
Ramsey Methods and the problem DU

Mirna Džamonja∗

Abstract

We consider Fremlin’s notion of 1/2-density and the related no-
tion of Fremlin cardinals. A well known related question is if every
1/2-dense hereditary family on an uncountable cardinal must have
an infinite homogeneous family. These notions do not seem to lend
themselves to Ramseyan methods. In particular, it is not known if
a Fremlin cardinal must be a large cardinal. We introduce a related
notion of 1/2-dense cardinals which is easier to handle using Ram-
sey methods. We show that a 1/2-dense cardinal must be at least
strongly inaccessible. On the other hand, David Asperó showed that
an ω-Erdös cardinal must be 1/2-dense. 1

0 Preface

I was a Tutotial Speaker at the Young Set Theory Conference in Barcelona
2009. The topic of my lectures were Ramsey principles. I talked both about
many successes of the applications of the Ramseyan methods in set theory,
topology and analysis, and about one Ramsey-like problem that is still un-
solved many years after it was posed. It is the problem of 1/2-density, which
we explain below. Rather than writing an article about successes of Ram-
seyan methods, which are well documented in the literature (see for example
[9], [2]), I have decided to explain in detail the problem of 1/2-density, bring-
ing into it a Ramseyan perspective. There are several new results in this
article but the answer to the main question 1.2 is still not known.
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1 Introduction

We start by some definitions.

Definition 1.1 (i) A family D of finite subsets of a cardinal κ is 1/2-dense
if for all finite F ⊆ κ there is F0 ⊆ F with F0 ∈ D and |F0| ≥ 1/2 · |F |. D
is hereditary if it is closed under subsets. Hereditary 1/2-dense families are
called 1/2-filling.

(ii) Suppose that D is a family of finite subsets of a cardinal κ and H ⊆ κ.
Then H is homogeneous for D if [H]<ℵ0 ⊆ D.

The most interesting cardinals in the context of 1/2-dense families are ω1

and c = 2ℵ0 . The following questions appear as the problem DU on D.H.
Fremlin’s list (see [6]):

Question 1.2 Suppose that D is a 1/2-filling family on ω1.

(i) (Argyros) Must there be an infinite set homogeneous for D?

(ii) Under MA + ¬CH, is it true that D must have an uncountable homo-
geneous set?

It is known that under cov(N ) = ℵ1 in place of MA + ¬CH the answer
to (ii) is negative, see [1] or [6] for the folklore proof. It is not known if
the positive answer is consistent. A meaningful concept is obtained if Def-
inition 1.1 is made with an arbitrary α ∈ (0, 1) in place of 1/2, however it
is known that this change does not add any generality. Namely, Fremlin [6]
showed that the truth of the statement “every α-filling family D on κ has a
homogeneous set of size λ” does not depend on α ∈ (0, 1). Paper [4] gives
a combinatorial characterisation of 1/2-filling families on ω1 which have an
uncountable homogeneous set under MA + ¬CH.

We use the notation P (κ, λ) to state that every 1/2-filling family D on κ
has a homogeneous set of size λ. This notation was introduced by Fremlin.
We use the word ‘homogeneous’ and notation from the theory of partition
relations to emphasise the intuition we expressed in [1], that P (κ, λ) is a
large cardinal statement. Along these lines, Fremlin proved in [6] that if κ is
a real-valued measurable cardinal then P (κ, ω) holds, hence it is consistent
modulo a measurable cardinal that P (c, ω) holds. On the other hand, it is an
observation of Apter and Džamonja in [1], that if κ is λ-Erdös then P (κ, λ)
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holds. The statement ¬P (c, ω) is of interest in analysis, as it can be used
to construct interesting examples of spaces and functions. From this point
of view, the former of the two large cardinal results is more interesting, as
an Erdös cardinal is necessarily strongly inaccessible. On the other hand the
consistency strength of Erdös cardinals is weaker than that of real valued
measurable cardinals. Namely, the consistency strength of the existence of
a real-valued measurable cardinal is that of a measurable cardinal, and the
consistency strength of the existence of an Erdös cardinal is that the as-
sumption that there 0# exists implies that in L there is an α-Erdös cardinal
for every α < ω1 (while from the existence of an ω1-Erdös cardinal one can
derive the existence of 0#).

One difficulty in treating the problem has been that 1/2-density is a den-
sity notion which does not fit the classical treatment of partition relations. In
this paper we explore the influence of Ramsey theory on this notion. For ex-
ample, we show that there is a notion closely connected to 1/2-filling families
and including 1/2-density which can be treated by classical Ramsey theory.
Specifically, in §2 we show just in ZFC that there is a 1/2-dense family D
of finite subsets of c such that there is no infinite X ⊆ c homogeneous for
D, and in fact that there is such a family on every cardinal below the first
strongly inaccessible cardinal. The family is not hereditary. In view of Frem-
lin’s result mentioned above, the result is optimal. However, as pointed out
by M. Kojman, if we completely give up on the requirement of hereditariness,
it is easy to give a trivial example of a 1/2-dense family F of any cardinal
such that there is no infinite X homogeneous for F , namely just taking the
finite subsets with even cardinality will do. This family F has the property
that there is no nonempty set homogeneous for F . The family D constructed
in §2 will have homogeneous sets of arbitrary finite size within every infinite
set. In §3 we remark how these results relate to another known weakening of
1/2-fillingness.

In §4 we consider the problem of 1/2-density when restricted to sets of
fixed finite size.

Following the notation from [1] we say that κ is a λ-Fremlin cardinal iff
P (κ, λ) holds, and when λ is ω we just speak of Fremlin cardinals. It is still
not known if the first Fremlin cardinal must be a large cardinal. In §2 we
introduce a related type of large cardinals, 1/2-dense cardinals, and we prove
that such a cardinal must be strongly inaccessible. In a previous version of
this article we asked if 1/2-dense cardinals exist. D. Asperó answered this
by observing that in fact an ω-Erdös cardinal must be 1/2-dense. We give
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an argument for this at the end of §2.

2 1/2-dense cardinals

In this section, 1/2-dense cardinals will be defined as cardinals that satisfy
a stronger version of Fremlin’s property P (κ, ω). We have been interested in
P (κ, ω) rather than P (κ, λ) for λ > ω, but many arguments in this section
apply to λ > ω as well.

Definition 2.1 Let κ ≥ ℵ0 be a cardinal. A family D of finite subsets of κ
is said to satisfy ϕ(κ) if the following properties hold:

• all singletons are in D,

• D is a 1/2-dense family which has no infinite homogeneous set, and

• (spread property) for any infinite A ⊆ κ there are subsets of A of
arbitrarily large finite size which are homogeneous for D.

A cardinal κ such that ϕ(κ) is not satisfied by any family of finite subsets of
κ is said to be a 1/2-dense cardinal.

In other words, a cardinal κ is 1/2-dense if every 1/2-dense family of finite
subsets of κ with the spread property and containing the singletons has an
infinite homogeneous set. Clearly every 1/2-dense hereditary family has the
spread property and contains the singletons, and therefore we have:

Observation 2.2 A 1/2-dense cardinal is necessarily Fremlin. F

We may also observe that if a cardinal is 1/2-dense so are all the larger
cardinals.

Lemma 2.3 Suppose that λ is an infinite cardinal ≤ κ and there is a family
Dκ satisfying ϕ(κ). Then there is a family Dλ satisfying ϕ(λ).

Proof of the Lemma. Let Dλ = Dκ ∩ [λ]<ℵ0 . It is clear that Dλ is a
1/2-dense family of finite subsets of λ which has no infinite homogeneous set
and which contains all singletons. Suppose that A ⊆ λ is infinite, then there
are subsets of A of arbitrarily large finite size which are homogeneous for Dκ,
and hence for Dλ. F2.3

We now prove that the first 1/2-dense cardinal is a large cardinal.
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Theorem 2.4 The first 1/2-dense cardinal, if it exists, is strongly inacces-
sible.

Proof. Suppose that λ∗ is the first 1/2-dense cardinal. By the example of
Schreier family we know that λ∗ > ℵ0.2

Now we shall show that if κ < λ∗ then also 2κ < λ∗.

Lemma 2.5 Suppose that there is a family Dκ satisfying ϕ(κ). Then there
is a family D2κ satisfying ϕ(2κ).

Proof of the Lemma. Let <∗ be a fixed well-order of κ2 in order type 2κ.
We identify the cardinal 2κ with the tree κ2 ordered by <∗. Let K ⊆ ω>(κ2)
be the set of all u = 〈x0 <∗ x1 <∗ . . . <∗ xr−1〉 where r ≥ 2 is such that u is
either <lex-increasing or <lex-decreasing.

If x 6= y in κ2 we let ∆(x, y) = min{α : x(α) 6= y(α)}. For u as above, we
let δ(u) = 〈∆(x0, x1),∆(x1, x2), . . .∆(xr−2, xr−1)〉. Note that δ(u) is a finite
sequence of ordinals < κ.

We let P0 consist of all u ∈ K such that δ(u) is strictly increasing. We
define P1 as the set of all those u ∈ K for which δ(u) is strictly decreasing.
Let P = P0 ∪ P1.

Let D = D2κ be given by

D = {{f} : f ∈ 2κ} ∪ {u ∈ P : ran(δ(u)) ∈ Dκ} ∪ ([κ2]<ℵ0 \ P ).

Clearly D contains all singletons. To show that D is 1/2-dense in κ2 it
suffices to consider u ∈ P . Let us first suppose that u ∈ P0. If r = |u| = 2
then |δ(u)| ≤ 1 so ran(δ(u)) ∈ Dκ. Otherwise, ran(δ(u)) is in any case a
finite subset of κ and therefore there is F ⊆ ran(δ(u)) with F ∈ Dκ and
|F | ≥ | ran(δ(u))|/2 = (|u| − 1)/2. F is the range of a sequence of the form
〈∆(xi0 , xi0+1), . . . ,∆(xik , xik+1)〉 for some i0 < i1 < . . . < ik and k ≤ r−2 and
therefore F is not immediately seen to be of the form ran(δ(v)) for any v ⊆ u.
However, since u ∈ P0, we have that ∆(xi, xi+1) increases with i. Therefore
for every s < k we have ∆(xis , xis+1) = ∆(xis , xis+1) and hence F = ran(δ(v))
for v = 〈xi0 , . . . xik+1

〉. Since |v| = |F |+ 1 ≥ (|u| − 1)/2 + 1 ≥ |u|/2, we have
found v ∈ D as desired. The argument for u ∈ P1 is similar.

2The Schreier family consists of finite subsets F of ω which satisfy min(F ) ≥ |F | + 1,
and the singleton {0}. This family is a well known example of a 1/2-dense hereditary
family of subsets of ω for which there is no infinite homogeneous set.
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Now suppose that X is infinite and homogeneous for D, and assume sim-
ply that X has order type ω under <∗. Define a colouring c by colouring
pairs {x, y} in X colour 0 if the <∗ and <lex order agree on {x, y}, and colour
1 otherwise. By Ramsey’s theorem we can assume that all pairs are coloured
the same colour and therefore X is <lex-increasing or <lex-decreasing. Sup-
pose for simplicity that it is <lex-increasing, the argument in the other case
is similar.

By induction on n < ω we choose xn ∈ X and a final segment Bn of X
so that Bn are non-empty and decreasing, and ∆(xn, xm) for n < m only de-
pends on n. Let x0 be the <∗-minimal element of X and ξ0 = min{∆(x0, xn) :
n > 0}. Let B0 = {xn : ∆(x0, xn) = ξ0}, so clearly B0 is non-empty. Sup-
pose that xn ∈ B0 and n < m. Then xn <lex xm by the assumptions above
and x0 <lex xn. By the choice of ξ0 we can only have ∆(x0, xm) ≥ ξ0 and
therefore it must be that ∆(x0, xm) = ξ0 and m ∈ B0. Hence B0 is a final
segment of X. Now we let x1 be the <∗-minimal element of B0 and continue.
Note that the sequence ξ̄ = 〈ξn : n < ω〉 is strictly increasing.

At the end, by renaming, we can assume that X = {xn : n < m}. Then
note that [X]<ℵ0 ⊆ P0, exactly because ξ̄ is strictly increasing. Hence for
any u ∈ [X]≥2 we have that ran(δ(u)) ∈ Dκ. This means that {∆(xn, xn+1) :
n < ω} is infinite homogeneous for Dκ, a contradiction.

To show the final claim, suppose that A is an infinite subset of 2κ, 2 ≤
n < ω and we shall find a D-homogeneous subset of A of size ≥ n. By an
application of Ramsey’s theorem we can assume as above that the order type
of A under <∗ is ω, that A = {yk : k < ω} is an <∗-increasing enumeration
and that either A is <lex-increasing or <lex-decreasing. Note that since yks
are binary sequences we must have that if k0 < k1 < k2 then ∆(yk0 , yk1) 6=
∆(yk1 , yk2). Since there is no infinite decreasing sequence of ordinals we can
thin A further if necessary to obtain that ∆(yk, yk+1) < ∆(yk+1, yk+2) for
any k. Therefore, any finite subset of A gives rise to a sequence in P . Let
B = {∆(yk, yk+1) : k < ω}. By the inductive hypothesis, there is a subset of
B of size n which is homogeneous for Dκ. This implies as in the argument
for 1/2-density that {yk : ∆(yk, yk+1) ∈ B} is homogeneous for D2κ . F2.5

Our next task is to show that λ∗ cannot be singular. For this we recast
the property ¬ϕ(κ) in terms of a classicaly-looking partition relation:

Definition 2.6 We say that κ→0 (ω, dn/2e, ω̂)<ω iff for every function f :
[κ]<ω → 2 satisfying f({α}) = 0 for all α,
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either (i) there is an infinite A ⊆ κ such that f � [A]<ω is the constant 0
function,

or (ii) there is a finite B ⊆ κ such that f � [B]d|B|/2e is the constant 1
function,

or (iii) there is an infinite A ⊆ κ such that for some n < ω every B ∈ [A]≥n

has a subset C with f(C) = 1.

Lemma 2.7 A cardinal κ satisfies ¬ϕ(κ) iff κ→0 (ω, dn/2e, ω̂)<ω holds.

Proof of the Lemma. In the forward direction, given f : [κ]<ω → 2
satisfying f({α}) = 0 for all α, define D = {F : f(F ) = 0}. If (ii) does not
hold, then D is 1/2-dense. If (iii) does not hold then for every infinite A ⊆ κ
for every n > ω there is B ⊆ A of size at least n whose all subsets are in D.
Since D cannot witness ϕ(κ), there must be an infinite D-homogeneous set,
so (i) holds.

In the backward direction the proof is similar: if we are given a 1/2-dense
family D of finite subsets of κ which contains all singletons and has the prop-
erty that within every infinite subset of κ there is an arbitrarily large finite
D-homogeneous set, then we can define f : [κ]<ω → 2 by f(F ) = 0 iff F ∈ D.
Then 1/2-density of D implies that (ii) in κ→0 (ω, dn/2e, ω̂)<ω cannot hold
and the property that within every infinite subset of κ there is an arbitrarily
large finite D-homogeneous set shows that (iii) cannot hold. Hence, (i) holds,
and any infinite A witnessing it gives an infinite D-homogeneous set. F2.7

Lemma 2.8 λ∗ is not singular.

Proof of the Lemma. By Lemma 2.7, this amounts to showing that the
first κ satisfying κ →0 (ω, dn/2e, ω̂)<ω cannot be singular. Suppose for con-
tradiction that this is the case. Let κ > cf(κ) and let 〈κi : i < cf(κ)〉 be an
increasing continuous sequence of cardinals converging to κ, with κ0 = 0 and
κ1 ≥ ω. For α < κ define h(α) = i iff α ∈ [κi, κi+1). Let f : [cf(κ)]<ω → 2
exemplify that cf(κ) 90 (ω, dn/2e, ω̂)<ω, and let fi : [κi+1]

<ω → 2 exemplify
the same for κi+1.
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Define g : [κ]<ω → 2 as follows: for an increasing sequence (ξ1, . . . , ξn) in
[κ]<ω let

g(ξ1, . . . , ξn) =


0 if n = 1,

fi+1(ξ1, . . . , ξn) if h(ξ1) = . . . = h(ξn) = i,

f(h(ξ1), . . . h(ξn)) if h(ξ1) < . . . < h(ξn),

0 otherwise.

In our notation we use g(ξ1, . . . , ξn) in place of g({ξ1, . . . , ξn}), for clarity.
We claim that g exemplifies that the required partition relation does not
hold at κ. Clearly g maps all singletons to 0. Suppose that (i) holds, as
shown by an infinite A ⊆ κ. Suppose that h“A is infinite. By thinning A if
necessary we can assume that for ξ < ζ in A we have h(ξ) < h(ζ). Therefore
{h(ζ) : ζ ∈ A} gives an infinite subset of cf(κ) which shows that (i) holds for
f , a contradiction. Otherwise h“A is finite and by thinning A if necessary we
can assume that h(α) for α ∈ A is constant i. Then A shows that (i) holds for
fi+1, a contradiction. A similar contradiction is obtained assuming that (iii)
holds for g. Finally suppose that 2 ≤ n < ω is given and B ⊆ A has size n. If
neither the second or the third clause of the definition of g apply to B, then
g(B) = 0 and so B does not exemplify (ii). If either the second or the third
clause applies to B, then so it does to any of its subsets, and hence there
must be a subset C of B of size ≥ n/2 which satisfies g(C) = fi+1(C) = 0,
or g(C) = f(h−1(C)) = 0. So (ii) does not hold for g either, and hence we
have a contradiction.F2.8

We have now shown that λ∗ must be strongly inaccessible, hence the
theorem is proved. F2.4

Remark 2.9 To see specifically that D from the proof of Lemma 2.5 is not
closed under subsets, say on 2ω, notice for example that there are sequences
in the complement of P with a subsequence in P0 which is not in D. The
proof of Lemma 2.5 shows that all infinite subsets of ω2 ‘concentrate’ on P0

and that D ∩ P0 is closed under subsets. However there is no uncountable
subset of ω2 all whose finite subsets are in P0. To see this, suppose that A
were such a set and let {xα : α < ω1} be a <∗-increasing subset of A. Let
nα = ∆(xα, xα+1). Then if α < β we have that {xα, xα+1, xβ, xβ+1} ∈ P0, so
nα < ∆(xα, xβ) < nβ, letting us obtain an increasing ω1-sequence in ω.
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Theorem 2.4 in conjunction with Fremlin’s result that a real-valued mea-
surable cardinal is Fremlin shows that 1/2-dense cardinals are strictly stronger
than Fremlin cardinals. D. Asperó proved that any ω-Erdös cardinal is 1/2-
dense, as we now show.

Theorem 2.10 (Asperó) An Erdös cardinal is necessarily 1/2-dense.

Proof. Recall that a cardinal κ is Erdös iff κ→ (ω)<ω, which means that for
every f : [κ]<ω → 2 there is H ∈ [κ]ω which is ’homogeneous’ for f . In this
context homogenous means that either there are unboundedly many n < ω
such that f ′′[H]n = {1} or there is n0 < ω such that for all n ≥ n0, we have
f ′′[H]n = {0}.

Suppose for contradiction that κ is an Erdös cardinal and that D is a 1/2-
dense family of subsets of κ satisfying the property ϕ(κ) from Definition 2.1.
Let f be the following coloring of [κ]<ℵ0 into 2: f(F ) = 1 iff all subsets of F
are in D. Let H be an infinite set homogeneous for f . By the spread property
there cannot be n0 < ω such that for all n ≥ n0, we have f ′′[H]n = {0}.
Therefore there are unboundedly many n < ω such that f ′′[H]n = {1}.

Let m < ω be arbitrary and let n ≥ m be such that f ′′[H]n = {1}.
Therefore [H]≤n ⊆ D and hence [H]m ⊆ D. In conclusion, H is homogeneous
for D. F2.10

3 Remarks on Fremlin cardinals

As mentioned before, Fremlin proved that a real-valued measurable cardinal
must be, in our notation, a Fremlin cardinal. Modulo the existence of a
measurable cardinal, it is consistent that 2ℵ0 is a real-valued measurable
cardinal, hence the analogue of Theorem 2.4 cannot be true for Fremlin
cardinals. Remark 2.9 shows exactly where the proof would fail. However
some of the techniques of the proof do apply. For example, we can easily prove
the following theorem of Fremlin, the statement of which was communicated
to us by Henryk Michalewski:

Theorem 3.1 (Fremlin) There is a family of finite subsets Fc of c such that
Fc is closed under subsets, has no infinite homogeneous set, but for every
α < c and n < ω there is F ∈ Fc with |F | ≥ n and F ∩ α = ∅.
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Proof. We use the notation of the proof of Theorem 2.4 with κ = ω. Let
Fc be the family of all sets {fα0 , . . . fαn−1} in ω2 such that {∆(fαi , fαj) : i 6=
j < n, αi < αj} is in the Schreier family. This family of functions is clearly
closed under subsets, and any infinite homogeneous set would give us an
infinite homogeneous subset of the Schreier family. If α < c and n < ω is
given, we can find a finite subset of {fβ : β > α} of the form {fβ0 , . . . , fβ2n}
with βi increasing with i and ∆(fβi , fβi+1

) also increasing with i. Then the
set of such values has size 2n and it has a subset F of size n which is in
the Schreier family. From F we can recover a subset H of 2n + 1 such
that {fβi : i ∈ H} satisfies {∆(fαi , fαj) : i < j, i, j ∈ H} = F and then
{fβi : i ∈ H} is in Fc. F3.1

A version of this theorem was used by A. Avilés, G. Plebanek and J.
Rodŕıguez in [3] to prove that there exists a weakly compactly generated
Banach space X and a scalarly null function f : [0, 1]→ X which is not Mc
Shane integrable. This answered several open questions in the theory of Mc
Shane integration.

4 Homogenous sets of fixed exponent

It is natural to ask to what extent the problem of 1/2-density is linked to
considering all finite subsets of a given set, rather than just finite sets of some
bounded cardinality. We concentrate on ω1 and observe that restricting to
fixed cardinalities gives rise to infinite homogeneous sets of order type ω + 1
for any 1/2-dense open family on ω1:

Theorem 4.1 Suppose that n < ω and D is a family of subsets of [ω1]
≤n

closed under subsets and having the property that every element F of [ω1]
<ω

has a subset F0 of size at least 1/2 · |F | such that [F0]
≤n ⊆ D. Then there is

a A ⊆ ω1 of order type ω + 1 with [A]≤n ⊆ D.
If n = 2 then there is an uncountable such A, and in fact for any infinite

κ if D is a family of subsets of [κ]≤2 closed under subsets and having the
property that every element F of [κ]<ω has a subset F0 of size at least 1/2 · |F |
such that [F0]

≤2 ⊆ D, then there is A ∈ [κ]≥ω with [A]≤2 ⊆ D.

Proof. Let n < ω be given. The following theorem seems to be folklore in
partition calculus for ω1: for all n < ω,

ω1 −→ (ω + 1, ω + 1)n.
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If D is a family as in the assumptions, then we can define a colouring f :
[ω1]

n → 2 by letting f(F ) = 0 iff F ∈ D. The property of 1/2-density
prevents any 1-homogeneous set of size 2n, so there must be a 0-homogeneous
set of order type ω + 1.

Erdös-Dushnik-Miller theorem (see [5]) states that κ −→ (κ, ω)2 for any
infinite κ, so the conclusion follows as in the previous argument. F4.1

Corollary 4.2 Suppose that D is a 1/2-dense open family on ω1. Then for
every n < ω there is a A ⊆ ω1 of order type ω + 1 with [A]≤n ⊆ D, and if
n = 2 then there is an uncountable A ⊆ ω1 with [A]≤2 ⊆ D .

Proof. Suppose that D is a 1/2-dense open family on ω1 and n < ω. Let
D0 = D ∩ [ω1]

≤n. Then D0 satisfies the assumptions of Theorem 4.1, so the
conclusions follow from the relevant parts of the Theorem. F4.2

A natural way to build a 1/2-dense open family on ω1 is to build for some
fixed n a family D0 satisfying the assumptions of Theorem 4.1 and then to
take D = {F ∈ [ω1]

<ω : [F ]≤n ⊆ D0}. Corollary 4.2 says that such a family
will always have a homogeneous subset of order type ω + 1, and if n = 2, it
will have an uncountable homogeneous subset.

We note that improvements are available for larger order types in the
second coordinate of the Erdös-Dushnik-Miller theorem, for example if κ is
regular then the original theorem has it as ω + 1, and for κ singular one
can consult [8] . For n ≥ 4, it is well known in partition calculus that
(ω1) 9 (ω+ 2, 5)n, as is (ω1) 9 (ω+ 2, ω)3. Schipperus proved recently ([7])
that ω1 −→ (ω2 + 1, 4)3.

Corollary 4.2 does not say anything about uncountable homogeneous sets
with n > 2. The following is a well known folklore fact mentioned in the
Introduction:

Fact 4.3 Suppose that there are ℵ1 many measure 0 sets whose union is [0, 1]
(i.e. cov(N ) = ℵ1). Then there is a 1/2-open dense family on ω1 with no
uncountable homogeneous sets.

The proof (see [1] or [6]) uses compactness. In particular it also does not
provide an answer to the question about uncountable homogeneous sets with
n > 2 in the situation of Theorem 4.1. We state the question explicitly:

Question 4.4 Suppose that n ≥ 3 and D is a 1/2-dense open family on ω1.
Must there be a set H ∈ [ω1]

ℵ1 with [H]n ⊆ D?
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[9] S. Todorčević, Partition problems in topology, Contemporary Mathe-
matics, vol. 84. American Mathematical Society, Providence, RI, 1989.

12


