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Abstract

Let κ be a singular cardinal. Carol Karp’s notion of a chain model of size
κ is defined to be an ordinary model of size κ along with a decomposition of
it into an increasing union of length cf(κ). With a notion of satisfaction and
(chain)-isomorphism such models give an infinitary logic largely mimicking first
order logic. In this paper we associate to this logic a notion of a dynamic EF-
game which gauges when two chain models are chain-isomorphic. To this game
is associated a tree which is a tree of size κ with no κ-branches (even no cf(κ)-
branches). The measure of how non-isomorphic the models are is reflected by a
certain order on these trees, called reduction. We study the collection of trees of
size κ with no κ-branches under this notion and prove that when cf(κ) = ω this
collection is rather regular; in particular it has universality number exactly κ+.
Such trees are then used to develop a descriptive set theory of the space cf(κ)κ.

The main result of the paper gives in the case of κ strong limit singular an
exact connection between the descriptive set-theoretic complexity of the chain iso-
morphism orbit of a model, the reduction order on the trees and winning strategies
in the corresponding dynamic EF games. In particular we obtain a neat analogue
of the notion of Scott watershed from the Scott analysis of countable models.
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0 Introduction

We shall work with κ a singular cardinal of countable cofinality, and our interest is in

rooted trees of height and cardinality κ. We call such trees κ-Trees (as opposed to the

usual κ-trees, which are also required to have levels of size < κ). In particular, we are

interested in κ-Trees which in addition do not have κ-branches. We call κ-Trees with this

last property bounded, otherwise a κ-Tree is said to be unbounded. In analogy with the

body of knowledge which is available about λ-Trees for λ regular (see [ToVä]) we study

the class of bounded κ-Trees under the natural notion of reduction, which is simply a

strict-order preserving function from one tree to another.

Let us now explain how these considerations have arisen in the context of model

theory and descriptive set theory.

A relational structure of size λ can be considered as an element of 2λ, which is

an insight going back to 1930s, in particular to C. Kuratowski and A. Tarski [KuTa].

This insight was first exploited in the context of countable models. To understand the

classification of such models up to isomorphism Ehrenfeucht [Eh], building on the work

of Fräıssé [Fr1], [Fr2], introduced a game now known as the EF game. There is an even

older method of classification, using the fact that for two fixed countable models the

set of all isomorphisms between them is Fδσ, and hence the set of pairs of models that

are non-isomorphic is co-analytic. It therefore can be covered by ℵ1 many Borel sets,

by the covering theorem of Lusin-Sierpiński [LuSi]. In fact, the main content of the

Ehrenfeucht-Fräıssé Theorem (see e.g. [ChKe]) is that this set,

{(A,B) : A,B countable models and ∃f : A ∼= B}

is the same set as the set of pairs (A,B) of countable models for which II has a winning

strategy in the EF game. By Dana Scott’s analysis in the 1960s [Sc] the latter can be seen

as the intersection of ℵ1 Borel sets arising from ranking the EF game by the countable

ordinals. This analysis made it possible to attach to each pair (A,B) of non-isomorphic

countable models a rank, called Scott watershed S(A,B), which in this case is an ordinal

α < ω1. The rank can be thought of as a clock in the following sense: during the EF

game the Nonisomorphism player I has to at every stage go down this clock, starting at

α itself, and a condition of winning for I is that he has not run out of time before the

actual nonisomorphism has been exposed. This game is called the dynamic EF game

of rank α + 1 and denoted by EFDα+1 (the notation comes from [Vä2]). The fact that

S(A,B) = α + 1 means that II wins EFDα (and hence EFDβ for any β < α), while I

wins EFDα+1 (and hence EFDβ for any β > α).

For uncountable models, say of size ℵ1, one can generalise the Ehrenfeucht-Fräıssé

Theorem by considering games of length ω1. One is then tempted to find the correspond-

ing notion of the Scott watershed. It turns out that it is no longer enough to use the
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ordinals, as the game is transfinite. The right notion this time is that of a tree of size

ℵ1 with no uncountable branches. The class Tℵ1 of these trees is ordered by reductions,

which are strict order-preserving functions. We denote the existence of a reduction from

T to T ′ by T ≤ T ′. Furthermore, we write T < T ′ if both T ≤ T ′ and T ′ 6≤ T . If T ≤ T ′

then it is easier for II to win EFDT than EFDT ′ . Respectively, if T ≤ T ′ then it is

easier for I to win EFDT ′ than EFDT . Finally, if II wins EFDT and I wins EFDT ′ ,

then one can prove T < T ′. This approach was gradually developed in Helsinki in the

1980s, culminating in the paper [HyVä] where the general theory was established, and

in particular it was shown that the analogue of the Scott watershed exists also in the

uncountable case. Naturally, the importance of (Tℵ1 ,≤) in this context led to a system-

atic study of its structural properties (e.g. [MeVä], [ToVä]). Descriptive set theory of

the space 2ω1 based on Tℵ1 (see again [MeVä]) was subsequently developed. The theory

of (Tλ,≤) for λ successor of regular is also quite known, although it is not completely

parallel to that of (Tℵ1 ,≤)-see [Vä2]. Juha Oikkonen [Oi] proved in 1991 a covering the-

orem for a certain infinite quantifier infinitary logic, using trees of singular cardinality.

In this paper we develop the structure theory of (Tκ,≤) for κ singular, concentrating

especially on κ of countable cofinality.

When we move to such cardinals new possibilities open up. Let us look at the

infinitary logic Lκκ, assuming that κ is singular of cofinality ω. Starting with Carol

Karp’s Ph.D. thesis in 1959 and in later work (see [Ka]) Karp and others showed that

one can develop model theory of Lκκ based on the concept of a chain model. This was

further developed by Michael Makkai [Mak]. A chain model1 is an ordinary model A

equipped with a presentation of A as a union of a chain A0 ⊆ A1 . . . ⊆ An ⊆ . . . for

n < ω. The chain is not assumed to be elementary. Let us denote such a system as (An).

The point of chain models is the following modification of the truth definition of Lκκ

(An) |= ∃x̄ϕ(x̄) ⇐⇒ there are n < ω and ā ∈ An with An |= ϕ(ā), (1)

where x̄ is a sequence of length < κ. If we restrict to chain models, the model theory of

Lκκ is very much like that of Lω1ω. The fundamental observation of Karp was that the

proof of the Completeness Theorem of Lω1ω using consistency properties works fine when

we have infinite homogeneous strings of quantifiers if we modify truth definition as above

in (1). Thus we can also prove undefinability of well order, Craig Interpolation Theorem,

Beth Definability Theorem, etc. None of these theorems is true for the classical Lκκ
logic, by the work of Gostanian and Hrbaček ([GoHr]) and Malitz ([Mal]). A discussion

involving many of these developments can be found in [Vä1]. Our paper can be seen

as an extension of Scott’s analysis of countable models to chain models of size κ. This

possibility was announced by C. Karp in [Ka]. Most likely this promising direction would

have been continued by her had it not been for her premature death.

1This is the definition used by C. Karp. We use a somewhat different language, see Definition 1.2.
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There are several natural version of EF game for (chain) models of a singular cardi-

nality κ. We show in Section 1 that the relevant clock trees of these games are trees of

height κ without κ-branches. Thus to understand the Scott watershed phenomenon an

investigation of the order of such trees under reduction is called for. This is what we set

out to accomplish in this paper.

We shall show that κ-Trees for κ as above have properties that make them rather

similar to ordinals. The reason for this is that there is a natural notion of rank. Using

this notion we can for example show that the universality number of unbounded κ-Trees

under reduction is just κ+, and that within each rank in [1, κ+) it is ω. This is in sharp

contrast with the situation of λ-Trees where λ is a regular cardinal. For example for

λ = ω1 Mekler and Väänänen [MeVä] have established that the universality number for

λ-Trees cannot be computed in ZFC.

Another insight of [MeVä] is the use of ω1-Trees in the descriptive set theory in ω1ω1.

In analogy with that we consider Section 7 the descriptive set theory of cf(κ)κ for κ

singular strong limit. We present a covering theorem for Π1
1 subsets of the topological

space θκ where θ = cf(κ) and κ is singular strong limit. This result was inspired by

a theorem of Juha Oikkonen [Oi] from 1991 who proved a covering theorem for an

infinitary logic. Our covering theorem and that one from [MeVä] are obtained by using

a corresponding class of trees, in our case the κ-Trees which we studied in the rest of the

paper.

Our notation is standard, in particular, hT (t) denotes the height of an element t

in a tree T . The order on T is denoted by ≤T . If T is clear from the context we

may omit it. A tree is said to be normal if for any t 6= t′ of a limit height, we have

{s : s <T t} 6= {s : s <T t
′}. Level α of T is denoted by levα(T ). If t ∈ T then T [≥ t]

is the set {s ∈ T : s ≥ t} equipped with the order inherited from T . The following is a

crucial definition:

Definition 0.1 A reduction from a tree T into a tree T ′ is a function f : T → T ′ such

that whenever x <T y in T , then f(x)′ <T f(y). If there is such a reduction we write

T ≤ T ′.

We shall also make use of the following operator σ2 defined on the class of trees:

Definition 0.2 If T is a tree then σT is the tree whose elements are strictly <T -

increasing sequences of the elements of T , ordered by end extension.

The importance of this operator is that it is easily checked that there is no reduction

from σT into T .

2The definition of σ comes from Kurepa’s work on Souslin’s hypothesis, see [ToVä] for more.
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Most of the trees we consider in this paper will have size and height κ for some fixed

cardinal κ, with no restriction on the size of the levels of the tree. We call such trees

κ-Trees, to be distinguished from the usual κ-trees whose levels are also required to have

size < κ. A κ-Tree is said to be bounded if it does not have a branch of length κ. A

κ-Tree that has no branches of length µ is called a (κ, µ)-Tree.

The paper is organised as follows. In section 1 we show how κ-Trees and games

involving them arise naturally in the context of C. Karp’s chain models. In section 2 we

introduce a rank operation and show that it characterizes bounded κ-Trees, and then we

introduce a game characterisation of ranks. In section 3 we introduce various operations

on trees which will allow us to study the structure of the class of κ-Trees. In §4 we

consider how one can relate the known results about universality of trees at uncountable

regular θ, say at θ = ℵ1, to singular cardinals of that cofinality. This shows that the

ZFC results we obtain later in §5 for cofinality ω must be special to that cofinality. In

§5 we obtain these ZFC results, allowing us the exact calculation of the universality

number of the class of κ-Trees, even within any given rank. In section 6 we consider

the problem of the existence of incomparable trees. Finally, in section 7 we give the

promised descriptive set-theory results for the space cf(κ)κ for κ singular strong limit,

and we finish by giving a theorem which in the case of such cardinals connects all of the

mentioned notions, giving an exact connection between chain isomorphisms, descriptive

set-theoretic complexity and the generalised EF games and trees.

1 Chain models and κ-Trees

To show how κ-Trees and games involving them arise naturally in the context chain

models, we first review the case of ordinary models. Recall the notion of the Scott

watershed from the Introduction.

Let κ be an infinite cardinal. The original EF game, denoted EFκ(A,B), for models

A and B of size κ is as follows: players play elements of A∪B for κ rounds, and at each

round II plays in the model in which I did not play at that round. II wins this game

if the end result is a partial isomorphism between A and B. Obviously, A ∼= B iff II

has a winning strategy in EFκ(A,B). Suppose that in addition to the models A and B

we are given a tree T . The dynamical version EFDT (A,B) of EFκ(A,B) is defined by

requiring the player I to have the extra task of moving up the tree T at every move, and

if he runs out of the space to move, he loses.

Let τ be the strategy of I in which he systematically lists elements of A ∪ B. Let

S1 be the tree of plays of II against τ where she has not lost yet. Let K1 be the tree

of winning strategies of II in shorter versions of EFκ(A,B) where we limit the length

of the game to be an ordinal < κ. The ordering of the strategies of K1 is canonical: a
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strategy ρ precedes another strategy ρ′ if ρ is the restriction of ρ′ to the length of the

game in ρ.

Lemma 1.1 Assume that κ is a cardinal and A,B are models. Then K1 ≤ S1. If A 6∼= B

then the trees S1 and K1 do not have κ-branches, and K1 ≤ S1. Moreover, in this case

II wins EFDK1(A,B) and I wins EFDσS1(A,B).

Proof. If ρ ∈ K1, define f(ρ) to be the result of applying ρ to τ - i.e. both players play

their strategies. The result is in S1. Clearly this function is increasing. Thus K1 ≤ S1.

It is an immediate consequence of A 6∼= B that S1 and K1 do not have κ-branches. The

reason why II wins EFDK1(A,B) is that the moves of I in K1 reveal longer and longer

strategies that II can use against I. The reason why I wins EFDσS1(A,B) is that he

can submit the sequence of previous moves of II as his moves in the tree σS1. F

So we have found upper (σS1) and lower (K1) bounds for a Scott watershed. Our

cardinal number κ can be also singular. However, the trees S1 and K1 need not be of

cardinality κ. All we can say is that |S1| ≤ κ<κ and |K1| ≤ κκ
<κ

, and so in the case

of singular cardinal κ no cardinal arithmetic assumption may assure us that these trees

have size κ.

We shall now modify the above EF game to take into account further information

about the models A and B. The further information is that the models are built up from

a chain of smaller models.

Definition 1.2 A chain model (of length µ) consists of a model A and a decomposition

〈Aα : α < µ〉. It is assumed that A =
⋃
α<µAα, and that 〈Aα : α < µ〉 is an increasing

sequence of models satisfying |Aα| < |A|. A chain isomorphism between A and B is an

isomorphism f : A → B such that for all α the image of Aα is contained in some Bβ

and, conversely, the preimage of any Bα is contained in some Aβ. If there is a chain

isomorphism between A and B we write A ∼=chain A.

The original language used by Karp to study chain models did not involve trees as

clocks, however we can now show that chain models lend themselves to an analysis using

exactly the κ-Trees as considered in this paper.

The most obvious EF game for chain models A and B of size κ is the following:

The players play elements of A ∪ B for κ rounds. At any given moment all the played

elements have to be contained in some Aα ∪ Bα. This game is denoted by EF c
κ(A,B),

and the respective dynamical version by EFDc
T (A,B). II wins this game if the end

result is a partial chain isomorphism between A and B. Obviously, A ∼=chain B iff II has

a winning strategy in EF c
κ(A,B). Let τ be the strategy of I in which he systematically

lists elements of Aα∪Bα for each α, smaller values of α before the larger values. Similarly
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to the way S1 was defined, let S2 be the tree of plays of II against τ where she has not

lost yet. Also, let K2 be again the tree of winning strategies of II in shorter versions of

EF c
κ(A,B) where we limit the length of the game to be an ordinal < κ. It is again easy

to see, as in Lemma 1.1, that I wins EFDc
σS2

(A,B), II wins the game EFDc
K2

(A,B),

and K2 ≤ S2. The trees S2 and K2 do not have κ-branches, if we assume A 6∼=chain B.

The difference to the previous game is that now, if we assume that κ is a strong limit,

|σS2| ≤ κ and |K2| ≤ κ, so these are κ-Trees. Such trees are the topic of Sections 2-6.

The EF game for models A and B of size κ, needed to prove L∞κ-elementary equiva-

lence in the classical sense is the following: players play sequences of elements of A∪B for

ω steps. The sequences have to be shorter than κ. This game is denoted by EF<κ
ω (A,B),

and the respective dynamic version by EFD<κ
T (A,B). II wins this game if the end re-

sult is a partial isomorphism between A and B. Player II has a winning strategy

in EF<κ
ω (A,B) if and only if the models A and B satisfy (in the classical sense) the

same L∞κ-sentences, in symbols A ≡∞κ B. Note that II having a winning strategy in

EF<κ
ω (A,B) is not a guarantee for the isomorphism of A and B (see [NaSt]). In this

respect the games EFκ(A,B) and EF c
κ(A,B) are “better”. Assuming A 6≡∞κ B, there is

a minimal α < (κ<κ)+ such that I wins EFD<κ
σT (A,B), where T is the tree of descending

sequences of elements of α. By determinacy then II wins EFD<κ
T (A,B). In this case

|T | ≤ κ<κ, so T is a (κ<κ, ω)-Tree.

Finally, the EF game for chain models A and B of size κ and length µ, needed

to prove their L∞κ-elementary equivalence as chain models (in the sense of (1)) is the

following: players play sequences of length < κ of elements of A or B for µ steps. The

sequences have to be contained in some Aα∪Bα. This game is denoted by EF c,<κ
µ (A,B)

and the respective dynamic version by EFDc,<κ
T (A,B). II wins this game if the end result

is a partial chain isomorphism between A and B. Player II has a winning strategy in

EF c,<κ
µ (A,B) if and only if A and B are chain isomorphic. Moreover, if µ = ω, then

both are equivalent to the models A and B satisfying (in the sense of (1)) the same

L∞κ-sentences. Note the difference to the game EF<κ
ω (A,B) in the case µ = ω. This

difference is the whole point of chain models.

Let τ be a strategy of I in EFDc,<κ
µ (A,B) in which he lists during his move number

α = ν + 2n < µ, ν = ∪ν, all elements of Aν+n \
⋃
β<ν+nAβ, and during move number

α = ν + 2n + 1 < µ, ν = ∪ν, all elements of Bν+n \
⋃
β<ν+nBβ. Let S4 be again the

tree of plays of II against τ where she has not lost yet. Let K4 be again the tree of

winning strategies of II in shorter versions of EF c,<κ
µ (A,B) where we limit the length

of the game to be an ordinal < µ. It is again easy to see that I wins EFDc,<κ
σS4

(A,B), II

wins the game EFDc,<κ
K4

(A,B), and K4 ≤ S4. The trees S4 and K4 do not have branches

of length µ if A 6∼=chain B. If, moreover, κ is a strong limit, then |σS4| ≤ κ and |K4| ≤ κ.

So these are κ-Trees, but in fact more: they do not even have branches of length µ. So

they are (κ, µ)-Trees. Such trees are the topic of Section 7.
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In conclusion, the investigation of Scott watersheds for models of cardinality κ has

led us to study the order of trees without κ-branches. In the case of chain models of

cardinality κ singular strong limit of cofinality ω, the relevant trees are moreover κ-Trees.

For the rest of the paper, unless stated otherwise, let κ be a singular cardinal of

cofinality ω and T a κ-Tree. We also fix an increasing sequence 〈κn : n < ω〉 of regular

cardinals converging to κ.

2 Ranks and Games

In this section we introduce a rank operation and show that it characterizes bounded

κ-Trees.

Definition 2.1 For t ∈ T let ρT (t) = ρ(t) be defined by recursion on α as follows:

ρ(t) ≥ 0 for any t ∈ T ;

ρ(t) ≥ α iff for all β < α and n < ω there is t′ ≥ t such that h(t′) ≥ κn and ρ(t′) ≥ β.

Example 2.2 Note that ρ(t) ≥ 1 iff t has extensions of unbounded height in κ. Let F

be the “fan”, namely a tree with a single root with ω maximal branches where each two

only intersect at the root, and where there is one branch of length κn for each n. Then

F is a κ-Tree, and one can verify that ρ(F ) = 1.

Some basic properties of the rank function are given by the following

Claim 2.3 1. If t ≤ t′ and ρ(t′) ≥ α, then ρ(t) ≥ α.

2. If δ is a limit ordinal and ρ(t) ≥ α for all α < δ, then ρ(t) ≥ δ.

3. Suppose that f : T → T ′ is a reduction between κ-Trees, and ρT (t) ≥ α. Then

ρT ′(f(t)) ≥ α.

4. The truth of ‘ρ(t) ≥ α’ does not depend on the choice of the sequence κ̄ = 〈κn : n < ω〉.

Proof. (4) Suppose that κ̄′ = 〈κ′n : n < ω〉 is another sequence with supremum κ, and

define ρ′ in the same way as ρ but using κ̄′ in place of κ̄. We show by induction on α

that for any t ∈ T , ρ(t) ≥ α iff ρ′(t) ≥ α.

Suppose that ρ(t) ≥ α and let n < ω and β < α. Let m < ω such that κm ≥ κ′n.

Hence there is t′ ≥ t with h(t′) ≥ κm and such that ρ(t′) ≥ β. By the inductive

assumption we also have ρ′(t′) ≥ β. This shows that ρ′(t) ≥ α, and the other direction

is symmetric. F2.3
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Definition 2.4 For any t ∈ T if there is α such that ρ(t) ≥ α but not ρ(t) ≥ α+ 1, we

say that ρ(t) = α. We let ρ(T ) = ρ(t∗). It follows from Claim 2.3(1) that if t ≤ t′ then

ρ(t) ≥ ρ(t′).

The point of the rank operation is that it characterises bounded trees, in the following

sense:

Theorem 2.5 T is bounded iff ρ(T ) < κ+.

Proof. In the forward direction, we use the following

Claim 2.6 Suppose that t ∈ T and ρ(t) ≥ κ+, while n < ω. Then there is t′ ≥ t such

that ρ(t′) ≥ κ+ and h(t′) ≥ κn.

Proof. Suppose otherwise, so for every t′ ≥ t of height ≥ κn we have ρ(t′) < κ+.

Therefore ρ(t) ≤ supt′≥t,h(t)≥κn ρ(t) < κ+, which is a contradiction. F2.6

So if ρ(t∗) ≥ κ+, we could use Claim 2.6 to build a branch t∗ = t0 ≤ t1 ≤ t2 . . . such

that for each n we have ρ(tn+1) ≥ κ+ and h(tn+1) ≥ κn. Any maximal branch containing

this branch must be a κ-branch in T , which is a contradiction.

In the other direction, suppose that we had a κ-branch in T and show by induction

on α ≤ κ+ that ρ(t∗) ≥ α. Let t0 ≤ t1 ≤ t2 . . . be such that h(tn) ≥ κn- such a

sequence exists by the assumption. The nontrivial case is that α = β+ 1. The inductive

hypothesis is that for all n, ρ(tn) ≥ β. The choice of tn’s shows that in fact for all n we

have ρ(tn) ≥ α, so ρ(t∗) ≥ α. F2.5

Corollary 2.7 Suppose that T, T ′ are bounded κ-Trees and T ≤ T ′. Then ρ(T ) ≤ ρ(T ′).

Proof. By Theorem 2.5 and Claim 2.3(3). F2.7

It follows from Lemma 2.5 that in a bounded κ-Tree there is for every t the first n

such that t does not have an extension t′ ≥ t of height ≥ κn and satisfying ρ(t′) ≥ ρ(t).

We denote this n by nT (t) or n(t) if T is clear from the context .

Claim 2.8 Suppose that T is a bounded κ-Tree and t ≤T t′ satisfy ρ(t) = ρ(t′). Then

n(t) ≥ n(t′).

Proof. t does not have an extension t′′ of height ≥ κn(t) satisfying ρ(t′′) ≥ ρ(t), so

certainly t′ does not have such an extension. Therefore n(t′) ≤ n(t). F2.8

We introduce a game that can be used to characterise the rank of bounded trees.

9



Definition 2.9 Let T be a κ-Tree and let t0 ∈ T . Game ΓT (t0) is defined as follows.

Two players I and II play and I commences by n0 < ω and β0 < κ+, II replies by t ≥ t0
of height at least κn0. I chooses n1 ≥ n0 and β1 < β0, II replies by t1 ≥ t of height at

least κn1 etc. The game continues until either of the players can no longer play according

to these rules. The winner is the player who played the last move.

We define ΓT (α, t0) for α < κ+ similarly but we require β0 < α.

Note that the above games are determined, because they only involve finitely many

moves.

Claim 2.10 If T is a κ-Tree with root t∗ then ρ(T ) ≥ α iff II has a winning strategy in

ΓT (α)
def
= ΓT (α, t∗).

Proof. In the forward direction, let II respond to any (nm, βm) by an extension of tm of

height at least κnm and rank at least βm- which is possible by the definition of the rank.

For the other direction, suppose that β < α and n are given and that there is no

t ∈ T with ρ(t) ≥ β and h(t) ≥ κn. Let β0 be the first for which there is such n, and

let n0 = nT (t), i.e. it is the first n with this property for β = β0. Start a play of ΓT (α)

by letting I move with (n0, β0). Because II has a winning strategy, this strategy must

respond with t ∈ T with h(t) ≥ κn0 . However, it must be that ρT (t) < β0, so let β1 < β0

be the first for which there is no t1 ≥ t of rank ≥ β1 and let n1 = nT (t). Therefore

n1 ≥ n0. Let I play (n1, β1). Since II is playing according to the winning strategy, the

play can never stop at a move for II. However, the choice of (nk, βk) guarantees that

I can respond to each move of II, therefore obtaining an infinite decreasing sequence

〈βk : k < ω〉 of ordinals. Contradiction. Therefore ρ(T ) ≥ α. F2.10

Corollary 2.11 If T ≤ T ′ are κ-Trees and α < κ+ then II wins ΓT ′(α) =⇒ II wins

ΓT (α).

Proof. By Corollary 2.7 and Claim 2.10. F2.11

Theorem 2.12 If T is a κ-Tree with root t∗ then it has a κ-branch iff II can win all

ΓT (α, t∗) for α < κ+.

Proof. In the forward direction, any κ-Tree with a κ-branch satisfies ρ(t∗) ≥ κ+, and

therefore the conclusion follows from Claim 2.10.

In the backwards direction, again by Claim 2.10 we conclude ρ(t∗) ≥ κ+ and hence

T cannot be bounded. F2.12
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3 Operations on κ-Trees

In this section we introduce various operations on trees which will allow us to study

bounded trees of a given rank. A reader interested directly in structure results about

the class of κ-Trees may skip this section and use it as a reference.

Notation 3.1 If T is a tree and t ∈ T we let T [≥ t] stand for {s ∈ T : s ≥ t} with the

order induced by T .

3.1 Topping

This operation is used to construct from a given tree a tree of the same rank with a long

stem. It will be useful when considering the universality problem within a rank.

Definition 3.2 Suppose that T is a bounded κ-Tree and γ < κ. Let Tbγc be the tree

obtained by taking a stem of length γ and putting a disjoint copy of T on top of it.

Formally, Tbγc is ({0} × γ) ∪ ({1} × T ) ordered lexicographically.

Definition 3.3 A κ-Tree T with root t∗ is said to be unfoldable if for no t ∈ T \ {t∗}
do we have T ≤ T [≥ t].

Claim 3.4 Suppose that T is a bounded κ-Tree and β ≤ γ < κ.

1. Tbβc ≤ Tbγc.

2. If T is unfoldable then Tbγc 
 Tbβc.

3. ρ(Tbγc) = ρ(T ).

Proof. (1) The identity function is a reduction from Tbβc to Tbγc.

(2) Suppose f is a reduction from Tbγc to Tbβc. Then f((1, t∗)) = (1, t) for some

t 6= t∗. Hence f gives rise to a reduction from T to T [≥ t], a contradiction.

(3) Since T is a copy of Tb0c we have by (1) that T ≤ Tbγc and therefore ρ(T ) ≤ ρ(Tbγc),

by Corollary 2.7.

Let ρ(T ) = α. We denote by t∗ the root of T and by t∗∗ the root of Tbγc. Clearly,

ρTbγc(1, t
∗) = α. By the definition of the rank there is n > 0 such that t∗ does not have

an extension in T of rank ≥ α and height ≥ κn. Note that for every (1, s) ∈ Tbγc we

have ρTbγc((1, s)) = ρT (s). Let m be the first such that γ + κn−1 < κm. Suppose that

x ∈ Tbγc is an extension of t∗,∗ of rank ≥ α and height ≤ κm. Then x = (1, s) for some

s ∈ T , Therefore ρT (s) ≥ α and by the choice of m, also hT (s) ≥ κn, a contradiction. In

conclusion, ρ(Tbγc) ≤ ρ(T ). F3.4
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3.2 Bunching

The idea of the bunching operation is to produce bounded κ-Trees of arbitrarily large

rank < κ+. Let F be the fan tree described above.

Definition 3.5 Suppose that α∗ < κ+ and T̄ = 〈Ti : i < i∗〉 are bounded κ-Trees. Then

the bunch Bn(T̄ ) is the κ-Tree obtained by putting at the end of every maximal branch

of F a node followed by a disjoint family of copies of Tis.

Figure 1: A Bunch Bn(〈Ti : i < i∗〉)

Claim 3.6 (1) Suppose that T̄ = 〈Ti : i < i∗〉 are bounded κ-Trees and let T ∗ = Bn(T̄ ).

Then T ∗ is bounded and ρ(T ∗) ≥ sup{i < i∗ : ρ(Ti) + 1}.
(2) If all Ti are the same then ρ(T ∗) = sup{i < i∗ : ρ(Ti) + 1}

Proof. (1) Clearly, T ∗ is bounded. Let t∗ be the root of T ∗. First suppose that there is

j such that

α = ρ(Tj) = max{ρ(Ti) : i < i∗}.

Let n < ω and let t be the root of the copy of Tj which is on top of the branch of F

whose length is κn. Therefore ρT ∗(t) ≥ α, as follows from Claim 2.3(3) by taking the

12



reduction from Tj into T ∗ given by mapping Tj identically into this particular copy of

itself. Therefore ρT ∗(t
∗) ≥ α + 1.

If there is no such j then we note sup{i < i∗ : ρ(Ti) + 1} = sup{i < i∗ : ρ(Ti)} and

repeat the above argument with an arbitrary β < α in the place of α above.

(2) Let Ti = T for all i. Note that then we are in the situation of the first case of the

proof of (1), so we can simply follow that argument. F3.6

Corollary 3.7 There is a family {Tα : α < κ+} of bounded κ-Trees with

sup{ρ(Tα) : α < κ+} = κ+.

Proof. By induction on α we construct a bounded tree Tα satisfying ρ(Tα) ≥ α. For

α = 1 let T1 = F . For α + 1 let T̄ consist of a unique element Tα, and then let

Tα+1 = Bn(T̄ ). For α limit let Tα = Bn(〈Tβ : β < α〉). F3.7

In fact, Corollary 3.7 can be improved to obtain a better control on the trees obtained

as well as on the ranks. We use the notion of unfoldable trees from Definition 3.3. We

isolate a specific property of the trees obtained by the bunching operation which will

interest us.

Claim 3.8 1. F is unfoldable.

2. Suppose that T̄ = 〈Ti : i < i∗〉 is a sequence of unfoldable κ-Trees. Then Bn(T̄ ) is

unfoldable.

Proof. (1) has a proof that can easily be extracted from the proof of (2), so let us prove

T . Let T ∗ = Bn(T̄ ) and let t∗ be the root of T ∗. Suppose that T ∗ is not unfoldable, so

let t 6= t∗ be such that T ∗ ≤ T ∗[≥ t] and let f be a reduction witnessing this.

First suppose that t is one of the nodes of the bottom copy of F or the nodes added

as an immediate successor of such a branch. Therefore it is a node on a branch of length

κn + 1 for some n. Since T ∗ ≤ T ∗[≥ t], in particular the image of the branch Bn+1 of F

of length κn+1 is contained in T ∗[≥ t], and it has to be a branch of length at least κn+1.

Therefore an end segment of this branch is completely within a copy of exactly one Ti.

Let s be any element of that end segment which is not the root of Ti. Then in particular

we have that f maps the copy of Ti on top of Bn+1 into T ∗[≥ s], which is isomorphic to

Ti[≥ s′] for some s′ not the root of Ti. This is a contradiction.

Therefore suppose that t is in a copy of some Ti on top of some branch of length

κn + 1. Then argue as above with t in place of s to obtain a contradiction. F3.8

Theorem 3.11 below is an improvement of Corollary 3.7. Its proof will feature two

variants on the bunching operation which we isolate in the following definition. In fact,
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the operation of a disjoint bunch is sufficient for the purposes of Theorem 3.11, but we

describe the mixed bunch as well, as it seems like an interesting variant.

Definition 3.9 (1) Suppose that T̄ = 〈Tn : n < ω〉 are κ-Trees. Then the mixed bunch

of T̄ is the tree MBn(T̄ ) obtained by putting a copy of Tn on top of the branch of length

κn of F .

(2) Suppose that T̄ = 〈Ti : i < i∗〉 are κ-Trees. Then the disjoint bunch of of T̄ is the

tree DBn(T̄ ) obtained by putting a copy of each Ti on top of a common root.

Claim 3.10 (1) Suppose that T̄ = 〈Tn : n < ω〉 are unfoldable κ-Trees with strictly

increasing ranks. Then T ∗ = MBn(T̄ ) is unfoldable and satisfies ρ(T ∗) = supn<ω ρ(Tn).

(2) Suppose that T̄ = 〈Ti : i < i∗〉 are unfoldable κ-Trees of increasing rank and i∗ < κ+.

Then T ∗ = DBn(T̄ ) is an unfoldable κ-Tree and satisfies ρ(T ∗) = supi<i∗ ρ(Ti).

Proof. The argument is similar to the ones in the proof of Claim 3.6 and Claim 3.8.

(1) Suppose that t ∈ T ∗ \ {t∗} is such that T ≤ T [≥ t]. Let n be such that t is on

the branch of F of length κn or in the tree Tn above that branch. Then the reduction

witnessing T ≤ T [≥ t] in particular gives rise to a reduction from Tn+1 into Tnbκnc, which

is a contradiction because ρ(Tnbκnc) = ρ(Tn) < ρ(Tn+1). Therefore T ∗ is unfoldable.

Clearly Tn ≤ T ∗ for all n, and hence ρ(T ∗) ≥ α
def
= supn<ω ρ(Tn). Suppose ρ(T ∗) ≥ α+1

and let t 6= t∗ be such that ρ(t) ≥ α. Let n be such that t is on the branch of F of length

κn or in the tree Tn above that branch. Let Sn denote the branch and the tree Tn on

top of it, so Sn is isomorphic to Tnbκnc whose rank is < α, a contradiction.

(2) Because i∗ < κ+ we have |T ∗| ≤ κ. Suppose that t ∈ T ∗\{t∗} is such that T ≤ T [≥ t]

and let i be such that t is in the copy of Ti used to construct T ∗. The reduction witnessing

T ≤ T [≥ t] in particular gives rise to a reduction from Ti+1 into Ti, a contradiction.

As in (1), since Ti ≤ T ∗ for all i we have ρ(T ∗) ≥ α
def
= supi<i∗ ρ(Ti). If ρ(T ∗) ≥ α+ 1

then there is t ∈ T ∗ such that ρ(t) ≥ α and t is not the root of T ∗. Therefore t is in a

copy of some Ti and we obtain a contradiction as in (1). F3.10

Theorem 3.11 For every rank 1 ≤ α < κ+ there is an unfoldable κ-Tree Tα of rank α.

Proof. The proof is by induction on α. For α = 1 let T 1 = F . For α + 1 let T̄ = 〈Tα〉
and let Tα+1 = Bn(T̄ ), so Tα+1 is unfoldable by Claim 3.8(2) and has rank α + 1 by

Claim 3.6(2). For α limit we use Claim 3.10(2) and the induction hypothesis. F3.11
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3.3 Cutting branches

The idea of the following operation is to associate to every κ-Tree a bounded tree of

height κ (but possibly of size κ+).

Definition 3.12 (1) Let T be a κ-Tree. Let

R(T ) = {r∗(T )} ∪ {(α, t, n) : α < κ+, t ∈ T, h(t) < κn},

ordered by letting (α, t, n) < (α′, t′, n′) if α > α′ or α′ = α, t < t′ and n ≥ n′, and letting

every (α, t, n) ≥ r∗(T ).

(2) For T as above and α∗ < κ+ let Rα∗(T ) = {r∗(T )} ∪ {(α, t, n) ∈ R(T ) : α ≤ α∗},
with the order inherited from R(T ).

Lemma 3.13 Let T be a κ-Tree.

1. R(T ) is a tree of height at most κ with no κ branches, and so is every Rα∗(T ).

2. T is bounded iff T ≤ R(T ). If T is bounded then T ≤ Rρ(T )(T ).

Proof. (1) If (α, t, n) ∈ R(T ) then the predecessors of (α′, t′, n′) are clearly well ordered

in R(T ). Suppose that 〈(αi, ti, ni) : i < κ〉 is increasing in R(T ). Then there must be

i∗ < κ such that all αi for i ≥ i∗ are a fixed α. Therefore 〈ti : i∗ ≤ i < κ〉 is increasing

in T , and all ti have height < κn, a contradiction. We argue similarly for Rα∗(T ).

(2) In the forward direction, let f(t) = (ρT (t), t, nT (t)). This is well defined because

T is bounded, as by Theorem 2.5. If t < t′ we have ρ(t) ≥ ρ(t′) so if ρ(t) > ρ(t′) then

f(t) < f(t′) and if ρ(t) = ρ(t′) then t < t′ and n(t) ≥ n(t′) (by Claim 2.8). Therefore f is

a reduction. In the other direction, since R(T ) has no branches of size κ and T ≤ R(T ),

T cannot have any branches of size κ.

The last sentence follows from the proof of the forward direction above. F3.13

4 Twins and other cofinalities

We consider two functors which make a connection between κ-Trees and trees of size κ

and height ω. It is convenient to assume that κ0 = 0.

Definition 4.1 Suppose that T is a κ-Tree. Then the small twin tw(T ) of T is the

tree T ′ of height ω such that levn(T ′) = levκn(T ′) with the order induced from T . If T

is a tree of size κ and height ω then the big twin Tw(T ) is a normal κ-Tree T such

that levκn(T ) = levn(T ′) and for every n and t ∈ T ′ of height n, the set of immediate

successors of t is in a bijective correspondence ft with {t′ ∈ T : h(t′) = n+ 1 & t ≤ t′}.
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For any α ∈ [κn + 1, κn+1), every point of height α in T ′ has exactly one immediate

successor, and finally we have that for t of height κn and t′ of height κn+1, t ≤′T t′ iff

t ≤T t′. We also have that s ≤ ft(s) whenever s is an immediate successor of t.

Basic properties of the twinning functors are the following:

Claim 4.2 1. For any κ-Tree T we have tw(T ) has an infinite branch iff T is un-

bounded. If T ′ is a tree of height ω and size κ, then Tw(T ′) is unbounded iff T has

an infinite branch.

2. tw(Tw)(T ) = T , for any relevant T .

3. If T ≤ T ′ are κ-Trees then T ≤ T ′ =⇒ tw(T ) ≤ tw(T ′), by the same witnessing

function.

4. Suppose that T ≤ T ′ are trees of height ω and size κ. Then Tw(T ) ≤ Tw(T ′).

Proof. (4) Let f : T → T ′ be a reduction. The Twinning operation gives an embedding

of T into Tw(T ) which maps level n of T into the level κn of Tw(T ), and similarly for

T ′. Let us denote both of these mappings as g. Now we define f ∗ : Tw(T ) → Tw(T ′)

so that f ∗(g(t)) = g(f(t)) for all t ∈ T . Notice that f ∗ is a partial reduction and if

hTw(T )(t) = κn then hTw(T ′)(f
∗)(t) = κm for some m ≥ n. Also note that Tw(T ) cannot

have a maximal branch that terminates at a level α /∈ {κn : n < ω}. Therefore we can

extend f ∗ to a full reduction from Tw(T ) to Tw(T ′). F4.2

5 Universals

The universality number of a class of trees is the smallest cardinal number θ such that

there is a family U of θ many members of the class, satisfying that for every T in the

class there is T ′ ∈ U such that T ≤ T ′. A family U satisfying the latter property is called

a universal family.

We can obtain some results about universality of κ-Trees as a consequence of the

observations made in the previous section.

Claim 5.1 The universality number of the class of all κ-Trees is larger or equal to the

universality number of the class of all trees of size κ and height ω. The same is true

if we restrict the former class to bounded members, and the latter to members with no

infinite branch.
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Proof. Suppose that U is a universal family for the class of all κ-Trees. Let

U ′ = {tw(T ) : T ∈ U}.

Suppose that T is any tree of size κ and height ω. Therefore there is T ∗ ∈ U such

that Tw(T ) ≤ T ∗. Hence T = Tw(tw(T )) ≤ twT∗, by Claim 4.2(2) and (3) above.

Therefore U ′ is a universal family for the class of all trees of size κ and height ω. The

latter statement is proved in the same way. F5.1

The following gives an idea about the universality number of κ-Trees and bounded

κ-Trees.

Claim 5.2 (1) The universality number of the class of all κ-Trees is 1.

(2) The universality number of the class of all bounded κ-Trees is at least κ+.

Proof. (1) Let T be any κ-Trees and view κ as a κ-Tree with one unique branch. We

define f : T → κ by letting f(t) = α if h(t) = α. This is clearly a reduction.

(2) Suppose this universality number is 1, as demonstrated by a T ∗. Let α = ρ(T ). The

bunching operation T̄ = 〈T ∗〉 gives rise to a bounded κ-Tree with rank T at least α+ 1.

However T ≤ T ∗, in contradiction with Corollary 2.7.

Suppose now that the universality number is some λ ∈ [2, κ], as exemplified by trees

{Ti : i < λ}. Then we can construct a bounded κ-Tree T ∗ by defining a root and λ

many successors of it, on top of i-th of which we add a copy of Ti. This is a κ-Tree which

reduces all Ti. Therefore the universality number is not in [2, κ]. F5.2

We now have

Theorem 5.3 The universality number of the class of all bounded κ-Trees is exactly κ+.

Proof. We exhibit a universal family of size κ+. This suffices by Claim 5.2(2). We

consider the ordinal κ as a κ-Tree. Because this tree has a branch of length κ, every

bounded κ-Tree T ≤-embeds into it, simply by mapping every element of T into its

height. Let now Tα = Rα(κ), for α < κ+ (recall the branch cutting operation from

Subsection 3.3). Therefore {Tα : α < κ+} is a family of bounded κ-Trees, and we now

claim that it is universal.

Let T be any bounded κ-Tree and let f : T → κ be a reduction. Let α = ρ(T ) + 1,

therefore α < κ+. Define g : T → Tα by letting g(t) = (ρT (t), f(t), nT (t)). If t < t′ in T

then either ρ(t) > ρ(t)′, or ρ(t) = ρ(t)′ and f(t) < f ′(t). At any rate, g(t) < g(t′). F5.3

Given the above definite results above universality within the class of bounded κ-

Trees we may wonder if there are universality results about the bounded κ-Trees within

the same rank. We have the following:
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Theorem 5.4 (1) For every 1 ≤ α < κ+ the universality number of the class of κ-Trees

of rank α is exactly ω. Moreover, for every such α there is a single unfoldable κ-Tree Tα

of rank α such that {Tαn
def
= Tαbκnc} is a minimal universal family for κ-Trees of rank α.

(2) For every 1 ≤ α < κ+ there is a single unfoldable κ-Tree T ∗α of rank α+ 1 which

is universal for κ-Trees of rank α.

Proof. We commence with a simple lemma.

Lemma 5.5 Suppose that α < κ+ and that F is a family of κ-Trees of rank α universal

for κ-Trees of rank α. Then for every β < α and κ-Tree T of rank β, T embeds into

some member of F .

Proof. For such β, T let T ∗ be the disjoint bunch of T and any tree of rank α. Clearly

T ∗ has rank α, and therefore it embeds into some member of F . The restriction of the

witnessing reduction to T demonstrates the lemma. F5.5

We now prove the theorem by induction on α, proving (1) and (2) simultaneously.

(1) We distinguish several cases of the induction.

For α = 1 let T 1 = F , and so T 1
n = Fbκnc. By Claim 3.8(1) trees F is unfoldable and

by Claim 3.4(3) T 1
n are of rank 1. By Claim 3.4(2) we have Tn+1 � Tn, so there is no

proper subset of {T 1
n : n < ω} which can be universal. We now have to prove that every

κ-Tree T of rank 1 embeds into some Tn. Let T be such a tree.

By the definition of the rank, there is n = nT such that for every t ∈ T of height

≥ n we have ρ(t) < 1. We define f : T → T 1
n by letting for s ∈ T , if h(s) < κn, f(s)

be the node on the stem of T 1
n of height h(s). The choice of n implies that for every

t ∈ T with h(t) ≥ n we have that the whole tree T [≥ t] has height < κ. Therefore for

every such t we can choose m with h(t) < κm and define f on T [≥ t] to carry all points

s to the branch of F of length κm, assigning to each s the unique point f(s) such that

hF (f(s)) = hT [≥t](s).

Let 1 < α < κ+.

Case 1. α = β + 1 for some β. We claim that letting Tα = T ∗β we obtain the desired

conclusion. By (2) at β we have that Tα is unfoldable and has rank α + 1. Therefore

by Claim 3.4(2) we have Tαn � Tαn+1. Like in the case α = 1, for a given tree T of rank

α we let n = nT and define a reduction f : T → T ∗αbκnc by mapping all s of height < κn
to the stem. On the other hand, for any t ∈ T of height ≥ κn we have that the rank of

T [≥ t] is at most β, and so by Lemma 5.5, T [≥ t] embeds into T ∗α.

Case 2. α is a limit ordinal. Let Tα = DBn(〈T β : β < α〉), so by Claim 3.10(2), Tα

is unfoldable and has rank α. The rest of the proof follows closely the proof of Case 1.

(2) If we are given Tα let T ∗α be DBn(〈Tαn : n < ω〉). It is easily seen that T ∗α has

rank α + 1, it is unfoldable and satisfies Tαn ≤ T ∗α for all n. Therefore it is universal for

trees of rank α. F5.4
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6 Incomparable κ-Trees

In this section we are concerned with the antichains of κ-Trees. We commence by showing

that consistently there can be large antichains of κ-Trees in every rank ≥ 2.

We shall use the following useful and well known claim.

Claim 6.1 Suppose that T and T ′ and T ≤ T ′. Then there is a reduction f : T → T ′

satisfying h(t) = h(f(t)) for all t ∈ T .

Proof. Let g : T → T ′ be any reduction and define f(t) = g � h(t). Note that the

fact that g is a reduction implies that h(g(t)) ≥ g(t) for any t ∈ T , so f is well defined.

If s <T t then g(s) <T ′ g(t), and hence g(s) � h(s) = g(t) � h(s) < g(t), but since

h(s) < h(t) we also obtain g(s) � h(s) < g(t) � h(s). Therefore f is a reduction. F6.1

We call the reductions satisfying the requirement of Claim 6.1 level preserving reduc-

tions.

Theorem 6.2 Suppose λ, θ are cardinals such that µ
def
= 2λ

<θ ≤ κ, and ρ < κ+. Then

there is a family of µ many pairwise incomparable κ-Trees of rank ρ.

Proof. Let 〈Sα : α < µ〉 be a family of copies of the tree θ>λ, therefore each Sα is a

tree of size κ-Tree (here we have used λ<θ ≤ κ). Let {fi : i < µ} list all level preserving

reductions from Sα into Sβ for α 6= β < µ. We shall extend each Sα into a tree Tα by

selecting certain cofinal branches of Sα and attaching a copy of a κ-Tree of rank ρ on

top of it, as described below. The purpose of these extensions is to assure that no fi
extends into a reduction between Tα and Tβ for α 6= β. Since we are using up to µ cofinal

branches, we are again using µ ≤ κ to assure that Tα’s are κ-Trees.

Let {T ∗j : j < ω} list a universal family of trees of rank ρ, which exists by Theorem

5.4. By induction on i < µ we consider fi. The inductive hypothesis is that for each

α < µ and j < i we have a tree Sjα such that S0
α = Sα and 〈Sjα : j < i〉 forms a sequence

of trees that end-extend each other, while in the union S0,i
α the tree Sα has been extended

by putting terminal nodes and a copy of some κ-Tree of rank ≤ ρ on top of < µ cofinal

branches of the original Sα. We assume that each cofinal branch of Sα has been extended

at most once.

At stage i of the induction, there are unique α, β such that fi : Sα → Sβ. For

γ /∈ {α, β} let Siγ = S0,i
γ . Next we choose a cofinal branch biα in Sα which still does not

have a terminal node in S0,i
α (this is possible since there are µ many cofinal branches

in Sα, of which we only used < µ). Since fi is a level preserving reduction, the image

biβ = f“biα is a cofinal branch of Sβ.

The first possibility is that biβ still does not have a terminal node in S0,i
β . Then extend

S0,i
α to Siα by putting a terminal node and a copy of T ∗0 on top of biα if ρ > 1, or Fb1c if
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ρ = 1. Extend S0,i
β to Siβ by putting a terminal node and a copy of the fan F on top of

biβ.

Note that fi cannot be extended to a level preserving reduction from Siα to Siβ because

any such reduction would have to move a κ-Tree of rank ρ into F , or Fb1c if ρ = 1 into F ,

which is in contradiction with Claim 2.3. The second possibility is that there is already

a κ-Tree T of rank δ ≤ ρ on top of biβ. By the choice of the family {T ∗j : j < ω} there

must be j such that T ∗j does not embed into T . We choose some such j and place T ∗j on

top of biα.

At the end let Tα be the union of all Siα. It is clear that ρ(Tα) ≥ ρ. Since κ is of

cofinality ω we cannot have µ = κ, by König’s Lemma. Therefore µ < κ If there is a

reduction from Tα to Tβ for some α 6= β then there is a level preserving reduction f , by

Claim 6.1. However, f would have to extend some fi, which was made impossible by

the step i of the induction. F6.2

7 A covering theorem for λcf(λ)

In this section we prove some results about (λ, κ)-Trees, i.e. trees of singular cardinality

λ without branches of length κ = cf(λ). Such trees arise from consideration of the game

EF c,<λ
κ (A,B) on chain models A and B of length κ. In particular, we prove a covering

theorem which can be seen as a generalization of the covering theorem of the Baire space

ωω.

We fix λ strong limit singular of cofinality κ, along with a continuous cofinal sequence

〈λξ : ξ < κ〉 of cardinals in λ such that 2λξ ≤ λξ+1. We shall throughout make the usual

identification between κλ and λκ.

We equip the set λκ with the topology generated by the neighbourhoods

N(f, β) = {g : κ→ λ : g � β = f � β},

for f ∈ κλ and β < λ. Note that in this topology there is a dense subset of λκ of size

|
⋃
ξ<κ λ

λξ | = λ, the topology is 0-dimensional and each open set is the union of λ closed

sets. We make an expected definition:

Definition 7.1 A set A ⊆ λκ is Π1
1 if there is an open set B ⊆ λκ × λκ (in the product

topology where each copy of λκ has the topology described above) such that for every

f ∈ κλ

f ∈ A ⇐⇒ ∀g ((f, g)) ∈ B). (2)

A set is Σ1
1 if its complement is Π1

1 and it is ∆1
1 if it is both Π1

1 and Σ1
1.

20



Now we introduce some notation:

Let T denote the class of trees of cardinality ≤ λ and height ≤ κ with no branches of

length κ. Let pair : λ× λ→ λ be the standard bijection. If f, g ∈ κλ, let 〈f, g〉 ∈ κλ be

a function such that 〈f, g〉(pair(α, β)) = pair(f(α), g(β)) for α, β ∈ λ. Let σ : κ>λ→ λ

be a bijection.

Now we shall fix a bijection H between κ(P(λ)) and κλ which has the following

properties. Namely, identifying P(λ) with 1P(λ) the function H induces an injection

F from P(λ) to κλ. We require this injection F to have the property that there is a

sequence 〈Fξ : ξ < κ〉 of injections Fξ : P(λξ+1 \ λξ) → λξ+2 \ λξ+1 such that for any

A ⊆ λ the value F (A) ∈ κλ is a function such that F (A)(λξ) = Fξ(A∩ (λξ+1 \λξ)). Such

an H is easy to find, by constructing first the functions Fξ. For most of the this sections

we shall only work with the function F , but the whole of function H will be needed once

we start talking about chain models in Theorem 7.8.

If f : κ→ λ, we denote the initial segment 〈f(0), . . . , f(β), . . .〉β<α by f̄(α). By a tree

on λ<κ we mean a subset of λ<κ which is closed under initial segments. Respectively, a

tree on λ<κ × λ<κ we mean a set T of pairs (f̄(α), ḡ(α)) such that if (f̄(α), ḡ(α)) and

β < α, then (f̄(β), ḡ(β)).

Example 7.2 Let Tr = {F (σ“T ) : T is a tree on λ<κ}. Therefore Tr ⊆ λκ and we

claim that it is closed. Suppose that f is in the closure of Tr, hence for every β < λ

there is gβ ∈ N(f, β) and some tree Tgβ such that F (σ“Tgβ) = gβ. If ζ < ξ1 < ξ2 then

gλξ1 (λζ) = gλξ1 (λζ) = f(λζ), therefore Fζ(σ“Tgλξ1
∩(λζ+1\λζ)) = Fζ(σ“Tgλξ2

∩(λζ+1\λζ)).

Let A =
⋃
ζ<κ F

−1
ζ (σ“Tgλξ ∩ (λζ+1 \ λζ)), where ξ ∈ (ζ, κ) is arbitrary. The discussion

above shows that A is well defined. Let T ∗ = σ−1(A), so T ∗ ⊆ λ<κ. Now if g ∈ T ∗ and

h is an initial segment of g we have σ(g) ∈ A and therefore for some ζ < ξ < κ we

have σ(g) ∈ F−1
ζ (σ“Tgλξ ∩ (λζ+1 \ λζ)).Hence σ(g) ∈ σ“Tgλξ and so g ∈ Tgλξ . Therefore

h ∈ Tgλξ and we can show that h ∈ T ∗ by reversing the implications. Therefore T ∗ is a

tree and by its definition F (T ∗) = f , showing that f ∈ Tr.

If f = F (σ“T ) ∈ Tr we denote the tree T by Tf . Let

T O = {f : Tf has no branches of length κ}.

It can be checked that this set is Π1
1.

Proposition 7.3 (Boundedness Theorem) Suppose B ⊆ T O is Σ1
1. Then there is

g ∈ T O such that Tf ≤ Tg for all f ∈ B.

Proof. If T is a tree on λ<κ × λ<κ and f ∈ κλ, let

T (f) = {ḡ(α) : (f̄(α), ḡ(α)) ∈ T}.
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Note that |T (f)| ≤ λ. Let S = {(f̄(α), ḡ(α)) : f ∈ Tr, ḡ(α) ∈ Tf}. Now S(f) = Tf for

all f ∈ Tr and

f ∈ T O ⇐⇒ S(f) has no branches of length κ.

Let T be a tree such that

f ∈ B ⇐⇒ T (f) has a branch of length κ.

Let T ′ be the tree of triples (f̄(α), ḡ(α), h̄(α)) such that ḡ(α) ∈ S(f) and h̄(α) ∈ T (f).

If T ′ has a branch of length κ then we get f ∈ B \ T O. To prove Tf ≤ T ′ for all f ∈ B,

let f ∈ B be arbitrary. Let (h̄(α))α<κ be a branch of length κ in T (f). For ḡ(α) ∈ S(f)

let

φ(ḡ(α)) = (f̄(α), ḡ(α), h̄(α)).

Now φ : S(f)→ T ′ is order-preserving.

To prove the corresponding result for all Π1
1-sets, we present the basic tree-representation

of Π1
1-sets. This emerges in the same natural way as in the space ωω.

Lemma 7.4 A set A ⊆ κλ is Π1
1 if and only if there is a relation R ⊆ λ<κ × λ<κ such

that

f ∈ A ⇐⇒ ∀g∃αR(f̄(α), ḡ(α)). (3)

Proof. If A and B satisfy (2), then

R = {(f̄(α), ḡ(α)) : N((f, g), α) ⊆ B}

satisfies (3). Conversely, if A and B satisfy (3), then

B =
⋃
{N((f, g), α) : R(f̄(α), ḡ(α))}

satisfies (2).

Proposition 7.5 Let A ⊆ κλ. A is Π1
1 if and only if there is a tree T on λ<κ × λ<κ

such that

f ∈ A ⇐⇒ T (f) has no branches of length κ. (4)

Proof. Suppose A is Π1
1 and R is as in (3). Let

T = {(f̄(α), ḡ(α)) : ∀β ≤ α¬R(f̄(α), ḡ(α))}.

Hence f ∈ A if and only if T (f) has no branches of length κ. For the converse, suppose

such a T exists. Let

R(f̄(α), ḡ(α)) ⇐⇒ ∃β ≤ α(f̄(β), ḡ(β)) 6∈ T.
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Now f ∈ A if and only if ∀g∃αR(f̄(α), ḡ(α)). Thus A is Π1
1.

Suppose A is Π1
1 and T is a tree such that (4) holds. If g ∈ T O, let

AT,g = {f ∈ κλ : T (f) ≤ Tg}.

Then clearly, AT,g ⊆ A for g ∈ T O, and λ<κ = λ implies
⋃
g∈T O A

T,g = A. Using the

functions σ and F it is not hard to see that the sets AT,g are Σ1
1 subsets of A.

Proposition 7.6 (Covering Theorem) Suppose A is Π1
1 and T is a tree such that

f ∈ A ⇐⇒ T (f) has no branches of length κ.

Suppose B ⊆ A is Σ1
1. Then there is g ∈ T O such that B ⊆ AT,g.

Proof. Let S be a tree such that f ∈ B if and only if S(f) has a branch of length κ.

Let T ′ be the tree of triples (f̄(α), ḡ(α), h̄(α)) such that ḡ(α) ∈ T (f) and h̄(α) ∈ S(f).

If T ′ has a branch of length κ, then f ∈ B \ A. Let Te ∼= T ′. To prove B ⊆ AT,e,

let f ∈ B. Let (h̄(α))α<κ be a branch of length κ in S(f). For ḡ(α) ∈ T (f) let

φ(ḡ(α)) = (f̄(α), ḡ(α), h̄(α)). Now φ : T (f)→ T ′ is order-preserving, whence f ∈ AT,e.

Corollary 7.7 (Boundedness Theorem) Suppose A is Π1
1 and T is a tree such that

f ∈ A ⇐⇒ T (f) has no branches of length κ.

Then A is ∆1
1 if and only if there is g ∈ T O such that ∀f ∈ A(T (f) ≤ Tg).

We finish the section by showing how these ideas and the concept of chain isomor-

phism join to give us at strong limit singular cardinals an analogue of the cornerstone

of the analysis of countable models using descriptive set theory. Recall that we have

fixed a cofinal κ-sequence ~λ = 〈λξ : ξ < κ〉 in λ. We shall only consider chain models

with λ as the universe and a decomposition 〈Aα : α < κ〉 such that every Aα is a subset

of some λβ, and vice verse, every λβ is a subset of some Aα. Let us call these ~λ-chain

models. Recall that we have fixed a bijection H : κP(λ)→ κλ. If A is a ~λ-chain model

with decomposition Ā = 〈Aα : α < κ〉, then and 〈A〉 _ Ā is in the domain of H and

it is mapped to some f ∈ κλ. We say that A is coded by f . The orbit of A is the set

of g ∈ κλ which code some B (and a decomposition of it) chain-isomorphic to A. The

orbit depends on the function H.

Theorem 7.8 Suppose that λ is a singular strong limit cardinal of cofinality κ. Then

the orbit of a ~λ-chain model A of cardinality λ and length κ is a Σ1
1-set in the space

κλ equipped with the above topology. The orbit is ∆1
1 iff there is a (λ, κ)-Tree T such

that for any chain model B of cardinality λ and length κ, I has a winning strategy in

EFDc,<λ
T (A,B) if and only if A 6∼=chain B.
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Proof. Suppose A is a ~λ-chain model with decomposition 〈Aα : α < κ〉. Let τ be

a strategy of I in EF c,<λ
κ (A,B) in which the αth move is for α = ν + 2n, ν = ∪ν, a

sequence that enumerates λν+n \
⋃
β<ν+n λβ in A, and for α = ν + 2n + 1, ν = ∪ν, a

sequence that enumerates λν+n \
⋃
β<ν+n λβ in B. Note that the strategy is independent

of B. For any ~λ-chain model B with some decomposition 〈Bα : α < κ〉 let S(B) be the

tree of plays in which I has used τ and II has played but has not lost yet. Then for all

B,

A 6∼=chain B ⇐⇒ S(B) has no branches of length κ.

This set if Π1
1 by Proposition 7.5, so the orbit of A, which is the complement of this set,

is Σ1
1.

If the set {B : A ∼=chain B} is ∆1
1, then we can apply Boundedness Theorem to its

complement. Therefore there is a tree T of cardinality λ without branches of length κ

such that

A 6∼=chain B implies S(B) ≤ T.

We can now show that

A 6∼=chain B iff player I has a winning strategy in EFDc,<λ
σT (A,B) :

Suppose A 6∼=chain B. Then S(B) ≤ T . Hence I wins EFDc,<λ
σT (A,B) with the strategy

τ . On the other hand, if A ∼=chain B, then II wins EF c,<λ
κ (A,B), so I cannot win

EFDc,<λ
σT (A,B). F7.8
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If λ = κ = ω, then every orbit is ∆1
1 and the Scott height of A is - essentially - the

tree T of the above Theorem. So Theorem 7.8 generalizes the Scott analysis of countable

models to chain models of singular strong limit cardinality.
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