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Introduction

In the late 1980’s, Ehud Hrushovski invented a remarkable construc-
tion which produced examples and counterexamples settling several im-
portant problems and conjectures in model theory [10]. There is now
strong evidence that this construction has wider significance for model
theory, as in many cases the objects which it produces occur ‘naturally’
elsewhere in mathematics. In particular there are connections between
the construction and complex analytic geometry [18, 17, 11, 12]; generic
complex plane curves [5]; and sparse random graphs [15, 2].

In this paper we offer an alternative viewpoint on Hrushovski’s con-
struction which simplifies several aspects aspects of it. We also believe
that this way of viewing the construction provides further evidence (if
needed) of its ‘naturality.’

In the original construction one has an amalgamation class of (finite)
structures and distinguished embeddings, defined by non-negativity of
a straightforward function called a predimension. In our approach we
will see that this class and its embeddings can be viewed as a ‘reduct’
of a much simpler class of structures (plus embeddings). Using this we
show that the ω-stable ab initio structures produced by the construc-
tion are reducts of trivial, 1-based stable structures (Theorem 1.9).

In order to describe a special case (closely related to the example in
Section 1 of [7]), we begin with a description of a reasonably natural
combinatorial object. By a digraph we mean a set of vertices together
with an anti-symmetric, irreflexive binary relation on the vertices (–
the directed edges). Consider the class D of digraphs in which every
vertex has at most two directed edges coming out of it (i.e. has at
most two out-neighbours). In such a digraph, call a subset of vertices
closed if any out-neighbour of a vertex in the subset is already in the
subset. Using a Fräıssé-style amalgamation argument, it is easy to
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show that there is a unique (up to isomorphism) countable digraph
D ∈ D with the properties that: D is a union of a chain of finite closed
subdigraphs; any finite digraph in D embeds as a closed subdigraph of
D; any isomorphism between finite, closed subdigraphs of D extends
to an automorphism of D. It can be shown that Th(D), the theory of
D, is stable, one-based and trivial (Theorem 1.9(1)).

Now consider the (undirected) graph H obtained by forgetting the
orientation on the edges of D. By Theorem 1.9(2), H is isomorphic to
the ‘ab initio’ Hrushovski structure constructed using the predimension
‘twice number of vertices minus number of edges’ on finite graphs. So
H is ω-stable of Morley rank ω.2 and it is neither trivial nor one-based
(cf. Theorem 1.1).

We can do this more generally and obtain any of the basic ab initio
Hrushovski structures produced by an integer-valued predimension as
a reduct of a ‘natural’ stable, trivial one-based structure. This is the
content of Section 1 of the paper. Although we have not been able
to do the same for the Hrushovski structures of finite Morley rank,
we believe our viewpoint offers some extra insight into the algebraic
amalgamation required for these constructions. This is the content of
Section 2. Finally in Section 3 we observe that the digraph D (and
therefore the graph H) is interpretable in a very natural module. We
also show that any pseudoplane arising from a non-one-based reduct
of a stable one-based theory (with nfcp) has to satisfy a ‘positivity of
predimension’ inequality (Proposition 3.1). Thus we have a case where
such a condition arises from some reasonably natural model-theoretic
assumptions.

1. The ab initio case

Suppose r ≥ 2 and m,n ≥ 1 are fixed integers. We work with the
class C of finite r-uniform hypergraphs, which we regard as structures in
a language with a single r-ary relation symbol R(x1, . . . , xr) whose in-
terpretation is invariant under permutation of coordinates and satisfies
R(x1, . . . , xr) →

∧
i<j(xi 6= xj). If B ∈ C consider the predimension

δ(B) = n|B| −m|R[B]|
where R[B] denotes the set of hyperedges on B (i.e {{b1, . . . , br} : B |=
R(b1, . . . , br)}). For A ⊆ B, we write A ≤ B iff for all A ⊆ B′ ⊆ B we
have δ(A) ≤ δ(B′), and let C0 = {B ∈ C : ∅ ≤ B}.

We let C̄0 be the set of structures all of whose finite substructure are
in C0. If A ⊆ B ∈ C̄0 we write A ≤ B iff X ∩ A ≤ X for all finite
X ⊆ B. (This agrees with what was previously defined on C0.) Then
the following is well-known and is sometimes referred to as the ab initio
case of the Hrushovski construction:

Theorem 1.1. There is a unique countable M0 ∈ C̄0 having the prop-
erties: M0 is a union of a chain of finite ≤-substructures; if X ≤M0 is
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finite and X ≤ A ∈ C0, then there is an embedding α : A→ M0 which
is the identity on X and α(A) ≤ M0. Moreover, Th(M0) is ω-stable,
and M0 is ω-saturated. 2

The structure M0 is the generic structure for the class (C0,≤). A
proof of the above statement can be found in ([3], Theorem 3.34) or
[16]. For ‘most’ choices of m,n, r, the theory Th(M0) is neither trivial,
nor one-based: indeed the point of Hrushovski’s construction in [10]
is to produce regular types whose geometries are not modular. We
will show that M0 is, however, a reduct of a stable, trivial one-based
theory by deriving the amalgamation class (C0,≤) as a ‘reduct’ of a
less complicated one (G,v).

The main idea is a connection between the condition ∅ ≤ B and
Philip Hall’s Marriage Theorem (see Lemma 1.5). A similar observation
was exploited in a different way in [5], where it is attributed to Frank
Wagner.

The following definition looks technical: in fact it is a way of making
sense of the notion of ‘directed hypergraph’ in a way which is suit-
able for our context. The remarks following the definition should help
explain it and make it look less contrived.

Definition 1.2. Suppose A is an r-uniform hypergraph. An (m,n)-
orientation of A is an integer-valued function w(x, e) defined on pairs
{(x, e) : x ∈ A, e ∈ R[A], x ∈ e} and satisfying:

(1) 0 ≤ w(x, e) ≤ m;
(2) for e ∈ R[A] we have

∑
x∈ew(x, e) = m;

(3) for x ∈ A we have
∑

x∈ew(x, e) ≤ n.
We refer to the pair (A,w) as an (m,n)-oriented hypergraph and denote
the class of these by Ḡ, and the finite members by G.

Remarks 1.3. As m,n, r are fixed for our purposes, we shall hence-
forth omit them from the terminology. It should be clear what we
mean by a substructure of an oriented hypergraph: we restrict R and
the function w. It should also be clear that as w can take only finitely
many values, we can regard oriented hypergraphs as relational struc-
tures (in a richer language).

As a special case, consider what the definition means if r = 2 (so we
are dealing with ordinary graphs) and m = 1. Thus, by (1) and (2), w
selects one vertex from each edge. Think of the edge as being directed
away from the selected vertex. Then (3) says that each vertex has at
most n directed edges coming out of it. More generally, if r is arbitrary
but m = 1 still, then w distinguishes one vertex from each hyperedge
and any vertex is the distinguished vertex of at most n hyperedges.

Definition 1.4. If (B,w) is an oriented hypergraph and A ⊆ B we
write A v B to mean that if a ∈ A and w(a, e) > 0, then e ⊆ A.
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So for example, if we are in the case r = 2,m = 1, then A v B
means that no directed edge points out of A. In general, there is a
closure operation associated with v. If (B,w) ∈ Ḡ and X ⊆ B, then
define cl′B(X) to be the closure of X under the operation of adjoining
to X all vertices in edges e with w(x, e) > 0 for some x ∈ e ∩X. It is
clear that this is a closure operation and cl′B(X) is the smallest subset
A with X ⊆ A v B. Note that this closure operation is disintegrated:
cl′B(X) =

⋃
x∈X cl′B(x).

The main observation comnnecting the classes (C0,≤) and (G,v) is
the following:

Lemma 1.5. Suppose B is a finite r-uniform hypergraph and A ⊆ B.
Then ∅ ≤ A ≤ B iff there is an orientation (B,w) of B in which A is
a closed subset. In particular, B ∈ C0 iff there is an orientation of B.

Proof. (⇐:) Suppose there is an orientation (B,w) in which A is closed.
By considering substructures, and the special case where A = ∅, it
suffices to show that δ(B) ≥ δ(A), i.e. n|B \ A| ≥ m|R[B] \R[A]|.

Compute the sum
∑
{w(x, e) : x ∈ B \ A, x ∈ e ∈ R[B]} in two

different ways. Firstly, it is ≤ n|B \ A|. Secondly, because A v B the
edges making a non-zero contribution to the sum are those in R[B] \
R[A]. Also, if e ∈ R[B] \ R[A] and w(x, e) > 0 , then x ∈ B \ A. So
the sum is equal to m|R[B] \R[A]|. This gives the desired inequality.

(⇒:) The idea is to interpret the condition A ≤ B as a condition
on a certain bipartite graph which will allow us to use Hall’s Marriage
Theorem (cf. [4], Theorem III.3.7) to obtain a complete matching
on the bipartite graph: the orientation will then be derived from the
matching. Indeed, Hall’s theorem applies directly in the case where
m = n = 1, A = ∅ and the bipartite graph is taken as the incidence
graph between hyperedges and vertices: the matching picks out the
vertex of the hyperedge which is to be distinguished. The reader will
probably have little difficulty adapting this argument to prove the gen-
eral case, but we give a slightly different style of argument in terms of
flows in directed graphs. For this, we shall use the terminology of ([4],
Section III.1), but for the convenience of the reader we repeat some of
it here.

Suppose we have a finite digraph Γ with two distinguished vertices
s (the source) and t (the sink). Suppose also that to each other vertex
there is assigned a non-negative real number called its capacity. A
flow on Γ (with this capacity function) is a function which assigns a
non-negative real to each directed edge of Γ and has the property that
at each vertex 6= s, t the sum of its values on the in-edges is equal to
the sum of its values on the out-edges, and this number is at most the
capacity of the vertex. The value of the flow is the sum of the values
of the flow on the out-edges of s minus the sum of its values on the
in-edges at s (and this is equal to the sum of the values of the flow
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on the in-edges of t minus the sum of its values on the out-edges at
t) . A (vertex) cut of Γ (with the capacity function) is a subset S of
the vertices (excluding s, t) with the property that any flow on Γ \ S
has value zero. The capacity of S is the sum of the capacities of the
vertices in S.

We now turn to the proof of our result. Note first that, inductively,
we may assume that there is an orientation v of A. We have to say
how to orient the edges e ∈ R[B]\R[A]. Note that to ensure A v B in
the final orientation w we should have w(a, e) = 0 for any such e and
a ∈ A.

Construct a directed graph Γ with vertices a source s, a sink t, and
other vertices V1 = R[B] \R[A], V2 = B \A. There are directed edges
from s to all vertices in V1 and from all vertices in V2 to t, and from
e ∈ V1 to x ∈ V2 whenever x ∈ e (and these are the only directed
edges). We assign the capacity m to all vertices in V1 and n to all
vertices in V2. Consider a flow f of maximum possible value. Recall
([4], Theorem III.1.2) that we may also assume that f is integer valued.
Clearly the value of f is at most m|V1|. We make the:

Claim: f has value m|V1|.
Suppose we have proved this. Then the flow out of every vertex of V1

is exactlym. For e ∈ V1 and x ∈ V2 with x ∈ e, define w(x, e) = f(e, x),
the value f assigns to the directed edge from e to x. Extend this by
setting w(x, e) = 0 for e ∈ V1, x ∈ e ∩ A and w(x, e) = v(x, e) for
e ∈ R[A], x ∈ e. Then w is an orientation of B in which A is a closed
subset, as required.

So it remains to prove the claim. Suppose f has value < m|V1|. By
the max-flow, min-cut theorem of Ford and Fulkerson ([4], Theorem
III.1.4), there is a cut S with the value of f as its capacity. Let Si =
S ∩ Vi. So we have

m|S1|+ n|S2| < m|V1|.
Thus

|S2| <
m

n
(|R[B]| − |R[A]| − |S1|).

Now, there are no directed edges between V1 \ S and V2 \ S: otherwise
we could use such an edge to produce a flow on Γ \ S with non-zero
value, contradicting that S is a cut. So all the directed edges out of
V1 \ S end in S2. Let X be the union of the set of hyperedges V1 \ S.
It follows that |X \ A| ≤ |S2|, i.e.

|X| − |X ∩ A| ≤ |S2|.
On the other hand,

|R[X] \R[A]| ≥ |V1 \ S| = |R[B]| − |R[A]| − |S1|.
Putting these inequalities together we obtain

|X| − |X ∩ A| < m

n
(|R[X]| − |R[X ∩ A]|).
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In other words δ(X ∩ A) > δ(X). But as A ≤ B we have A ∩X ≤ X:
a contradiction. This establishes the claim, and finishes the proof of
the lemma. �

Remarks 1.6. If m,n are not integers (but still > 0) then the proof
shows that the lemma still holds as long as we drop the requirement
that the orientation be integer valued.

Lemma 1.7. Suppose A ⊆ B ∈ C0. If w is an orientation of B in
which A is closed and v is any orientation of A, then w′ defined by
w′(x, e) = v(x, e) if e ⊆ A, and w′(x, e) = w(x, e) if e 6⊆ A, is an
orientation of B (in which A is closed). In particular, if A ≤ B, then
any orientation of A can be extended to an orientation of B in which
A is closed.

Proof. For the first statement, one just checks the definitions. The
second statement then follows as by Lemma 1.5, if A ≤ B then there is
some orientation of B in which A is closed (in fact the proof of Lemma
1.5 shows that any orientation of A extends to an orientation of B in
which A is closed). �

Lemma 1.8. (Full Amalgamation) If A is a common substructure of
oriented hypergraphs (B,w) and (C, u) and A is closed in (C, u), then
the free amalgam (F, v) of (B,w) and (C, u) over A is an oriented
hypergraph in which B is closed.

Proof. Let us be clear about what (F, v) is. The domain F is the
disjoint union of B and C over A; hyperedges on F are precisely the
hyperedges of B and those of C; the orientation v is then the union of
w and u (the assumption that A is a common substructure means that
these agree on point-hyperedge pairs in A).

First we show B v F . Suppose b ∈ B, e is an edge of F not contained
in B and v(b, e) > 0. Then e is an edge of C, so b ∈ C ∩ B = A. But
as A v C this implies e ⊆ A ⊆ B: a contradiction. Thus B v F .

To check that v is an orientation of F we clearly only have to check
Definition 1.2 (3). If x ∈ B \ C and x ∈ e ∈ R[F ] then e ⊆ B, so∑

e:x∈e v(x, e) ≤ n. Likewise if x ∈ C \ B. So suppose x ∈ A, e ∈ R[F ]
and v(x, e) > 0. If e ⊆ C then (as A v C) we have e ⊆ A. Thus
in any case e is contained in B, and we get condition 1.2 (3) by the
corresponding condition in (B,w). �

Thus we have an amalgamation class (G,v). It is clear that G has
only finitely many isomorphism types of each finite size (in fact we can
think of the structures as being in a finite language), thus, by the usual
Fräıssé-style construction there is a unique countable generic structure
N0 for (G,v). Recall that M0 denotes the countable generic for (C0,≤)
(Theorem 1.1). Our main theorem is part (2) of the following.

Theorem 1.9. With the above notation:



TRIVIAL STABLE STRUCTURES WITH NON-TRIVIAL REDUCTS 7

(1) N0 is stable, one-based and trivial.
(2) The reduct of N0 to the hypergraph language is isomorphic to

M0.

Proof. (1) We follow, omitting some details, the development in [7]
(see especially Lemma 1.2 there). First, we axiomatize Th(N0) by the
following set T ′ of sentences. We have the axioms describing the class
Ḡ (in whatever language we have chosen). To these we add axioms of
the form:

∀x̄∃ȳ(∆X(x̄) → ∆X,A(x̄, ȳ) ∧ χ(x̄ȳ))

where X v A ∈ G, ∆X , ∆X,A denote the basic diagrams of X, A
with the variables x̄ representing X and the variables ȳ representing
A\X. The formula χ(x̄ȳ) expresses that ‘if y ∈ ȳ and w(y, e) > 0 then
e ⊆ x̄ ∪ ȳ.’ Thus if D ∈ Ḡ and D |= χ(āb̄), then cl′D(āb̄) = cl′D(ā) ∪ b̄.
Consistency of T ′ follows from full amalgamation. In fact N0 is a
model of T ′ (build a countable model of T ′ as a union of a chain of
finite structures each closed in the next: the result must also satisy the
characteristic properties of the generic N0).

Note that in an ω-saturated model N of T ′, if X v N is the closure
of a finite set and X v A ∈ Ḡ where A is also the closure of a finite
set, then there is an embedding over X of A into N with closed im-
age. This allows us to show, by a back-and-forth argument, that T ′ is
complete and types are described by quantifier-free types of closures.
Counting types gives stability, and (arguing as for Lemma 1.2 of [7]),
in a saturated model, two small closed subsets are independent over
their intersection. From this, and the fact that closure is disintegrated,
we obtain that T ′ is one-based and trivial. This gives (1).

(2) It is enough to show that the (unoriented) reduct M satisfies the
characteristic properties of the generic given in Theorem 1.1. As N0 is
a union of a chain of finite v-substructures, we have that M is a union
of a chain of finite ≤-substructures (by Lemma 1.5).

Let X ≤M be finite and X ≤ A ∈ C0. Let Y = cl′N0
(X). Note that

Y is finite (as N0 is a union of a chain of finite v-substructures). The
orientation of X as a substructure of N0 extends to an orientation w
of A (Lemma 1.7). Let F be the free amalgam of (A,w) and Y over
X, as in Lemma 1.8. As X v (A,w) we have Y v F . Also Y v N0,
so (using T ′) there is an embedding of F into N0 which is the identity
on Y and has closed image in N0. Thus we may assume that F v N0.
Now consider this in the reduct M . It is clear that (the unoriented) F
is the free amalgam in C0 of A and Y over X. As X ≤ Y , it follows
that A ≤ F . But also F ≤M , so A ≤M , as required. �

2. Finite rank structures

It is well-known that if a complete theory is stable and one-based (re-
spectively, trivial) and all its types have finite U -rank, then any reduct
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is also one-based (respectively, trivial): see ([13], Proposition 4.6.3)
and [8]. However, it appears to be an open question as to whether a
finite U -rank reduct of a stable one-based (trivial) theory is necessar-
ily one-based. In particular, it would be interesting to know whether
Hrushovski’s strongly minimal set from [10] can be obtained as a reduct
of a stable, one-based trivial structure. In this section we try to repeat
the construction of the previous section in order to do this. We do not
succeed. Nevertheless, this viewpoint gives a different insight into the
main amalgamation lemma required for Hrushovski’s construction and
so is still of interest.

We continue to use the notation of Section 1. The following is one
of the key definitions from [10]. Suppose X ⊂ Y ∈ C0. We say that
the extension X ⊂ Y is simply algebraic if δ(X) = δ(Y ) and whenever
X ⊂ X1 ⊂ Y , then δ(X) < δ(X1). So X ≤ Y , but X1 6≤ Y for
all X ⊂ X1 ⊂ Y . The extension is minimally simply algebraic if the
extension X0 ⊂ X0 ∪ (Y \ X) is not simply algebraic for all proper
subsets X0 of X. We now formulate this in terms of orientations. The
following terminology will be convenient.

Definition 2.1. Suppose (Y,w) ∈ G and X ⊂ Y . We say that y ∈ Y
is full in (Y,w) if

∑
{w(y, e) : e ∈ R[Y ]} = n. We say that y is full in

Y if the orientation w is clear from the context.

Lemma 2.2. Suppose X ⊂ Y ∈ C0. Then the following are equivalent.

(1) X ⊂ Y is simply algebraic.
(2) X ≤ Y , and for every orientation w of Y in which X is closed,

y is full in (Y,w) and X ∪ cl′(Y,w)(y) = Y , for all y ∈ Y \X.
(3) There is an orientation w of Y in which X is closed, and y is

full in (Y,w) and X ∪ cl′(Y,w)(y) = Y , for all y ∈ Y \X.

Proof. First we show (1 ⇒ 2). Take an orientation w of Y in which X
is closed. It follows that

n|Y \X| ≥
∑

y∈Y \X

{w(y, e) : y ∈ e} =

=
∑

e∈R[Y ]\R[X]

{w(y, e) : y ∈ Y \X} = m|R[Y ] \R[X]|.

As δ(Y ) = δ(X) we have equality here and so obtain the fullness con-
dition in (2). For the other condition, let X1 = X ∪ cl′(Y,w)(y). Then
X ⊂ X1 v (Y,w), so X1 ≤ Y , and therefore X1 = Y .

The implication (2 ⇒ 3) is clear, so now we show (3 =⇒ 1).
The counting in the first part of the proof shows that δ(Y ) = δ(X).
On the other hand, if X ⊂ X1 ⊂ Y then X1 6v (Y,w), so there is
x ∈ X1 \X and an edge e of Y with w(x, e) > 0 and e not contained
in X1. So e is not an edge in the substructure on X1, and therefore∑
{w(x, f) : f ∈ R[X1]} < n. Counting as in the proof of (1 ⇒ 2)

gives δ(X) < δ(X1). �
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Definition 2.3. Suppose (Y,w) ∈ G and X ⊂ Y . We say that X ⊂ Y
is a primitive extension if:

(1) X v (Y,w);
(2) if y ∈ Y \X, then y is full in Y and cl′(Y,w)(y) = Y ;
(3) Y =

⋃
{e : e ∈ R[Y ] \R[X]}.

Corollary 2.4. Suppose X ≤ Y ∈ C0. Then the following are equiva-
lent.

(1) X ⊂ Y is minimally simply algebraic;
(2) there is an orientation w of Y in which X ⊂ (Y,w) is a primi-

tive extension;
(3) for every orientation w of Y in which X is closed, the extension

X ⊆ (Y,w) is primitive.

Proof. By the previous lemma, the issue is the minimality. To see that
(2 ⇒ 1), suppose we have an orientation in which X ⊂ Y is a primitive
extension. If we delete some points of X then we destroy some edge
which is not entirely contained in X, and therefore some point of Y \X
ceases to be full. Thus X ≤ Y is minimally simply algebraic.

For (1 ⇒ 3), suppose X ≤ Y is minimally simply algebraic and w
is any orientation of Y in which X is closed. So (1), (2) in the above
definition hold. If x ∈ X is not in an edge containing some point of
Y \X, then we can delete it (and all edges containing it) and still have
conditions (1), (2) of the definition above holding. Thus by the lemma,
X \ {x} ⊂ Y \ {x} is simply algebraic: a contradiction. �

Remarks 2.5. If X ≤ Y is minimally simply algebraic, there can be
orientations of Y in which X is not closed. The easiest example is with
m = n = 1 and a ternary relation. Take Y to be three points forming a
single edge, and X two of the points. If we orient Y so that one of the
points of X is the distinguished vertex, then of course X is not closed
in Y in this orientation.

Lemma 2.6. If (A,w) ∈ Ḡ, and X ⊆ Y1, Y2 ⊆ A, where X ⊆ Yi is
a primitive extension, then either Y1 = Y2 or Y1 ∩ Y2 = X. Moreover
cl′A(Y1) = Y1 ∪ cl′A(X).

Proof. For the first part, suppose y ∈ Y1 ∩ Y2 \X. As y is full in both
Y1 and Y2, any edge e of A with w(y, e) > 0 is contained in Y1 ∩ Y2.
The claim then follows from the definition of primitivity. The second
part follows from fullness in Y1 of points in Y1 \X. �

The difference between the ab initio version of Hrushovski’s con-
struction in Section 1, and the strongly minimal set construction in
[10] is that in the former, types corresponding to minimally simply al-
gebraic extensions are minimal types, whereas in the latter, these are
‘collapsed’ to algebraic types.
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We can do the same thing using oriented structures and primitive
extensions. To construct the strongly minimal set one knows, for model
theoretic reasons, that the multiplicities µ(Y,X) of the minimally sim-
ply algebraic extensions X ≤ Y cannot be specified completely arbi-
trarily. However, the combinatorial reasons for this are somewhat mys-
terious. In [10] Hrushovski works with a lower bound µ(Y,X) ≥ δ(X)
and raises the question as to what the precise lower bound is.

in contrast, it can be shown that the class of finite oriented struc-
tures with the multiplicities of primitive extensions spcified arbitrarily
is an v-amalgamation class. Thus one can form a corresponding ori-
ented generic structure. Of course, when one passes to the unoriented
reduct, different primitive extensions can give rise to isomorphic min-
imally simply algebraic extensions and thereby higher multiplicities
appear in the reduct. But the real issue here is that the reduct is not
≤-homogeneous. The problem is that Lemma 1.7 fails in the situation
where multiplicities of primitive extensions are restricted: in the re-
stricted class, an orientation of a ≤-substructure need not extend to
an orientation of the larger structure (in the same class).

We take a different approach which avoids this problem, but the
amalgamation lemma will fail for the class of oriented structures we
consider. Nevertheless, this approach will give a different proof of
Hrushovski’s algebraic amalgamation lemma for the unoriented struc-
tures.

Suppose, as in [10], that for each minimally simply algebraic ex-
tension X ⊂ Y in C0 we have a natural number µ(Y,X), and let Cµ

be the class of structures in C0 which omit substructures consisting of
µ(Y,X) + 1 copies of an m.s.a. extension Y ⊃ X over a fixed X.

Let Gµ consist of all orientations of elements of Cµ. It is clear that
Lemma 1.7 holds for Cµ and orientations in Gµ. On the other hand,
Gµ is usually not an amalgamation class. Take some m.s.a. extension
X ⊂ Y which admits two non-isomorphic orientations X ⊂ (Y1, w1)
and X ⊂ (Y2, w2) agreeing on X. For i = 1, 2, let Bi ∈ Gµ consist of
µ(Y,X) − 1 copies of (Y1, w1) over X (– call this A) together with a
copy of (Yi, wi). Then we cannot amalgamate B1 and B2 over A in Gµ.

The following gives a different interpretation of Hrushovski’s lower
bound for µ.

Lemma 2.7. Suppose X ⊆ Y is a m.s.a. extension in C0. Suppose A
is the disjoint union over X of r copies Y1, . . . , Yr of Y and w is an
orientation of A. If r > δ(X), then X v Yi for some i ≤ r.

Proof. Suppose X 6v Yi for each i ≤ r. So there is yi ∈ Yi \X, xi ∈ X
and ei ∈ R[Yi] with w(xi, ei) ≥ 1 and yi ∈ ei. As the Yi are pairwise
disjoint over X, the edges ei are distinct. Now sum w over vertices in
X. We obtain r +m|R[X]| ≤ n|X| and so r ≤ δ(X). �
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Corollary 2.8. (Self-sufficient amalgamation: [10], Lemma 4.) Sup-
pose that µ(Y,X) ≥ δ(X) for all minimally simply algebraic extensions
X ⊆ Y in C0. If B1, B2 ∈ Cµ and A is a common substructure with
A ≤ B1, B2, then B1, B2 can be amalgamated over A into some struc-
ture C ∈ Cµ with B1, B2 ≤ C.

Proof. The proof is by induction on |B1 \ A| + |B2 \ A|. Let F be
the free amalgam of B1 and B2 over A and suppose F 6∈ Cµ. Take
an orientation of B1 in which A is closed, and extend the orientation
of A to an orientation of B2. The result is an orientation w of F . By
assumption, there exist m.s.a. extensions X ⊆ Y1, . . . , Yr in F , pairwise
intersecting in X and isomorphic over X, such that r > µ(Y1, X).

Claim: X ⊆ A.

Once we have this the proof is straightforward. For any i either
Yi ⊆ A or Yi ∩ A = X (by simple algebraicity). So we can assume (as
B1, B2 ∈ Cµ) that Yi ⊆ Bi and Yi ∩ A = X for i = 1, 2. But then
A ∪ Yi v Bi (by Lemma 2.6) and A ∪ Yi is the free amalgam of A and
Yi over X (for i = 1, 2). (To see the latter, note that by fullness, if
e ∈ R[Bi] contains y ∈ Yi \ X and w(y, e) > 0, then e ⊆ Yi. On the
other hand, if z ∈ A ∩ e and w(z, e) > 0 then e ⊆ A as A v Bi, so e
containes no points of Yi \X. Thus there can be no hyperedges of Bi

which contain both a point of Yi \X and a point of A \X: there is no
possibility for the orientation of such a hyperedge.) So A∪Yi ≤ Bi are
isomorphic over A (as unoriented structures, not necessarily as oriented
structures), and we finish by the inductive hypothesis.

So now we prove the claim. By Lemma 2.7 and our assumption,
there exists some i ≤ r with X v Yi (in the orientation w), so X ⊂ Yi

is a primitive extension. For a contradiction, we assume (without loss)
that X 6⊆ B1. Let x ∈ X \ B1. As X ⊆ Yi is primitive there exist a
hyperedge e in Yi containing x and y ∈ Yi\X with w(y, e) > 0. As F is
a free amalgam and x ∈ X \B1 we have e ⊆ B2. Furthermore, because
A v B2 we must have y ∈ B2 \A. It then follows from primitivity that
Yi v B2 and Yi \X ⊆ B2 \ A, i.e. Yi ∩ A ⊆ X.

As B2 ∈ Cµ there is some j ≤ r with Yj 6⊆ B2. Then Yj ∩ B2 ≤ Yj

and so by m.s.a. Yj ∩ B2 = X (as X ⊆ B2). But x is in a hyperedge
with some element of Yj \ X (by minimality of X ⊆ Yj) and this is
impossible as F is a free amalgam over A. �

Remarks 2.9. As can be seen from the proof, the lower bound on µ
is used to force X to be a subset of A. For certain m.s.a. extensions
a different approach is possible, with a lesser bound. For example,
working with r = 2 (graphs) and δ(A) = 2|A| − |R[A]| we can take
µ(Y0, X0) = 1, µ(Y1, X1) = 1 where Y0 is a 3-cycle and X0 consists of 2
vertices and Y1 is a path of length 2 with the end vertices forming X1.
In other words, in Cµ any two vertices have at most one vertex adjacent
to both of them, and in the generic, any two vertices have exactly one
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vertex adjacent to both: this is Baldwin’s construction of a projective
plane from [1]. All we have to check is that if, in the free amalgam
F we have vertices x1, x2 with two common neighbours y1, y2, then we
may assume that x1, x2 ∈ A. In fact, we could have that x1 ∈ B1 \ A
and x2 ∈ B2 \ A, but then y1, y2 ∈ A and we can interchange the roles
of the y’s and x’s to make the induction go through.

3. Concluding Remarks

3.1. Interpretation in a module. Hrushovski pointed out to us (pri-
vate communication) that the digraph D in the Introduction can be in-
terpreted in a module. Thus its graph reduct, the ab initio Hrushovski
structure H, is also interpretable in the module. Here we give one way
of doing this, keeping the interpretation and module as ‘natural’ as
possible.

Let k be any field and Λ = k〈s1, s2〉 the free k-algebra on two non-
commuting generators s1, s2. Then Λ is a free ideal ring and so is (left)
coherent. By ([6], Theorem 4.8), the theory of Λ-modules has a model
completion TΛ.

Let S(x, y) be the definable relation

(x 6= y) ∧ ((s1x = y)) ∨ (s2x = y)).

If M |= TΛ, then let MS denote the digraph with the digraph relation
given by S on M . We claim that MS is elementarily equivalent to D.

To see this, we use the axiomatization of Th(D) from the proof of
Theorem 1.9 (1). This consists of the universal part of Th(D), and
axioms ∆X,A whenever X v A ∈ D. It is clear that any finite sub-
digraph of MS is in D, so MS satifies the universal axioms in Th(D).
Now suppose X is a finite sub-digraph of MS and X v A ∈ D. Let
V = 〈A \ X〉k be the k-vector space with basis A \ X. We make
M ⊕ V into a Λ-module by defining fi(a) for a ∈ A \X as follows and
extending linearly. If there is a directed edge from a to b in the digraph
A then let fi(a) = b (for some i = 1, 2); if there are no such b, then let
fi(a) = a. As M is existentially closed, we obtain a copy A′ of A over
X inside MS with the only directed edges leaving A′ coming from X.
Thus MS |= ∆X,A.

Another way of viewing this is that in M the multiplications by s1

and s2 are behaving as a ‘generic pair’ of endomorphisms of an infinite
dimensional k-vector space. Of course, we can dispense with the abelian
group structure and simply regard s1, s2 as generic pair of functions
on an infinite set. More formally, if we consider the free semigroup
S = 〈s1, s2〉 on two non-commuting generators, then, by [9], the theory
of S-systems has a model completion and a trivial modification of the
argument in the previous paragraph shows that Th(D) is interpretable
in this.
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Similar methods can be used to interpret other oriented structures
from Theorem 1.9 in natural modules and S-systems (although we
may have to increase the number of free generators for the ring or
semigroup).

3.2. Sparse pseudoplanes. We prove the following. The terminology
is explained after the statement of the result.

Proposition 3.1. Suppose T is a complete, stable theory which is one-
based and has nfcp. Then any type definable pseudoplane in T is sparse.

We first recall that a stable theory T has nfcp (‘does not have the
finite cover property’) if the quantifier ∃∞ can be eliminated in T eq.
If N0 is one of the oriented stable structures in Theorem 1.9 and
T ′ = Th(N0), then T ′ is nfcp. One way to see this is to recall that
any complete theory of modules has nfcp, and nfcp is preserved under
interpretation. Thus as T ′ is interpretable in a theory of modules it has
nfcp. A rather more standard approach is to use Théorème 6 of [14]
and show that any ω1-saturated model of the theory of pairs of models
of T ′ is a belle paire.

Next, suppose T is any complete theory and let C be a sufficiently
saturated model of T . A type definable pseudoplane I ⊆ PI × LI is
the set of realisations of a (possibly partial) type I(x, y) of T eq such
that for all a ∈ PI and b ∈ LI the types I(a, y) and I(x, b) are non-
algebraic and whenever a 6= a′ ∈ PI and b 6= b′ ∈ LI , then the sets
{c : C |= I(a, c) ∧ I(a′, c)} and {d : C |= I(d, b) ∧ I(d, b′)} are finite. If
I(x, y) is a complete type, we refer to this as a complete type definable
pseudoplane.

It is well known (cf. [13], Proposition 4.1.7) that a stable theory T is
one-based if and only if there is no complete type definable pseudoplane
in T . Thus if T is one-based and has a reduct T− which is not one-
based, then there is a type I(x, y) which is complete in the smaller
language and which is a pseudoplane. Thus in the larger language,
I(x, y) gives a type definable pseudoplane, but none of its completions
is a pseudoplane.

Finally, we make the following definition. Suppose X, Y are infinite
sets and R ⊆ X × Y is a binary relation. We say that R is sparse if
there exists a real number n > 0 such that for all finite subsetes A ⊆ X
and B ⊆ Y we have

|R ∩ (A×B)| ≤ n(|A|+ |B|).
Thus we can view Proposition 3.1 as a weak converse to Theorem 1.9:

whereas the theorem says that the pseudoplanes given by Hrushovski’s
ab initio predimension construction can be interpreted in a stable, 1-
based theory with nfcp, the proposition says that any pseudoplane
interpretable in such a theory satisfies a ‘positivity of predimension’
inequality.
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Proof of Proposition 3.1. Suppose I(x, y) is a type definable pseudo-
plane in T eq and C is a saturated model of T . As T is one-based,
whenever C |= I(a, b), then either a ∈ acl(b) or b ∈ acl(a), as otherwise
tp(a, b) gives a complete type definable pseudoplane in T . By the nfcp,
there exist formulas φj(x, y) and ψj(x, y) and natural numbers nj,mj

(for j ∈ J , some indexing set) such that:

|= (∀y∃≤njxφj(x, y)) ∧ (∀x∃≤mjyψj(x, y))

and

|= I(x, y) →
∨
j∈J

φj(x, y) ∨ ψj(x, y).

So by compactness, there exist a conjuction θ(x, y) of formulas in
I(x, y), a natural number n, and formulas φ(x, y), ψ(x, y) such that

|= θ(x, y) → φ(x, y) ∨ ψ(x, y)

and

|= (∀y∃≤nxφ(x, y)) ∧ (∀x∃≤nyψ(x, y)).

It follows that the relation on C given by θ is sparse; therefore the
same is true for I. 2
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[4] Béla Bollobás, Modern Graph Theory, Springer Graduate Texts in Mathemat-
ics 184, New York, 1998 (second printing 2002).

[5] Olivier Chapuis, Ehud Hrushovski, Pascal Koiran and Bruno Poizat, ‘La limite
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