objective score close to zero, thus a 50% threshold constitutes a safe choice to

asses the topological robustness. Comparing pruned network elements from the

67 selected transsys programs with the rest of the transsys programs population

might reveal potential relationship between two aspects of GRN robustness, the

robustness to initial reactor state and robustness to network pruning.
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7.2 Topological Properties of Robust GRNs

Out of all the global network topological measures that were introduced in sec-

tion 5.2 to study topological properties, the clustering coefficient and the diame-

ter were the network measures significantly differentiated (based on the boxplots

notch overlaping indication) between the selected transsys program and the total

population.
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Figure 7.2: Notched boxplots of the clustering coefficients of the robust se-
lected transsys programs (red points in figure 7.1) and the whole transsys pro-

gram population.

Figure 7.2 illustrates that the median of the clustering coefficients of the selected

transsys programs is higher (with no notch overlapping) from the total popula-

tion of transsys programs indicating that higher clustering coefficients might be
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beneficial for transsys programs to exhibit objective score robustness to different

initial reactor states. However further support of this argument by a Wilcoxon

rank sum test show no statistical significance in the location shift between the

selected transsys programs and the total population of transsys programs cluster-

ing coefficient distributions, W = 30390, p-value = 0.9135. The p-value clearly

indicates that the null hypothesis that the location shift between the clustering

coefficient distributions of the selected and the total transsys program populations

is zero is accepted.
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Figure 7.3: Notched boxplots of the network diameter of the robust selected
transsys programs (red points in figure 7.1) and the whole transsys program

population.

Boxplots of the diameter, in figure 7.3, of selected transsys program with objective

scores that were robust to initial reactor state variability and the total transsys

program population reveal also a potentially significant difference in the objective
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score medians. The notches do not overlap suggesting a lower diameter of the

selected compared to the total transsys program population. This observation

is marginally statistically supported as the Wilcoxon rank sum test has returned

W = 26610, p-value = 0.09227. The 0.09 p-value (0.05 <= p-value <= 0.1)

indicates marginal statistical significance for a distribution location shift between

the diameters of selected and the total population of transsys programs.

The clustering coefficient and diameter results come as a complementary argu-

ment to previous finding that networks with small diameter tend to have lower

objective scores (results discussed in section 5.2). Both these findings support that

“small world” networks is a potential topological characteristic of gene regulatory

networks, as has been reported from previous studies (Almaas, 2007; Watts and

Strogatz, 1998). The results of both the experiments in this section combined with

the ones in section 5.2 are suggesting that the small diameter is a characteristic

of networks with capacity to generate heterogeneity an thus these networks share

the “small world” property that numerous biological networks have (examples in

(Watts and Strogatz, 1998)).

7.3 Single Element Deletions and Robustness

The single element network properties and the objective score loss due to the

single element deletion were studied next under the light of the objective score

robustness selection. The Spearman ρ rank correlation coefficients between single

element deletions and network element topological properties were retrieved from

all the transsys programs generated with the reference parameters set. The date

set used here is the same with the one used for the individual element property

analysis presented in section 2.2.3.3. Using the transsys program selection pro-

cedure described in the experimental settings section 7.1, an aggregate statistical

analysis has been carried out for the Spearman ρ rank correlation coefficients. The

correlation coefficients of the degree of the knocked-out gene against the knock-out

objective score loss were collected for the selected transsys programs and the total

population and the two distributions are depicted as boxplots in figure 7.4.

As demonstrated in figure 7.4, for the selected for objective score robustness

transsys programs gene degree is associated more with the objective score loss

compared to the association of the total population. Equivalent behaviour of the

rank correlation coefficient is observed for the number of cycles that a gene is a
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Figure 7.4: Notched boxplots of Spearman ρ rank correlation coefficient be-
tween the degree of a knocked-out gene and the objective score loss due to this
knock-out. Data are from individual gene deletion experiments for each gene in

the selected robust transsys programs and the total population.

member of, for the closeness and for the eigenvector centrality individual gene

properties, with the respective boxplots are in the appendix E.

Consequently for the selected transsys programs four individual network proper-

ties: the degree, the number of cycles a gene is member of, the closeness and

the eigenvector centrality, have been found to exhibit stronger correlation coeffi-

cients than the total transsys program population. These result is in line with the

observation in section 2.2.3.3 that the majority of the transsys programs with a

substantially low objective score have their individual network element properties

correlated with the objective score difference.
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7.4 Topological Robustness

GRNs robustness in terms of GRNs topology is a crucial property of network that

organise phenomena of cell differentiation as tolerance to structural mutations is

essential for the GRN to organise accurately phenomena of cell differentiation and

pattern formation. In addition, examine the elimination of unwanted network

elements is a methodology that can lead to the identification of minimal core

GRN topologies that are able to exhibit the “stripy lattice” property. To study

robustness of the GRNs topology, a sequential element deletion experiment, as

described in the experimental setting section 3.6.2 was conducted and the results

are reported and discussed here.

To demonstrate the application of the 50% objective score threshold in cumula-

tive gene pruning and regulatory interaction pruning experiment respectively two

figures where generated. Figure 7.5 illustrates the objective scores traces of a

transsys program from the reference as the cumulative gene knock-out experiment

proceeds. In each step a gene gets knocked- out and a reduced transsys program

with less genes is generated.

In the example of figure 7.5 the reduced transsys program that the experiment will

return is the one that is the outcome after the knock-out of all the genes below

the 50% objective score threshold (indicated by the dotted line).

Figure 7.6 illustrates objective score traces of a transsys program from the reference

set over cumulative regulatory interactions deletion steps. In each step a regulatory

interaction is removed and a pruned transsys program with less edges is generated.

In the example of figure 7.6 the pruned transsys program that is returned is the

one that is the outcome of the removal of all the regulatory interactions below the

50% objective core threshold (indicated by the dotted line).

The cumulative element deletion operation in combination with the set up of the

50% threshold eliminate a certain amount of network elements (genes or regulatory

interactions). This number of pruned network elements is used as a proxy to

the GRNs robustness to cumulative pruning, the more elements get pruned the

more robust a GRN is. The hypothesis is that transsys programs that exhibit

robust objective score in a series of random initial factor concentration states

(selected in section 7.1) will be robust to cumulative element deletion as well.

The motivation behind that is to investigate any potential connections between

two different aspects of GRN robustness. Robustness of objective scores against
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Figure 7.5: Plot of the objective score of a transsys program after applying
cumulative gene knock-out operations. The horizontal axis shows the gene name
that is been knocked out, the horizontal dashed line the 50% objective score
cutoff. In this case 6 genes needed to be deleted for the objective score to

reduced to half of the original transsys program score.

random initial conditions and objective score robustness to cumulative network

elements pruning.

Notched boxplots of the total number of pruned genes from the transsys programs

that have been selected for objective score robustness in different initial reactor

states and the total population are illustrated in figure 7.7

There is no observable overlapping to the boxplot notches, indicating that the

median of the selected transsys programs number of cumulatively pruned genes is

lower than the total transsys program population. Accordingly the Wilcoxon rank



Chapter 7 Exploring Robustness 122

−
10

−
5

0

Regulatory interaction

O
bj

ec
tiv

e 
sc

or
e

g0002−g0005 g0006−g0013 g0008−g0000 g0003−g0000

Figure 7.6: Plot of the objective score of a transsys program after applying
cumulative regulatory interaction removal operations. The horizontal axis shows
the regulatory interaction identifier (as a pair of genes that the interaction
connects) that is been removed, the horizontal dotted line the 50% objective
score cutoff. In this case 12 regulatory interactions needed to be removed before
the objective score is reduced to half of the original transsys program score.

sum test supports a statistically significant difference in the vertices distribution

location between the selected and the total distribution of transsys program pruned

genes: W = 19823, p-value = 2.492e− 06.

Therefore, as it is depicted in the notched boxplots of figure 7.7 and supported by

the Wilcoxon test, the selected transsys programs can tolerate significantly less

cumulative gene knock- outs before they reach the 50% of the objective score of

the original transsys program. There is no indication that the selected ones are

more robust to the cumulative pruning procedure than the rest of the population.
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Figure 7.7: Notched boxplots of the number of pruned vertices before the
objective score of the pruned transsys program reaches the 50% of the wild
type. The selected transsys programs are the ones that passed the robustness
selection process in section 7.1 and the total the full set of transsys programs

that underwent the cumulative gene pruning procedure.

Similarly notched boxplots of the number of pruned edges (regulatory interactions)

from the transsys programs that have been selected for objective score robustness

in different initial reactor states and the total transsys program population are

presented in figure 7.8

Again, the boxplot notches do not overlap and the median of the selected transsys

program cumulatively deleted regulatory interactions is lower than the total transsys

program population. Accordingly the Wilcoxon rank correlation test supports a

statistically significant difference in the edges distribution location between the
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Figure 7.8: Notched boxplots of the number of pruned edges before the ob-
jective score of the pruned transsys program reaches the 50% of the wild type.
The selected transsys programs are the ones that passed the robustness selec-
tion process in section 7.1 and the total the full set of transsys programs that

underwent the cumulative edge pruning procedure.

selected and the total distribution of transsys program pruned genes with a low

p-value: W = 22635, p-value = 0.0006339.

The selected transsys programs have significantly less genes and regulatory in-

teractions pruned before the objective score reaches the 50% threshold than the

total transsys program population. Both the gene and the regulatory interactions

robustness to pruning investigations were unsuccessful in revealing any association

between one aspect of robustness, that is the objective score robustness for differ-

ent initial reactor states, and the second aspect of robustness being robustness to

cumulative elements pruning.
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Topological properties of GRNs selected to exhibit the “stripy lattice” property

and have robust objective score to initial condition variability have been investi-

gated in this chapter. The network diameter of the selected GRNs has been found

lower than the diameter of the rest of the GRN population, suggesting that the

small world phenomenon is associated both with the “stripy lattice” property as

well as to the robustness to initial condition variability on GRNs. Further studies

of topological properties of the robust GRNs have failed to identify links between

the initial condition robustness and robustness to cumulative network pruning.

The experiments however took in to account a single description of robustness to

cumulative pruning, the number of network elements removed before the objective

score reaches the 50% of the original transsys program objective score and might

have overlooked others. Therefore the results of the topological robustness, given

the current experimental design and analysis can only be characterised inconclu-

sive.



Chapter 8

Conclusions - Outlook

This thesis aimed at providing a computational framework to simulate a bio-

logically relevant phenomenon, that is to generate gene expression heterogeneity

which is higher on spatialy extended system (a lattice) than in a background

model (a well stirred reactor). The spatial heterogeneity mechanism was based on

a reaction-diffusion system were transsys provided the mechanism for the reaction

part and the spatial structure (the 2-dimensional orthogonal lattice) the diffusion

component of the system. The system was able to reproduce the patterns that

are characteristic of reaction-diffusion systems and can be classified at the gen-

earl category of Turing-Meinhardt patterns. The predominant pattern that was

observed in the lattices was the “stripy lattice” pattern, as given the size of the

lattices in this work (relatively short height compared to width) any spatial het-

erogeneity will be observed only in the forms of stripes. Section 4.1.3 provides

illustrative examples of “stripy lattice ”spatial heterogeneity. For the develop-

ment of the background experiment, to represent systems that lack any notion

of spatial organisation, a null model was developed in the form of a well stirred

reactor. It provides a concept for testing GRNs with negative control model in

addition to the main model and to my knowledge is a negative control appeared

for the first time in this work and it can be used as a background experiment

for studies on spatial extended systems. In addition, the thesis aimed at devising

a measure to quantify spatial gene expression heterogeneity and score GRNs ac-

cordingly, and studying and characteristic network topological properties of GRNs

in terms of their capacity to generate the “stripy lattice” property (second aim

126
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point as introduced in section 1.6). I presented the development of a compu-

tational framework able to capture this property and devised an objective score

to quantify it, in accordance with previous studies of gene expression on lattices

(Bignone, 1993; Keränen, 2004). I use this score as the objective of an optimisa-

tion approach trying to find GRN parameters such that the heterogeneity measure

will be minimised. Low objective scores are connected with higher gene expression

heterogeneity on a lattice compared to a well stirred reactor (chapter 3), thus low

objective scores are associated with the “stripy lattice” phenomenon, as demon-

strated in section 4.1.3. I hypothesise that by random sampling the topology space

of random networks that share common features with biological relevant networks

–like the edge density and the number of vertices– and trying to optimise for the

dynamical parameters of the network, GRNs with topologies that favour lower

objective scores will be more amenable to optimisation and thus will be distin-

guished from topologies that do not have the potential to generate heterogeneity.

The findings presented in chapter 6 as well as the random sampling benchmark of

the optimiser (section 4.1.2) provide evidences that the optimisation, although a

simplistic one, is able to discriminate network topologies with higher propensity

to generate heterogeneity in spatially organised systems. Therefore I considered

the first two objectives, the reproduction of the spatial heterogeneity phenomena

and the development of a measure for the quantification of these phenomena as

accomplished, (aims have been formally introduced in section 1.6).

In addressing the 3rd central aim of the the thesis chapter 5, section 1.6) is study-

ing associations (using correlation studies) between GRN topological properties

and the objective score. The network density has been found to correlate signif-

icantly with the transsys program objective score after optimisation, suggesting

that there is a certain amount of regulatory interactions, found to be between 4

and 8 per gene in this study, for a GRN to have the capacity to generate “stripy

lattice” paterns. Global network topological properties including average clus-

tering coefficient, number of network cycles and average cycle length, as well as

average path length, were found to have no correlation with the transsys program

objective scores after optimisation. However, small network diameter correlates

with low objective scores suggesting that the small world phenomenon in GRNs

pertains to a biologically relevant property such as gene expression heterogeneity,

as represented by the low objective score. As far as for the second characteris-

tic of small world networks, the clustering coefficient, no significant correlation

has been detected in any of the experiments. This indication together with the
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fact that the average clustering coefficient is not unambiguously defined for di-

rected networks, designates the diameter, and not the clustering coefficient, as a

characteristic measure for the small world phenomenon in GRNs.

Chapter 6, aligns with the 4th of the theis central aims and studies the impact

of a set of factors –including network generation mechanism, network topology,

network dynamical parametrisation and initial reactor state– on the objective

score. Primarily using analysis of variance, the variability of the scores of already

optimised transsys programs is studied with regard to each individual factor. The

findings indicate that the transsys program primarily and the GRN toology as well

as the dynamical parameers secondly are more significant determining factors of

the objective score than the initial reactor state or the network topology alone. In

fact the results illustrated in figure 6.1 indicate that the initial reactor state can

be arbitrarily chosen without significantly affecting the statistics of the objective

scores of GRNs.

Finally, addressing the last aim of the thesis (section 1.6) chapter 7 studies as-

pects of GRN topological robustness as well as GRNs objective score robustness.

The experiments attempt to find associations between two aspects of robustness:

robustness to different initial reactor states and robustness to cumulative network

element deletions. For GRNs selected for higher robustness to initial reactor states,

the diameter of selected GRNs is marginally significantly lower than the total GRN

population. Thus in line with chapter’s 5 finding that GRNs with smaller diame-

ter have lower objective score here GRNs selected for robustly low objective score

have lower diameter. However, studies to relate robustness of GRNs to cumulative

pruning of genes or regulatory interactions with the robustness to initial reactor

state did not bring up any conclusive results.

Summarising the findings, this thesis has studied GRNs of which the topology was

generated with a random and unbiased way and investigated topological properties

of GRNs with regard to their ability to generate heterogeneity. The GRN topology

was randomly sampled from the space of all potential GRN topologies. Therefore

the sampled topologies were not subject to any bias introduced by either biologi-

cal processes (i.e. evolution), or experimental processes, such as bias incurred by

methods that detect some regulatory interactions better than others or bias in-

troduced by the focus of researchers in genes and regulatory interactions which

are members of an interesting biological processes. GRN topologies were sampled

from topologies that share a generic biological property that is the ratio of edges to
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nodes (i.e the network density) and that is close to one observed in biological pro-

cesses, moreover the power-law network generation mechanism has been proposed

to be a representative generation process of biological networks (Almaas, 2007).

The parameter optimisation of GNRs whose topology was randomly sampled from

an unbiased space of network topologies has provided insights to topological de-

terminants for GRNs that exhibit low objective score such as the small diameter.

In addition, low objective scores is associated to individual network elements and

correlated with their centrality measures. Furthermore, an indication that the ini-

tial reactor state does not have significant effect on the statistics of the objective

scores of GRNs was established, however the fact that the transsys program was

found the most significant factor determining the objective score, signifies that

GRN dynamics is not determined solely by the topology of the network but from

the dynamical parameters settings as well. The nested structure of the transsys

program generation approach –the fact that every transsys program group is a

subgroup of a topology group– enables the level of transsys programs groups to

capture more of the variability of the objective score and as a result makes the

topology vs. dynamical parameters relationship infeasible to elucidate with the

current experimental procedure. Similar summarising can be made for the robust-

ness studies, no striking indication was found that might connect robustness to

initial reactor states with robustness to cumulative pruning, however the results

are inconclusive and a potential connection between the two aspects of robustness

can not be ruled out.

The work in the context of this thesis has generated an array of tools and experi-

mental procedures to study topological properties of GRNs in spatially extended

systems, and have conducted a significant set of experiments to study this relation-

ship. Pattern formation mechanisms have been proposed and study analyticaly

by Alan Turing and later by Hans Meinhardt and Alfred Gierer (Gierer and Mein-

hardt, 1972; Turing, 1952) where the model was a set of partial differential equa-

tions with a fast diffusing inhibitor and a slow diffusing activaror that generate

spatial heterogeneity of concentrations. However here a mechanism that involves

gene regulatory networks and that shows that these systems have the capacity to

organise heterogeneity through optimisation of their dynamical parameters by a

random local search. Thus the generation of Turing/Meinhardt patterns can be

reproduced by the mechanisms described in this thesis. The topologies of GRNs

capable of pattern formation has been also studied elsewhere (Salazar-Ciudad

et al., 2000; Salazar-Ciudad, Newman, and Sol, 2001), where a set of potential

minimal networks that are able to generate differential gene expression along a
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string of connected cells has been described. This thesis studies gene expression

heterogeneity on a 2-dimensional structure and has proposed a set of global and

local topological properties that identifying GRNs rather than specific topologies.

In addition to that this work has provided a contribution toward setting a frame-

work in which GRNs can be assessed for their capacity to generate spatial gene

expression heterogeneity by studying the distributions of robustness to initial re-

actor states (section 7.1 and in particular figure 7.1) of an unbiased sample of

topologies. Setting the quantiles (figure 7.1) at which GRNs objective score is

robust against initial reactor states one is able to position a given GRN and com-

pare its capacity to generate spatial heterogeneity with the unbiased sample of

GRNs. However, limitations of this approach lay in the fact that not any given

GRN can be the input of this procedure as only networks that can be represented

by directed graphs, that is networks that do not take in to account synergistic

or antagonistic effects between the regulators, can be analysed in the framework

developed in this thesis. A promising extension of this work towards specifying

sets of topologies would be to initiate the optimisation experiment with a fully

connected network and gradually delete the edge with the lowest contribution to

the objective score until any further deletion will have a detrimental effect to the

objective score. Starting from a set of different initial conditions a set of topolo-

gies can be retrieved and potentially some common topological properties can be

identified.

Moreover, the work on the robustness of the D. melanogaster segment polarity

GRN (von Dassow et al., 2000), has identified a core network topology which

is robust both in terms of random edge deletions as well as initial conditions

perturbations. In this work, the initial conditions robustness, was proposed to be

a property of developmental GRNs for buffering against developmental noise. The

results of chapter 6 that the “stripy lattice” property can be observed, on average,

with any arbitrarily chosen set of random initial reactor states, and that there

exist transsys programs which exhibit robustness to the initial reactor state choice

are very close to the robustness to developmental noise that (von Dassow et al.,

2000) have examined. In the context of the robustness studies and in the inquest

of finding relationships between different aspects of robustness research focused

on the identification of a core topology common for a significant number of the

pruned networks, will be a promising one. Furthermore, it would be motivating

for a different experimental endeavour to elucidate the topology vs. dynamical

parameters relation with regards to GRNs’ dynamical properties, a relationship
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that is tried to get resolved in the wet biological experimental level (Kim, Shay,

O’Shea, and Regev, 2009).

In addition an interesting branching of the research conducted here will be the

study of GRNs not in a static spatial structure like the lattice presented here

but in a dynamic one, like a collection of cells in a 2-dimensional structure where

cell division is allowed. More interestingly, the cell division events of this growing

structure should be under the control of the factors of the regulatory network. This

structure embedded in environments where there is a source of variation (nutrient

or light gradient, space antagonism) can facilitate the topological studies of GRNs

in an evo-devo context and the impact of the shape of the growing structure on

gene expression dynamics. Parts of the computational infrastructure that has

developed for this work can be used towards this goal, but an addition design of

a novel computational framework is required for conducting these studies.

Finally, the findings of this work have contributed in identifying network topolog-

ical properties of GRNs that encode for the “stripy lattice” property, a property

that can be connected with higher level biological properties such as cell differenti-

ation and pattern formation. Furthermore, the process of describing a non-specific

biological phenomenon and model it in computational terms, quantify the char-

acteristic property of this phenomenon and associate this property with features

of the system that generate this phenomenon, constitutes a contribution towards

a means of measuring success of the grand challenge to build a complete reactive

model ((Mareé, Panfilov, and Hogeweg, 1999) for a classical example) of a bio-

logical organism as described by D. Harel as the “Grand Challenge” in Systems

Biology (more in (Harel, 2005)).
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Appendix A

transsys Language Lexical

Elements

Technical details of lexical elements of the transsys language useful for the under-

standing of the syntax of a transsys program.

Every transsys program starts with the keyword transsys followed by the name

of the transsys program. All gene and factor declarations should be in the body

of the transsys program, enclosed in curly braces. A transsys program contain no

statements is accepted by the transsys language and can be like the following:

transsys abc

{

}

A valid transsys language syntax to specify two factors in the transsys program

that was introduced above can be the following:

transsys demo

{

factor FactorA

{

decay: 0.3;

diffusibility: 0.1;

}
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factor FactorB

{

decay: 0.3;

diffusibility: 0.2;

}

}

In the context of this work every factor declaration explicitly states the decay

rate and the diffusibility expressions as real value numbers. Here diffusibility

expressions vary and for instance FactorB diffuses more quickly than FactorA.

A gene’s syntactic structure including the promoter and the product block and

specifying a constitutive, an activate and a repress promoter element is presented.

Gene geneA encodes for the FactorA of the transsys program specified in the

previous paragraph, including geneA in the transsys program demo will give the

following:

transsys demo

{

factor FactorA

{

decay: 0.3;

diffusibility: 0.1;

}

factor FactorB

{

decay: 0.3;

diffusibility: 0.2;

}

gene geneA

{

promoter

{

constitutive: 0.1;

FactorB: activate(1.0, 0.5);

FactorA: repress(1.0, 0.1);
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}

product

{

default: FactorA;

}

}

}

Note that in this example the product of the gene regulates its own expression,

this represents a loop in network terms and an auto(self)-regulation in dynamical

systems terms.

The transsys dynamical parameters are real valued parameters that specify the

diffusibility expression and the decay rate of factors and the constitutive expres-

sion, the αspec and the amax (for either activation or repression) of the promoter

block of a gene. The parameters are highlighted in the part of a transsys program

illustrated in figure A.1

...

factor f03

{decay: 0.2;

diffusibility: 0.1;}
gene g03

{promoter
{constitutive: 0.1;

f10: repress(3.6, 0.1);

f05: repress(2.6, 0.4);

f03: activate(2.2, 0.2);

f02: repress(6.3, 0.4);

f09: activate(2.2, 0.5);}
product

{default: f03;}
}
...

Figure A.1: A part of a transsys program, with all its dynamical parameters
highlighted in blue.
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Patterns on Lattices

Grey-scale images of factor concentrations from lattices of various sizes are pre-

sented here. These are factor concentration values that have been simulated from

transsys programs that have been optimised using the reference parameter sets.

Factor concentrations from transsys programs that exhibit spatial heterogeneity

on lattices have been selected for illustration purposes here.

B.1 Lattices from the Reference Parameters Set

The size of the reactors (both the lattice and the control) was 60 cells width and 5

cells height (according to the control parameter settings) and all the rest of control

parameters were kept equal to the reference set. A characteristic pattern of stripes

of width few (or more) cells with higher factor concentration that the neighbouring

cells has been observed to several factors from transsys programs with low objec-

tive score after optimisation (figure B.1). Other factors from the same transsys

programs exhibited the reverse pattern, that is a stripe of width of few cells that

has lower factor concentrations than the neighbouring cells (figure B.1).

B.2 Elongated Lattices

The pattern that is described on the reference parameter settings lattices con-

sisting of stripes of cells where the concentration of a factor is relatively lower

(or higher) than the neighbouring cells exhibits a characteristic periodicity. This
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Figure B.1: Grey-scale images of factor concentrations of one factor on a lat-
tice after optimisation (top) and a well stirred reactor (bottom). Concentration
values range from ≈ 0 (black) to ≈ 0.27 (white). The information content of

the factor on the lattice is ≈ 1.3 bits and for the WSR ≈ 0 bits

periodicity can be measured from the distance between two peaks (or valleys) of

factor concentration, or the characteristic scale of the stripes. To illustrate a case

of this characteristic scale of the pattern described above lattices that have been

elongated with regard to their width have been subject to optimisation using the

reference values of the control parameter sets. The only difference was the width

which has been increased 5 times, so the reactors illustrated in this section are of

height 5 and width 300 cells.
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Figure B.2: Grey-scale images of factor concentrations of one factor on an
elongated lattice after optimisation (top) and a well stirred reactor (bottom).
Concentration values range from ≈ 0 (black) to ≈ 1.0 (white). The information
content of the factor on the lattice is ≈ 0.48 bits and for the WSR ≈ 0 bits

Note that the greyscale images of figure B.2 are not scaled (i.e. the cells are not

squares as in figure B.1). Therefore each cell on the elongated lattice plots a width

of 1/5 of its height.
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B.3 Squared Lattices

The pattern of high (or low) factor concentration stripes described in the two

previous sections is a characteristic pattern of elongated lattices (i.e. lattices where

the width is a multiple of the height). Here I illustrate the presence of a different

characteristic pattern that appears in lattices that are square, (have equal width

with height). The factor concentration grey-scale images that are presented here

are generated from transsys programs after optimisation with the reference values

of the control parameter sets and reactor sizes of width 30 and height 30 cells.

Note that a non stripy pattern appears in figure B.3, as the lattice is not rectan-

gular anymore but has equal number of cells in its height and width.

reactor is initialised following an identical process like a lattice reactor, the fac-

tor concentrations on the ICR are updated with the same update function like a

lattice apart from diffusion. By eliminating diffusion the factor concentration is

determined solely by the GRN structure and cells do not exchange gene products

with their neighbours. Gene expression heterogeneity on the lattice from simula-

tions using the an isolated cells reactor as a control experiment are comparable

with results obtained from the well stirred reactor as a control.
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Figure B.3: Grey-scale images of factor concentrations of all the factors on a
square lattice after optimisation. Concentration values range form ≈ 0 (black)
to ≈ 2.4 (white). The information content measure for this particular transsys

program was ≈ 13.9 bits



Appendix C

Large GRN individual elements

results

Gene knock-out and edge deletion results are presented here, the results are equiva-

lent to the ones presented in section 5.3, however refer to a larger transsys program

with 25 genes and 75 edges and therefore the statistics are more robust owning to

larger number of samples. The results presented here are all generated by following

the reference control parameters set, apart from the network size.

C.1 Gene Properties

After performing a single gene knock-out experiment for every gene in a transsys

program, the objective score difference from the wild type one has been correlated

with the gene centralities and the number of cycles that the gene is a member

of. Results from a representative transsys program which has exhibited a stripe

pattern are presented in figure C.1

The correlation plots in figure C.1 illustrate results comparable to the plots pre-

sented in the individual network elements analysis. The transsys program analysed

here has a higher number of genes (25 instead of 15) and thus the corresponding

p-values are lower. The statistics though hold for an increased number of genes

fact that corroborates the results of section 5.3.
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C.2 Regulatory Interaction Properties

After performing an individual regulatory interaction deletion for every regulatory

interaction in a transsys program the difference in the objective score of the wild

type transsys program from each mutant has been calculated. The objective score

difference due to individual regulatory interaction deletion is then correlated with

two network properties of the edge that represents the regulatory interaction in

the graph and two transsys program properties the amax and the αspec, the results

are presented in figure C.2

Here again more regulatory interaction (75) compared to the results presented in

section 5.3 provide further statistical corroboration of the results regarding reg-

ulatory interaction deletions. Figure C.2 illustrates correlation between the edge

related measures and some weak correlation with the transsys program dynamical

parameters.
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Figure C.1: Correlation plots of the difference in the objective score of the
single gene mutant transsys program vs. centrality measures of the knocked-out
gene (top). The same difference vs. the number of cycles the knocked-out gene

is a member of.
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Figure C.2: Correlation plots of the difference in the objective score of an indi-
vidual regulatory interaction deletion mutant transsys program vs. edge network
measures of the deleted regulatory interaction (top). The same difference vs.

measures pertaining to dynamical parameters of the transsys program.



Appendix D

Initial Reactor State Experiment

Results

D.1 Transsys Program Parametrisations Boxplots

The full set of boxplots for each transsys program that has been generated from

30 different initial reactor states is presented here. It is the complement of the

analysis presented and discussed at section 6.5.
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D.1.1 Erdös-Rényi networks boxplots
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D.1.2 Networks with Power-law degree distribution box-

plots
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Appendix E

Robustness Studies

Additional figures from the robustness studies chapter can be found in this ap-

pendix. Refer to every figure’s caption for more details.
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Figure E.1: Notched boxplot of the Spearman ρ rank correlation coefficient
between the number of cycles a gene is a member of and the objective score
difference from this gene knock-out, grouped in selected for robustness transsys

program and the total transsys program population.
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Figure E.2: Notched boxplot of the Spearman ρ rank correlation coefficient
between gene closeness and the objective score difference from this gene knock-
out, grouped in selected for robustness transsys program and the total transsys

program population.
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Figure E.3: Notched boxplot of the Spearman ρ rank correlation coefficient
between gene eigenvector centrality and the objective score difference from this
gene knock-out, grouped in selected for robustness transsys program and the

total transsys program population.



Glossary

Bistability Is the property of a system to rest in two stable states. In electronics

is realised as a Flip-Flop switch. 154

Cellular Differentiation Is the process by which cells acquire a type. The mor-

phological features of cells are changing dramatically during differentiation

leading to cells that do not share common characteristics and thus belong

to different types . 154

Centrality A centrality is a function C that assigns to a vertex v ∈ V of a graph

G = (V , E) a real value C(v) ∈ R. 41

Density A directed graph G = (V , E) where loops are allowed, will have density

DG as:

DG =
|E|
|V|2

. 76

Dynamical Parameters The set of real valued parameters that determine the

strength and the nature of the regulatory interactions between genes in

GRNs, as well as parameters that determine gne product properties such

as the degradation rate and the capability to difuuse. Dynamical param-

eters are defined in continuous modelling of GRNs and the exact set of

dynamical parameters depnds on the particular modelling approach (e.g.

Michaelis-Menten parameters, Hills coefficients etc.). 8

Gene Regulatory Network A set of DNA segments (genes) and the set of their

interactions. Gene are interacting with each other indirectly (through their

gene products, i.e. proteins, RNA), thereby governing the rates at which

genes are expressed. 7
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Homeostasis The property of biological systems to regulate their internal envi-

ronment to a stable condition. 7

Multistationarity Multistationarity is the property of systems to exhibit a bistable

behaviour (see Bistability) (when one element is ON the other is OFF and

vice versa) and stably maintain initial stimuli (like a flip-flop switch in elec-

tronics), therefore serving as on bit of memory. Here we explore the connec-

tion of multistationarity with Cellular Differentiation. 7

Spatial Correlation As spatial correlation in this work we calculated the Pear-

son correlation coefficient between the Euclidean distance of factor concen-

tration between all pairs of cells on a collection over the Manhattan distance..

51

Stripy Lattice A colloquial term introduced in the context of this thesis to de-

scribe with one phrase the following phenomenon: The emergence of gene

expression heterogeneity in forms of stripes of alternating factor concentra-

tion levels in transsys instances along a spatially extended system (i.e. the

lattice reactor) and not on a system which lacks spatial organisation (i.e. the

well stirred reactor). 69, 72

Topology Topology is a general area of mathematics studying the structure of

space and describing how entities are arranged in space. Here we refer solely

on Network Topology, which is the study of the arrangement of the elements

(links, nodes, etc.) of a network.. 4, 8
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