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Abstract. Let (K,≤) be a quasi-ordered set or a class, which we think of as a
class of models. A universal family in K is a dominating family in (K,≤), and
if there is such a family of size one then we call its single element a universal
model in K. We survey some important instances of the existence of small
universal families and universal models in various classes and point out the
influence of the axioms of set theory on the existence of such objects. Then we
present some of the known methods of constructing small universal families
and universal models and discuss their limitations, pointing out some of the
remaining open questions.

1. Introduction

Let (K,≤) be a a quasi-ordered set or a class, which we think of as a class of
models. In the context that interests us this may be the class of models of a given
cardinality of some first order theory ordered by elementary embedding or the class
of models of a given cardinality of some abstract elementary class quasi-ordered
by the inherited order. We may also consider classes whose membership is not
determined by cardinality but by some other cardinal invariant such as topological
weight. A universal family in K is a dominating family in (K,≤), and if there is
such a family of size one then we call its single element a universal model in K. The
smallest size of a universal family is called the universality number of (K,≤).

Immediate examples of universal models are the the rationals considered as a
linear order, which embed every countable linear order, or [0, 1]κ which contains a
closed copy of every compact space of weight κ, or the random graph which embeds
every countable graph. There are many other examples in just about every branch
of mathematics. The purpose of this article is to discuss general methods which
can be used to demonstrate the existence of universal models in various specific
contexts. In this presentation we concentrate on countable first order theories.
The article does not deal with the related subject of methods that can be used
to demonstrate that a certain theory does not have a small universal family at a
certain cardinal; we can refer the reader to the survey article [2] for a description
of some such ideas.
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The article is organised as follows: it first presents some classical results from
model theory that apply in ZFC or under the GCH-like assumptions. This is
the content of §2, which is divided to subsections relating to saturated and special
models and countable universal models. Section 3 moves into the realm where CH
is violated and considers the possible existence of universal models in forcing exten-
sions where CH fails, concentrating on ℵ1. This section is divided into subsections
dealing with graphs, triangle-free graphs, linear orders and amenability at ℵ1.

Throughout κ stands for an infinite cardinal. An unattributed T stands for
a theory, which means a complete first order theory with infinite models. For
simplicity in this presentation we restrict ourselves to the case of countable theories.
A type for us is any consistent set of sentences, and a complete type is a maximal
consistent set of sentences. By a universal model of T of size κ we mean a model
in which every other model of T of size κ embeds elementarily1.

2. Some classical results

We present some results on the existence of certain kinds of universal models
for complete first order theories, again restricting to the case of countable theories.
Results presented in this section mostly come from 1960s.

2.1. Saturated and special models.

Definition 2.1. A model M of a theory T is said to be κ-saturated if for
every A ⊆ M of size < κ, the expansion (M,a)a∈A realises every type Γ(x) of the
expanded language which is consistent with the complete theory Th(M,a)a∈A. M
is said to be saturated if it is |M |-saturated.

A generalisation of Cantor’s proof that the rationals are a unique countable
dense linear order with no first or last elements, gives us that saturated models are
universal. See Theorem 2.4 for a detailed statement. The basic theorem about the
existence of saturated models at uncountable cardinals is the following

Lemma 2.2. (Vaught, [10]) Suppose that N is a model T of size ≤ 2κ. Then
there is a κ+-saturated extension M of N of size 2κ.

Proof. Note that |[N ]κ| = 2κ, and for every A ∈ [N ]κ the language LA =
L∪{ca}a∈A has size κ, therefore the total number of relevant types is 2κ. Introduce
for each such type Σ a new symbol cΣ. We can form the set of sentences Γ consisting
of the elementary diagram of N along with Σ(cΣ) for all relevant Σ. This is a finitely
satisfiable set of sentences, hence it has a model, so it has a model of size 2κ. Let
M be the reduction of this model to the original language. F2.2 �

Provided that we assume some cardinal arithmetic this now gives us the exis-
tence of saturated models in successor cardinals:

Theorem 2.3. (Vaught, [10]) Suppose that κ satisfies 2κ = κ+. Then there is
a saturated model M of T of size κ+.

Proof. Let N be any model of T of size 2κ. By induction on α < 2κ we choose
models Nα of T so that

• N0 = N , Nα ≺ Nα+1, Nδ =
⋃

α<δ Nα for δ limit > 0,

1In this context, because of the compactness theorem, we could equivalently require that
every model of infinite size ≤ κ embeds into the κ-universal model.
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• For every A ⊆ Nα of size κ and type Γ(x) consistent with the complete
theory of (Nα, a)a∈A, Γ(x) is realised in Nα+1.

To do the construction at the successor stage α+ 1 we simply apply Lemma 2.2 to
the model Nα. At the end let M =

⋃
α<κ+ Nα. F2.3 �

Saturation is not necessary for universality. A weaker notion that still suffices
is that of a special model: a model M of size κ is a special model if it is the union
of an elementary chain 〈Mλ : λ < λ∗〉 such that each λ is a cardinal and Mλ is
λ+-saturated. By definition, saturated models are special. The opposite is not
true. Relationship between saturation, speciality and universality is given by the
following:

Theorem 2.4. Every saturated model is special and every special model is
universal.

Proof. The first sentence follows by definition. Suppose now that M is the
union of a specializing chain 〈Mi : i < i∗〉 where Mi+1 is κi-saturated for some
cardinals κi increasing to κ, which is the size of M . We may without loss of
generality assume that this chain is continuous. Let N be a model of T of size κ,
enumerated as {xα : α < κ}. By induction on α we choose yα ∈ M such that
xα 7→ yα is an elementary embedding. We choose yαs in blocks of κi for i < i∗,
that is the induction is on i, so that α < κi =⇒ yα ∈Mi.

Suppose that 〈yα : α < κi〉 have been chosen. Choose yα ∈ Mi+1 for α ∈
[κi, κi+1) by induction on α. Suppose that α < κi+1 and yβ for β < α have been
chosen. We use a modification of Cantor’s idea from the proof of the uniqueness of
the rationals: let Γ(x) be the type of xα in (N,xβ)β<α. Therefore Γ is a type of
size < κi+1 in (Mi+1, yβ)β<α. By the saturation of Mi+1 we can find yα ∈ Mi+1

which realises this type and the induction continues. F2.4 �

Theorem 2.5. (Morley and Vaught, [10]) Suppose that κ = 2<κ is uncount-
able2. Then there is a special model of T of size κ.

Proof. If κ = λ+ then by the assumption 2λ = κ and hence by Theorem 2.3
there is a saturated model of T of size κ. Suppose then that κ is a limit cardinal.
Our assumptions allow us to choose an increasing sequence 〈κi : i < i∗〉 of infinite
cardinals with limit κ, and such that 2κi = κi+1. Then we build an elementary chain
〈Mi : i < i∗〉 by starting with any model M0 of T of size κ0, and applying Lemma
2.2 at successor stages to get a model Mi+1 of size κi+1 which is κi

+-saturated.
Letting M =

⋃
i<i∗ Mi we obtain a special model as required. F2.5 �

Conclusion 2.6. Every countable first order theory T has a universal model
of size κ for every κ > ℵ0 satisfying 2<κ = κ.

Results presented above can be found in Chapter V of [1]. We also quote a
selection of theorems which show that some assumptions on the kind of theories
and on cardinal arithmetic are necessary for this conclusion.

Theorem 2.7. (1) (Hausdorff, [5]) There exists a saturated linear order of size
κ > ℵ0 iff κ = κ<κ.

(2) (Shelah, see [7] for a proof) Suppose that V is a model of GCH in which
κ is a regular cardinal, and let G be V -generic for the Cohen forcing which adds

2The role of uncountability here is that we need κ to be larger than the size of T .
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κ++ Cohen subsets to V . Then in V [G], in power κ+, there is no universal graph,
linear order, or generally model of a complete first order T which is unstable in κ.

(3) (Kojman-Shelah, [7]) Suppose κ is a regular cardinal and there is some
cardinal λ such that λ+ < κ < 2λ. Then there is no universal linear order of
cardinality κ.

Note that if T is stable in κ then it follows by an argument analogous to that
of Theorem 2.8 below that T has a saturated model of size κ.

2.2. Countable universal models. Countable universal models are abun-
dant in mathematics. For example, in addition to the examples we mentioned in
the Introduction there are examples in topology: any countable dense subset of
the Urysohn space is countably universal in the class of metric spaces with almost
isometric embedding. In model theory however, the theory of countable models
is different from the theory of the uncountable ones - as is most strikingly wit-
nessed by the well developed classification theory using the number of pairwise
non-isomorphic models [11], versus the still unresolved Vaught conjecture about
countable models. In the theory of universal models it is similarly the case that
countable models have a special role. Specifically, the methods presented in the rest
of this paper tend to apply only to uncountable models. However, this is not the
case with the concept of saturated models, which makes perfect sense in the case of
κ = ℵ0, see Definition 2.1. In fact, the concept of saturation was first introduced in
the countable case, by Vaught. Exactly the same proof as in the uncountable case
applies to show that saturated models are universal. For example, a well known
example of a countable universal model is the linear order of the rationals, and the
rationals are an example of a saturated model. In the case of countable models
there is a syntactic characterisation of the existence of saturated models, due to
Vaught in [17]. It also appears as Theorem 2.3.7 in [1].

Theorem 2.8. (Vaught, [17]) T has a countable saturated model iff for every
n < ω, T has only countably many complete types in n-variables.

Proof. In the forward direction, let M be a countable saturated model of T .
Then for every n and complete type Γ in n variables, Γ is realised by an n-tuple in
M . Since there are only countably many such tuples and none of them can realise
more than one complete type, the conclusion follows.

In the other direction, we shall expand T to a maximal consistent theory T ∗ in
an expanded language, such that any countable model of T ∗ gives us a saturated
model of T . Let us form the language L∗ by adding countably many new constant
symbols {cn : n < ω} to L. Let {ϕn : n < ω} be an enumeration of all sentences in
L∗. For every m-element subset Y of {cn : n < ω}, the complete types Γ(x) of T
in LY are in one-to-one correspondence with the complete types Σ(x0, . . . xm−1, x)
of T in L, and hence there are only countably many of them by the assumption.
We let {Γn(x) : n < ω} enumerate all such types Γ(x), where Y ranges over all
finite subsets of {cn : n < ω}.

By induction on n < ω we choose an increasing sequence Tn of consistent
theories with T0 = T , such that

: (1) each Tn contains only finitely many symbols from L∗ \ L,
: (2) either ϕn ∈ Tn+1 or ¬ϕn ∈ Tn+1,
: (3) if ϕn ∈ Tn+1 and ϕn = (∃x)ψ(x), then ψ(c) ∈ Tn+1 for some c ∈ L∗ \L,
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: (4) if Γn(x) is consistent with Tn, then Γn(c) ⊆ Tn+1 for some c ∈ L∗ \ L.
The induction is straightforward and we obtain that T ∗ =

⋃
n<ω Tn is a maximal

consistent theory in L∗. Let M ′ be a countable model of it, therefore by (3),
M ′ = (M,an)n<ω where M = {an : n < ω}. M is clearly a model of T and (4)
guarantees that it is saturated. F2.8 �

Of course, saturation is not a neccessary condition for universality: ω + Q is a
universal countable linear order but is not a saturated model. We shall not develop
this topic further in this article and from now on we shall only consider uncountable
models.

3. Changing the cardinal arithmetic

When we leave the realm of GCH and its remnants we are more or less left
with universes which we construct with forcing and where instances of GCH are
violated by the construction of the extension. Theorem 2.7(2) shows that if we
are not careful about how we do this, we shall end up basically with no universal
models of any sort. Theorem 2.7(3) shows that for certain theories such as linear
orders, no matter how careful we are, if we violate GCH sufficiently (including
making 2κ = 2κ+

), the universality number at κ+ will jump to the largest possible
value of 2κ+

. We shall see below that for certain other theories, for example theory
of graphs, it is possible to violate GCH as much as we like and still keep the
universality number low. This indicates that the ability of having a small universal
number in ‘reasonable’ forcing extensions in which the relevant instances of GCH
are violated is a property of the theory itself, which is not possessed by all theories.
In fact, in a series of papers, e.g. [7], [8], [6], [15], [16], [3] the thesis claiming the
connection between the complexity of a theory and its amenability to the existence
of universal models, has been pursued. In [4] we introduced the following definition,
which formalised these notions:

Definition 3.1. We say that a theory T is amenable iff whenever λ is an
uncountable cardinal satisfying λ<λ = λ and 2λ = λ+, while θ satisfies cf(θ) >
λ+, there is a λ+-cc (< λ)-closed forcing notion that forces 2λ to be θ and the
universality number of T at λ+ to be smaller than θ.

Localising this definition at a particular λ we define what is meant by theories
that are amenable at λ.

Connected to this definition there is a somewhat technical definition of high
non-amenability (see Definition 0.3 of [4]). We shall not quote the definition but
state only that high non-amenability of T implies that T is not amenable in the sense
of Definition 3.1, and that the theory of dense linear order with no endpoints is a
prototypical example of a highly non-amenable T . We should also comment that the
amenability/high non-amenability is envisioned as a dividing in the classification
theory of unstable theories. The exact syntactic properties that correspond to this
line have not been found yet, but is known that the property SOP4 implies high non-
amenability and simplicity implies amenability. We shall not go into these model-
theoretic considerations at this point but refer the reader to the articles mentioned
above. Here we shall simply be concerned to give examples and techniques which
apply to amenable theories. For simplicity in presentation we shall concentrate on
the case of amenability at λ = ℵ1 but we warn the reader that there are some
caveats in looking only at this case-we shall indicate them below.
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3.1. Graphs. The goal of this section is to present a consistency result show-
ing that it is possible to force over a model of GCH to obtain a model with a large
continuum and a small universal family of graphs at ℵ1. In fact, we shall demon-
strate that the theory of graphs is amenable at ℵ1, in the sense of Definition 3.1.
The earliest theorem to this extent is in Shelah’s [13], but unfortunately there is an
error, which was noted and corrected by Shelah in [14]. The same year Mekler [9]
found a different proof using, unlike [14], a ccc forcing. We shall present Mekler’s
proof. Let T in this section stand for the model completion of the theory of graphs,
so T is a complete model complete theory and we shall show that it is consistent
that CH fails and there is a universal model of T of size ℵ1.

To start with let V be a model of GCH and let us fix a sequence 〈Aα : α < ω1〉
of subsets of ω1 with pairwise intersections countable. Let χ be a large enough
cardinal and we shall work with with elementary substructures of 〈H(χ),∈, . . .).
The forcing will be an iteration 〈Pα, Q

˜
β : α ≤ ω2, β < ω2〉 with finite supports

such that each Pα is ccc. The first coordinate will have a special role: it will add
a generic graph G∗ on ω1 by finite conditions. Note that G∗ is a model of T . We
define the other coordinates by induction on α.

For α ≥ 1, if Pα has been defined and is ccc, suppose that a bookkeeping gives
us a name τ

˜
α, which is a Pα-name of a model of T . We first define Q

˜
α. In V we

fix a continuous sequence N̄α = 〈Nα
i : i < ω1〉 of countable elementary submodels

of 〈H(χ),∈, . . .〉 with Nα
i ∈ Nα

i+1 and 〈Pβ , Q
˜

β : β < α〉, Pα ∈ Nα
0 (so α ∈ Nα

0 ).
For η < ω1 let i(η) denote the first i such that η ∈ Nα

i . Then Qα consists of pairs
q = (Xq, fq) such that X = Xq is a finite subset of ω1 and f = fq is finite function
from ω1 to Aα whose range is disjoint from X and which satisfies

η ∈ dom(f) =⇒ f(η) ∈ Nα
i(η)+1 \N

α
i(η).

The idea is that Qα adds an embedding of τα into G∗. To say this precisely, we
define Pα+1 to consists of elements in Pα ∗ Q

˜
α such that p � α decides the τ

˜
α

structure of dom(fp(α)), ran(fp(α)) ⊆ p(0) and fp(α) is an embedding of the τ
˜

α

structure of dom(fp(α)) into p(0).
Easy density arguments show that the P = Pω2 adds an embedding of each τα

into G∗ and that if the forcing is indeed ccc, we can do the bookkeeping so to cover
all models of T of size ℵ1 in the extension. The main point of the proof is to show
that the forcing has ccc. The proof uses a certain amalgamation property that is
present in the theory of graphs, but not for example in the theory of triangle-free
graphs or the theory of linear orders. We shall describe this amalgamation property
at the point of the proof where we use it.

We need to pass to a dense set of conditions. Say that for 1 ≤ α ≤ ω2, p ∈ Pα

is complete if for every β < α and i < ω1

: (i) p � β∩Nβ
i is a condition and it determines the τβ

˜
-structure of dom(fp(β))

and
: (ii) if r ∈ Nβ

i extends p � β ∩Nβ
i and 1 ≤ γ < β then ran(fr(γ)) ∩ p(0) ⊆

ran(fp(γ)).
It can be proved that the set of complete conditions in Pα is dense, for all α. Both
this and the fact that the forcing is ccc are essentially implied by the following
Lemma 3.2, which is the main point of the argument.

Let N = 〈N̄α : α < ω2〉. For the Lemma we need to note that if p ∈ Pα is a
complete condition and N ≺ (H(χ),∈,N , . . .) countable with α ∈ N , then p ∩ N
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is a condition. The proof of this is by induction on α, the main case being the case
α = β + 1. We have by (i) that p � β ∩ Nβ

0 determines the τ
˜

β structure of fp(β),
and we also have that Nβ

0 ∈ N so p � β ∩N , which is a condition by the induction
hypothesis is stronger than p � β∩Nβ

0 and hence it too determines the τ
˜

β structure
of fp(β). We also need to note that the range of fp(β) is contained in N ∩ω1, which
follows as fp(β) is finite.

Lemma 3.2. For any α ≤ ω2, if p ∈ Pα is a complete condition, N ≺ (H(χ),∈
,N , . . .) countable with α ∈ N and r ∈ Pα ∩ N extends p ∩ N , then p ∪ r can be
extended to a condition in Pα which extends both p and r3.

Proof. We shall present the main part of the proof, from which it can be seen
where the amalgamation condition is being used. The final part of the proof will
only be indicated. Let us assume α ≥ 1, as otherwise the conclusion is trivial.

We shall need to refer to a following observation about elementary submodels.

Claim 3.3. For any γ ≤ ω2, γ ⊆
⋃

i<ω1
Nγ

i .

Proof of the Claim. Let β < γ. Since γ ∈ Nγ
0 there is f ∈ Nγ

0 which maps ω1

onto γ. There is i < ω1 such that f−1(β) ∈ Nγ
i and then β ∈ Nγ

i . F3.3

The construction of the desired condition is by induction on k < ω, where the
induction will stop after some finite number of stages. At each stage we define

Nk ≺ (H(χ),∈, . . .) countable, rk ∈ Pα, ak ⊆ dom(p) \ {0}, (sk
β)β∈ak

, γk

where each sk
β is a finite graph on a subset of ω1. For each k > 0, γk is a special

element of ak, called the leading ordinal, with γ0 = ∞. The elements of ak are
called the active ordinals. We denote δk = Nk∩ω1. The following are our inductive
hypotheses:

• If β ∈ ak then sk
β is a subgraph of rk(0) ∪ ran(fp(β)) (which in itself is a

graph), and the universe of sk
β ∩ rk(0) is exactly sk

β ∩ δk,
• if k > 0 then there is i < ω1 such that Nk = Nγk

i ,
• rk ∈ Nk ∩ Pγk

and it extends p � γk ∩Nk and rm � γk for all m < k,
• if β ≤ γk is active, then rk � β determines the τ

˜
β structure of dom(fp(β))∪⋃

m≤k dom(frm(β)) ∩ δk and rk � β forces that fp(β) ∪
⋃

m≤k frm(β) � δk is
an isomorphism of this structure with sk

β ,
• if β′ 6= β′′ are both in ak and satisfy Aβ′∩Aβ′′ * δk, then sk

β′∩sk
β′′ ⊆ p(0).

We say that for β ∈ ak, the elements of dom(fp(β)) that have been used at the stage
k are those in dom(fp(β)) ∩ δm, where m = max{l ≤ k : γl ≥ β} (since γ0 = ∞,
this maximum is well defined). We denote the set of such ordinals by uk

β .
The induction is not difficult to do: we let N0 = N , r0 = r and a0 = dom(p) \

{0} ∩N . For β ∈ a0 let s0β = ran(r(β)) with the structure induced by r(0)- this is
well defined as p∩N ≤ r. If we have defined all the relevant objects at the stage k,
do the following if possible: choose a minimal γ = γk+1 ∈ ak such that there is an
unused element of dom(fp(γ)). Let i be the minimal such that there is an element
of dom(fp(γk+1) \ uk

γk+1
in Nγ

i and satisfying Nk ∩ γk+1 ⊆ N
γk+1
i (note that such i

exists by Claim 3.3). Let Nk+1 = N
γk+1
i and ak+1 = ak∪ [dom(p)∩Nk+1∩γk+1]. If

3By p∪ r we mean the function q whose domain is dom(p)∪ dom(r), with q(0) = p(0)∪ r(0)
and q(β) = (Xp(β) ∪Xr(β), fp(β) ∪ fr(β)) for β > 0 in dom(q).
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no such choice is possible, stop the induction. Note that m ≤ k =⇒ γm ≤ γk and
that the induction must be stopped at some stage k∗ as all ordinals that appear as
unused at any stage come from the finite set

⋃
γ∈dom(p)\{0} dom(fp(γ)) (and once

an ordinal is used it remains so). Let γ∗ = γk∗ .
We shall now proceed to define a condition q in Nγ∗ ∩ γ∗. We shall need the

following claim.

Claim 3.4. For all k ≤ k∗,
⋃

m≤k Nm ∩ γk ⊆ Nk.

Proof of the Claim. The proof is by induction on k. If k = 0, the situation is
clear. For the case of k + 1, we have by the induction hypothesis that for m ≤ k,
Nm ∩ γk ⊆ Nk. Since γk+1 ≤ γk, certainly Nm ∩ γk+1 ⊆ Nk and hence it suffices to
show that Nk ∩ γk+1 ⊆ Nk+1. This conclusion follows by the choice of Nk+1. F3.4

Suppose that k ≤ k∗ and m ≤ k. Then rm ∈ Nm so all the finitely many
ordinals involved in the construction of rm � γk are in Nm ∩ γk, and hence in Nk

by Claim 3.4. Therefore rm � γk ∈ Nk.
At this point of the proof we shall get to use the Amalgamation Condition

(∗), which we define in terms of a partially ordered class (K,≤) of structures:
(K,≤) satisfies a.c. (∗) if for any elements A,B, {Ci : i ∈ I} of K satisfying
• any two of these structures agree on their intersection
• whenever i 6= j then either Ci ∩ Cj ⊆ A or Ci ∩ Cj ⊆ B,

there is a structure in K which extends all A,B, {Ci : i ∈ I}.
Obviously, the class of graphs with the induced subgraph relation satisfies the

a.c. (∗) since we can simply take a union of all the graphs involved.4

Suppose now that β′ 6= β′′ ∈ ak∗ . By the induction hypothesis either Aβ′ ∩
Aβ′′ * δk∗ , in which case sk∗

β′ ∩ sk∗

β′′ ⊆ p(0) or Aβ′ ∩ Aβ′′ ⊆ δk∗ and so sk∗

β′ ∩ sk∗

β′′ ⊆
rk∗(0). This says that, according to the a.c. (∗) property, we can define a graph
that extends p(0)∩δk∗ ∪rk∗(0)∪

⋃
β∈ak∗

sk∗

β ∩δk∗ . Let s be such a graph. We define
q′, a candidate for a condition in Pα. Let q′(0) = s and for β ∈

⋃
k≤k∗ dom(rk)∪ak∗

let q′(β) = p(β) ∩ δk∗ ∪
⋃

k≤k∗ rk(β). Note that q′ as a function is an element of
Nk∗ . We now claim that q′ is a condition in Pα. By induction on 1 ≤ β ≤ α we
prove that q′ � β ∈ Pβ . For β = 1 this follows from the choice of s and for β limit
this is clear. Suppose that β = γ + 1 and γ is in dom(q′). If γ /∈ dom(p) then
γ ∈

⋃
k≤k∗ dom(rk) and q′(γ) =

⋃
k≤k∗ rk(γ). This is well defined by the choice

of rk’s. If γ ∈ dom(p) \
⋃

k≤k∗ dom(rk), then q′(γ) = p(γ) ∩ δk∗ , so q′ � β is a
condition because p satisfies (i) in the definition of completeness. Finally it may
happen that γ ∈ dom(p)∩

⋃
k≤k∗ dom(rk). In particular we have β ∈ ak∗ . Let k be

maximal such that γ ≤ γk. We claim that dom(fp(γ)) ∩ δk∗ = dom(fp(γ)) ∩ δm. If
this were not to be the case then at the stage k of the induction there would be an
unused ordinal in dom(fp(γ)), so γ = γk+1, a contradiction. Having established the
existence of q′ we now need to keep going to extend to a condition which extends
each rk. This is done in stages using the assumptions of completeness, for which
we refer the reader to the original article. F3.2 �

We now indicate how Lemma 3.2 implies that the forcing is ccc. We assume
that we have proved that the set of complete conditions is dense, so we only work

4In [9], Lemma 1, it is shown that a better known P(3−) amalgamation property implies
a.c. (∗).
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with them. So assume that A is a maximal antichain of complete conditions and
let N be a rich enough countable elementary submodel with A ∈ N . We claim
A = A ∩N , so A is countable. For this we have to show that A ∩N is a maximal
antichain. Let p be any complete condition. By elementarity there is r ∈ N ∩ A
which extends p∩N . By Lemma 3.2 there is a common extension of p and r. This
proves the statement we claimed.

We remark that the above result, as it involves ccc forcing iteration, can be
easily generalised to cardinals of the form λ+ for some λ satisfying λ<λ = λ, as
Mekler does in Theorem 8 of [9]. Therefore the theory of random graphs is amenable
in the sense of Definition 3.1.

3.2. Triangle-free Graphs. Having established that the theory of graphs
is amenable the next natural question to ask to what extent the amalgamation
condition (∗) was necessary for this conclusion. A very good example to consider
is that of the model completion of the theory of triangle-free graphs. In the sense
of model-theoretic complexity, this theory provides a prototypical example of a
non-simple ’simple enough’ theory, but also because this theory fails the a.c (∗).
Namely

Example 3.5. Let Cl be a graph consisting of the edge (cl, cl+1/mod3), for l < 3,
let A = C0 and B = C1. These structures satisfy the premises of the condition a.c
(∗) but any graph extending C0, C1 and C2 contains the triangle {c0, c1, c2}.

Therefore methods of [9] do not apply to triangle-free graphs. Džamonja and
Shelah proved in [3] that the theory of the model completion of triangle-free graphs
is nevertheless amenable. We explain the main ideas of this proof.

Let us first concentrate on ℵ1. In the final extension we shall have 2ℵ0 = 2ℵ1 =
ℵ3 and the universality number of the class of the triangle free graphs of size ℵ1

will be ℵ2. The values ℵ2 and ℵ3 are rather flexible, but we concentrate on these
for concreteness. We consider the class K all finite triangle-free graphs G whose
universe is a subset of ω1 and that have the property that for every non-zero limit
δ < ω1, G � δ is a ‘reflection’ of G in the sense that for every pair a0, a1 ∈ G � δ,
if there is c with alRc for l < 2, then there is such c in G � δ. We can order
this class by the relation of being an induced subgraph. Let us call this partially
ordered class the approximation family. A petition on the approximation family is
a directed subset of it of size ℵ1. Notice that if we are given a petition Γ then its
union is a graph of size ℵ1, and by directedness, this graph is triangle-free. We
call this graph MΓ. Notice that by reenumerating, every triangle free graph of
size ℵ1 is isomorphic to one whose family of finite subgraphs forms a petition on
the approximation family. We shall be interested in quorumed petitions, which are
those petitions that contain an isomorphic copy of every finite triangle-free graph
on ω1 through an isomorphism which moves every ordinal α to an ordinal β of
finite distance with α. The existence of such quorumed petitions is not something
we prove in ZFC, but we force them.

Let us now describe the forcing. We start with a model of GCH an in it
we denote by T the tree ω1>ω1. We first add ℵ3 many Cohen subsets of ω1 by
countable conditions. Notice that this introduces ℵ3 many branches to T . Call
the resulting universe V . We follow this with an iteration 〈Pα, Q

˜
α : α < ω2 in

which each step Q
˜

α is itself an iteration of ω3 steps, of ccc forcing, which we shall
call a block. In each block we shall have a preliminary forcing and an iteration of
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length ω3. We first describe the iteration. It will have two kinds of coordinates.
In each coordinate of the first kind. of it we are given a name for a petition Γ

˜
on

the approximation family and we force to embed MΓ
˜

into MΓ∗

˜
for some quorumed

petition Γ∗
˜

. By remarks above, for our final universality result it will be sufficient
to ensure that there are ℵ2 triangle-free graphs on ω1 which embed all MΓ∗ for
quorumed petitions Γ∗. By bookkeeping, we shall at each stage α < ω2 of the main
iteration assure by Q

˜
α of forcing that we have dealt with all quorumed petitions

in V Pα . In fact we shall assure that there is in V Pα+1 a single triangle-free graph
G∗

α on ω1 which embeds all MΓ∗ for quorumed petitions Γ∗ in V Pα . This is where
the preliminary forcing of the block α comes in: in it we introduce a system Sα of
members of the approximation family indexed by the nodes in T in a such a way
that each branch through T gives a petition in the approximation family. It is easy
to see that the union of this system is a triangle-free graph on ω1, which will be
our G∗

α. In the second kind of coordinates in the block α we shall be embedding
a quorumed petition H

˜
given by the bookkeeping into the subsystem of Sα given

by the elements indexed by the nodes on some branch of T . This assures that MH

embeds into G∗
α.

The main point of the proof is to make sure that each individual forcing in a
block is ccc, and in assuring so in the second kind of coordinates we get to use an
amalgamation property possessed by the elements of the approximation family K:

Suppose that M0, N0,M1,M2, N1, N2 and M are in K such that
• M0 = M1 ∩M2 and M1 is isomorphic with M2 by an isomorphism which

is identity on M0,
• N0 = N1 ∩N2 and N1 is isomorphic with N2 by an isomorphism which is

identity on N0,
• each Mi is an induced subgraph of the corresponding Ni and the universe

of Ml consists of even ordinals in the universe of Nl,
• there are limit ordinals δ0 < δ1 < δ2 such that Nl ⊆ δl for each l < 3,
• the universe ofM is contained in the even ordinals andM1,M2 are induced

subgraphs of M .
Then there is N ∈ K whose induced subgraphs include M , N1 and N2.

This property is called workability in [3]. Notice that checking that it is true
really uses the definition of the approximation family, not only the properties of
the class of triangle-free graphs.

The proof in the case λ+ for λ = λ<λ in place of ℵ1 has to deal with a strong
version of λ+-cc needed in order to iterate, which introduces additional complica-
tions which we shall not describe here. The structure of the proof as described
above uses a tree of models rather than a linearly organised structure like in [9].
The price we have to pay is that the final universe does not have one universal
model, rather just a small universal family. The following question is still open:

Question 3.6. Is it consistent to have a universal triangle-free graph on ℵ1

and not CH?

3.3. Linear orders. The next step to consider in our increasing level of com-
plexity of theories is a theory that does not have a workable approximation family.
Such a theory is the theory of dense linear orders. Namely, the main result of
Kojman-Shelah [7] is that this theory is highly non-amenable, and the proof we
presented for triangle-free graphs cannot be adopted to this case- as it would show
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that the theory is amenable. As an exercise, the reader may check that natural def-
initions of approximation families for this class will fail to be workable. However,
in [12] Shelah proved that it is consistent that there is a universal linear order of
size ℵ1 in a model where CH fails 5. In the terminology of the rest of this paper,
this shows that the theory of dense linear orders is amenable at ℵ1. Note that the
method of the proof uses oracle-proper forcing, which is a technique limited to ℵ1.
Again by high non-amenability we conclude that the analogue of [12] cannot be
obtained at cardinals larger than ℵ1, and at the same time that amenability is not
implied by amenability at ℵ1.

3.4. Amenability at ℵ1. Our presentation so far leaves open the question if
every ‘reasonable’ theory T is amenable at ℵ1. Namely, let D(T ) denote the set of
complete types over the empty set in finitely many variables. It is known that if
this set is uncountable then it has to have the cardinality of the continuum, and
it is easy to see that every type in D(T ) must be realised in the universal model.
Therefore if D(T ) is uncountable there cannot be a universal model of T in ℵ1 if
CH fails. It remains to ask what happens if D(T ) is countable, namely if it is
possible that every T with D(T ) countable is amenable at ℵ1. A negative answer
to this is given in §1 of [7], where there is an example of a theory with countable
D(T ) which has a universal model at ℵ1 iff CH holds.

Conclusion. In conclusion, we have presented the methods that are currently
available for making the universality number at ℵ1 small while failing CH. These
methods come with amalgamation-type requirements on the theory in question and
we have discussed the prototypical examples of theories that satisfy or not these
amalgamation properties. We have discussed the division amenability/high non-
amenability defined in terms of the ability of a theory to have a small universality
number in circumstances where the relevant instances of GCH are violated. We end
by mentioning that there is a programme of characterising this division in syntactic
terms i.e. in terms that do not discuss models of a theory but properties of its types
and formulae. The present state of this programme is described in the Introduction
to [4].
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[4] M. Džamonja and S. Shelah, On properties of theories which preclude the existence of uni-
versal models, Annals of Pure and Applied Logic, vol. 139, no. 1-3, pp. 280-302, (2006).
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