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1. Introduction

ABSTRACT

The mesopelagic zone is the oceanic region through which carbon and other elements must pass in
order to reach deeper waters or the sea floor. However, the food web interactions that occur in the
mesopelagic zone are difficult to measure and so, despite their crucial importance to global elemental
cycles, are not very well known. Recent developments in technology and new approaches have
advanced the study of the variability in and controls upon the distribution and diversity of organisms in
the mesopelagic zone, including the roles of respiration, recycling, and repackaging of particulate and
dissolved organic material. However, there are remarkably few syntheses of the ecology and
biogeochemistry of the microbes and metazoa that permanently reside or habitually visit this ‘twilight
zone'. Without this synthesis, it is difficult to assess the impact of ongoing changes in ocean
hydrography and chemistry, due to increasing atmospheric carbon dioxide levels, on the biological
carbon pump. This paper reviews what is known about the distribution of microbes and metazoa in the
mesopelagic zone in relation to their activity and impact on global biogeochemical cycles. Thus, gaps in
our knowledge are identified and suggestions made for priority research programmes that will improve
our ability to predict the effects of climate change on carbon sequestration.

© 2010 Elsevier Ltd. All rights reserved.

light is too low for photosynthesis, and the bottom of the
mesopelagic as the depth where downwelling irradiance is

The mesopelagic or ‘twilight’ realm of the world’s oceans is
characterized by increased hydrostatic pressure, diminished light,
high inorganic nutrient concentrations, and episodic food supply.
Although operationally defined as the zone between 100-200 and
1000 m depth, it can also be defined in terms of key processes: the
top of the mesopelagic as the base of the euphotic zone, where
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insufficient for vision to be effective in capturing prey. The
mesopelagic is not a homogeneous layer, but encompasses strong
gradients in environmental parameters, particularly at the inter-
face with the euphotic zone and (when present) with oxygen
minimum zones. These gradients influence the distribution
and activity of the microbial and metazoan biota and elicit
pronounced behavioral adaptations.

For the biogeochemist, the mesopelagic is the region where
90% of the organic carbon annually exported from surface waters
is respired back to carbon dioxide. This respiration limits the
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extent of carbon sequestration from the atmosphere. Biogeo-
chemical research has focused on understanding the observed
pattern of particulate matter flux with depth (Martin et al., 1987;
Buesseler et al., 2007), estimating the rates of microbial and
zooplankton respiration (Dehairs et al., 1997; Aristegui et al.,
2005; Steinberg et al., 2008a; Jacquet et al., 2008), and using
models to describe the interactions between microbes, animals
and material flux (Jackson and Burd, 2002; Stemmann et al.,
2004a; Anderson and Tang, 2010). For the zoologist, the
mesopelagic contains a diverse community of animals that
contribute to the repackaging and reprocessing of sinking and
suspended organic material and is also the region where many
animals retreat during the day to avoid predation by efficient
visual predators. The mesopelagic thus provides a ‘bedroom
community’ for these animals, as they move to the surface to feed
at night and commute back downward at the end of the working
‘day’. In the process, they contribute to vertical carbon flux by
respiring carbon dioxide, releasing fecal pellets and dissolved
organic matter below the euphotic zone, and falling victim to
vertically structured carnivorous predators.

The mesopelagic is subject to both a continuous ‘rain’ and
strong episodic inputs of organic matter from the euphotic zone.
The complex mesopelagic food webs include animals that are
omnivorous, change food preference as they grow, or switch
between carnivory and particle feeding depending on the nature
of the food supply (Robison, 1984). Within the mesopelagic biota,
members of the same ‘trophic’ group can effect repeated
transformation or repackaging of carbon, as evidenced by changes
in the type of zooplankton fecal pellets and the Si:C ratio of
sinking particles with depth (Carroll et al., 1998; Ragueneau et al.,
2006; Wilson et al., 2008).

Understanding the mesopelagic zone is largely hampered by
logistical constraints, causing knowledge of the diversity and
function of the biota to be woefully inadequate. This is
exemplified by the fact that current independent measures of
microbial or zooplankton metabolic demands can each explain
more than 100% of the particulate organic carbon (POC) flux
attenuation within the mesopelagic (Steinberg et al., 2008a). In
addition, there are still regular discoveries of new metazoan taxa
(e.g., Matsumoto et al. 2003; Hopcroft and Robison, 2005), and
recent genomic studies identified novel prokaryotic chemoauto-
trophic metabolic pathways in the oxygenated water column
(Ingalls et al., 2006; Hamersley et al.,, 2007; Reinthaler et al.,
2010). In a changing world, with warming, more acidic seas, and
areal expansion of suboxic zones, we need an improved under-
standing of the ecological and biogeochemical interactions in
the mesopelagic realm, one of the largest biomes on the planet,
in order to predict the impact that environmental change may
have on ecological diversity, elemental cycling and carbon
sequestration.

This paper synthesizes current knowledge of the ecology and
biogeochemistry of the mesopelagic zone, identifies gaps in our
knowledge and prioritizes some areas for future research.

2. Microbial and metazoan ecology

The mesopelagic zone supports a highly diverse and active
community of viruses, bacteria, archaea, protists, zooplankton and
nekton (e.g., Koppelmann and Frost, 2008; Aristegui et al., 2009;
Fig. 1). The many physical and biogeochemical features of the
mesopelagic zone help create specialized niches or ‘hotspots’
which enhance biological diversity, microbial growth and organic
matter remineralization. These ‘hotspots’ include physical-
chemical discontinuities such as water mass boundaries,
currents, shear zones, internal tides and eddies, as well as the
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Fig. 1. Microbial and metazoan functional groups and interactions in the
mesopelagic zone. Adapted from Koppelmann and Frost (2008) and Aristegui
et al. (2009).

microhabitats created by suspended and sinking particles,
aggregates, colloids, gels and chemical plumes (Sameoto, 1986;
Turley and Stutt, 2000; Kigrboe and Jackson, 2001; Pearre, 2003;
Azam and Malfatti, 2007; Wishner et al., 2008).

2.1. Vertical distribution of functional groups

Several studies show prokaryotic, zooplankton and micronek-
ton biomass declining exponentially with depth, from the euphotic
to bathypelagic zones, by 2 to 4 orders of magnitude (Angel,
1989a; Yamaguchi et al., 2004; Reinthaler et al., 2006; Aristegui
et al,, 2009). However, microbial diversity has been shown in some
cases to increase with depth (DeLong et al., 2006; Treusch et al.,
2009). The abundance of gelatinous organisms and some radiolaria
often increases with depth (Robison et al., 2010).

2.1.1. Viruses

Viral abundance in mesopelagic waters is of the order 10'°-
102 viruses m~> (Weinbauer et al., 2003; Magagnini et al., 2007;
Parada et al., 2007), and does not always decrease exponentially
with depth; mesopelagic viral abundance maxima were seen in
the Mediterranean and Baltic Seas (Weinbauer et al., 2003). The
virus to prokaryote abundance ratio (VPR) does not decrease
significantly with depth (Aristegui et al., 2009) except in the
Central Atlantic, where Parada et al. (2007) found an increase in
VPR from 9 at 100 m to 110 at 3500-5000 m. These very high VPRs
suggest substantial allochthonous input of viruses from the
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overlying water column via sedimenting particles (Parada et al.,
2007).

2.1.2. Bacteria and archaea

Vertical stratification of the major free-living bacterial and
archaeal groups, particularly between the euphotic and mesope-
lagic regions of the open ocean, is well documented (Gordon and
Giovannoni, 1996; Giovannoni et al.,, 1996; Moeseneder et al.,
2001; Delong et al., 2006; Carlson et al.,, 2009; Fig. 2). While
Crenarchaeota Group I comprise ~ 5% of total picoplankton in
surface waters, they contribute up to 40% of picoplankton in
the mesopelagic realm (Karner et al., 2001; Varela et al., 2008).
Depth-specific distributions among ecotypes of specific bacterial
lineages such as SAR11 have also been reported. For example,
SAR11 ecotype II is the dominant contributor to the SAR 11
clade in the mesopelagic zone (Field et al., 1997; Morris et al.,
2005; Carlson et al.,, 2009). Presumably, the observed vertical
stratification of microbes is due, in part, to specialized microbial
populations that can take advantage of vertical gradients in nutrients
and energy availability. However, the specific roles of microbial taxa
in the remineralization of organic matter of varying quality, the
physiological mechanisms that enable them to utilize recalcitrant
material, and factors that control their temporal dynamics within the
mesopelagic zone remain elusive.

2.1.3. Protists

The diversity and community composition of the picoeukar-
yotes in the mesopelagic zone are poorly known, but a high
number of as yet uncultured organisms are present, and only 10%
of the picoeukaryotic taxa of the euphotic zone also occur in the
mesopelagic (Lopez-Garcia et al., 2001; Lovejoy et al., 2006).

Euphotic zone unique sequences

10m

70 m

130 m

200 m

Deep water unique sequences

500 m

770 m

4000 m

Fig. 2. Comparison of microbial gene sequences sampled from 6 depths at the
Hawaii Ocean Time-series station ALOHA. The dendrogram shows a cluster analysis
of sequence similarity or difference between all depths. The Venn diagrams show
the percentage of sequences that were present only in euphotic zone sequences or
only in deep water sequences, and the percentage of sequences which occurred in
each subset of adjoining depths. Redrawn from DeLong et al. (2006).

Based on cloning and sequencing studies, it is estimated that
there are 700-800 protistan taxa in the global ocean, with the
number of species in the deep ocean being 30-60% lower than that
in the euphotic zone (Countway et al., 2007). This finding suggests
that protistan species richness declines disproportionately more
with depth than prokaryotic species richness does. Fukuda et al.
(2007) measured abundance, cell size and biomass of nanofla-
gellates, and showed their significant role in the cycling of
carbon in the mesopelagic subarctic Pacific. Nanoflagellate depth
(100-1000 m) integrated biomass was 130 + 56 mg C m™2, and
the estimated nanoflagellate grazing could consume 70 + 46% of
the mesopelagic prokaryote production.

2.1.4. Zooplankton and nekton

The diel migration of zooplankton results in peaks in the
abundance and biomass of many taxa at mesopelagic depths
during the day (e.g., Angel, 1989b; Andersen et al., 2001;
Steinberg et al., 2008b). For example, in the subarctic (Japanese
time series site K2) and subtropical (Hawaii Ocean Time-series
(HOT) station ALOHA) North Pacific, strong migrators such as
ostracods peaked in the mesopelagic zone; they were nearly
absent in the upper 50 m during the day, but were abundant in
surface waters at night (Steinberg et al., 2008b). At northern
latitudes, ontogenetic vertical migration of copepod species
results in seasonal mesopelagic peaks in their abundance (Kobari
et al.,, 2003; Bonnet et al., 2005). Conspicuous in the subarctic
North Pacific is the ontogenetic migrating population of Neoca-
lanus species copepods (Miller et al., 1984; Tsuda et al., 1999;
Kobari et al., 2008). At site K2, ontogenetic migrating copepods on
average comprised 62% of the mean mesozooplankton biomass
between 150-1000 m, with different species of Neocalanus
peaking at different mesopelagic depths (Kobari et al., 2008).
Many micronekton taxa, such as myctophid fish, decapods, and
medusae, also have abundance peaks in the mesopelagic zone
(e.g., Angel and Baker 1982; Benoit-Bird and Au, 2006).

2.2. Factors affecting vertical distribution

2.2.1. Euphotic zone

The interface between the mesopelagic and the euphotic zone
is highly heterogeneous, often characterised by layers of elevated
concentrations of phytoplankton, bacteria and marine snow,
which then influence zooplankton growth rates, fish larvae
recruitment, and vertical flux of material into the mesopelagic.
Sometimes substantially thinner than the 5-m scales routinely
sampled with water bottles and nets, these discontinuity layers
are difficult to sample for coincident measurements of physical,
chemical and biological variables without disturbance. They also
vary in depth spatially and temporally, due to processes such as
internal waves, currents, episodic weather events and seasonal
mixing, and so adaptive targeted sampling must be used, and new
less intrusive sampling devices developed.

2.2.2. Water mass structure

The distribution of organisms in the meso- and bathypelagic
ocean is not exclusively controlled by the vertical flux of organic
carbon from the surface. Recent studies have shown the
biogeographical distribution of the major groups of Bacteria and
Archaea to be related to the temperature and salinity character-
istics of distinct water masses (Teira et al., 2006). In addition, the
ageing of deep water masses, as they follow the conveyor belt of
thermohaline circulation, is accompanied by structural and
functional changes in the prokaryotic community, likely reflecting
changes in the quality and quantity of dissolved organic material
(Teira et al., 2006).
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2.2.3. Oxygen minimum zone

The mesopelagic zones in the eastern tropical Pacific Ocean and
the tropical Indian Ocean contain depth layers with very low
oxygen concentrations (less than 10 umol O, kg!, or suboxic
concentrations), while those in the tropical Atlantic Ocean
encompass hypoxic layers (with oxygen concentrations less than
60 to 120 umol O, kg!) (Stramma et al, 2008). These oxygen
minimum zones (OMZs) support abundant and phylogenetically
and metabolically very diverse microbial communities. OMZs play
a vital role in the marine nitrogen cycle, allowing for the anaerobic
conversion of fixed nitrogen into gaseous N, by prokaryotes at cell
concentrations of 10%-10° cells mI! (Kuypers et al., 2005; Ward
et al., 2008). By contrast, oxygen is essential for the aerobic
respiration of most metazoan fauna, and so many organisms are
stressed or die under hypoxic conditions. The relative roles of
microbes and zooplankton therefore may differ between aerobic
and suboxic environments, as zooplankton abundance declines
disproportionately more than that of bacteria (Anderson and
Ryabchenko, in press). Mesopelagic copepod distribution and
community structure can vary over short vertical distances across
surprisingly small oxygen gradients at very low oxygen concen-
trations (Wishner et al, 2008). The vertical distribution of
mesopelagic fishes is significantly affected by the presence of the
OMZ in the Arabian Sea (Kinzer et al., 1993) and the Pacific Ocean
(Matsui and Rosenblatt, 1987). Zones of enhanced biological and
biogeochemical activity exist at the upper and lower boundaries of
the OMZ (Wishner et al., 1995, Cornejo and Koppelmann, 2006),
while species from many taxa (including copepods, euphausiids,
cnidaria, fish and squid) live entirely or part of the time (during
diel or ontogenetic vertical migrations) within the most pro-
nounced OMZs (Seibel and Drazen, 2007; Wishner et al., 2008).
Animals living in these low oxygen environments have evolved
remarkable physiological and morphological adaptations such as a
small heart, enlarged gill surface, reduction in respiration rate,
specialized respiratory proteins, and high lactate dehydrogenase
enzyme activity (Childress et al., 1980; Johnson, 1982; Childress
and Seibel, 1998; Herring, 2002).

2.2.4. Particle interactions

Deep-water prokaryotes exhibit distinct differences from their
euphotic zone relatives, including a larger genome size, higher
cell-specific respiratory activity, and a gene repertoire indicative of
a predominantly surface-attached mode of life (Aristegui et al.,
2005; DeLong et al., 2006; Reinthaler et al., 2006; Lauro et al.,
2007; Gasol et al., 2008). This seems to indicate that deep-water
prokaryotic activity is primarily associated with particles. How-
ever, attached-bacteria contribute only up to 30% of total bacterial
biomass in mesopelagic waters (Cho and Azam, 1988; Turley et al.,
1995; Ghiglione et al., 2007; Mével et al., 2008). Some phyloge-
netic analyses of particle-attached versus free living bacterial
assemblages reveal distinct bacterial communities associated with
the two types of environment (DeLong et al., (1993); Rath et al.,
1998; Moeseneder et al., 2001), while other molecular fingerprint-
ing studies support the ‘generalist’ hypothesis in which a large
proportion of similar ‘operational taxonomic units’ are shared
between both attached and free-living fractions (Hollibaugh et al.,
2000; Moeseneder et al., 2001; Ghiglione et al., 2007).

Particle-associated bacteria assimilate the particulate material
and solubilize the organic compounds as dissolved organic
material (Fenchel, 2001, 2002; Kigrboe et al., 2002). Exoenzyme
activity tends to be several times higher in attached than free-
living bacteria (Becquevort et al., 1998), and bacteria colonizing
particles produce amounts of ecto-hydrolases that would trans-
form particulate organic material (POM) into dissolved organic
material (DOM) at a rate faster than they can take it up (Cho and

Azam, 1988; Smith et al., 1992). This uncoupled solubilization and
remineralization can result in significant release of dissolved
compounds in the wake of a sinking particle, forming nutrient rich
‘plumes’ (Azam and Long, 2001; Kigrboe and Jackson, 2001). Free-
living bacteria in the deep-ocean may sense the enriched nutrient
environment around a particle and actively swim towards it
(Jackson, 1989; Blackburn and Fenchel, 1999; Kigrboe and
Jackson, 2001), forming a ‘detritosphere’ ecosystem around the
particle (Biddanda and Pomeroy, 1988).

While a number of studies have focused on prokaryote particle
association, considerably less is known about associations
between particles and higher trophic levels (protists and
metazoa) in the mesopelagic zone (Caron, 1987; Lawrence and
Snyder, 1998; Artolozaga et al., 2002; Kierboe, 2003; Kigrboe
et al., 2004; Lampitt et al., 2009). Silver et al. (1984) found high
concentrations of ciliated protists on sinking marine snow
particles down to bathypelagic depths in the NE Pacific Ocean.
The ciliate taxa found on deep-water particles were endemic to
populations below the euphotic zone, and not simply ‘riding’
sinking particles from surface waters.

The discarded mucous ‘houses’ of giant larvaceans provide a
habitat and a food source for a variety of mesopelagic microbes
(Silver et al., 1998) and mesozooplankton (Steinberg et al., 1994). Up
to an order of magnitude more zooplankton were found
on houses compared to the same volume of surrounding
seawater, and many of the zooplankton taxa possessed ‘benthic-
like’ morphology and feeding strategies, such as Oncaea spp.
copepods, polychaetes, and amphipods (Steinberg et al, 1994).
Particle-associated zooplankton also contribute to remineralization
of POC at depth. Measurement of community respiration on giant
larvacean houses indicated that approximately 1-8% of house carbon
is used daily to sustain community respiration, and a mean of 6%
and up to 43% of house carbon is ingested by zooplankton each day
(Steinberg et al., 1997). In addition to particles and aggregates, the
bodies of resident animals provide a means of attachment, shelter
and food for other organisms. For example, the tunicate Doliolula
equus provides substrate for symbionts which include a mutualist
hydroid, commensal ciliates (themselves hosts to bacteria and
flagellates) and a parasitic amphipod (Robison et al., 2005a).

The quantity and quality of particles, together with subtle
metazoan feeding specializations, may be important determinants
of mesopelagic community structure. Wishner et al. (2008)
documented feeding specialization between two co-occurring
omnivorous copepods feeding on different kinds of particles.
Steinberg et al. (2008b) found mesopelagic peaks in a number of
taxa known to feed on suspended or sinking detritus, including
calanoid and poecilostomatoid (e.g. Oncaea spp.) copepods, salps,
polychaetes, phaeodarian radiolaria, harpacticoid copepods and
ostracods.

2.3. Temporal variability

The physical, chemical and biological interactions occurring in
the mesopelagic layer operate on a range of time and space scales
from seconds to decades and from microns to tens of kilometers
(Fig. 3). Time-series programs provide the ideal opportunity to
resolve seasonal, inter-annual and decadal variability of
mesopelagic community structure in the context of other
relevant biogeochemical data. However, episodic events and
processes occurring at time scales shorter than 1 month require
more targeted sampling strategies.

2.3.1. Bacteria
At ALOHA, Karner et al. (2001) demonstrated over a two year
period that Crenarchaeota vary temporally within the mesopelagic.
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Fig. 3. Spatiotemporal representation of the interactions between physico-
chemical and ecological processes occurring in the mesopelagic zone. Note the
spatial scale on the y-axis encompasses vertical (depth) and horizontal (areal)
scales, depending on the process.

Seasonality of several bacterioplankton lineages has also been
shown within the upper mesopelagic zone at the Bermuda Atlantic
Time- series Study (BATS) site, linked to the deep mixing event that
occurs there. Every winter/spring the deep mixed layer extends into
the mesopelagic zone entraining nutrients from depth into the
euphotic zone (Steinberg et al., 2000) and exporting suspended
organic matter into the mesopelagic zone (Hansell and Carlson,
2001; Goldberg et al., 2009). The time lag between mixing and
increased prokaryotic abundance (Morris et al., 2005) suggests that
the upper mesopelagic populations are responding to organic and/
or inorganic substrates introduced during convective overturn.
Terminal restriction fragment length polymorphism (T-RFLP)
patterns generated from a decade of DNA collected from the surface
and upper mesopelagic zone at BATS (140 - 300 m) reveal a marked
shift in the bacterioplankton community structure following
convective overturn. Specialized communities of the clades SAR11
(subcluster II), marine Actinobacteria, SAR202 and OCS116 increase
in their relative contribution to the total mesopelagic community
following convective mixing (Morris et al., 2005; Carlson et al.,
2009; Treusch et al., 2009). These data suggest that specialized
communities are capable of responding to and remineralizing the
surface derived and seemingly recalcitrant DOM that was intro-
duced during mixing. Goldberg et al. (2009) demonstrated that
exported DOM became diagenetically altered through time within
the mesopelagic zone; however, direct links between the spring
mesopelagic bloom populations and the remineralization of poly-
meric/recalcitrant organic matter remains to be established.

2.3.2. Protists

Tanaka and Rassoulzadegan (2002, 2004) measured abun-
dances of heterotrophic prokaryotes, heterotrophic nanoflagel-
lates, and ciliates from 5 to 2000 m every month from May 1999 to
March 2000 at the DYnamique des Flux de mAtiere en MEDiterra-
née (DYFAMED) time-series station in the NW Mediterranean Sea.
All three groups varied seasonally within the upper 1000 m.
Gowing et al. (2003) showed seasonal variability in mesopelagic
microplankton biomass in the Arabian Sea, related to surface
productivity and increased mesopelagic organic carbon flux.

2.3.3. Zooplankton and nekton
The strength of the seasonal change in mesopelagic metazoa
appears to vary with region, depending on the processes in the

overlying water column. Wishner et al. (1998) detected weak
seasonal trends in mesozooplankton biomass in the mesopelagic
zone of the Arabian Sea. Life history changes in the copepod
species (Lucicutia grandis) living at the lower oxycline (about 600-
900 m) suggested a response to the seasonal input of POC from
monsoon-driven surface production. Higher abundances of young
stages of this species occurred shortly after seasonal monsoon flux
events recorded in sediment traps (Wishner et al., 2000). Tseitlin
and Rudyakov (1999) found higher mesopelagic zooplankton
biomass in the summer SW monsoon period compared to the
winter NE monsoon period in the northern Indian Ocean, while
Koppelmann and Weikert (1999) measured four-fold higher
mesopelagic mesozooplankton abundance in spring than in
summer in the NE Atlantic. Strong seasonality, linked to regional
upwelling in Monterey Bay, has been shown for two groups of
mesopelagic siphonophores that feed on krill and copepods
(Robison et al., 1998; Silguero and Robison, 2000; Fig. 4).

In addition to seasonal variability, decadal-scale changes in
mesopelagic zooplankton have been documented. Migrant zoo-
plankton biomass at ALOHA has increased significantly over
the past 12 years (Hannides et al., 2009). This has increased
the importance of phosphate removal via zooplankton excretion
at depth relative to sinking fluxes, suggesting that active transport
may be a major driving force for enhanced phosphate limitation
of primary production in the North Pacific Subtropical Gyre
(Hannides et al.,, 2009). Over the same time period, migrant
zooplankton biomass has also increased at the BATS site in the
North Atlantic subtropical gyre, doubling the active transport of
carbon to the mesopelagic zone (Steinberg et al., 2008c).

2.4. Regional comparisons

Only a limited number of studies compare and contrast
mesopelagic microbial and metazoan distribution, diversity and
activity between ocean basins, water masses or biogeochemical
provinces (Teira et al., 2006; Steinberg et al., 2008b; Aristegui
et al., 2009). Agogué et al. (2008) investigated the prevalence of
archaeal genes coding for the major enzyme involved in ammonia
oxidation in samples along a latitudinal transect in the North
Atlantic Ocean. The results indicate that the proportion of
Crenarchaeota which oxidize ammonia decreases markedly from
subpolar to equatorial regions. Basin scale geographic variability
in mesopelagic bacterial biomass and production in the Pacific
Ocean has been shown to be related to differences in organic
carbon supply (Nagata et al., 2000, 2001), while latitudinal
changes in the relative contribution of Crenarchaeota Group I to
total mesopelagic picoplankton abundance in the eastern N
Atlantic may be due to succession and ageing of deep water
masses (Varela et al., 2008).

Overall, the abundance of prokaryotes (P) and heterotrophic
nanoflagellates (HNF) in the mesopelagic zone are closely related.
However, there are unexplained regional differences in the ratio
of P/HNF. Aristegui et al. (2009), using a global dataset, found that
the average P/HNF ratio remains almost constant from the surface
to the bathypelagic in the Pacific and Atlantic Oceans, whereas in
the Mediterranean Sea the ratio increased with depth. These
differences were due to a much lower abundance and a sharper
decrease with depth of HNF in the Mediterranean Sea, compared
to the other oceanic regions. This lower HNF abundance in the
Mediterranean Sea could be due to a higher abundance of ciliates
(Tanaka and Rassoulzadegan, 2002).

Latitudinal studies of plankton biomass in the N. Pacific Ocean
indicate an order of magnitude decrease in integrated mesopela-
gic zooplankton biomass from the subarctic to the subtropics
(Yamaguchi et al. 2004; Steinberg et al. 2008b). Higher primary
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Fig. 4. Abundance and depth distribution of the mesopelagic siphonophore Nanomia bijuga in Monterey Bay, USA. Black line is euphotic zone primary productivity

in mg C m2 d™'. Redrawn from Robison et al. (1998).

production in surface waters in the subarctic compared to the
subtropical latitudes is thus fueling higher secondary production
at depth. Regional comparison of mesopelagic mesozooplankton
taxonomic structure in the subarctic and subtropical N. Pacific
Ocean indicates that a higher proportion of the biomass in the
subarctic occurs within the larger ( > 2 mm) size classes, due to
the abundance of large calanoid copepods (Neocalanus spp., and
Eucalanus bungii) (Steinberg et al., 2008b). Koppelmann and Frost
(2008) found significant differences between mesozooplankton
distribution and activity in the N. Atlantic Ocean, and the
Mediterranean and Arabian Seas.

The considerable variability within the life cycles of mesope-
lagic animals allows them to adapt to regional differences in their
habitat. For example, populations of the mesopelagic fish
Vinceguerria nimbaria show variability in egg size and fecundity,
depending on whether they occur in high- or low-productivity
regions (Herring, 2002). Doliolids, which typically alternate sexual
with asexual reproductive phases, can shift to a repeating single
mode when environmental conditions dictate that one is likely to
be more successful than the other (Robison et al., 2005a). Similar
adjustments can be seen when low oxygen, changes in competi-
tion for food, or regional productivity affect a part of a species’
range. Differences in productivity or hydrographic conditions may
also affect energy content and composition of mesopelagic fauna.
A comparison of chemical composition of Antarctic mesopelagic
fishes with similar species from tropical, subtropical and
temperate systems indicated differences (e.g. protein content)
for some genera such as Electrona and Cyclothone, but there were
no latitudinal trends in other genera such as Bathylagus (Donnelly
et al,, 1990).

A regional comparison of mesopelagic macrozooplankton
communities, with an emphasis on fragile gelatinous taxa, was
recently undertaken using an underwater video profiler (UVP,
Stemmann et al. 2008). The distribution of gelatinous and other
taxa from 0-1000 m were compared in nine regions of six oceanic

basins. Macrozooplankton composition was significantly different
between all regions except adjacent regions of the North Atlantic.
The authors suggest that mesopelagic communites are structured
on large, basin scales, but possibly not on smaller, frontal scales.
The main difference between regions was a decrease in the
proportion of all gelatinous carnivores and chaetognaths from 95%
in high latitude regions, to 15% in low latitudes.

3. Behaviour and sensory communication

The ecology and biogeochemistry of microbes and metazoa in
the mesopelagic are influenced by behavioural traits such as
motility, migration and sensory communication. The separation in
depth of feeding and excretion by vertically migrating mesozoo-
plankton is an obvious example of a behavior that has a profound
influence on the vertical flux of carbon and associated elements.
The characteristic physical environment of the mesopelagic (high
pressure, reduced turbulence and low light) selects for body
forms, and feeding and communication mechanisms that would
be impractical at shallower depths (Robison, 2004; Koppelmann
and Frost, 2008).

A large fraction of free-living bacteria are motile, and can sense
the gradients or plumes of organic matter and nutrients
surrounding particles or aggregates and actively swim towards
them (Kigrboe and Jackson, 2001). Bacterial isolates from marine
aggregates also display antagonistic activities towards other
bacteria, which may inhibit their development and so influence
the community structure around particles (Martinez et al., 1996;
Grossart et al., 2003; Aristegui et al., 2009). Male copepods track
their mates by following pheromone trails produced by females
(Yen et al., 1998; Kigrboe and Baggien, 2005).

The sensory capabilities of mesopelagic metazoans have largely
been inferred from the sensory structures themselves, because
direct behavioral observations are rare. Vision, even in the dim
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illumination of the lower mesopelagic, is clearly important to many
micronektonic fishes and squids, which have expended consider-
able evolutionary energy to develop extraordinarily capable eyes.
Among their visual adaptations are heightened sensitivity, bino-
cular vision, and the ability to distinguish between protective
counter illumination and downwelling daylight (Warrant and
Locket, 2004; Robison and Reisenbichler, 2008). Sensitivity to
light is also critical for triggering their diel vertical migrations
(Frank and Widder, 2002), with different species often tracking
particular isolumes. Recent work highlighted a lunar cycle that
affects migration depth and scattering layer density that may
create a monthly periodicity in planktonic communities and
carbon flux (Hernandez-Ledn et al., 2002; Benoit-Bird et al., 2009).
For example, vertically migrating planktivorous fish remained in
deep water during the full moon period near the Canary Islands.
Reduced predation by these fish resulted in increased euphotic
zone mesozooplankton abundance. During the dark lunar phase
(new moon), these fish moved into surface waters and mesozoo-
plankton abundance decreased (Hernandez-Ledn et al., 2001).
Phases of the lunar cycle may therefore result in changes in the
structure of planktonic communities, and changes in carbon flux to
depth. Lunar modification of active transport of carbon by diel
vertical migrators could help explain periodicity in the passive
sinking flux and the mismatch between flux and respiration
budgets (Steinberg et al., 2008a).

Coupled to the capacity for perceiving even a few photons of light,
is the ability to produce it. Bioluminescence seems to be the most
widespread form of communication in the deep sea with the vast
majority of deep-living inhabitants capable of producing their own
light (Herring, 2002). Bioluminescence is used to locate food, lure
prey, attract mates, and remain camouflaged from or deter predators.
Functional crossover between the microbial biota and the metazoan
fauna occurs with the symbiotic incorporation of luminous bacteria
into the light organs of certain fishes (Herring, 2002).

Unlike the micronekton and most crustacean zooplankton,
gelatinous mesopelagic animals such as medusae, ctenophores,
and siphonophores typically lack eyes. Nevertheless, they are just
as likely to be bioluminescent. In most cases light production is
triggered by mechanical stimulation and its functional role is
believed to be that of a ‘burglar alarm’ to drive off potential
predators (Widder, 1999). Some siphonophores are known to use
their luminescence to attract prey (Haddock et al., 2005), and this
function seems likely for other gelatinous predators as well.

Sensory capabilities for environmental signals other than light
are not well known for most mesopelagic animals. Chemoreception
enables the hydromedusa Mitrocoma cellularia to sense prey
(Tamburri et al., 2000), and the behavior of many gelatinous
predators suggests that this capability is widespread. A number of
fishes have large nasal rosettes and expanded olfactory lobes in
their brains (Marshall, 1971), presumably for finding food they
cannot see. It also seems likely that aposematic chemical signals are
used to warn potential predators away from the toxic compounds
that protect soft-bodied mesopelagic species. Little is known about
the use of sound by mesopelagic animals but many seem to be
sensitive to low-frequency vibrations, detected by sensory filaments
such as the lateral line organs of fishes (Marshall, 1971). Related
sensory systems in sharks can detect the electric fields generated by
the presence of other animals (Kalmijn, 1982), but these capabilities
have yet to be demonstrated for any mesopelagic species.

4. Microbial and metazoan function

Microbial and metazoan processes are responsible for the
significant amount of organic matter transformation, solubilization
and remineralization which occurs within the mesopelagic zone.

4.1. Biological pump

Mesopelagic microbes and metazoa play key roles in the
mechanisms involved in the ‘biological pump’ i.e. the reprocessing
and downward advection of dissolved organic matter, the sinking
flux of particulate matter, and the active transport of organic
matter and associated biominerals via vertical migration.

DOM and POM range over a size continuum ( < 10%to > 10°m)
that includes colloids, gels, suspended and sinking particles, and
larger sinking aggregates. DOM and POM change systematically
with depth, becoming more diagenetically altered as depth
increases (Skoog and Benner, 1997; Lee et al., 2000; Goldberg
et al., 2009). The bulk DOM pool represents a continuum of
biological lability, from refractory material turning over on time
scales of centuries to millennia to very labile material turning
over on time scales of minutes to days. The portion of the
dissolved organic carbon (DOC) pool resistant to rapid microbial
degradation, turning over on time scales of months to years, is
termed the ‘semi-labile’ DOC pool (Kirchman et al., 1993; Carlson
and Ducklow, 1995). This semi-labile fraction enters the deep
ocean via convective overturn (Carlson et al., 1994; Hansell and
Carlson, 2001), isopycnal exchange (Hansell et al., 2002) or in situ
production (Ogawa et al., 2001). With increasing depth, the bulk
DOM is successively depleted in phosphorus (DOP) and nitrogen
(DON), leading to an overall increase in the DOC:DON:DOP ratio
(Benner, 2002). The lower reactivity of deep water DOM is
reflected in low prokaryotic growth yields (Reinthaler et al., 2006)
and expression of more extracellular enzymes on a per-cell basis
(Baltar et al., 2009).

Gravitational sinking rates of particles, which originate mainly
from phytoplankton and zooplankton activity in the euphotic zone,
vary from <1 md! for small particles to >1000m d! for large
aggregates. Mesopelagic organisms modify this sinking flux by
both repackaging organic carbon into faster-sinking particles such
as fecal pellets (e.g., Wilson et al., 2008; Fig. 5) and fragmenting
larger aggregates into smaller slower-sinking particles (De La
Rocha and Passow, 2007; Anderson and Tang, 2010).

The biotic processing or repackaging of POC is linked to the
recycling of biominerals such as opal and calcium carbonate.
Mesopelagic fish contribute to organic and inorganic carbon cycling
through their slow release of dissolved organic compounds
(Robison and Bailey, 1981) and production of precipitated
carbonates that are defecated and transported downward (Wilson
et al., 2009). The biotic fragmentation or repackaging of diatom
aggregates influences the balance between the recycling of
biogenic silica and its sedimentation (Moriceau et al., 2007a).
Moriceau et al. (2007b) used a simple advection-reaction model
with two pools of biogenic silica - free diatom cells and large
aggregates - to confirm that the depth of biogenic silica recycling is
influenced more by particle formation than by dissolution rates or
the ballast effect of the diatom frustules. In a review of organic
carbon to biogenic silica ratios, Ragueneau et al. (2006) highlighted
the dynamic response of the mesopelagic foodweb to the elemental
composition of the particles sinking from the euphotic zone into
the mesopelagic; provinces (e.g., Equatorial Pacific) with a large
difference between the remineralization rates of silicate and
carbon in the euphotic zone had a small difference in the silicate
and carbon remineralization rates in the mesopelagic. Conversely,
regions (e.g., Southern Antarctic Circumpolar Current) with low
decoupling between the Si and C cycles in the euphotic zone had
large differences in silicate and carbon remineralization rates in the
mesopelagic (Fig. 6).

The diel vertical migration of zooplankton and micronekton is
an important component of the ‘biological pump’. By feeding in
surface waters at night, and metabolizing (i.e. respiring, excreting,
and egesting) surface-ingested POM at mesopelagic depths during
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Fig. 5. Changes in zooplankton fecal pellets with depth indicating repackaging in the mesopelagic zone. Major types of pellets identified from sediment trap samples at the
Hawaii Ocean Time-series (HOT) station ALOHA in the subtropical Pacific, and Japanese time-series station K2 in the subarctic Pacific. Scale bar is 500 um. (A) heteropod
Carinaria spp. (B) large copepod or euphausiid, (C) small copepod, (D) larvacean, (E) Neocalanus spp., (F) Euphausiid, (G) unknown carnivorous zooplankton, (H) fecal 'fluff,’

(I) broken pellet. From Wilson et al. (2008).

the day, migrators ‘actively transport’ carbon, nitrogen, and
phosphorus to depth (e.g., Longhurst et al., 1990; Steinberg
et al, 2002; Hannides et al, 2009). For carbon, this active
transport may be on average 15-20% of the gravitational flux of
POC, but during seasons of high primary production or in
environments with high zooplankton biomass, active transport
is comparable to or exceeds POC transport by sinking particles
(Zhang and Dam, 1997; Le Borgne and Rodier, 1997; Steinberg
et al., 2000; Al-Mutairi and Landry, 2001; Hannides et al., 2009).
Additional processes that increase the active flux are daytime
mortality of diel migrators at depth (Zhang and Dam, 1997;
Al-Mutairi and Landry, 2001) and ontogenetic (seasonal) migration
(Kobari et al., 2008).

4.2. Respiration and remineralisation

Approximately 90% of the organic carbon exported from the
surface ocean is respired within the mesopelagic zone, producing
about 30% of the total biological CO, production in the oceans
(del Giorgio and Duarte, 2002; Aristegui et al., 2005). Average
depth integrated (150-1000 m) microbial respiration rates are of
the order 3-4molCm™ a!, or 1.2 Pmol C a’! (Aristegui et al.,
2005), while mesopelagic zooplankton respiration is estimated to
be 0.18 Pmol C a”! (Hernandez-Leén and Ikeda, 2005). Up to 80%
of the variability in a global dataset of epipelagic, mesopelagic and
bathypelagic copepod respiration could be explained by body
mass, temperature, oxygen saturation and depth of occurrence
(Ikeda et al., 2007). Weight-specific respiration rates of zooplankton
and fish do not necessarily decrease with depth (when corrected
for temperature), but rather are associated with lifestyle. The
‘visual interactions hypothesis’ explains why non-visual feeders
(copepods, gelatinous animals) show similar weight-specific
metabolic rates as their shallow water relatives, while active
visual predators such as fish may show decreased weight-specific
rates with depth (Seibel and Drazen, 2007).
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Fig. 6. Increase in particulate molar Si:C ratios between (A) production and input to
the mesopelagic zone and (B) input to the mesopelagic zone and collection at 980-
1500 m at stations SACC (Southern Antarctic Circumpolar Current, Pacific sector of
the Southern Ocean), POOZ (Permanently Open Ocean Zone, Indian Ocean sector of
the Southern Ocean), NACC (Northern Antarctic Circumpolar Current, Pacific sector
of the Southern Ocean), OSP (Ocean Station Papa), PAP (Porcupine Abyssal Plain), and
EqPac (Equatorial Pacific). Adapted from Ragueneau et al. (2006).
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Regional estimates of the vertical inputs of carbon to the
mesopelagic zone tend to be much lower than those required
to support the magnitude of measured microbial respiration
(e.g. Reinthaler et al., 2006; Baltar et al., 2009). This mismatch
between geochemical estimates and ecological rate measurements
may be due to an underestimation of lateral transport of organic
carbon or to a lack of information on organisms which occur as
massive episodic blooms but are extremely difficult to sample, e.g.,
gelatinous animals (Herndl et al., 2008). Rationalization of this
mismatch is investigated in detail by Burd et al. (2010).

4.3. Chemoautotrophy

Recent data suggest that prokaryotic chemoautotrophy in the
deep oxygenated water column might be far more important than
previously assumed (Herndl et al., 2005, Ingalls et al.,, 2006,
Reinthaler et al., 2010). Archaeal ammonia oxidation uses
inorganic carbon as the carbon source, and therefore represents
a major source of newly synthesized organic carbon for use by the
entire foodweb. Prokaryotic carbon fixation in the meso- and
bathypelagic zones of the North Atlantic is within the same order
of magnitude as heterotrophic microbial activity, amounting to
1-2.5mmol Cm2d™"! or 15-53% of the phytoplankton export
production (Herndl et al., 2005, 2008; Reinthaler et al., 2010).

5. Sensitivity to global change

Our understanding of the impact of global change on microbial
and metazoan community structure, abundance, distribution and
phenology relies crucially on decadal time-series studies — either
at eulerian stations or on regular transects of ships of opportunity
(Hays et al., 2005). Several examples of long-term change in
plankton abundance have been attributed to the interacting
effects of climate change, eutrophication, and overfishing
(e.g., Lynam et al., 2004).

5.1. Increasing temperature

As a consequence of global warming, by 2100, ecosystems will
be exposed to temperatures that will be among the highest
experienced in the past 740,000 years (Solomon et al., 2007).
Since metabolic rate increases with temperature with a Q;¢ of 2-4
(White et al., 1991), increasing seawater temperatures may have a
direct effect on the degradation of organic matter (Lopez-Urrutia
et al., 2006; Lopez-Urrutia and Moran, 2007).

Predicting the impact of increasing temperature on the
mesopelagic ecosystem is complicated, as temperature acts at a
range of levels - including a) direct physical-chemical effects such
as changing dissolved gas concentration and chemical speciation,
and changing dissolution rates of mineral ballast, b) direct effects on
metabolic rates and physiology, c¢) indirect oceanographic effects
such as changing ocean circulation, stratification, viscosity, and
upwelling thereby changing the chemical environment and nutrient
supply and hence organism growth and production, and d)
differential effects on different species or trophic groups thereby
affecting predator/prey or competitive interactions between spe-
cies. Increasing sea surface temperatures have had measureable
effects on the timing of the peak abundance of euphotic zone
plankton, causing a mismatch in synchronization between mer-
oplankton and their prey (Edwards and Richardson, 2004). This
disruption of synchrony between trophic levels could therefore
have severe implications for energy flow to higher trophic levels
such as fish, and export of organic carbon to the mesopelagic.

5.2. Expansion of oxygen minimum zones

The OMZs in the central and eastern tropical Atlantic and
equatorial Pacific Oceans have expanded and intensified during
the past 50 years (Stramma et al., 2008). This observation
supports model predictions of a loss of about 25% of the current
oxygen content of the global ocean by the end of the century due
to changes in circulation patterns, warming and increased
stratification (Bopp et al., 2002). Increasing areas of suboxia will
lead to increased prokaryotic chemoautotrophy, and therefore
have a significant impact on nitrogen and carbon cycling. Changes
in the extent of OMZs may also affect zooplankton distributions
and abundances, especially with respect to vertical migrators.
A mismatch between the demand for oxygen and the capacity for
oxygen supply to tissues is the first mechanism to restrict animal
tolerance to thermal extremes (Portner and Knust, 2007). With
increasing temperatures, the aerobic euphotic zone will be
reduced, limiting the habitat for some commercial fishery species,
while some plankton and vertical migrators adapted to suboxic
conditions, may expand their ranges. Since total zooplankton
biomass is smaller by several orders of magnitude in OMZs
compared to oxygenated water columns (Wishner et al., 1998),
the expansion of this habitat would likely result in a reduction in
mesopelagic zooplankton biomass and a consequent reduction in
zooplanktonic repackaging of sinking material in the mesopelagic
zone. Billet et al. (2006) suggested that the mass deposition
of the scyphozoan jellyfish Crambionella orsini observed in the
deep Arabian Sea could be due to the reduction in degradation
rate of jellyfish carcasses as they passed through the intense
OMZ above.

5.3. Increasing carbon dioxide, decreasing pH

Over the last 250 years the oceans have taken up nearly a third
of the anthropogenic carbon dioxide (CO,) released into the
atmosphere by the burning of fossil fuels (Sabine et al., 2004). This
increase in ocean absorption of CO, leads to a reduction in pH and
changes in the carbonate chemistry of the ocean, referred to as
ocean acidification (Doney et al., 2009). Laboratory studies of the
response of planktonic organisms such as coccolithophorids to
increases in CO, are ambiguous, with results including reductions,
no change, and increases in calcification in response to increases
in CO, (reviewed in Fabry, 2008; Doney et al., 2009). Shell
dissolution in planktonic foraminifera occurs in response to
decreases in pH (Orr at al., 2005; Fabry et al., 2008), but the
effects of increasing CO, and decreasing pH on mesopelagic fauna
is virtually unknown.

Increasing the acidity of seawater can lead to hypercapnia in
body fluids and tissues, which affects the ability of blood to carry
oxygen and imposes other physiological stresses, including a
reduction in protein synthesis, which is necessary for reproduc-
tion and growth (Seibel and Walsh, 2001). For example, under
conditions where its blood pH declines by 0.2 pH units, the
mesopelagic mysid Gnathophausia ingens would experience a
reduction of 50% in the bound oxygen level of its blood (Childress
and Seibel, 1998).

5.4. Over-fishing

Mesopelagic fishes, squids, and krill are principal food items
for many of the most heavily harvested commercial species. The
removal of top predators from the oceanic food chain can have
profound effects on pelagic ecosystems (Frank et al., 2005; Worm
et al., 2005, 2006). If a harvested species is pushed to commercial
extinction, it may not recover when fishing stops. In some cases it
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may be replaced by another species that fills its niche and
prevents its recovery (Robison, in press). Species with high
fecundity and short generation times, such as jellyfish and squids,
are particularly suited to the opportunistic replacement of tunas
and other large, pelagic fishes that mature slowly (Lynam et al.,
2006). Replacement species may not feed on the same proportions
of prey types as the species they follow, producing an altered
predation pressure on the mesopelagic community, affecting its
diversity, and structure. One example of the impact of over-
fishing, may be the invasion into temperate waters off California
and Chile of the Humboldt squid, Dosidicus gigas (Zeidberg and
Robison, 2007). This large predator may have expanded its range
because commercial fishing and the depletion of tuna in tropical
waters led to rapid population growth of the squid, when
competition from and predation by the tuna was removed.
Consequences of this invasion into temperate waters included
reductions in commercial populations of hake, as well as
differential impacts on many mesopelagic species (Field et al.,
2007; Alarc6n-Muiioz et al., 2008). Commercial fishing pressure
can also impact mesopelagic species through the process of
‘fishing down the food web’ (Pauly et al, 1998). As the
populations of top predators have declined, fishing effort has
shifted to species at lower trophic levels. In some cases
mesopelagic fishes (Valinassab et al., 2007) and krill (Jones and
Ramm, 2004) have themselves become the targets for commercial
fisheries.

6. Development of techniques

The study of the mesopelagic zone is severely limited by our
usual sampling methods. The vast size of the ocean, small vertical-
scale heterogeneity, short temporal-scale research ship activities,
intense hydrostatic pressure, and the avoidance tactics of metazoa
all contribute to the lack of representativeness of net, trap and
bottle samples. A more representative sampling strategy depends
on the development of autonomous and remotely operated
instrumentation, molecular and environmental sensors for deploy-
ment on long-term moorings, sampling and incubation vessels
that maintain ambient pressure, and use of laboratory manipula-
tions which mimic anticipated changes in the nutrient and
substrate environment encountered by mesopelagic organisms.

For example, the use of remotely operated vehicles (ROVs) has
revolutionized our appreciation of the complexity and hetero-
geneity of metazoan diversity in the mesopelagic (Steinberg et al.,
1994; Robison et al., 1998; Robison, 2004; Haddock et al., 2005),
and made it possible to recognize the importance of large
particles, not typically sampled by sediment traps, to carbon
cycling in the mesopelagic (Silver et al. 1998; Robison et al.,
2005b). The UVP produces vertical profiles of the size distribution
of large particles, and so allows the determination of the decrease
in the vertical mass flux with depth (Guidi et al., 2009). New
technologies also mean that it is possible to sample at a selected
depth without disturbing fine vertical structures such as sub-
surface particle maxima. The Free-falling Imaging Device for
Observing phytoplankton (FIDO-®) of Franks and Jaffe (2007), the
SMAST T-REMUS autonomous underwater vehicle of Wang and
Goodman (2009), and the FSS (Fine Scale Sampler) of Lunven et al.
(2005), are examples of instrumentation that could be developed
for mesopelagic research.

The recent development of a PArticles Sinking Simulator
(PASS) allowed Tamburini et al. (2009) to perform experiments
at increasing hydrostatic pressure on both diatom detritus
derived from an axenic culture (Tamburini et al.,, 2006) and
freshly collected fecal pellets incubated with natural microbial
assemblages. Increasing experimental pressure simulated the

sinking of particles through the water column and demonstrated
a pressure effect on aminopeptidase activity, silicic acid regenera-
tion, and degradation of organic matter, rather than on the
prokaryotic community structure.

Stable isotopes show a stepwise enrichment from prey to
predator and thus allow the relative trophic position of a species
within a foodweb to be established. Fatty acids, distinctive of
different prey, that accumulate in predators’ tissues, can be used
as biomarkers of feeding history. The combination of these two
techniques has recently been used to distinguish carbon sources
between diatoms and other phytoplankton (Budge et al., 2008),
and to investigate the trophic ecology of deep-sea fish (Stowasser
et al., 2009).

The application of environmental genomics to the mesopelagic
zone has identified some of the genes and metabolic pathways
present. This has led to unexpected insights into the diversity of
microbes and microbial processes which regulate local and global
elemental cycles (DelLong and Karl, 2005; Zak et al., 2006;
Hamersley et al., 2007; Reinthaler et al., 2010).

7. Future directions

A strategy to improve our knowledge of the biogeochemical
and ecological interactions in the mesopelagic layer and predict
how these may change in the future must encompass novel
methodologies to sample the biota at representative time and
space scales including fine-scale vertical resolution, diel varia-
bility and episodic events. Sampling methods should take into
account pressure effects, the potential for non-random distribu-
tion of microbes (Azam and Malfatti, 2007) and metazoans, and
the fragility of many taxa. The use of autonomous vehicles and
floats, long-term deepwater observatories, in situ video systems
and novel biogeochemical and molecular tracers will be required.

Studies that have statistically compared the relationship
between environmental parameters, community structure and
biogeochemical processing are few, and have focused on prokar-
yotic communities in the euphotic zone (Reinthaler et al., 2005;
Alonso-Saez et al., 2007). These comparative studies should be
extended to the mesopelagic.

Modeling has a central role to play in helping us understand
the roles of the diverse array of organisms that inhabit the
mesopelagic zone in consuming and processing organic matter.
Models offer a framework in which the ramifications of existing
knowledge can be articulated, providing explicit quantitative
descriptions of what we do and do not understand (Gasol et al.,
2008; Anderson, in press). Simple flow analysis models may be
used to address some of the most basic unknowns e.g. the relative
contributions of microbes and zooplankton in attenuating and
respiring POC within the mesopelagic zone. More complex models
(e.g., Jackson and Burd, 2002; Stemmann et al., 2004b) that
resolve vertical distributions of animals, detailed structure and
diversity within the food web (e.g., Le Quéré et al., 2005) and the
resulting impact on the transformations of particulate and
dissolved organic matter within the water column, are also
needed. Such models require intensive field programmes to
provide the data necessary for model validation.

7.1. Community structure

Future research should improve characterisation of the
distribution, diversity and activity (e.g., feeding rates and
metabolic demands) of the groups which have thus far proved
too difficult to study, yet which may have a disproportionate
impact on our understanding of carbon cycling e.g. gelatinous
zooplankton, microzooplankton, archaea, viruses, and fish. There



1514 C. Robinson et al. / Deep-Sea Research 1l 57 (2010) 1504-1518

are still large gaps in our knowledge of mesopelagic microbial and
metazoan community structure, including undiscovered species,
and unknown abundances of known species.

Little is known about the abundance, biomass, and activity of
bacterial predators and competitors such as heterotrophic nano-
flagellates, ciliates, heterotrophic dinoflagellates, foraminifera,
viruses and fungi (e.g., Tanaka and Rassoulzadegan, 2002;
Yamaguchi et al., 2002; Steinberg et al., 2008b). Studies with
submersibles and other underwater video systems indicate
gelatinous zooplankton are conspicuous, abundant members of
the mesopelagic community (e.g., Silguero and Robison, 2000;
Stemmann et al., 2008), but the role that many of these animals
play in carbon and energy transfer in the mesopelagic is
unknown. The asexual stage in the life history of many gelatinous
zooplankton taxa allows rapid reproduction and formation of high
density ‘blooms’ in surface waters, and the fate of these blooms as
animals die and sink through the mesopelagic may be to fuel
higher trophic level (and benthic) production (Billet et al., 2006).
Large increases in gelatinous zooplankton have been observed
worldwide in coastal, surface waters (Mills, 2001), but long-term
changes in mesopelagic gelatinous zooplankton abundance are
unknown.

7.2. Foodweb dynamics

An important question that remains to be resolved is whether
or not the mesopelagic foodweb is fundamentally different from
that in the euphotic zone. The microbial loop in the mesopelagic
realm is not well understood. Specialized zooplankton
(e.g., appendicularians and salps) that consume particles as small
as bacteria, or omnivorous mesozooplankton feeding on aggre-
gates and marine snow containing microbes, can ‘short circuit’
trophic steps between microbes, primary producers and meso-
zooplankton. Recent data on changes in the relative abundance of
prokaryotes, flagellates and viruses with increasing depth suggest
that either viruses and flagellates behave fundamentally differ-
ently at depth, or that bacterivory and viral infection occur
predominantly associated with colloidal or particulate matter
(Herndl et al., 2008). Models, underpinned with targeted data, will
need to take these mesopelagic trophic interactions into account.

7.3. Ecological interactions with dissolved organic material

Much remains to be learnt about how the complex microscale
architecture of DOM in seawater, including tangled webs of
colloids, gels, mucous sheets and bundles, contributes to the
heterogeneity of nutrient supply and thus microbial abundance
and diversity (Azam and Malfatti, 2007). Excretion of DOM by
mesopelagic zooplankton may provide a high-quality substrate
for bacteria at depth (Steinberg et al., 2008a). Experiments are
needed to characterize this zooplankton-derived DOM and
measure its uptake by mesopelagic microbes. Correlative data
suggest correspondence between DOM quality and heterotrophic
bacterial activity and community structure, however direct links
between specific natural organic compounds and specific micro-
bial lineages and activity is still lacking. Much of this is due to the
methodological limitations of identifying a significant fraction of
the organic compounds that comprise the DOC pool. Progress has
been made in developing indices of lability (Skoog and Benner,
1997; Amon et al., 2001; Benner, 2002) and there is emerging
potential to use high resolution mass spectrometry (Kujawinski
and Behn, 2006) to reveal the effect of microbial processes on the
production and removal of specific compounds. These techniques
in combination with genomic, transcriptomic and proteomic
approaches may yield the valuable data needed to make explicit

linkages between specific resource use and the organism(s)
responsible for its use.

7.4. Ecological interactions with particulate material

Understanding the differences in physiology and ecology of
free-living prokaryotes and those associated with suspended
materials, e.g. in terms of substrate affinity and growth efficiency,
is important for determining their relative contributions to the
turnover of organic carbon and the carbon budget of the
mesopelagic zone (Anderson and Tang, 2010). Improved under-
standing of the degradation, fragmentation and repackaging of
sinking aggregates will allow the biological pump to be included
in global models as more than simply an empirically-determined
decline in POC concentration with depth (De La Rocha and
Passow, 2007). Key areas needing work are the amount of POC
flux associated with appendicularians, the mechanisms by which
coccoliths and coccolithophorid POC reach depth, and
the impact of polymers such as TEP on the porosity of aggregates
(De La Rocha and Passow, 2007).

Acknowledgments

This review was developed out of discussions during the
mesopelagic workshop at the first IMBER IMBIZO meeting ‘Integrating
biogeochemistry and ecosystems in a changing ocean’ held in Miami
in November 2008. We thank all those involved in co-ordinating this
meeting including the IMBER International Project Office, the
scientific organizing committee, the session chairs and the sponsors.
Financial support for workshop attendees came from the Ocean
Carbon and Biogeochemistry (OCB) program and the Scientific
Committee on Oceanic Research (SCOR). During the preparation of
this manuscript D.K. Steinberg was supported by National Science
Foundation (NSF) grant OCE-0628444, ]J.R. Frost by EurOceans
fellowship award WP4-SYSMS-1101, K.F. Wishner by NSF grant
OCE-0526502, C.A. Carlson by NSF grant OCE-0801991, C.T. by the
ANR-POTES (ANR-05-BLAN-0161-01) grant, and T.R. Anderson by
the Natural Environment Research Council, UK.

References

Agogué, H., Brink, M., Dinasquet, ], Herndl, G.J., 2008. Major gradients in
putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic.
Nature 456, 788-791.

Alarcon-Muiioz, R., Cubillos, L., Gatica, C., 2008. Jumbo squid (Dosidicus gigas)
biomass off central Chile: effects on Chilean hake (Merluccius gayi). CalCOFI
Report 49, 157-166.

Al-Mutairi, H., Landry, M.R., 2001. Active export of carbon and nitrogen at Station
ALOHA by diel migrant zooplankton. Deep-Sea Research II 48, 2083-2103.
Alonso-Saez, L., Aristegui, |., Pinhassi, J., Gdbmez-Consarnau, L., Gonzilez, ].M.,
Vaqué, D., Agusti, S., Gasol, .M., 2007. Bacterial assemblage structure and
carbon metabolism along a productivity gradient in the NE Atlantic Ocean.

Aquatic Microbial Ecology 46, 43-53.

Amon, R, Fitznar, H.P.,, Benner, R, 2001. Linkage among the bioreactivity,
chemical composition and diagenetic state of marine dissolved organic matter.
Limnology and Oceanography 46, 287-297.

Andersen, V., Gubanova, A., Nival, P., Ruellet, T., 2001. Zooplankton community
during the transition from spring bloom to oligotrophy in the open NW
Mediterranean and effects of wind events. 2. Vertical distributions and
migrations. Journal of Plankton Research 23 (3), 243-261.

Anderson, T.R., in press. Progress in marine ecosystem modelling and the
“unreasonable effectiveness of mathematics”. Journal of Marine Systems.

Anderson, T.R., Tang, KW., 2010. Carbon cycling and POC turnover in the
mesopelagic zone of the ocean: Insights from a simple model. Deep-Sea
Research 11 57 (16), 1581-1592.

Anderson, T.R., Ryabchenko, V.A., in press. Carbon cycling in the mesopelagic
zone of the central Arabian Sea: results from a simple model. In: Wiggert, J.,
et al. (Eds.), Indian Ocean: Biogeochemical Processes and Ecological Variability.
AGU Book Series.

Angel, M.V., Baker, A.D., 1982. Vertical distribution of the standing crop of
plankton and micronekton at three stations in the northeast Atlantic.
Biological Oceanography 2 (1), 1-30.



C. Robinson et al. / Deep-Sea Research II 57 (2010) 1504-1518 1515

Angel, M.V., 1989a. Does Mesopelagic biology affect vertical flux?. In: Berger W.H.,
Smetacek, V.S., Wefer, G. (Eds.), Productivity of the Oceans: Present and Past.
Dahlem Conference, pp. 155-173.

Angel, M.V., 1989b. Vertical profiles of pelagic communities in the vicinity of the
Azores Front and their implications to deep ocean ecology. Progress in
Oceanography 22, 1-46.

Aristegui, J., Agusti, S., Middelburg, ].J., Duarte, C.M., 2005. Respiration in the
mesopelagic and bathypelagic zones of the oceans. In: del Giorgio, P.A., le B.
Williams, PJ. (Eds.), Respiration in Aquatic Systems. Oxford University Press,
pp. 181-205.

Aristegui, J., Gasol, .M., Duarte, C.M., Herndl, G.J., 2009. Microbial oceanography
in the dark ocean’s pelagic realm. Limnology and Oceanography 54 (5),
1501-1529.

Artolozaga, 1., Valcarcel, M., Ayo, B., Latatu, A., Iriberri, J., 2002. Grazing rates of
bacterivorous protists inhabiting diverse marine planktonic microenviron-
ments. Limnology and Oceanography 47, 142-150.

Azam, F.,, Long, R.A., 2001. Sea snow microcosms. Nature 414, 495-498.

Azam, F., Malfatti, F., 2007. Microbial structuring of marine ecosystems. Nature
Reviews Microbiology 5, 782-791.

Baltar, F., Aristegui, J., Gasol, ].M., Sintes, E., Herndl, GJ., 2009. Evidence of
prokaryotic metabolism on suspended particulate organic matter in the dark
waters of the subtropical North Atlantic. Limnology and Oceanography 54,
182-193.

Becquevort, S., Rousseau, V., Lancelot, C., 1998. Major and comparable roles for
free-living and attached bacteria in the degradation of Phaeocystis-derived
organic matter in Belgian coastal waters of the North Sea. Aquatic Microbial
Ecology 14, 39-48.

Benner, R.H., 2002. Composition and reactivity. In: Hansell, D.A., Carlson, C.A.
(Eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press,
San Diego, pp. 59-90.

Benoit-Bird, KJ.,, Au, WW.L, 2006. Extreme diel horizontal migrations by a
tropical nearshore resident micronekton community. Marine Ecology Progress
Series 319, 1-14.

Benoit-Bird, KJ., Au, WW.L,, Wisdom, D.W., 2009. Nocturnal light and lunar cycle
effects on diel migration of micronekton. Limnology and Oceanography 54 (5),
1789-1800.

Biddanda, B.A., Pomeroy, C.R., 1988. Microbial aggregation and degradation of
phytoplankton-derived detritus in seawater. I. Microbial succession. Marine
Ecology Progress Series 42, 79-88.

Billet, D.S., Bett, B.J., Jacobs, C.L., Rouse, L.P., Wigham, B.D., 2006. Mass deposition
of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51 (5),
2077-2083.

Blackburn, N., Fenchel, T., 1999. Influence of bacteria, diffusion and shear on
micro-scale nutrient patches, and implications for bacterial chemotaxis.
Marine ecology Progress Series 189, 1-7.

Bonnet, D., Richardson, A., Harris, R, Hirst, A., Beaugrand, G., Edwards, M., Ceballo,
S., Diekman, R., Lopez-Urrutia, A., Valdes, L., Carlotti, F., Molinero, J.C., Weikert,
H., Greve, W., Lucic, D., Albaina, A., Yahia, N.D., Umani, S.F., Miranda, A., dos
Santos, A., Cook, K., Robinson, S., de Puelles, M.L.F., 2005. An overview of
Calanus helgolandicus ecology in European waters. Progress in Oceanography
65, 1-53.

Bopp, L., Le Quéré, C., Heimann, M., Manning, A.C., Monfray, P., 2002. Climate-
induced oceanic oxygen fluxes: Implications for the contemporary carbon
budget. Global Biogeochemical Cycles 16 (2), 1022, doi:10.1029/2001GB001445.

Budge, S.M., Wooller, M J., Springer, A.M., Iverson, S.J., McRoy, C.P., Divoky, GJ.,
2008. Tracing carbon flow in an arctic marine food web using fatty acid-stable
isotope analysis. Oecologia 157, 117-129.

Buesseler, K.O., Lamborg, C.H., Boyd, P.W., Lam, P.J., Trull, T.W., Bidigare, R.R,,
Bishop, J.K.B., Casciotti, K.L., Dehairs, F., Elskens, M., Honda, M., Karl, D.M.,
Siegel, D.A., Silver, M.W,, Steinberg, D.K., Valdes, ]J., Van Mooy, B., Wilson, S.,
2007. Revisiting the carbon flux through the ocean’s twilight zone. Science
316, 567-570.

Burd, A.B., Hansell, D.A.,, Steinberg, D.K.,, Anderson, T.R., Aristegui, ]., Baltar, F.,
Beaupré, S.R., Beusseler, K.O., DeHairs, F., Jackson, G.A., Kadko, D., Koppelmann,
R., Lampitt, R.S., Nagata, T., Reinthaler, T., Robinson, C., Robison, B., Tamburini,
C., Tanaka, T., 2010. Assessing the apparent imbalance between geochemical
and biochemical indicators of meso- and bathypelagic biological activity: what
the @$#! is wrong with present calculations of carbon budgets? Deep-Sea
Research Il 57 (16), 1557-1571.

Carlson, C.A., Ducklow, H.W., Michaels, A.F., 1994. Annual flux of dissolved organic
carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371,
405-408.

Carlson, C.A., Ducklow, H.W., 1995. Dissolved organic carbon in the upper ocean of
the central equatorial Pacific Ocean, 1992: Daily and finescale vertical
variation. Deep-Sea Research II 42, 639-656.

Carlson, C.A., Morris, R, Parsons, R., Treusch, A.H., Giovannoni, S.J., Vergin, K., 2009.
Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic
zones of the northwestern Sargasso Sea. ISME Journal 3 (3), 283-295.

Caron, D.A., 1987. Grazing of attached bacteria by heterotrophic microflagellates.
Microbial Ecology 13, 203-218.

Carroll, M.L., Miquel, J.-C., Fowler, S.W., 1998. Seasonal patterns and depth-specific
trends of zooplankton fecal pellet fluxes in the Northwestern Mediterranean
Sea. Deep-Sea Research I 45, 1303-1318.

Childress, ].J., Taylor, S.M., Cailliet, G.M., Price, M.H., 1980. Patterns of growth,
energy utilization and reproduction in some meso- and bathypelagic fishes off
Southern California. Marine Biology 61, 27-40.

Childress, ]J., Seibel, B.A., 1998. Life at stable low oxygen levels: adaptations of
animals to oceanic oxygen minimum layers. Journal of Experimental Biology
201, 1223-1232.

Cho, B.C., Azam, F., 1988. Major role of bacteria in biogeochemical fluxes in the
ocean’s interior. Nature 332, 441-443.

Cornejo, R., Koppelmann, R., 2006. Distribution patterns of mesopelagic fish
with special reference to Vinciguerria lucetia Garman 1899 (Phosichthyidae:
Pisces) in the Humboldt Current Region off Peru. Marine Biology 149, 1519-1537.

Countway, P.D., Gast, RJ., Dennett, M.R,, Savai, P., Rose, J.M., Caron, D.A., 2007.
Distinct protistan assemblages characterise the euphotic zone and deep sea
(2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream).
Environmental Microbiology 9, 1219-1232.

Dehairs, F., Shopova, D., Ober, S., Veth, C., Goeyens, L., 1997. Particulate barium
stocks and oxygen consumption in the Southern Ocean mesopelagic water
column during spring and early summer: relationship with export production.
Deep-Sea Research II 44, 497-516.

De La Rocha, C.L., Passow, U., 2007. Factors influencing the sinking of POC and the
efficiency of the biological carbon pump. Deep-Sea Research Il 54, 639-658.

del Giorgio, P.A., Duarte, C.M., 2002. Respiration in the open ocean. Nature 420,
379-384.

Delong, E.F., Franks, D.G., Alldredge, AL, 1993. Phylogenetic diversity of
aggregate-attached vs. free-living marine bacterial assemblages. Limnology
and Oceanography 38, 924-934.

DeLong, E.F., Karl, D.M., 2005. Genomic perspectives in microbial oceanography.
Nature 437, 336-342.

DeLong, E.F. Preston, C.M., Mincer, T., Rich, V., Hallam, SJ., Frigaard, N.U.,
Martinez, A., Sullivan, M.B., Edwards, R., Brito, B.R., Chisholm, S.W., Karl, D.M.,
2006. Community genomics among stratified microbial assemblages in the
ocean’s interior. Science 311, 496-503.

Doney, S.C., Fabry, V., Feeley, R.A,, Kleypas, J.A., 2009. Ocean acifidication: the
other CO, problem. Annual Reviews of Marine Science 1, 169-192.

Donnelly, ]., Torres, ].J., Hopkins, T.L., Lancraft, T.M., 1990. Proximate composition
of Antarctic mesopelagic fishes. Marine Biology 106 (1), 13-23.

Edwards, M., Richardson, AJ., 2004. Impact of climate change on marine pelagic
phenology and trophic mismatch. Nature 430, 881-884.

Fabry, V.J., 2008. Marine calcifiers in a high CO, ocean. Science 320 (5879),
1020-1022.

Fabry, VJ., Seibel, B.A,, Feely, R.A,, Orr, J.C., 2008. Impacts of ocean acidification on
marine fauna and ecosystem processes. ICES Journal of Marine Science 65,
414-432.

Fenchel, T., 2001. Eppur si muove: many water column bacteria are motile.
Aquatic Microbial Ecology 24, 197-201.

Fenchel, T., 2002. Microbial behaviour in an heterogeneous world. Science 296,
1068-1071.

Field, K.G., Gordon, D., Wright, T., Rappé, M., Urbach, E., Vergin, K., Giovannoni, S.J.,
1997. Diversity and depth-specific distribution of SAR 11 cluster rRNA genes
from marine planktonic bacteria. Applied and Environmental Microbiology 63
(1), 63-70.

Field, ].C., Baltz, K., Phillips, A.J., Walker, W.A., 2007. Range expansion and trophic
interactions of the jumbo squid, Dosidicus gigas, in the California Current.
CalCOFI Report 48, 131-146.

Frank, K.T., Petrie, B., Choi, J.S., Leggett, W.C., 2005. Trophic cascades in a formerly
cod-dominated ecosystem. Science 308, 1621-1623.

Frank, T.M., Widder, E.A., 2002. Effects of a decrease in downwelling irradiance on
the daytime vertical distribution patterns of zooplankton and micronekton.
Marine Biology 140, 1181-1193.

Franks, P.J.S., Jaffe, ].S., 2007. Microscale variability in the distributions of large
fluorescent particles observed in situ with a planar laser imaging fluorometer.
Journal of Marine Systems 69, 254-270.

Fukuda, H., Sohrin, R., Nagata, T., Koike, 1., 2007. Size distribution and biomass of
nanoflagellates in meso- and bathypelagic layers of the subarctic Pacific.
Aquatic Microbial Ecology 46, 203-207.

Gasol, J.M., Pinhassi, ]., Alonso-Saez, L., Ducklow, H., Herndl, G.J., Koblizek, M.,
Labrenz, M., Luo, Y., Moran, X.A.G., Reinthaler, T., Simon, M., 2008. Towards a
better understanding of microbial carbon flux in the sea. Aquatic Microbial
Ecology 53, 21-38.

Ghiglione, ].F., Mével, G., Pujo-Pay, M., Mousseau, L., Lebaron, P., Goutx, M., 2007.
Diel and seasonal variations in abundance, activity, and community structure
of particle-attached and free-living bacteria in the NW Mediterranean Sea.
Microbial Ecology 54, 217-231.

Giovannoni, SJ., Rappé, M.S., Vergin, K., Adair, N., 1996. 16S rRNA genes reveal
stratified open ocean bacterioplankton populations related to the green non-
sulfur bacteria phylum. Proceedings of the National Academy of Science 93,
7979-7984.

Goldberg, SJ., Carlson, C.A., Hansell, D.A., Nelson, N.B,, Siegel, D.A., 2009. Temporal
dynamics of dissolved combined neutral sugars and the quality of dissolved
organic matter in the northwestern Sargasso Sea. Deep Sea Research I 56,
672-685.

Gordon, D., Giovannoni, S.J., 1996. Detection of stratified microbial populations
related to Chlorobium and Fibrobacter species in the Atlantic and Pacific
oceans. Applied and Environmental Microbiology 62 (4), 1171-1177.

Gowing, M.M., Garrison, D., Wishner, K.F.,, Gelfman, C., 2003. Mesopelagic
microplankton of the Arabian Sea. Deep-Sea Research I 50, 1205-1234.

Grossart, H.-P., Kigrboe, T., Tang, K., Ploug, H., 2003. Bacterial colonization of
particles: growth and interactions. Applied and Environmental Microbiology
69, 3500-3509.


dx.doi.org/10.1029/2001GB001445.3d

1516 C. Robinson et al. / Deep-Sea Research Il 57 (2010) 1504-1518

Guidi, L., Stemman, L., Jackson, G.A., Ibanez, F., Claustre, H., Legendre, L., Picheral, M.,
Gorsky, G., 2009. Effects of phytoplankton community on production, size
and export of large aggregates: a world-ocean analysis. Limnology and
Oceanography 54 (6), 1951-1963.

Haddock, S.H.D., Dunn, C.W., Pugh, P.R,, Schnitzler, C.E., 2005. Bioluminescent and
red-fluorescent lures in a deep-sea siphonophore. Science 309, 263.

Hamersley, R.M., Lavik, G., Woebken, D., Rattray, J.E., Lam, P., Hopmans, E.C.,
Damsté, ].S.S., Kriiger, S., Graco, M., Gutiérrez, D., Kuypers, M.M.M., 2007.
Anaerobic amonium oxidation in the Peruvian oxygen minimum zone.
Limnology and Oceanography 52 (3), 923-933.

Hannides, C.C.S., Landry, M.R., Benitez-Nelson, C.R., Styles, R.M., Montoya, J.P.,
Karl, D.M., 2009. Export stoichiometry and migrant-mediated flux of phos-
phorus in the North Pacific Subtropical Gyre. Deep-Sea Research I 56, 73-88.

Hansell, D.A., Carlson, C.A., 2001. Biogeochemistry of total organic carbon and
nitrogen in the Sargasso Sea: control by convective overturn. Deep Sea
Research II 48, 1649-1667.

Hansell, D.A,, Carlson, C.A., Suzuki, Y., 2002. Dissolved organic carbon export with
North Pacific intermediate water formation. Global Biogeochemical Cycles 16,
77-84.

Hays, G.C., Richardson, AJ., Robinson, C., 2005. Climate change and marine
plankton. Trends in Ecology and Evolution 20 (6), 337-344.

Hernandez-Ledn, S., Almeida, C., Yebra, L., Aristegui, J., Fernandez de Puelles, M.L.,
Garcia-Braun, J., 2001. Zooplankton abundance in subtropical waters: Is there
a lunar cycle? Scientia Marina 65 59-64.

Hernandez-Ledn, S., Almeida, C., Yebra, L. Aristegui, J., 2002. Lunar cycle of
zooplankton biomass in subtropical waters: biogeochemical implications.
Journal of Plankton Research 24, 935-939.

Hernandez-Ledn, S., Ikeda, T., 2005. Zooplankton respiration. In: Williams, P.L.B.,
del Giorgio, P. (Eds.), Respiration in Aquatic Ecosystems. Oxford University
Press, pp. 57-82.

Herndl, GJ., Reinthaler, T., Teira, E., Van Aken, H., Veth, C., Pernthaler, A,
Pernthaler, ]., 2005. Contribution of Archaea to total prokaryotic production
in the deep Atlantic Ocean. Applied Environmental Microbiology 71 (5),
2303-2309.

Herndl, G.J., Agogue, H., Baltar, F., Reinthaler, T., Sintes, E., Varela, M.M., 2008.
Regulation of aquatic microbial processes: the 'microbial loop’ of the sunlit
surface waters and the dark ocean dissected. Aquatic Microbial Ecology 53,
59-68.

Herring, P.J., 2002. The Biology of the Deep Ocean. Oxford University Press, Oxford.

Hopcroft, R.R., Robison, B.H., 2005. New mesopelagic larvaceans in the genus
Fritillaria from Monterey Bay, California. Journal of the Marine Biological
Association of the UK 85, 665-678.

Hollibaugh, J.T., Wong, P.S., Murrell, M.C., 2000. Similarity of particle-associated
and free-living bacterial communities in northern San Francisco Bay,
California. Aquatic Microbial Ecology 21 (2), 103-114.

Ikeda, T., Sano, F., Yamaguchi, A., 2007. Respiration in marine pelagic copepods: a
global-bathymetric model. Marine Ecology Progress Series 339, 215-219.
Ingalls, A.E., Shah, S.R., Hansman, R.L., Aluwihare, L., Santos, G.M., Druffel, E.R.M.,
Pearson, A., 2006. Quantifying archaeal community autotrophy in the
mesopelagic ocean using natural radiocarbon. Proceedings of the National

Academy of Sciences 103 (17), 6442-6447.

Jackson, G.A., 1989. Simulation of bacterial attraction and adhesion to falling
particles in an aquatic environment. Limnology and Oceanography 34,
514-530.

Jackson, G.A., Burd, A.B., 2002. A model for the distribution of particle flux in the
mid-water column controlled by subsurface biotic interactions. Deep-Sea
Research II 49, 193-217.

Jacquet, S.H.M., Dehairs, F., Savoye, N., Obernosterer, 1., Christaki, U., Monnin, C.,
Cardinal, D., 2008. Mesopelagic organic carbon remineralization in the
Kerguelen Plateau region tracked by biogenic particulate Ba. Deep Sea
Research II 55, 868-879.

Johnson, RK., 1982. Fishes of the families Evermannellidae and Scopelarchidae:
systematics, morphology, inter-relationships and zoogeography. Fieldiana:
Zool N° 12, 252.

Jones, C.D., Ramm, D.C., 2004. The commercial harvest of krill in the southwest
Atlantic before and during the CCAMLR 2000 survey. Deep-Sea Research II 51,
1421-1434.

Kalmijn, A.J., 1982. Electric and magnetic field detection in elasmobranch fishes.
Science 218, 916-918.

Karner, M.B., DeLong, E.F., Karl, D.M., 2001. Archaeal dominance in the mesopelagic
zone. Nature 409, 507-510.

Kigrboe, T., 2003. Marine snow microbial communities: scaling of abundances
with aggregate size. Aquatic Microbial Ecology 33, 67-75.

Kierboe, T., Jackson, G.A., 2001. Marine snow, organic solute plumes and optimal
chemosensory behavior of bacteria. Limnology and Oceanography 46, 1309-1318.

Kierboe, T., Baggien, E., 2005. Motility patterns and mate encounter rates in
planktonic copepods. Limnology and Oceanography 50 (6), 1999-2007.

Kigrboe, T., Grossart, H.-P., Ploug, H., Tang, K., 2002. Mechanisms and rates of
bacterial colonisation of sinking aggregates. Applied and Environmental
Microbiology 68, 3996-4006.

Kierboe, T., Grossart, H.-P., Ploug, H., Tang, K., Auer, B., 2004. Particle-associated
flagellates: swimming patterns, colonization rates, and grazing on attached
bacteria. Aquatic Microbial Ecology 35, 141-152.

Kinzer, J., Bottger-Schnack, R., Schulz, K., 1993. Aspects of horizontal distribution
and diet of myctophid fish in the Arabian Sea with reference to the deep water
oxygen deficiency. Deep-Sea Research II 40, 783-800.

Kirchman, D.L., Lancelot, C., Fasham, M., Legendre, L., Radach, G., Scott, M., 1993.
Dissolved organic matter in biogeochemical models of the ocean. In: Evans,
G.T., Fasham, MJ.R. (Eds.), Towards a Model of Ocean Biogeochemical
Processes. Springer-Verlag, Berlin Heidelberg, pp. 209-225.

Kobari, T., Shinada, A., Tsuda, A., 2003. Functional roles of interzonal migrating
mesozooplankton in the western subarctic Pacific. Progress in Oceanography
57, 279-298.

Kobari, T., Steinberg, D.K.,, Ueda, A., Tsuda, A., Silver, M.W.,, Kitamura, M., 2008.
Impacts of ontogenetically migrating copepods on downward carbon
flux in the western subarctic Pacific Ocean. Deep-Sea Research II 55 (14-15),
1648-1660.

Koppelmann, R., Weikert, H., 1999. Temporal changes of deep-sea mesozooplank-
ton abundance in the temperate NE Atlantic and estimates of the carbon
budget. Marine Ecology Progress Series 179, 27-40.

Koppelmann, R., Frost, J., 2008. The ecological role of zooplankton in the twilight
and dark zones of the ocean. In: Mertens, L.P. (Ed.), Biological Oceanography
Research Trends. Nova Science Publishers, Inc., NY, pp. 67-130.

Kujawinski, E.B., Behn, M.D., 2006. Automated analysis of electrospray ionization
Fourier-transform ion cyclotron resonance mass spectra of natural organic
matter. Analytical Chemistry 78, 4363-4373.

Kuypers, M.M.M., Lavik, G., Woebken, D., Schmid, M., Fuchs, B.M., Amann, R,
Jorgensen, B.B., Jetten, M.S.M., 2005. Massive nitrogen loss from the Benguela
upwelling system through anaerobic ammonium oxidation. Proceedings of the
National Academy of Sciences, USA 102 (18), 6478-6483.

Lampitt, R.S., Salter, I, Johns, D., 2009. Radiolaria: major exporters of organic
carbon to the deep ocean. Global Biogeochemical Cycles 23, GB100,
doi:10.1029/2008GB003221.

Lauro, F.M., Chastain, R.A., Blankenship, L.E., Yayanos, A.A., Bartlett, D.H., 2007. The
unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation.
Applied and Environmental Microbiology 73, 838-845.

Lawrence, J.R, Snyder, RA. 1998. Feeding behaviour and grazing impacts
of a Euplotes sp. on attached bacteria. Can Journal of Microbiology 44, 623-629.

Le Borgne, R., Rodier, M., 1997. Net zooplankton and the biological pump: a
comparison between the oligotrophic and mesotrophic equatorial Pacific.
Deep-Sea Research II 44, 2003-2023.

Le Quéré, C., Harrison, S.P., Prentice, 1.C., Buitenhuis, E.T., Aumont, O., Bopp, L.,
Claustre, H., Cotrim da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K.,
Legendre, L., Manizza, M., Platt, T., Rivkin, R.B., Sathyendranath, S., Uitz, ]J.,
Watson, A.J., Wolf-Gladrow, D., 2005. Ecosystem dynamics based on plankton
functional types for global ocean biogeochemistry models. Global Change
Biology 11, 2016-2040.

Lee, C., Wakeham, S.G., Hedges, ]J.I., 2000. Composition and flux of particulate
organic carbon fluxes: results from the equatorial Pacific seawater and
sediments. Deep Sea Research I 47, 1535-1568.

Longhurst, A.R., Bedo, A.W., Harrison, W.G., Head, E.J.H., Sameoto, D.D., 1990.
Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea
Research 37 (4), 685-694.

Lopez-Garcia, P., Rodriguez-Valera, F., Pedro6s-Alid, C., Moreira, D., 2001.
Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton.
Nature 409, 603-607.

Lopez-Urrutia, A, Moran, X.A.G., 2007. Resource limitation of bacterial production
distorts the temperature dependence of oceanic carbon cycling. Ecology 88,
817-822.

Lopez-Urrutia, A, San Martin, E., Harris, R.P.,, Irigoien, X., 2006. Scaling the
metabolic balance of the oceans. Proceedings of the National Academy of
Sciences USA 103, 8739-8744.

Lovejoy, C., Massana, R., Pedrds-Alid, C., 2006. Diversity and distribution of marine
microbial eukaryotes in the Arctic Ocean and adjacent seas. Applied and
Environmental Microbiology 72, 3085-3095.

Lunven, M., Guillaud, J.F., Youénou, A., Crassous, M.P., Berric, R,, Le Gall, E., Kérouel, R,
Labry, C., Aminot, A., 2005. Nutrient and phytoplankton distribution in the Loire
River plume (Bay of Biscay, France) resolved by a new Fine Scale Sampler.
Estuarine, Coastal and Shelf Science 65, 94.

Lynam, C.P., Gibbons, M.]., Axelsen, B.E., Sparks, C.A]., Coetzee, ]J., Heygood, B.G.,
Brierly, A.J., 2006. Jellyfish overtake fish in a heavily fished ecosystem. Current
Biology 16, R492-R493.

Lynam, C.P., Hay, SJ., Brierley, A.S., 2004. Interannual variability in abundance of
North Sea jellyfish and links to the North Atlantic Oscillation. Limnology and
Oceanography 49, 637-643.

Magagnini, M., Corinaldesi, C., Monticelli, L.S., De Domenico, E., Danovaro, R., 2007.
Viral abundance and distribution in mesopelagic and bathypelagic waters of
the Mediterranean Sea. Deep-Sea Research I 54, 1209-1220.

Marshall, N.B., 1971. Explorations in the Life of Fishes. Cambridge University Press,
Cambridge.

Martin, J.H., Knauer, G.A., Karl, D.M., Broenkow, W.W., 1987. VERTEX: carbon
cycling in the N.E. Pacific. Deep-Sea-Research 34, 267-285.

Martinez, J., Smith, D.C., Steward, G.F., Azam, F., 1996. Variability in ectohydrolytic
enzyme activities of pelagic marine bacteria and its significance for substrate
processing in the sea. Aquatic Microbial Ecology 10, 223-230.

Matsui, T., Rosenblatt, R., 1987. Review of the Deep-Sea Fish Family
Platytroctidae (Pisces: Salmoniformes). Bull Inst Oceanogr Univ Calif, San
Diego 159pp.

Matsumoto, G.I, Raskoff, K.A., Lindsay, D.J., 2003. Tiburonia granrojo n. sp., a
mesopelagic scyphomedusa from the Pacific Ocean representing the type of a
new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae:
subfamily Tiburoniinae subfam. nov.). Marine Biology 143, 73-77.


dx.doi.org/10.1029/2008GB003221.3d

C. Robinson et al. / Deep-Sea Research II 57 (2010) 1504-1518 1517

Meével, G., Vernet, M., Goutx, M., Ghiglione, ].F., 2008. Seasonal to hour variation
scales in abundance and production of total and particle-attached bacteria in
the open NW Mediterranean Sea (0-1000 m). Biogeosciences 5, 1573-1586.

Miller, C.B., Frost, B.W., Batchelder, H.P., Clemons, M.J., Conway, R.E., 1984. Life
histories of large, grazing copepods in a subarctic ocean gyre: Neocalanus
plumchrus, Neocalanus cristatus, and Eucalanus bungii in the northeast Pacific.
Progress in Oceanography 13, 201-243.

Mills, C.E., 2001. Jellyfish blooms: are populations increasing globally in response
to changing ocean conditions? Hydrobiologia 451 55-68.

Moeseneder, M.M., Winter, C, Herndl, GJ., 2001. Horizontal and vertical
complexity of attached and free-living bacteria of the eastern Mediterranean
Sea, determined by 16S rDNA and 16S rRNA fingerprints. Limnology and
Oceanography 46 (1), 95-107.

Moriceau, B., Garvey, M., Ragueneau, O., Passow, U., 2007a. Evidence for reduced
biogenic silica dissolution rates in diatom aggregates. Marine Ecology Progress
Series 333, 129-142.

Moriceau, B., Gallinaria, M., Soetaert, K., Ragueneau, O., 2007b. Importance of
particle formation to reconstructed water column biogenic silica fluxes. Global
Biogeochemical Cycles, 21, doi:10.1029/2006GB002814.

Morris, R.M., Vergin, K.L., Cho, ].C., Rappe, M.S., Carlson, C.A., Giovannoni, S.J., 2005.
Temporal and spatial response of bacterioplankton lineages to annual
convective overturn at the Bermuda Atlantic Time-series Study site. Limnology
and Oceanography 50 (5), 1687-1696.

Nagata, T., Fukuda, H., Fukuda, R., Koike, 1., 2000. Bacterioplankton distribution and
production in deep Pacific waters: large-scale geographic variations and
possible coupling with sinking particle fluxes. Limnology and Oceanography
45 (2), 426-435.

Nagata, T., Fukuda, R., Fukuda, H., Koike, 1., 2001. Basin-scale geographic patterns
of bacterioplankton biomass and production in the Subarctic Pacific, July-
September 1997. Journal of Oceanography 57, 301-313.

Ogawa, H., Amagi, Y., Koike, L., Kaiser, K., Benner, R., 2001. Production of refractory
dissolved organic matter by bacteria. Science 292, 917-920.

Orr, J.C,, Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gruber, N., Ishida, A,
Joos, F., Key, RM,, Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P.,
Mouchet, A., Najjar, R.G., Plattner, G., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L.,
Schlitzer, R., Slater, R.D., Totterdell, 1J., Weirig, M.-F., Yamanaka, Y., Yool, A,
2005. Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms. Nature 437, 681-686.

Parada, V., Sintes, E., van Aken, H.M., Weinbauer, M., Herndl, GJ., 2007. Viral
abundance, decay, and diversity in the meso- and bathypelagic waters of the
North Atlantic. Applied and Environmental Microbiology 73 (14), 4429-4438.

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres Jr., F., 1998. Fishing down
marine food webs. Science 279, 860-863.

Pearre, S., 2003. Eat and run? The hunger/satiation hypothesis in vertical
migration: history, evidence and consequences. Biological Reviews 78, 1-79.

Portner, H.O., Knust, R., 2007. Climate change affects marine fishes through the
oxygen limitation of thermal tolerance. Science 315, 95-97.

Ragueneau, O., Schultes, S., Bidle, K., Claquin, P., Moriceau, B., 2006. Si and C
interactions in the world ocean: Importance of ecological processes and
implications for the role of diatoms in the biological pump. Global
Biogeochemical Cycles 20, GB4S02, doi:10.1029/2006GB002688.

Rath, J., Wu, K.Y., Herndl, GJ., DeLong, E.F., 1998. High phylogenetic diversity in a
marine snow -associated bacterial assemblage. Aquatic Microbial Ecology 14,
261-269.

Reinthaler, T., Winter, C., Herndl, GJ., 2005. Relationship between bacterioplank-
ton richness, respiration and production in the Southern North Sea. Applied
and Environmental Microbiology 71, 2260-2266.

Reinthaler, T., van Aken, H., Veth, C., Aristegui, J., Robinson, C., Williams, P.,
Lebaron, P., Herndl, G.J., 2006. Prokaryotic respiration and production in the
meso- and bathypelagic realm of the eastern and western North Atlantic basin.
Limnology and Oceanography 51 (3), 1262-1273.

Reinthaler, T., van Aken, H., Veth, C., Herndl, G.J., 2010. Major contribution of
autotrophy to microbial carbon cycling in the deep North Atlantic’s interior.
Deep-Sea Research Il 57 (16), 1572-1580.

Robison, B.H., 1984. Herbivory by the myctophid fish Ceratoscopelus warmingii.
Marine Biology 84, 119-123.

Robison, B.H., 2004. Deep pelagic biology. Journal of Experimental Marine Biology
and Ecology 300 (1/2), 253-272.

Robison, B.H,, in press. Conservation of deep pelagic biodiversity. Conservation Biology.

Robison, B.H., Raskoff, K.A., Sherlock, R.E., 2005a. Ecological substrate in midwater:
Doliolula equus, a new mesopelagic tunicate. Journal of the Marine Biological
Association, UK 85, 655-663.

Robison, B.H., Reisenbichler, K.R., Sherlock, R.E., 2005b. Giant larvacean houses:
rapid carbon transport to the deep sea floor. Science 308, 1609-1611.

Robison, B.H., Bailey, T.G., 1981. Sinking rates and dissolution of midwater fish
fecal matter. Marine Biology 65, 135-142.

Robison, B.H., Reisenbichler, K.R., Sherlock, R.E., Silguero, ].M.B., Chavez, F.P., 1998.
Seasonal abundance of the siphonophore Nanomia bijuga, in Monterey Bay.
Deep-Sea Research II 45, 1741-1752.

Robison, B.H., Reisenbichler, K.R., 2008. Macropinna microstoma and the paradox of
its tubular eyes. Copeia 2008 (4), 780-784.

Robison, B.H., Sherlock, R.E., Reisenbichler, K.R., 2010. The bathypelagic commu-
nity of the Monterey Canyon. Deep-Sea Research I 57 (16), 1551-1556.

Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., et al., 2004. The oceanic sink
for anthropogenic CO,. Science 305, 367-371.

Sameoto, D.D., 1986. Influence of the biological and physical environment on the
vertical distribution of mesozooplankton and micronekton in the eastern
tropical Pacific. Marine Biology 93, 263-269.

Seibel, B.A., Drazen, ].C., 2007. The rate of metabolism in marine animals:
environmental constraints, ecological demands and energetic opportunities.
Philisophical Transactions of the Royal Society B 362, 2061-2078.

Seibel, B.A., Walsh, P.J., 2001. Potential impacts of CO, injection on deep-sea biota.
Science 294, 319-320.

Silguero, ].M.B., Robison, B.H., 2000. Seasonal abundance and vertical distribution
of mesopelagic calycophoran siphonophores in Monterey Bay, CA. Journal of
Plankton Research 22, 1139-1153.

Silver, M.W., Gowing, M.M., Brownlee, D.C., Corliss, ].O., 1984. Ciliated protozoa
associated with oceanic sinking detritus. Nature 309, 246-248.

Silver, M.W., Coale, S.L., Pilskaln, C.H., Steinberg, D.K., 1998. Giant Aggregates:
importance as community centers and agents of material flux in the
mesopelagic zone. Limnology and Oceanography 43 (3), 498-507.

Skoog, A., Benner, R, 1997. Aldoses in various size fractions of marine organic
matter: implications for carbon cycling. Limnology and Oceanography 42 (8),
1803-1813.

Smith, D., Simon, M., Alldredge, A.L, Azam, F., 1992. Intense hydrolytic enzyme
activity on marine aggregates and implications for rapid particle dissolution.
Nature 359, 139-142.

Solomon, S., Qin, D., Manning, M., Alley, R.B., Bernsten, T., Bindoff, N.L., Chen, Z.,
Chidthaisong, A., Gregory, ].M., Hegerl, G.C., Heimann, M., Hewitson, B.,
Hoskins, B.J., Joos, F., Jouzel, ]., Kattsov, V., Lohmann, U., Matsuno, T., Molina,
M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V., Ren, ]., Ructicucci, M.,
Somerville, R., Stocker, T.F., Whetton, P., Wood, R.S., Wratt, D., 2007. Technical
summary. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt,
K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: The Physical Science
Basis. Contribution of working group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University Press, UK.

Steinberg, D.K,, Silver, M.\W.,, Coale, S.L., Pilskaln, C.H., Paduan, J., 1994. Midwater
zooplankton communities on pelagic detritus (giant larvacean houses) in
Monterey Bay, California. Limnology and Oceanography 39 (7), 1606-1620.

Steinberg, D.K,, Silver, M.W., Pilskaln, C.H., 1997. The role of mesopelagic zooplankton in
the community metabolism of giant larvacean house detritus in Monterey Bay,
California, USA. Marine Ecology Progress Series 147, 167-179.

Steinberg, D.K,, Carlson, CA., Bates, N.R,, Goldthwait, S.A., Madin, L.P., Michaels, AF.,
2000. Zooplankton vertical migration and the active transport of dissolved organic
and inorganic carbon in the Sargasso Sea. Deep-Sea Research 1 47, 137-158.

Steinberg, D.K., Goldthwait, S.A., Hansell, D.A., 2002. Zooplankton vertical
migration and the active transport of dissolved organic and inorganic nitrogen
in the Sargasso Sea. Deep-Sea Research 1 49 (8), 1445-1461.

Steinberg, D., Van Mooy, B.A.S., Buesseler, K.O., Boyd, P.W., Kobari, T., Karl, D.M.,
2008a. Bacterial vs zooplankton control of sinking particle flux in the ocean’s
twilight zone. Limnology and Oceanography 53, 1327-1338.

Steinberg, D.K.,, Cope, J.S., Wilson, S.E., Kobari, T. 2008b. A comparison of
mesopelagic mesozooplankton community structure in the subtropical and
subarctic North Pacific Ocean. Deep-Sea Research II 55 (14-15), 1615-1635.

Steinberg D.K., Lomas M.W., Madin, L.P., 2008c. A long-term increase in
zooplankton biomass at the Bermuda Atlantic Time-series Study (BATS) site
in the Sargasso Sea. In 2008 Ocean Sciences Meeting Program Abstracts.
Orlando, Florida.

Stemmann, L., Jackson, G.A., lanson, D., 2004a. A vertical model of particle size
distributions and fluxes in the midwater column that includes biological and
physical processes I: model formulation. Deep-Sea Research I 51, 865-884.

Stemmann, L., Jackson, G.A., Gorsky, G., 2004b. A vertical model of particle size
distributions and fluxes in the midwater column that includes biological and
physical processes. II. Application to a three year survey in the NW
Mediterranean Sea. Deep-Sea Research I 51, 885-908.

Stemmann, L., Youngbluth, M., Robert, K., Hosia, A., Picheral, M., Paterson, H.,
Ibanez, F., Guidi, L., Lombard, F., Gorsky, G., 2008. Global zoogeography of
fragile macrozooplankton in the upper 100-1000 m inferred from the
underwater video profiler. ICES Journal of Marine Science, 65.

Stowasser, G., McAllen, R., Pierce, G.J., Collins, M.A., Moffat, C.F., Priede, I.G., Pond,
D.W., 2009. Trophic position of deep-sea fish - assessment through fatty acid
and stable isotope analyses. Deep-Sea Research I 56, 812-826.

Stramma, L., Johnson, G.C., Sprintall, J., Mohrholz, V., 2008. Expanding oxygen-
minimum zones in the Tropical Oceans. Science 320, 655-658.

Tamburini, C., Garcin, J., Gregori, G., Leblanc, K., Rimmelin, P., Kirchman, D.L., 2006.
Pressure effects on surface Mediterranean prokaryotes and biogenic silica
dissolution during a diatom sinking experiment. Aquatic Microbial Ecology 43,
267-276.

Tamburini, C., Goutx, M., Guigue, C., Garel, M., Lefévre, D., Charriére, B., Sempéré,
R, Pepa, S., Peterson, M.L., Wakeham, S., Lee, C., 2009. Effects of hydrostatic
pressure on microbial alteration of sinking feacal pellets. Deep-Sea Research Il
56, 1533-1546.

Tamburri, M.N., Halt, M.N., Robison, B.H., 2000. Chemically regulated feeding by a
midwater medusa. Limnology and Oceanography 45, 1661-1666.

Tanaka, T., Rassoulzadegan, F., 2002. Full-depth profile (0-2000 m) of bacteria,
heterotrophic nanoflagellates and ciliates in the NW Mediterranean Sea:
vertical partitioning of microbial trophic structures. Deep-Sea Res. II 49,
2093-2107.

Tanaka, T., Rassoulzadegan, F., 2004. Vertical and seasonal variations of bacterial
abundance and production in the mesopelagic layer of the NW Mediterranean
Sea: bottom-up and top-down controls. Deep-Sea Research I 51, 531-544.


dx.doi.org/10.1029/2006GB002814.3d
dx.doi.org/10.1029/2006GB002688.3d

1518 C. Robinson et al. / Deep-Sea Research Il 57 (2010) 1504-1518

Teira, E., Lebaron, P., van Aken, H., Herndl, G.J., 2006. Distribution and activity of
Bacteria and Archaea in the deep water masses of the North Atlantic.
Limnology and Oceanography 51 (5), 2131-2144.

Treusch, A.H., Vergin, K.L, Finlay, L.A., Donatz, M.G., Burton, R.M., Carlson, CA.,
Giovannoni, SJ., 2009. Seasonality and vertical structure of microbial
communities in an ocean gyre. ISME Journal 3, 1148-1163.

Tseitlin, V.B., Rudyakov, Y.A., 1999. Seasonal variations of vertical distribution of
zooplankton in the mesopelagic zone of the Indian Ocean. Oceanology 39,
521-527.

Tsuda, A., Saito, H., Kasai, H., 1999. Life histories of Neocalanus flemingeri and
Neocalanus plumchrus (Calanoida: Copepoda) in the western subarctic Pacific.
Marine Biology 135, 533-544.

Turley, C.M., Lochte, K., Lampitt, R.S., 1995. Transformation of biogenic particles
during sedimentation in the northeastern Atlantic. Philisophical Transactions
of the Royal Society of London 348, 179-189.

Turley, C.M., Stutt, E.D., 2000. Depth-related cell-specific bacterial leucine
incorporation rates on particles and its biogeochemical significance in the
Northwest Mediterranean. Limnology and Oceanography 45, 419-425.

Valinassab, T., Pierce, G.J. Johannesson, K., 2007. Lantern fish (Benthosema
pterotum) resources as a target for commercial exploitation in the Oman Sea.
Journal of Applied Ichthyology 23, 573-577.

Varela, M.M., van Aken, H.M., Sintes, E., Herndl, G.J., 2008. Latitudinal trends
of Crenarchaeota and Bacteria in the meso- and bathypelagic water
masses of the Eastern North Atlantic. Environmental Microbiology 10 (1),
110-124.

Wang, Z., Goodman, L., 2009. Evolution of the spatial structure of a thin phytoplankton
layer into a turbulent field. Marine Ecology Progress Series 374, 57-74.

Ward, B.B., Tuit, C.B., Jayakumar, A., Rich, ]J., Moffett, ]J., Naqvi, SW.A., 2008.
Organic carbon, and not copper, controls denitrification in oxygen minimum
zones of the ocean. Deep-Sea Research I 55, 1672-1683.

Warrant, E.J., Locket, N.A., 2004. Vision in the deep sea. Biological Reviews 79,
671-712.

Weinbauer, M.G., Brettar, I, Hofle, M.G., 2003. Lysogeny and virus-induced
mortality of bacterioplankton in surface, deep, and anoxic marine waters.
Limnology and Oceanography 48 (4), 1457-1465.

White, P.A., Kalff, J., Rasmussen, J.B., Gasol, J.M., 1991. The effect of temperature
and algal biomass on bacterial production and specific growth rate in
freshwater and marine habitats. Microbial Ecology 21, 99-118.

Widder, E.A., 1999. Bioluminescence. In: Archer, S.N., Djarngoz, M.B.A., Loew, E.R,,
Partridge, ]J.C., Vallerga, S. (Eds.), Adaptive Mechanisms in the Ecology of
Vision. Kluwer Academic, Boston, pp. 555-581.

Wilson, S.E., Steinberg, D.K. Buesseler, K.O., 2008. Changes in fecal pellet
characteristics with depth as indicators of zooplankton repackaging of

particles in the mesopelagic zone of the subtropical and subarctic North
Pacific Ocean. Deep-Sea Research II 55, 1636-1647.

Wilson, RW., Millero, FJ., Taylor, J.R,, Walsh, PJ., Christensen, V., Jennings, S.,
Grosell, M., 2009. Contribution of fish to the marine inorganic carbon cycle.
Science 323, 359-362.

Wishner, K.F., Ashjian, CJ.,, Celfman, C., Gowing, M.M., Kann, K., Levin, LA,
Mullineaux, L.S., Saltzman, J., 1995. Pelagic and benthic ecology of the lower
interface of the Eastern Tropical Pacific oxygen minimum zone. Deep-Sea
Research [ 42, 93-115.

Wishner, K.F., Gowing, M.M., Gelfman, C., 1998. Mesozooplankton biomass in the
upper 1000 m in the Arabian Sea: overall seasonal and geographic patterns,
and relationship to oxygen gradients. Deep-Sea Research II 45, 2405-2432.

Wishner, K.F., Gowing, M.M., Gelfman, C., 2000. Living in suboxia: ecology of an
Arabian Sea oxygen minimum zone copepod. Limnology and Oceanography
45, 1576-1593.

Wishner, K.F., Gelfman, C., Gowing, M.M., Outram, D.M., Rapien, M., Williams, R.L.,
2008. Vertical zonation and distributions of calanoid copepods through the
lower oxycline of the Arabian Sea oxygen minimum zone. Progress in
Oceanography 78, 163-191, doi:10.1016/jpocean.2008.03.001.

Worm, B., Sandow, M., Oschlies, A., Lotze, H.K., Myers, R.A., 2005. Global patterns of
predator diversity in the open oceans. Science 309, 1365-1369.

Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., Jackson, ].B.C,,
Lotze, HK, Micheli, F., Palumbi, S.R, Sala, E., Selkoe, KA. Stachowicz, ]J.,
Watson, R., 2006. Impacts of biodiversity loss on ocean ecosystem services.
Science 314, 787-790.

Yamaguchi, A., Watanabe, Y., Ishida, H., Harimoto, T., Furusawa, K., Suzuki, S.,
Ishizaka, J., Ikeda, T., Takahashi, M.M., 2002. Community and trophic structures
of pelagic copepods down to greater depths in the western subarctic Pacific
(WEST-COSMIC). Deep-Sea Research I 49, 1007-1025.

Yamaguchi, A., Watanabe, Y., Ishida, H., Harimoto, T., Furusawa, K., Suzuki, S.,
Ishizaka, J., Ikeda, T., Takahashi, M.M., 2004. Latitudinal differences in the
planktonic biomass and community structure down to greater depths in the
Western North Pacific. Journal of Oceanography 60, 773-787.

Yen, J., Weissburg, M.J., Doall, M.H., 1998. The fluid physics of signal perception by
mate-tracking copepods. Philosophical Transactions of the Royal Society of
London B 353, 387-804.

Zak, D.R., Blackwood, C.B. Waldrop, M.P.,, 2006. A molecular dawn for
biogeochemistry. Trends in Ecology and Evolution 21 (6), 288-295.

Zeidberg, L.D., Robison, B.H., 2007. Invasive range expansion by the Humboldt
squid, Dosidicus gigas, in the eastern North Pacific. Proceedings of the National
Academy of Sciences 104, 12948-12950.

Zhang, X., Dam, H.G., 1997. Downward export of carbon by diel migrant mesozoo-
plankton in the central equatorial Pacific. Deep-Sea Research Il 44, 2191-2202.


dx.doi.org/10.1016/jpocean.2008.03.001

	Mesopelagic zone ecology and biogeochemistry - a synthesis
	Introduction
	Microbial and metazoan ecology
	Vertical distribution of functional groups
	Viruses
	Bacteria and archaea
	Protists
	Zooplankton and nekton

	Factors affecting vertical distribution
	Euphotic zone
	Water mass structure
	Oxygen minimum zone
	Particle interactions

	Temporal variability
	Bacteria
	Protists
	Zooplankton and nekton

	Regional comparisons

	Behaviour and sensory communication
	Microbial and metazoan function
	Biological pump
	Respiration and remineralisation
	Chemoautotrophy

	Sensitivity to global change
	Increasing temperature
	Expansion of oxygen minimum zones
	Increasing carbon dioxide, decreasing pH
	Over-fishing

	Development of techniques
	Future directions
	Community structure
	Foodweb dynamics
	Ecological interactions with dissolved organic material
	Ecological interactions with particulate material

	Acknowledgments
	References




