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Abstract1

We introduce the oak property of first order theories, which is a syntactical condition that we2

show to be sufficient for a theory not to have universal models in cardinalityλ when certain cardinal3

arithmetic assumptions aboutλ implying the failure ofGCH (and close to the failure ofSCH) hold.4

We give two examples of theories that have the oak property and show that none of these examples5

satisfySOP4, not evenSOP3. This is related to the question of the connection of the propertySOP46

to non-universality, as was raised by the earlier work of Shelah. One of our examples is the theory7

T∗
feq for which non-universality results similar to the ones we obtain are already known; hence we8

may view our results as an abstraction of the known results from a concrete theory to a class of9

theories.10

We show that notheory with the oak property is simple.11
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0. Introduction 1

Since the very early days of the mathematics of the infinite, the existence of a universal2

object in a category has been the object of continued interest to specialists in various 3

disciplines of mathematics—even Cantor’s work on the uniqueness of the rational numbers4

as the countable dense linear order with no endpoints is a result of this type. For some more5

recent examples see for instance [1,5]. We approach this problem from the point of view 6

of model theory, more specifically, classification theory, and we concentrate on first order 7

theories. In [10] the idea was to consider properties that can serve as good dividing lines8
between first order theories (in [10]; more general theories in other work). This is to be 9

taken in the sense that useful information can be obtained both from the assumption that10

a theory satisfies the property, and the assumption that itdoes not, and in general we may 11

expect several equivalent definitions for such properties. Preferably, there is an “outside12

property” and a “syntactical property” which end up being equivalent. The special outside13

property which was central in [10] was the number of pairwise non-isomorphic models, and14

it led to considering the notions of stability and superstability. It is natural to ask whether15

other divisions can be obtained using problems of similar nature. This is a matter of much16

investigation and some other properties have been looked at; see for example [6,21] and 17

more generally [20]. One such property is universality, which is the main topic of this paper.18

In a series of papers, e.g. Kojman–Shelah [8] (see there also forearlier references), [9], 19

Kojman [7], Shelah [16,18], Džamonja–Shelah [3], the thesis claiming the connection 20

between the complexity of a theory and its amenability to the existence of universal models21

has been pursued. Further research on the subject is in preparation in Shelah’s [23]. It 22

follows from the classical results in model theory (see [2]) that if GCH holds then every 23

countable first order theory admits a universal model in every uncountable cardinal, so the24

question we need to ask is what happens whenGCH fails. We may define the universality 25

number of a theoryT at a given cardinalλ as the smallest size of the family of models of 26

T of sizeλ having the property that every model ofT of sizeλ embeds into an element of 27

the family. Hence, ifGCH holds this number for uncountableλ and countableT is always 28

at most 1. It is usually “easy” to force a situation in which such a universality number is29

as large as possible, namely 2λ (by adding Cohen subsets, see [8]); however assuming that 30

GCH fails and allowing ourselves a vague use of the words “many” and “often” for the mo- 31

ment, we can distinguish between those theories which for many cardinals have the largest32

possible universality number in that cardinalwhenever GCHfails, and those for which it is 33

possible to construct a model of set theory in whichGCH fails, yet our theory has a small 34

universality number at the cardinality under consideration. This division would suggest 35

that the latter theories—let us call them for the sake of this introduction amenable—are of36

lower complexity than the former ones. The definition of amenability can be given in more37

precise terms. In the view of the preceding discussion involving the universality behaviour38

in models ofGCH, it isnotsurprising that this definition is expressed in terms of forcing. 39

Definition 0.1. We say that a theoryT is amenableiff wheneverλ is an uncountable 40

cardinal larger than the size ofT and satisfyingλ<λ = λ and 2λ = λ+, while θ satisfies 41

cf(θ) > λ+, there is aλ+-cc (< λ)-closed forcing notion that forces 2λ to beθ and the 42

universality number univ(T, λ+) (seeDefinition 0.7) to be smaller thanθ .
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Localising this definition at a particularλ we define what is meant by theories that are1

amenable atλ.2

Kojmanand Shelah in [8] proved that the theory of a dense linear order exhibits high3

non-universality behaviour, making it a prototypical example of a non-amenable theory.4

That is, they proved (Section 3, proof of Theorem 3.10) that the theory of a dense linear5

order satisfies the property described inDefinition 0.3, which we shall call high non-6

amenability. We shall indicate below that this name is well chosen, in the sense that high7

non-amenability implies the negation of amenability as introduced above. In order to define8

high non-amenability we shall need a somewhat technical definition of a tight(κ, µ, λ)9

club guessing sequence, but as this definition will be needed anyway inSection 2, we shall10

give the exact definition now rather than glancing over it for the sake of the introduction.11

Definition 0.2. (1) Suppose thatκ < λ are regular cardinals and thatκ ≤ µ < λ while S12

is a stationary subset ofλ consisting of points of cofinalityκ . A sequence〈Cδ : δ ∈ S〉13

will be calleda tight [truly tight] (κ, µ, λ) club guessing sequenceiff14

(i) for everyδ ∈ S the setCδ is a subset ofδ with otp(Cδ) = µ,15

(ii) for every clubE of λ there isδ ∈ S suchthatCδ ⊆ E, and16

(iii) for every α ∈ λ17

|{Cδ ∩ α : δ ∈ S & α ∈ (Cδ \ lim(Cδ))}| < λ.18

[In addition to (i)–(iii) above,19

(iv) sup(Cδ) = δ.]20

(2) Suppose thatλ is a regular cardinal,µ < λ and〈Cδ : δ ∈ S〉 satisfies (i)–(iii) from (1)21

with the possible exception ofSnotnecessarily being a set of points of cofinalityκ for any22

fixedκ . Thenwe say that〈Cδ : δ ∈ S〉 is a tight (µ, λ) club guessing sequence.23

Definition 0.3. A theory T is said to behighly non-amenableif f for every large enough24

regular cardinalλ andκ < λ such that there is a truly tight(κ, κ, λ) club guessing sequence25

〈Cδ : δ ∈ S〉, thenumber univ(T, λ) is at least 2κ .26

Suppose that a theoryT is both amenable and highly non-amenable, and letλ be a27

large enough regular cardinal whileV = L or simply λ<λ = λ and♦(Sλ+
λ ) holds. Let28

P be the forcing exemplifying thatT is amenable. Clearly there is a truly tight(λ, λ, λ+)29

club guessing sequencēC in V , and since the forcingP is λ+-cc, every club ofλ+ in V P
30

contains a club ofλ+ in V ; henceC̄ continues to be a truly tight(λ, λ, λ+) club guessing31

sequence inV P. Then on the one hand we have that inV P, univ(T, λ+) ≥ 2λ by the high32

non-amenability, while univ(T, λ+) < 2λ by the choice ofP, a contradiction.33

In fact [8] proves that any theory with the strict order property is highly non-amenable.34

On the other hand Shelah proved in [18] that all simple theories are amenable at all succes-35

sors ofregularκ satisfyingκ<κ = κ . In that same paper Shelah introduced a hierarchy of36

complexity for first order theories, and showed that highnon-amenability appears as soon37

as a certain level on that hierarchy is passed. The details of this hierarchy are described38

in the following Definition 0.8, but for the moment let us just mention the fact that the39

hierarchy describes a sequenceSOPn (3 ≤ n < ω) of properties of increasing strength40

such that the theory of a dense linear order possesses all the properties, while on the other
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hand no simple theory can have the weakest among them,SOP3. Shelah proved in [18] 1

that the propertySOP4 of a theoryT implies thatT exhibits the same non-universality 2

results as the theory of a dense linear order; in other words it is highly non-amenable. In3

the light of these results it might then be asked whetherSOP4 is a characterisation of high 4

non-amenability, that is whether all highly non-amenable theories also haveSOP4. 5

The results available in the literature do not provide a counter-example, and the ques-6

tion in fact remains open after this investigation. However we provide a partial solution7
by continuing a result of Shelah about the theoryT∗

feq of infinitely many indexed inde- 8

pendent equivalence relations, [16]. It is proved there that this particular theory exhibits 9

a non-amenability behaviour provided that some cardinal arithmetic assumptions close to 10

the failure of the singular cardinal hypothesisSCHare satisfied (seeSection 1for details). 11

This does not necessarily imply highnon-amenability, as it was proved also in [16] that this 12

theory is in fact amenable at any cardinal which is the successor of a cardinalκ satisfying 13

κ<κ = κ . Here we generalise the first of these two results by defining a property which im-14

plies such non-amenability results and is possessed byT∗
feq. This property is called the oak 15

property, as its prototype is the model completion of Th(Mλ,κ, f,g), a theory connected to 16

that of the treeκ≥λ (for details seeExample 1.3). The oak property cannot be made a part of 17

theSOPn hierarchy, as we exhibit a theory which has oak, and isNSOP3, while the model 18

completion of the theory of triangle-free graphs is an example of aSOP3 theory which does 19

not satisfy the oak property. On the other hand we prove at the end ofSection 1that nooak 20

theory is simple. We also exhibit a close connection betweenT∗
feq and Th(Mλ,κ, f,g). These 21

results indicate that in order to make the connection between the high non-amenability, 22

amenability and theSOPn hierarchy more exact one needs to consider the failure ofSCH 23

as a separate case. In addition the oak property not being compatible with theSOPn hier- 24

archy gives new evidence that this hierarchydoes not exhaust the unstable theories that do25

not have the strict order property. Note that in [[18], 2.3(2)] there is an example of a first 26

order theory that satisfies the strong order property but not the strict order property (and 27

the strongorder property implies allSOPn, though it is not implied by their conjunction). 28

To finish this introduction, let us summarise the connection between the cardinal arith-29

metic and the universality number that is shown in this paper (a more detailed discussion of30

this can be found at the end ofSection 2). Firstly, by classical model theory, ifGCH holds 31

then the universality number of any first order theory of size< λ, at anycardinal≥ λ, is 32

1—hence the situation is trivialised. Similarly, the results that we have here on sufficient33

conditions for non-amenability trivialise if the Strong HypothesisStHof Shelah holds [15] 34

because the conditions are never satisfied.StHsays that pp(µ) = µ+ for every singularµ; 35

hence cf([µ]<κ,⊆) ≤ µ+ for everyκ < µ, soStH implies the Singular Cardinal Hypoth- 36

esisSCH (it is itself implied by¬0�). However, ifStH fails, sayκ, λ regulars satisfy that 37

for some singularµ we have cf(µ) = κ andµ+ < λ while pp(µ) > λ, for all we know 38

the results here hold and are not trivial, in the sense that not only do all known consistency 39

proofs of the failure ofStH show this, but it is not known whether it is consistent to have 40

the failure ofStHand at the same relevant cardinals a failure of our assumptions. 41

Let us now commence the mathematical part of the paper by giving some background42

notions which will be used in the main sections of the paper, starting with some classical43

definitions of model theory. 44
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Convention 0.4. A theory in this paper means a first order complete theory, unless1

otherwise stated. Such an object is usually denoted byT .2

Notation 0.5. (1) Given a theoryT , we letC = CT stand for“the monster model”, i.e. a3

saturated enough model ofT . As is usual, we assume without loss of generality that all our4

discussion takes place inside some such model, so all expressions to the extent “there is”,5

“exists” and “|=” are to berelativised to this model, all models are≺ C, and all subsets of6

C that we mention have size less than the saturation number ofC. We letκ̄ = κ̄(CT ) be the7

size ofC, so thiscardinal is larger than any other cardinal mentioned in connection withT .8

(2) For a formulaϕ(x̄; ā) we letϕ(C; ā) be the set of all tuples̄b suchthatϕ[b̄; ā] holds9

in C.10

Definition 0.6. (1) The tupleb̄ is defined byϕ(x̄; ā) if ϕ(C; ā) = {b̄}. It is defined by the11

type p if b̄ is the unique tuple which realisesp. It is definableover A if tp(b̄, A) defines it.12

(2) The formulaϕ(x̄; ā) is algebraicif ϕ(C; ā) is finite. The typep is algebraic if it is13

realised by finitely many tuples only. The tupleb̄ is algebraicover A if tp(b̄, A) is.14

(3) Thedefinable closureof A is15

dcl(A)
def= {b : b is definable overA}.16

(4) Thealgebraic closureof A is17

acl(A)
def= {b : b is algebraicover A}.18

(5) If A = acl(A), we saythat A is algebraically closed. When dcl(A) and acl(A)19

coincide, cl(A) denotes their common value.20

Definition 0.7. (1) For a theoryT and a cardinalλ, models{Mi : i < i ∗} of T , each of21

sizeλ, arejointly universaliff for every N a model ofT of sizeλ there is ani < i ∗ and an22

isomorphic embedding ofN into Mi .23

(2) ForT andλ as above,

univ(T, λ)
def= min{|M| : M is a family of jointly

universal models ofT of sizeλ}.

To makeDefinition 0.7more readable, note that univ(T, λ) = 1 iff there is auniversal24

model ofT of sizeλ. Thefollowing is the main definition of Shelah’s [18].25

Definition 0.8 (Shelah, [18] ). Let n ≥ 3 be a natural number.26

(1) A formulaϕ(x̄, ȳ) is said to exemplify then-strong order property, SOPn if lg(x̄) =27

lg(ȳ), and there arēak for k < ω, each of lengthlg(x̄) suchthat28

(a) |= ϕ[āk, ām] for k < m < ω,29

(b) |= ¬(∃x̄0, . . . , x̄n−1)[∧{ϕ(x̄	, x̄k) : 	, k < n andk = 	 + 1 modn}].30

T hasSOPn if there is a formulaϕ(x̄, ȳ) exemplifying this.31

(2) A theory that does not possessSOPn is said to haveNSOPn.



UNCO
RRECTE

D P
RO

O
F

ARTICLE  IN  PRESS
6 M. Džamonja, S. Shelah / Annals of Pure and Applied Logic xx (xxxx) xxx–xxx

APAL: 1636

Note 0.9. Using a compactness argument and the Ramsey theorem, one can prove that if 1

T is a theory withSOPn andϕ(x̄, ȳ), and〈ān : n < ω〉 exemplify it, without loss of 2

generality 〈ān : n < ω〉 is an indiscernible sequence. See [10] or [6] for examples of such 3

arguments. 4

Example 0.10. The model completion of the theory of triangle-free graphs is a 5

prototypical example of aSOP3 theory, with the formulaϕ(x, y) just stating thatx and 6

y are connected. It can be shown that this theory isNSOP4; see [18]. 7

The following fact indicates thatSOPn(3 ≤ n < ω) form a hierarchy, and the thesis is 8

that this hierarchy is reflectedin the complexity of the behaviour of the relevant theories 9

under natural constructions in model theory. 10

Fact 0.11 (Shelah, [18], Section 2). For 3 ≤ n < ω the propertySOPn+1 of a theory 11

implies thepropertySOPn. 12

1. The oak property 13

In this section we define a theoryT∗ that will serve as a prototype of a theory that 14

possesses the oak property. Then we introduce the oak property and prove that the theory15

T∗ has this property. We are interested in the connection between the oak property and16

theSOPhierarchy (seeDefinition 0.8). To this end we shall show thatT∗ satisfiesNSOP3 17

(so byFact 0.11it clearly does not satisfySOP4). As another example we shall show that 18

the model completion of the theory of infinitely many indexed independent equivalence 19

relations,T∗
feq, also satisfies oak andNSOP3. This theory is known not to be simple [18], 20

but we shallin fact show that no theory with the oak property is simple. 21

We commence with some auxiliary theories which will allow us to defineT∗ (as the 22

model completion ofT+
0 ). 23

Definition 1.1. (1) Let T0 be the following theory in the language 24

{Q0, Q1, Q2, F0, F1, F2, F3} : 25

(i) Q0, Q1, Q2 are unary predicates which form a partition of the universe, 26

(ii) F0 is a partial function fromQ1 to Q0, 27

(iii) F1 is a partial two-place function fromQ0 × Q2 to Q1, 28

(iv) F2 is a partial function fromQ0 to Q2, 29

(v) F3 is a partial function fromQ2 to Q0, 30

(vi) the range ofF1 is included in the domain ofF0 and for all(x, z) ∈ Dom(F1) we have 31

F0(F1(x, z)) = x, and 32

(vii) the range of F2 is included in the domain ofF3 and F3(F2(x)) = x for all 33

x ∈ Dom(F2). 34

(2) Let T+
0 be defined likeT0, but with the requirement thatF0, F1, F2 and F3 are total 35

functions. 36

Remark 1.2. It is to be noted that the above definition ofT0 uses partial rather than the 37

more usual full function symbols. Using partial functions we have to be careful when we38
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speak about submodels, where we have a choice of deciding whether statements of the1

form “Fl (x) is undefined” are preserved in the larger model. We choose to request that2

the fact thatFl is undefined at a certain entry is not necessarily preserved in the larger3

model. FunctionsF2 andF3 are “dummies” whose sole purpose is to ensure that models of4

T+
0 are non-trivial, while keepingT+

0 a universal theory (which is useful when discussing5

the model completion). Also note that neitherT0 nor T+
0 is complete, but every model6

M of T0 in which QM
0 , QM

2 = ∅ and F0 and F3 are onto can be extended to a model7

of T+
0 with the same universe (Claim 1.4(2)), and every model ofT0 is a submodel of8

a model of T+
0 (Claim 1.4(4)). T+

0 has a complete model completion (Claim 1.5). This9

model completion is the main theory we shall work with and, as we shall show, it has the10

oak property (Claim 1.11) and isNSOP4 (Claim 1.7).11

As we are only interested in the model completionT∗ of T+
0 we might have omitted the12

mention of T0 altogether, but in the interest of possible future examples and also in order13

to make the proof of the existence ofT∗ easier, throughClaim 1.4we defined bothT0 and14

T+
0 and then showed how to pass from models of one to models of the other.15

Example 1.3. Suppose thatκ andλ are infinite cardinals andf is any surjective function16

from κλ to κ , while g is a function fromκ to κλ satisfyingg( f (ν)) = ν for all ν ∈ κλ.17

Then we can construct a modelM = Mκ,λ, f,g as follows: letQM
0 beκ , QM

1 beκ>λ, and18

QM
2 = κλ. Further let F M

0 (η) be the length ofη for η ∈ Q1, and letF M
1 (α, ν) = ν � α.19

Let F M
3 be f and letF M

2 beg.20

We consider such examples to be prototypical for models ofT+
0 .21

Claim 1.4. (1) If M is a model of T+0 , then QM
0 , QM

1 and QM
2 are all non-empty, and FM022

and FM
3 are onto.23

(2) Every model M of T0 in which QM
0 = ∅ and QM

2 = ∅, while F M
0 and FM

3 are onto,24

can be extended to a model of T+
0 with the same universe(and every model of T+0 is a25

model of T0).26

(3) There are models M of T0 with QM
0 = ∅ and QM

2 = ∅ and FM
3 onto which cannot be27

extended to a model of T+0 with the same universe.28

(4) Every model of T0 is a submodel of a model of T+0 .29

(5) T+
0 has the amalgamation property and the joint embedding property JEP.30

(6) If M |= T0 and A⊆ M isfinite, then the closure B of A under FM
0 , F M

1 , F M
2 and FM

331

is finite (in fact|B| ≤ |A|2 + 2|A|); moreover:32

(a) B ∩ QM
2 = (A ∩ QM

2 ) ∪ {F M
2 (a) : a ∈ A ∩ QM

0 },33

(b) B ∩ QM
0 = (A ∩ QM

0 ) ∪ {F M
0 (b) : b ∈ A ∩ QM

1 } ∪ {F M
3 (c) : c ∈ A ∩ QM

2 } and34

(c) B ∩ QM
1 = (A ∩ QM

1 ) ∪ {F M
1 (a, c) : a ∈ B ∩ QM

0 & c ∈ B ∩ QM
2 }.35

In this case, B|= T0 and if M |= T+
0 , then B|= T+

0 .36

To declutter the notation we shall from now on whenever possible in discussingT0, T+
037

(and its model completionT∗ which will be introduced later) omit the superscriptM from38

the function symbols.39

Proof. (1) As M is a model we have thatM = ∅, so at least one amongQM
0 , QM

1 , QM
2 is40

not empty.41
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If QM
0 = ∅, then F2 guarantees thatQM

2 = ∅, so QM
1 = ∅ because ofF1. If 1

QM
1 = ∅, thenQM

0 = ∅ because ofF0. Finally, if QM
2 = ∅, thenQM

0 = ∅ because of 2

F3, and wecan again argue as above. 3

If a ∈ QM
0 , let b ∈ QM

2 be arbitrary. ThenF1(a, b) ∈ QM
1 andF0(F1(a, b)) = a. 4

Hence,F0 is onto. Also,F3(F2(a)) = a, soF M
3 is onto. 5

(2) Let M |= T0 and QM
0 , QM

2 = ∅. For x ∈ QM
0 and z ∈ QM

2 suchthat (x, z) /∈ 6

Dom(F M
1 ), let F1(x, z) = y for anyy ∈ QM

1 suchthatF0(y) = x, which exists asF M
0 7

is already onto. Forx ∈ QM
0 for which F2(x) is not already defined, letF2(x) = z for 8

anyz suchthatF3(z) = x, which exists asF M
3 is onto. Finally, extendF0 andF3 to be 9

total. The model described is a model ofT+
0 with the same universe asM. 10

(3) Let κ1 < κ2 < λ and let QM
0 = κ2, QM

1 = κ1>λ, while QM
2 = κ1λ. For 11

α < κ2 let F2(α) be the function inκ1λ which is constantlyα, and forν ∈ κ1λ let 12

F3(ν) = min(Rang(ν)) if this value is< κ2, and 0 otherwise. Also, letF0(η) = lg(η) 13

andF1(α, ν) = ν � α be defined forν ∈ κ1λ andα < κ1. 14

This is a model ofT0, butnot of T+
0 becauseF1 is not total. If this model were to 15

be extended to a model ofT+
0 with the same universe, wewould have that for every 16

ν ∈ κ1λ 17

F0(F1(κ1, ν)) = κ1 & F1(κ1, ν) = η 18

for someη ∈ κ1>λ. As F0(η) is already defined,F0(η) = lg(η) < κ1, which is a 19

contradiction. 20

(4) Given a modelM of T0. First ensure thatQM
0 , QM

1 , QM
2 = ∅ by adding new elements 21

if necessary. Then make sure thatF0 and F3 are total and onto, which might require 22

adding new elements toM (and hence redefiningQM
0 , QM

1 , QM
2 if needed). Now for 23

eachx ∈ QM
0 choosey(x) ∈ QM

1 suchthat F0(y(x)) = x, which ispossible sinceF0 24

is onto, and then define for every(x, z) ∈ QM
0 × QM

2 the value of F1(x, z) to bey(x), 25

unlessF1(x, z) has already been defined to start with, in whichcase we leave it at that 26

value. Finally declare forx ∈ QM
0 for which F2(x) has not already been defined that 27

F2(x) = z for anyz suchthat F3(z) = x, which can be done sinceF3 is onto. 28

(5) We first prove the amalgamation property. Suppose thatM0, M1 and M2 are models 29

of T+
0 with |M1| ∩ |M2| = |M0|, andM0 ⊆ M1, M2. We defineM3 as follows. Let 30

|M3| = |M1| ⋃ |M2|, and form ∈ {0, 2, 3} let F M3
m (x) = F Ml

m (x) if x ∈ Ml for 31

somel . This is well defined, becauseM1 and M2 agree onM0. Also, the identity 32

F3(F2(x)) = x is satisfied inM3. Now we let F M3
1 = F M1

1 ∪ F M2
1 . This does not 33

necessarily give us a total function, but we still have a model ofT0 with universe 34

|M1| ∪ |M2| and so to obtain the desired amalgam (which has the same universe) we35

apply part (2) of this claim. From this definition it follows that bothM1 and M2 are 36

submodels ofM3 and equal to its restriction to their respective universes. 37

To see that JEP holds, suppose that we are given two modelsM1, M2 of T+
0 . Define 38

M by letting its universe be the disjoint union ofM1 andM2, anddefine the functions 39

Fm for m ∈ {0, 1, 2, 3} by F M
m = F M1

m ∪ F M2
m . ThenM is a model ofT0, butlike in the 40

proof of amalgamation, the functionF1 might happen to be only partial, in which case 41

we extendM to a model ofT+
0 by applying part (2) of this claim. Then it can easily be 42

checked thatM embeds bothM1 andM2. 43
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(6) Suppose thatA andM are as in the assumptions. Then items (a)–(c) of the statement1

uniquely define a subset ofM, which we shall call B. Theproof will be complete if we2

can prove thatB is of the required size and is the closure ofA.3

Clearly B is contained in the closure ofA and the size ofB is as claimed. That is,4

letting for l ∈ {0, 1, 2} the size ofA ∩ QM
l benl andn = Σl<3nl , we have first that5

|B ∩ QM
2 | ≤ n2+n0, then|B ∩ QM

0 | ≤ n0+n1+n2 ≤ n, and so|B ∩ QM
1 | ≤ n1+n2.6

It can be checked directly thatB is closed, usingthe equations forT0, and it alsoeasily7

follows thatB is a model ofT0, or of T+
0 if M is. �8

Claim 1.5. T+
0 has a complete model completion T∗ which admits elimination of9

quantifiers, and isℵ0-categorical. In this theory the closure and the algebraic closure10

coincide.11

Proof. We can constructT∗ directly. T∗ admits elimination of quantifiers becauseT+
012

has the amalgamation property and is universal ([2] 3.5.19). It can be seen from the13

construction ofT∗ that it is complete, or alternatively, it can be seen thatT∗ has JEP14

and so by [2] 3.5.11, it is complete. To see that the theory isℵ0-categorical, observe that15

Claim 1.4(6) implies that for everyn there are only finitely manyT0-types inn-variables.16

Then by the Characterisation of Completeℵ0-categorical Theories ([2] 2.3.13),T∗ is ℵ0-17

categorical. Using the elimination of quantifiers and the fact that all relational symbols18

of the language ofT∗ have infinite domains in every model ofT∗, we can see that the19

algebraic closure and the definable closure coincide inT∗. �20

Observation 1.6. If A, B ⊆ CT∗ are closed andc ∈ cl(A ∪ B) \ A \ B, thenc ∈ QCT∗
1 .21

Proof. Notice that

cl(A ∪ B) =A ∪ B ∪ {F1(a, c) : a ∈ (A ∪ B) ∩ Q0 & c ∈ (A ∪ B) ∩ Q2

& {a, c} � A & {a, c} � B}
by Claim 1.4(6). �22

Claim 1.7. T∗ is NSOP3, consequently NSOP4.23

Proof. Suppose thatT∗ is SOP3 and letϕ(x̄, ȳ), and〈ān : n < ω〉 exemplify this in a
modelM (seeDefinition 0.8(1)). Without loss of generality, by redefiningϕ if necessary,
eachān is without repetition and is closed (recallClaim 1.4(6)). By the Ramsey theorem
and compactness, we can assume that the given sequence is a part of an indiscernible
sequence〈āk : k ∈ Z〉; henceāk’s form a∆-system. Let fork ∈ Z

X<
k

def=
⋂
m<k

cl(āmˆāk), X>
k

def=
⋂
m>k

cl(āmˆāk), Xk = cl(X<
k ∪ X>

k ).

Hence Rang(āk) ⊆ Xk, andXk is closed. ByClaim 1.4(6), there is an a priori finite bound24

on the size of Xk; hence by indiscernibility, we have that|Xk| = n∗ for some fixedn∗
25

not depending onk. Let ā+
k list Xk with no repetition. ByObservation 1.6, Claim 1.4(6),26

indiscernibility and the fact that eachāk is closed, we have that for l ∈ {0, 2}27

cl(āmˆāk) ∩ QC
l = (Rang(ām) ∪ Rang(āk)) ∩ QC

l28
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and 1

Xk ∩ QC
0 ⊆ Rang(āk) ∩ QC

0 andXk ∩ QC
2 ⊆ Rang(āk) ∩ QC

2 . 2

Applying the Ramsey theorem again,without loss of generality we have that〈ā+
k : k ∈ Z〉 3

are indiscernible. Let 4

w∗
0

def= {l : ā+
k1

(l ) = ā+
k2

(l ) for some (equivalently all) k1 = k2}. 5

If ā+
k1

(l1) = ā+
k2

(l2) for some k1 = k2, without loss of generalityk1 < k2, by 6

indiscernibility and symmetry. By transitivity and the fact that eachā+
k is without 7

repetition, using k1 < k2 < k3 we get l1 = l2 ∈ w∗
0. Let w∗

1
def= n∗ \ w∗

0, and 8

let ā = ā+
k � w∗

0 and ā′
k = ā+

k � w∗
1. Hence, 〈āˆā′

k : k ∈ Z〉 is an indiscernible 9

sequence, and Rang(ā) ∩ Rang(ā′
k) = ∅ for all k. In addition, for k1 = k2 we have 10

Rang(ā′
k1

) ∩ Rang(ā′
k2

) = ∅ and Rang(āˆā′
k) = Xk. 11

Now we define a modelN. Itsuniverse is∪0≤l<3{clM (āˆā′
l ˆā′

l+1)}, andQN
i = QM

i ∩N, 12

F N
j = ∪{Fj ,l : l < 3}, where Fj ,l = F M

j � clM (āˆā′
l ˆā′

l+1), or Fj ,l = F M
j � 13

(clM (āˆā′
l ˆā′

l+1))
2, as appropriate. Note thatN is well defined, and that it is a model of 14

T0. N is not necessarily a model ofT+
0 , as the function F1 may be only partial. Notice 15

that Xl ⊆ N for l ∈ [0, 3]. We wish to defineN′ like N, but identifyi ng ā+
0 and ā+

3 16

coordinatewise. We shall now check that this will give a well defined model ofT0. Note 17

that by the proof of Observation 1.6we have 18

N′ =
⋃

0≤l<3

Xl ∪
⋃

0≤l<3

{F N
1 (c, d) : c, d ∈ Xl ∪ Xl+1

& {c, d} � Xl & {c, d} � Xl+1 & F N
1 (c, d) /∈ Xl ∪ Xl+1}. 19

The possible problem is thatF N′
i might not be well defined, i.e. there could perhaps 20

be a case defined in two distinct ways. We verify that this does not happen, by discussing21

variouspossibilities. 22

Case 1. For someb ∈ Rang(ā+
0 ), sayb = ā+

0 (t), b′ = ā+
3 (t) and j ∈ {0, 2, 3}, we 23

haveFj (b) = Fj (b′) after the identification of̄a+
0 with ā+

3 . As ā+
k ’s are closed, we have 24

Fj (b) = ā+
0 (s) and Fj (b′) = ā+

3 (s′) for somes, s′. By indiscernibility, we haves = s′, 25

hence the identification will makeFj (b) = Fj (b′). 26

Case 2. For somes, t we have thatF1(ā
+
0 (s), ā+

0 (t)) and F1(ā
+
3 (s), ā+

3 (t)) are well 27

defined, but not the same after the identification ofā+
0 andā+

3 . This case cannot happen, 28

as can be seen similarly to in Case 1. 29

Case 3. For someτ (x, y) ∈ {F1(x, y), F1(y, x)} andd1 = ā+
0 (s), d2 = ā+

3 (s) and 30

somee ∈ N we have thatτ N(e, d1), τ
N(e, d2) are well defined but do not get identified 31

whenN′ is defined. 32

By Case 2, we have thate /∈ ā ands /∈ w∗
0. As τ (e, d1) is well defined andd1 ∈ X0 \ ā, 33

necessarilye ∈ clM (X0 ∪ X1). Similarly, asτ (e, d2) is well defined andd2 ∈ X3 \ ā, we 34

havee ∈ clM (X2 ∪ X3). But, asF1(e, dl ) is well defined, we havee ∈ Q2 ∪ Q0. Hence 35

e ∈ clM (X0 ∪ X1) \ Q1 ⊆ X0 ∪ X1 and similarlye ∈ X2 ∪ X3. This implies e ∈ ā, a 36

contradiction. 37
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As M is a model of T0, F M
0 is onto (Claim 1.4(1)). Supposey ∈ QN

0 ; then for1

somel ∈ [0, 3) we have thaty ∈ clM (Xl ∪ Xl+1), so by Observation 1.6, we have2

y ∈ Xl ∪ Xl+1. As eachXl is closed inM, by Claim 1.4(6) eachXl is a model ofT+
0 , so3

y ∈ Rang(F M
0 � Xl ); hence y ∈ Rang(F N

0 ) andy ∈ Rang(F N′
0 ). We can similarly prove4

that F N′
3 is onto, and as eachXl is a model ofT+

0 we have byClaim 1.4(1) thatQN′
0 , QN′

15

andQN′
2 are all non-empty. ByClaim 1.4(2), N′ can be extended to a model ofT+

0 .6

By the choice ofϕ and the fact thatT∗ is complete we have that7

T∗ |= (∀x̄0, x̄1, x̄2)¬[ϕ(x̄0, x̄1) ∧ ϕ(x̄1, x̄2) ∧ ϕ(x̄2, x̄0)].8

As T∗ is the model completion of T+
0 , in particular T∗ andT+

0 are cotheories, so we have9

that10

T+
0 |= (∀x̄0, x̄1, x̄2)¬[ϕ(x̄0, x̄1) ∧ ϕ(x̄1, x̄2) ∧ ϕ(x̄2, x̄0)],11

yet in N′ we have12

N′ |= ϕ(ā0, ā1) ∧ ϕ(ā1, ā2) ∧ ϕ(ā2, ā0),13

by the identification of ā0 andā3. This is acontradiction. �14

Definition 1.8. (1) A theoryT is said tosatisfytheoak property as exhibited by a formula15

ϕ(x̄, ȳ, z̄) iff for any infinite λ, κ there arēbη(η ∈ κ>λ) andc̄ν(ν ∈ κλ) andāi (i < κ)16

suchthat17

(a) [η � ν & ν ∈ κλ] =⇒ ϕ[ālg(η), b̄η, c̄ν],18

(b) If η ∈ κ>λ andηˆ〈α〉 � ν1 ∈ κλ andηˆ〈β〉 � ν2 ∈ κλ, while α = β andi > lg(η),19

then¬∃ȳ [ϕ(āi , ȳ, c̄ν1) ∧ ϕ(āi , ȳ, c̄ν2)],20

and in additionϕ satisfies21

(c) ϕ(x̄, ȳ1, z̄) ∧ ϕ(x̄, ȳ2, z̄) =⇒ ȳ1 = ȳ2.22

We allow for the replacement ofCT by C
eq
T (i.e. allow ȳ to be a definable equivalence23

class).24

(2) We say that oak holds forT if this is true for someϕ.25

Observation 1.9. If someinfinite λ, κ exemplify that oak(ϕ) holds, then so do all infinite26

λ, κ . (Thisholds by the compactness theorem.)27

Remark 1.10. We shallnot need to use this, but let us remark that witnessesā, b̄, c̄ to28

oak(ϕ) can be chosen to be indiscernible along an appropriate index set (a tree). This29

can be proved using the technique of [10], Chapter VII, which employs the compactness30

argument and an appropriate partition theorem.31

Claim 1.11. T∗ has oak.32

Proof. Let33

ϕ(x, y, z)
def= Q0(x) ∧ Q1(y) ∧ Q2(z) ∧ F0(y) = x ∧ F1(x, z) = y.34

Clearly, (c) ofDefinition 1.8(1) is satisfied. Givenλ, κ , we shalldefine a modelN = Nλ,κ35

of T+
0 . This will be a submodel ofC = CT∗ such that its universe consists ofQN

0
def=36
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{ai : i < κ} with no repetitions,QN
1

def= {bη : η ∈ κ>λ} with no repetitions and 1

QN
2

def= {cν : ν ∈ κλ} with no repetitions, whileQ0, Q1, Q2 are pairwise disjoint. We 2

also require that the following are satisfied inC = CT∗ : 3

F0(bη) = alg(η), F1(ai , cν) = bν�i 4

and thatN is closed underF2 andF3. That such achoice is possible can be seen by writing 5

the corresponding type and using the saturativity ofC. 6

We can check thatN |= T+
0 , and thatN is a submodel ofC when understood as a 7

model ofT+
0 . Clearly, (a) fromDefinition 1.8(1) is satisfied forϕ andai , bη, cν in place 8

of āi , b̄η, c̄ν respectively. To see (b), suppose thatη, α, β, ν1, ν2 andi are as there, butd is 9

suchthatϕ(ai , d, cν1) ∧ ϕ(ai , d, cν2). Hence F1(ai , cν1) = F1(ai , cν2), soν1 � i = ν2 � i , 10

a contradiction. This shows thatϕ is a witness forT∗ having oak. � 11

A similar argument can be used to show thatT∗ is not simple, but in fact we shall prove 12

that no theory with the oak property is simple (this in particular answers a question of13

A. Dolich raised in a private communication). 14

Claim 1.12. No theory with the oakproperty is simple. 15

Proof. Let T be a theory with the oak property and letκ, λ be cardinals such thatκ > |T |, 16

2κ < λ andλ = λ<κ < λκ (such cardinals always exist). ByObservation 1.9we may 17

assume that the oak property ofT is exemplified by a formulaϕ(x̄, ȳ, z̄) and sequences 18

〈āi : i < κ〉, 〈b̄η : η ∈ κ>λ〉 and 〈c̄ν : ν ∈ κλ〉. For ν ∈ κλ let pν = pν(z̄)
def= 19

{ϕ(āi , b̄ν�i , z̄) : i < κ}. Hence eachpν is a type of cardinalityκ and the set{pν : ν ∈ κλ} 20

consists of pairwise incompatible types. The set of parameters used in
⋃{pν : ν ∈ κλ} has 21

size≤ κ · λ<κ = λ. By [[10], III, 7.7, pg. 141] this implies thatT is not simple. � 22

We now pass to another example of a theory with oak that satisfiesNSOP3, whichis the 23

theory T∗
feq of infinitely many indexed independent equivalence relations. This example 24

also shows why it is that this research continues [16]. The readers uninterested inT∗
feq can 25

skip to the next section without loss of continuity. We use the notation forT∗
feq which was 26

used in [4], while the fact that this is equivalent to the notation in [16] was explained in [4]. 27

The existence of the required model completion is explained in [4]. 28

Definition 1.13. (1) T+
feq is the following theory in{Q, P, E, R, F}: 29

(a) PredicatesP andQ are unary and disjoint, and(∀x) [P(x) ∨ Q(x)]. 30

(b) E is an equivalence relation onQ. 31

(c) R is a binary relation onQ × P suchthat 32

[x R z& y R z& x E y] =⇒ x = y. 33

(Explanation: soR picks for eachz ∈ Q (at most)one representative of anyE-equivalence class.) 34

(d) F is a (total) binary function fromQ × P to Q, which satisfies 35

F(x, z) ∈ Q & (F(x, z) R z) & (x E F(x, z)) . 36

(Explanation: so forx ∈ Q andz ∈ P, the functionF picks the representative of theE-equivalence class ofx which 37

is in the relationR with z.) 38

(2) T∗
feq is the model completion of T+

feq.
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Remark 1.14. After renaming,Ceq
T∗

feq
is a reduct of Ceq

T∗ ; formally T∗
feq is interpretable in

1

T∗. Givena modelM of T∗, we defineN = N1[M] by letting its universe beQM
1

⋃
QM

22

andPN = QM
2 , while QN = QM

1 . We let3

y Ez iff F M
0 (y) = F M

0 (z) andF N(x, z) = F1(F0(x), z).4

We also letx R z ⇐⇒ F N(x, z) = x. It is easily seen thatN |= T+
feq, and moreover,5

N |= T∗
feq.6

Using the above Remark and the fact that oak andNSOP3 are preserved up to7

isomorphism ofCeq, weobtain:8

Corollary 1.15. (1) T∗
feq has oak.9

(2) T∗
feq has NSOP3.110

Proof. (1) Use the formulaϕ(x, y, z) ≡ F(x, z) = y.11

(2) Follows byRemark1.14. �12

Part(2) of Corollary 1.15was stated without proof in [18]. The results here suggest the13

following questions.14

Question 1.16. (1) DoesT∗ satisfySOP2 or SOP1?15

(2) Are there any nontrivial examples of oak theories that haveSOP3?16

PropertiesSOP2 or SOP1 were introduced in [4] where it was shown thatSOP3 =⇒17

SO P2 =⇒ SO P2 =⇒ not simple, but it was left open to decide whether any of these18

implications is reversible. Theseproperties are studied further in [24] where it is proved19

thatT∗
feq hasNSOP1. This makes it reasonable to conjecture that the answer to both parts20

of 1.16is positive.21

We finish the section by quoting a result of Shelah from [16], which can be compared22

with our non-universality results fromSection 2. Thenotation is explained inSection 2.23

Theorem 1.17 (Shelah). Suppose thatκ,µ andλ are cardinals satisfying24

(1) κ = cf(µ) < µ, λ = cf(λ),25

(2) µ+ < λ,26

(3) there is a family27

{(ai , bi ) : i < i ∗, ai ∈ [λ]<µ, bi ∈ [λ]κ}28

suchthat |{bi : i < i ∗}| ≤ λ and satisfying that for every f: λ → λ there is i such29

that f(bi ) ⊆ ai ; and30

(4) ppΓ (κ)(µ) > λ + |i ∗|.31

Thenuniv(T+
feq, λ) ≥ ppΓ (κ)(µ).32

1 It has subsequently been proved by Shelah and Usvyatsov in [24] that T∗
feq has a stronger propertyNSOP1.
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2. Non-universality results 1

In this section we present two general theorems showing that under certain cardinal2

arithmetic assumptions oak theories do not admit universal models. Let us start by3

introducing some common abbreviations that we shall use in the statements and the proofs4

in this section. 5

Notation 2.1. (1) Letκ ≤ λ be cardinals. We let 6

[λ]κ def= {A ⊆ λ : |A| = κ}. 7

If κ is regular we let 8

Sλ
κ

def= {α < λ : cf(α) = κ}. 9

(2) For a setA of ordinals we let the set ofaccumulation pointsof A be acc(A)
def= {α ∈ 10

A : α = sup(A ∩ α)} and the set ofnon-accumulation pointsbe nacc(A)
def= A \ acc(A). 11

Before proceeding to the non-universality theorems recall from the Introduction the def- 12

inition of a tight club guessing sequence (Definition 0.2). Note that the definition does not 13

require setsCδ to be either closed or unbounded inδ. It can be deduced from the existing 14

literature on club guessing sequences that tight and truly tight club guessing sequences15

exist for many triples(κ, µ, λ). We shall indicate inClaim 2.10how this deduction can be 16

made, but let us leave this for the discussion on the consistency of the assumptions of the17

non-universality theorems, which will be given after their proofs. We shall now give two18

non-universality theorems. These theorems haveset-theoretic and model-theoretic assump- 19

tions. The model-theoretic assumption is the same in both cases: that we are dealing with20

an oak theory of size< λ, with the desired conclusion being that the universality number21

univ(T, λ) is larger thanλ. The set-theoretic assumptions, which are different for the two 22

theorems, will be phrased in the form of certain combinatorial statements that are needed23

for the proofs of the theorem. As with tight club guessing sequences, it might not be imme-24

diately clear to the reader that these assumptions are consistent. However, after we prove 25

the theorems we shall give some sufficient conditions for these assumptions to be satisfied26

and as a corollary get some non-universality results whose set-theoretic assumptions are 27

phrased in the form of cardinal arithmetic and known to be consistent. 28

Theorems 2.2and2.4 have similar proofs, as we explain below, so we shall first state29

both theorems and then give the proofs simultaneously. 30

Theorem 2.2. Assume thatκ,µ, σ andλ are cardinals satisfying 31

(1) cf(κ) = κ < µ < λ = cf(λ) and there is a tight(µ, λ) club guessing sequence, 32

(2) λ < µκ , 33

(3) κ ≤ σ ≤ λ, 34

(4) there are familiesP1 ⊆ [λ]κ andP2 ⊆ [σ ]κ suchthat 35

(i) for every injective g: σ → λ there is X∈ P2 with {g(i ) : i ∈ X} ∈ P1, 36

(ii) |P1| < µκ, |P2| ≤ λ, 37

(5) T is a theory of size< λ which has theoak property. 38
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Then1

univ(T, λ) ≥ µκ.2

Definition 2.3. Forcardinalsκ ≤ µ we define3

UJbd
κ

(µ)
def= min{|P | : P ⊆ [µ]κ & (∀b ∈ [µ]κ)(∃a ∈ P)(|a ∩ b| = κ}.4

More onUJbd
κ

(µ) can be found in [22].5

Theorem 2.4. Assume thatκ,µ, σ andλ are cardinals satisfying6

(1) cf(κ) = κ < µ < λ = cf(λ) and there is a tight(µ, λ) club guessing sequence,7

(2) λ < UJbd
κ

(µ),8

(3) κ ≤ σ ≤ λ,9

(4) there are familiesP1 ⊆ [λ]κ andP2 ⊆ [σ ]κ suchthat10

(i) for every injective g: σ → λ there is X∈ P2 such that for some Y∈ P111

|{g(i ) : i ∈ X} ∩ Y| = κ,12

(ii) |P1| < UJbd
κ

(µ), |P2| ≤ λ,13

(5) T has the oak property.14

Then15

univ(T, λ) ≥ UJbd
κ

(µ).16

Before we start the proof let us give an introduction to the methods that appear within17

it. When proving that the universality number of a certain category with given morphisms18

(so not just in the context of first order model theory) is high it is often the case that19

one can associate with each object in the category a certain construct, an invariant, which20

is to some extent preserved by morphisms. For example such an invariant might be an21

ordinal number and then one can prove that such an invariant may only increase after22

an embedding. The proof then proceeds by contradiction by showing that any candidate23

for the universal would have to satisfy too many invariants. A trivial example would be24

to show that there is no countable well-ordering that is universal under order preserving25

embeddings: the order type of the ordering is an invariant that satisfies that iff : P → Q26

is an order preserving embedding, then the order type ofQ is at least as large as that ofP.27

Any Q that would be universal would have to have a countable well-order type that is larger28

than that of all countable ordinals, a contradiction. As trivial as it is, this example points out29

two stages of a non-universality proof:constructionwhich associates an object with every30

invariant prescribed by a certain set (e.g. the uncountable set of all countable ordinals) and31

preservationthat shows that some essential features of the invariant are preserved (e.g.32

the order type does not decrease) under embeddings. In our proofs we shall use the same33

method, except that the invariants will be defined as certainλ-sequences of subsets ofµ,34

unique modulo the club filter onλ, andthat the preservation and the resulting contradiction35

will be dependent on a certain club guessing sequence. Using such invariants is a technique36

that was first used by Kojman and Shelah in [8] andhas appeared in a number of papers37

since. The main point tends to be the right definition of an invariant and the use of a right38

kind of club guessing.39
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Proof. We shall use the same proof for bothTheorems 2.2and2.4. The two main Lemmas 1

are the same for the two theorems, and we shallindicate the differences which occur toward 2

the end of the proof. Suppose thatϕ(x̄, ȳ, z̄) shows thatT has the oak property and let 3

ai (i < κ), bη (η ∈ κ>λ) andcν(ν ∈ κλ) exemplify the oak property ofϕ(x̄, ȳ, z̄) for λ 4

andκ . Fornotational simplicity, let us assume thatlg(x̄) = lg(ȳ) = lg(z̄) = 1. 5

Let 〈Cδ : δ ∈ S〉 be a tight(µ, λ) club guessing sequence. For eachδ, let 〈α(δ, ζ ) : 6

ζ < µ〉 be the increasing enumeration ofCδ. Let C+ be a (saturated enough) expansion of 7

CT by the Skolem functions forCT . 8

Definition 2.5. (1) For N̄ = 〈Nγ : γ < λ〉 an ≺-increasing continuous sequence of 9

models ofT of size< λ, and fora, c ∈ Nλ
def= ⋃

γ<λ Nγ , andδ ∈ S, we let 10

invN̄(c, Cδ, a)
def= {ζ < µ : (∃b ∈ Nα(δ,ζ+1) \ Nα(δ,ζ ))(Nλ |= ϕ[a, b, c])}. 11

(2) For a setA andδ, N̄ as above, let 12

invA
N̄
(c, Cδ)

def=
⋃

{invN̄(c, Cδ, a) : a ∈ A}. 13

Note 2.6. Following the notation ofDefinition 2.5, notice that inv̄N(c, Cδ, a) is always a 14

singleton or empty, since if there isb ∈ Nλ suchthatϕ[a, b, c] holds then suchb is unique 15

(by part (c) ofDefinition 1.8). Consequently invA
N̄
(c, Cδ) ∈ [µ]≤|A|. 16

Construction Lemma 2.7. For every A∗ ∈ [µ]κ of order typeκ , thereis an≺-increasing 17

continuous sequencēNA∗ = 〈NA∗
γ : γ < λ〉 of models of T of size< λ and a set 18

{âi : i < σ } of elements of NA∗ def= ⋃
γ<λ NA∗

γ such that for some club E∗ of λ, for every 19

X ∈ P2, for someαX < λ, for every δ ∈ S satisfying min(Cδ) > αX, there is c∈ NA∗ 20

suchthat inv{âi : i∈X}
N̄A∗ (c, Cδ) = A∗. 21

In addition, the universe of NA∗ is λ. 22

Proof of the Lemma. Let P2 = {Xα : α < α∗ ≤ λ}. Without loss of generality 23

σ ⊆ ⋃
α<α∗ Xα . 24

Given A∗. Let f = fA∗ be an increasing function from the successor ordinals< κ 25

into µ such that Rang( f ) = A∗. For δ ∈ S let νδ be the function fromκ into λ suchthat 26

νδ(ζ ) = α(δ, f (ζ )) for all ζ < κ . Note thatνδ is increasing. Hencecνδ is well defined, as 27

is bη for η � νδ. For X ∈ P2, let ρX be a bijection between the ordinals< κ that have the 28

form β + 2 for someβ andX. Forη ∈ κ>λ let us say thatη is goodiff the domain ofη is 29

of the formβ + 2 for someβ < κ . 30

By a compactness argument, we can see that there are〈âi : i < σ 〉 and for X ∈ P2, 31

sequences〈cX
νδ

: δ ∈ S〉, 〈bX
η : η � νδ & η good & δ ∈ S〉 such that forη good andδ ∈ S 32

η � νδ =⇒ |= ϕ[âρX(lg(η)), bX
η , cX

νδ
] 33

and the appropriate translation of (b) fromDefinition 1.8holds. By taking an isomorphic 34

copy ofC+ if necessary, we can assume that the Skolem hull inC+ of 35

{âi : i < σ } ∪ {bX
η : X ∈ P2 & (∃δ ∈ S)η � νδ} ∪ {cX

νδ
: X ∈ P2 & δ ∈ S} 36
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is contained inλ. Let for γ < λ the model NA∗
γ be the reduction toL(T) of the Skolem1

hull in C+ of2

γ ∪ {âi : i ∈ ∪α<min{α∗,γ }Xα} ∪3

∪
⋃

α<min{α∗,γ }
{cXα

νδ
: δ ∈ S∩ γ & sup(Rang(νδ)) < γ } ∪

4

∪
⋃

α<min{α∗,γ }
{bXα

η : η � νδ for someδ ∈ S & η good & sup(Rang(η)) < γ }.
5

HenceN̄A∗ = 〈NA∗
γ : γ < λ〉 is ≺-increasing continuous, and it also follows that the6

universe ofNA∗ def= ⋃
γ<λ NA∗

γ is λ. We observe also that forγ < λ we have|NA∗
γ | < λ7

becauseλ is regular,T has size< λ and the Skolem hull needed to obtainNA∗
γ is taken8

over a set of size< λ. That this set has size< λ might not be immediate, since in the last9

clause of its definition we allowδ to range over the entire setS, whose size isλ. However,10

for everyη appearing in this part of the definition,η is increasing (as an initial segment of11

someνδ) and it satisfies sup(Rang(η)) < γ . Sincethedomain ofη is of the formβ + 212

for someβ, this meansη(β + 1) < γ . For anyδ ∈ S suchthat η � νδ we have that13

η(β + 1) ∈ Cδ , so either η(β + 1) ∈ nacc(Cδ) or for someγ ′ ∈ nacc(Cδ) we have that14

η(β) < γ ′ < η(β + 1). At any rate, Rang(η) is a subset of size< κ of a set of the form15

Cδ ∩ ξ ∪ {o} for someξ ∈ nacc(Cδ) andξ, o are both< γ . As part of the choice ofC̄ we16

obtain that for anyξ < γ17

|{Cδ ∩ ξ : δ ∈ S, ξ ∈ nacc(Cδ)}| < λ.18

For δ ∈ S andξ ∈ nacc(Cδ) let ζ ∗(δ, ξ)
def= min{ζ : α(δ, f (ζ )) ≥ ξ}, if this is well19

defined, and letζ ∗(δ, ξ) = κ otherwise. Now notice that ifCδ ∩ ξ = Cδ′ ∩ ξ then we have20

ζ ∗(δ, ξ) = ζ ∗(δ′, ξ) and thatνδ � ζ ∗(δ, ξ) = νδ′ � ζ ∗(δ′, ξ). Our analysis shows that anyη21

relevant to the third clause of the definition ofNA∗
γ and having domainβ + 2 satisfies that22

η � (β + 1) = (νδ � ζ ∗(δ, ξ)) � (β + 1) for someδ ∈ Sandξ < γ and hence that there are23

< λ choices forbXα
η . Let E∗ be a club ofλ such that for everyδ ∈ E∗ and goodη we have24

b
Xβ
η ∈ NA∗

δ iff β < δ & (∃δ′ ∈ S∩ δ)[η � νδ′ ].25

Givenα < α∗, X = Xα andδ ∈ S with min(Cδ) ≥ α + 1 andCδ ⊆ E∗, we shall show26

that with27

I
def= inv{âi : i∈X}

N̄A∗ (cX
νδ

, Cδ)28

we haveI = A∗. Notice thatε < κ =⇒ α(δ, f (ε)) > α trivially since min(Cδ) > α.29

Let i ∈ X, β + 2 = ρ−1
X (i ) and letη = 〈α(δ, f (ε)) : ε ≤ β + 1〉. We have thatη � νδ30

and i = ρX(lg(η)). Hence ϕ[âi , bX
η , cX

νδ
] holds. Letζ = f (β + 1). We then have that31

bX
η ∈ NA∗

α(δ,ζ )+1 ⊆ NA∗
α(δ,ζ+1) (asα(δ, ζ ) + 1 is strictly larger than sup(Rang(η)) = α(δ, ζ )32

andα < α(δ, ζ ) + 1), butbX
η /∈ NA∗

α(δ,ζ ) by the choice ofE∗. Henceζ = f (β + 1) ∈ I . So33

A∗ ⊆ I because every element ofA∗ is f (β + 1) for someβ as above.34

In the other direction, supposeζ ∈ I and let i ∈ X be such thatζ is in35

invN̄A∗ (cX
νδ

, Cδ, âi ). Hence for someb ∈ NA∗
α(δ,ζ+1) \ NA∗

α(δ,ζ ) we have|= ϕ[âi , b, cX
νδ

].36
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Constructingη as in the previous paragraph we have that|= ϕ[âi , bX
η , cX

νδ
] holds. Using the 1

uniqueness property from (c) ofDefinition 1.8we see thatb = bX
η so ζ = f (β + 1) for 2

someβ. So A∗ = I . � 3

Note 2.8. With the notation ofLemma 2.7, for any i ∈ ⋃
α<min{α∗,δ} Xα we have 4

invN̄A∗ (cX
δ , Cδ, âi ) = ∅, as follows from the forward direction of the proof thatA∗ = I . 5

Preservation Lemma 2.9. Suppose that N and N∗ are models of T both with universeλ,
and f : N → N∗ is an elementaryembedding, while〈Nγ : γ < λ〉 and〈N∗

γ : γ < λ〉 are
continuous increasing sequences of models of T of cardinality< λ with

⋃
γ<λ Nγ = N

and
⋃

γ<λ N∗
γ = N∗. Further suppose that{âα : α < κ} ⊆ N is given. Let

E
def=

{
γ : (N, N∗, f ) � γ ≺ (N, N∗, f ) & sup({aα : α < κ}) < γ &

theuniverses of Nγ and N∗
γ are both the setγ

}
.

Thenfor every c∈ N andδ with Cδ ⊆ E, and for everyα < κ wehave 6

invN̄(c, Cδ, âα) = invN̄∗ ( f (c), Cδ, f (âα)). 7

Proof of the Lemma. Note thatE is a club ofλ. Fix c ∈ N andδ ∈ Sas required, and let 8

a = aα for someα < κ . We shall see that invN̄(c, Cδ, a) = invN̄∗ ( f (c), Cδ, f (a)). 9

Supposeζ < µ is an element of inv̄N(c, Cδ, a), so there isb ∈ Nα(δ,ζ+1) with 10

N |= ϕ[a, b, c], while there is no suchb ∈ Nα(δ,ζ ) (we are using the uniqueness property 11

from (c) ofDefinition 1.8). We have thatN∗ satisfiesϕ[ f (a), f (b), f (c)]. As Cδ ⊆ E we 12

have thatα(δ, ζ + 1) ∈ E, and asb ∈ Nα(δ,ζ+1), clearly f (b) ∈ N∗
α(δ,ζ+1). Similarly, by 13

the definition ofE again and the fact thatf is injective we havef (b) /∈ N∗
α(δ,ζ ). By the 14

assumptions onϕ we have 15

N∗ |= “ (∀y)[ϕ( f (a), y, f (c)) =⇒ y = f (b)]” , 16

soζ ∈ invN̄∗ ( f (c), Cδ, f (a)). 17

In the other direction, supposeζ < µ is an element of inv̄N∗ ( f (c), Cδ, f (a)), so there 18

is b∗ ∈ N∗
α(δ,ζ+1) with N∗ |= ϕ[ f (a), b∗, f (c)], while there is no suchb∗ ∈ N∗

α(δ,ζ ). 19

HenceN∗ |= ∃y (ϕ[ f (a), y, f (c)]), so N |= ∃y (ϕ[a, y, c]). Let b ∈ N be such that 20

N |= ϕ[a, b, c]. Hence N∗ |= ϕ[ f (a), f (b), f (c)]. Again by (c) of Definition 1.8, we 21

have f (b) = b∗, sob ∈ Nα(δ,ζ+1) \ Nα(δ,ζ ) because{α(δ, ζ ), α(δ, ζ + 1)} ⊆ E, so by the 22

choice ofE we have that forγ ∈ {α(δ, ζ ), α(δ, ζ + 1)}, (N, N∗, f ) � γ is an elementary 23

submodel of(N, N∗, f ). As this b is unique (by (c) ofDefinition 1.8) we have thatζ 24

belongs to inv̄N(c, Cδ, a). � 25

Proof of the Theorems continued (Theorem2.2 (Theorem2.4)). To conclude the proof 26

of the theorems, givenθ < µκ [θ < UJbd
κ

(µ)], we shall see that univ(T, λ) > θ . 27

Without loss of generality, we can assume thatθ ≥ λ + |P1|. Given 〈N∗
j : j < θ〉 a 28

sequence of models ofT each of sizeλ, we shall show thatthese models are not jointly 29

universal. So suppose they were. Without loss of generality, the universe of eachN∗
j is λ. 30

Let N̄∗
j = 〈N∗

γ, j : γ < λ〉 be an increasing continuous sequence of models ofT of size 31

< λ suchthat N∗
j = ⋃

γ<λ N∗
γ, j , for j < θ . For eachA ∈ P1 (so A ∈ [λ]κ ), δ ∈ S, 32
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j < θ andd ∈ N∗
j , we compute invA

N̄∗
j
(d, Cδ), each time obtaining an element of[µ]≤κ .

1

The number of elements of[µ]≤κ obtained in this way is2

≤ |P1| · |S| · θ · λ ≤ θ.3

By the choice ofθ [and the definition ofUJbd
κ

(µ)], we can chooseA∗ ∈ [µ]κ suchthat A∗
is not equal to any of these sets [is almost disjoint (i.e. has intersection of size< κ) to any

one of these sets]. LetN
def= NA∗ be as guaranteed to exist by the Construction Lemma,

and let{âi : i < σ }, N̄A∗ def= 〈NA∗
γ : γ < λ〉 andE∗ be as in that Lemma. In particular,

theuniverse ofN is λ. Suppose thatj < θ and f : N → N∗
j is an elementary embedding,

and let

E∗∗ def=
{

δ ∈ E∗ : (N, N∗
j , f ) � δ ≺ (N, N∗

j , f ) &

the universe of eachN∗
δ, j , NA∗

δ is δ

}
.

Let g : σ → λ be given byg(i ) = f (âi ). Note that g is injective becausef is an4

isomorphic embedding. By assumption (4)(i) ofTheorem 2.2[2.4], there isX = Xα ∈ P25

suchthat{ f (âi ) : i ∈ X} ∈ P1 [for someY ∈ P1 we have6

|{ f (âi ) : i ∈ X} ∩ Y| = κ].7

Let αX < λ be as provided by the Construction Lemma, and let8

E
def= (E∗∗ \ αX) ∩ {δ : {âi : i ∈ X} ⊆ δ}.9

Since we have that the universe ofN is λ we have{âi : i < σ } ⊆ λ, so asX is a set of10

sizeκ < λ we can conclude thatE is a club ofλ. We now chooseδ ∈ SsuchthatCδ ⊆ E,11

so in particularCδ ⊆ E∗ and min(Cδ) > αX.12

The Construction Lemma guarantees that there isc ∈ N such that inv{âi : i∈X}
N̄

(c, Cδ) =13

A∗. By the Preservation Lemma we have14

inv{ f (âi ): i∈X}
N̄∗

j
( f (c), Cδ) = A∗

15

[inv{ f (âi ): i∈X}
N̄∗

j
( f (c), Cδ) ∩ A∗ includes inv{ f (âi ): i∈X}∩Y

N̄∗
j

( f (c), Cδ)].
16

In the case ofTheorem 2.2we have a contradiction with the choice ofA∗ and we are17

done. We are almost done also in the case ofTheorem 2.4, but we need to know that18

inv{ f (âi ): i∈X}∩Y
N̄∗

j
( f (c), Cδ) has sizeκ . We know that{ f (âi ) : i ∈ X} ∩ Y has sizeκ ,

19

but it is a priori possible that for somei ∈ X we have inv̄N∗
j
( f (c), Cδ, f (âi )) = ∅.20

However, byNote 2.8and the choice ofE we have that inv̄N(c, Cδ, âi ) = ∅ for all i ,21

and then by the Preservation Lemma invN̄∗
j
( f (c), Cδ, f (âi )) = ∅. This finishes the proof22

of Theorem 2.4. � �23

Let us now pass to the promised discussion of the consistency of our assumptions. The24

following is a claim about the existence of tight club guessing sequences. If we were to25

concentrate on truly tight club guessing sequences then we could quote further results,26

for example a theorem of Shelah from [15], so in this senseClaim 2.10is not optimal.27
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However for what we need in the main theorems tight club guessing sequences suffice; 1

hence the claim is formulated in a form that is not optimal but is sufficient, with a gain of2
simplicity in presentation. 3

Claim 2.10. Suppose thatκ < λ are regular. 4

(1) If κ+ < λ thenthere is a truly tight(κ, κ, λ) club guessing sequence. 5

(2) If κ = cf(µ) ≤ µ andµ+ < λ then there is a tight(µ, λ) guessing sequence. 6

Proof. (1) This is proved in [[22], 1.3(a)]. An alternative proof is to deduce the statement 7

from Claim 1.6. of [15] (for uncountableκ) by lettingPδ = {Cδ} for δ ∈ S. 8

(2) If µ++ < λ we simply find a truly tight(µ+, µ+, λ) sequence〈Eδ : δ ∈ S〉, which 9

exists by (1), and then letCδ be the firstµ elements ofEδ. If λ = µ++, the statement is 10

proved in [[22], 1.3(b)]. Alternatively, this follows from the partial square for successors11

of regulars proved in [[14], Section 4]. � 12

Remark 2.11. A problematic but natural case for (2) inClaim 2.10 would be when 13

κ = cf(µ) < µ andλ = µ+. The conclusion still “usually” holds (i.e. it holds in most 14

natural models of set theory). 15

Let us now comment on the assumptions (3) and (4) used inTheorems 2.2and2.4. 16

An impatient reader might have accused us at this point of unnecessary generalisation 17

and introduction of too many cardinals into the theorem, only to obscure the real issues.18

Why not setκ = µ = σ? The reason is that in this case (2) would prevent us from19

fulfilling (4). For example, suppose thatκ<κ = κ and we are considering the requirements 20

of Theorem 2.2. We can letP of sizeθ
def= κκ be a family of almost disjoint elements of 21

[κ]κ . Let 〈gj : j < θ〉 be some sequence enumerating all increasing enumerations of the22

elements ofP . Hence for j = j ′ the set{γ : gj (γ ) = gj ′(γ )} has size< κ . Suppose 23

thatP1 andP2 exemplify that (3) and (4) hold withσ = κ , and assume also that (1) 24

and (2) hold withµ = κ . Let P2 = {Xα : α < α∗ ≤ λ}. For every j < θ there is 25

α( j ) < α∗ suchthat {gj (i ) : i ∈ Xα( j )} ∈ P1. Since|P1|, λ < θ , there isA ∈ P1 such 26

that BA
def= { j < θ : {gj (i ) : i ∈ Xα( j )} = A} has size at leastλ+. Since|P2| ≤ λ, there 27

is β suchthat 28

|{ j : α( j ) = β & {gj (i ) : i ∈ Xα( j )} = A}| ≥ λ+. 29

This is a contradiction to the fact that the elements ofP are almost disjoint. 30

In fact the situation that is natural for us to consider is whenµ is a strong limit singular, 31

because of the following Claim, which follows from the “generalisedGCH” theorem of 32

Shelah proved in [17] (Theorem 0.1). 33

Claim 2.12. Suppose thatθ is a strong limit singular cardinal (for exampleθ = �ω) and 34

that κ = cf(κ) andλ satisfyθ ∈ (κ, λ]. Thenfor every large enough regularσ ∈ (κ, θ), 35

there areP1,P2 satisfying parts(4) of the assumptions ofTheorem2.2and|P1|, |P2| ≤ λ. 36

Proof. By Theorem 0.1 of [17] for every large enough regularσ ∈ (κ, θ) there is a family 37

P = P(σ ) of elements of[λ]σ whose size isλ and such that any element of[λ]σ can be 38

covered by the union of< σ members ofP (in the notation of [17], λ[σ ] = λ). Let us 39
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fix such aσ and letP = P(σ ). Let P2 = [σ ]κ , so sinceθ is a strong limit we have1

|P2| < θ ≤ λ. Let P1 be the family of all subsets of sizeκ of the elements ofP , so2

|P1| ≤ λ · σκ ≤ λ.3

Suppose now thatg : σ → λ is injective; hence the range ofg is an element of[λ]σ . By4

the choice ofP and the regularity ofσ there isZ ∈ P such that Rang(g) ∩ Z has sizeσ .5

Let Y be any subset ofZ of sizeκ , soY ∈ P1. Letting X be such that{g(i ) : i ∈ X} = Y6

we have thatX ∈ P2 sinceg is injective. �7

Putting togetherClaims2.10and2.12we can see that our non-universality results apply8

in a largenumber of set-theoretic situations that are known to be consistent, and moreover9

follow just from the assumptions on the cardinal arithmetic:10

Corollary 2.13. Suppose thatθ is a strong limit singular cardinal and thatκ,µ and λ11

satisfy12

(1) cf(µ) = κ < θ ≤ µ < µ+ < λ = cf(λ),13

(2) λ < µκ .14

Thenfor any theory T of size< λ satisfying the oakproperty, we haveuniv(T, λ) ≥ µκ .15

Proof. The assumptions in (1) specifically say thatλ > µ+. By Claim 2.10, assumption16

(1) of Theorem 2.2is satisfied. ByClaim 2.12, assumption (4) of Theorem 2.2is satisfied17

for all large enough regularσ ∈ (κ, θ). The conclusion follows byTheorem 2.2. �18

We shall nowshow that a conclusion similar to theone obtained inCorollary 2.13can19

be obtained from an assumption whosenegationis not known to be consistent (i.e. for all20

weknow this assumption is true just inZ FC).21

Claim 2.14. Suppose thatκ andλ are regular andλ ≥ κ+ω+1. Further suppose that22

for some n, cov(λ, κ+n+1, κ+n+1, κ+n) = λ. (∗λ,κ )23

Thenfor any n showing that (∗λ,κ ) holds, lettingσ = κ+n wehave that clause(4) of the24

assumptions ofTheorem2.4holds with someP1,P2 satisfying|P1|, |P2| ≤ λ.25

Here we use the familiar pcf notation:26

Notation 2.15. For cardinalsλ ≥ µ ≥ θ ≥ σ we let cov(λ, µ, θ, σ ) be the smallest27

possible size of a family P of elements of[λ]<µ such that every element of[λ]<θ is covered28

by the union of< σ elements ofP .29

Proof. By the choice ofn there isP0 ⊆ [λ]κ+n
with |P0| ≤ λ and such that for every30

A ∈ [λ]κ+n
there areα < κ+n and Ai ∈ P0 for i < α suchthat A ⊆ ∪i<α Ai . As κ is31

regular, cf([κ+n]κ ,⊆) ≤ κ+n+1. Let P2 ⊆ [σ ]κ exemplify this. For A ∈ P0 let hA be a32

one-to-one function fromσ onto A, and letP1 = {hA“ B : A ∈ P0, B ∈ P2}. We have33

that|P1|, |P2| ≤ λ and thatP1 ⊆ [λ]κ .34

As for the clause (i) of (4), let an injectiveg : σ → λ be given. By the choice ofP1,35

there areα < σ and Ai ∈ P0 for i < α such that Rang(g) ⊆ ∪i<α Ai . Hence for some36

i < α we have|Rang(g) ∩ Ai | = σ . Let B = {ζ < σ : hAi (ζ ) ∈ Rang(g)}, soB ∈ [σ ]σ .37
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Hence for someB′ ∈ P2 we have|B ∩ B′| = κ . Let Y = hAi “ B′, soY ∈ P1. Now choose 1

X ∈ P2 that includes{ε < σ : g(ε) ∈ Y}, so clearly|{g(i ) : i ∈ X} ∩ Y| = κ . � 2

Remark 2.16. In the notation of Claim 2.14, the failure of (∗λ,κ ) is not known to be 3

consistent for anyλ, κ as above. For example, consider the hypothesis (F) of [15] Section 6, 4

which states: 5

for everyλ the set of singular cardinalsχ < λ whose cofinality is uncountable and that 6

satisfy ppΓ (cf(χ))(χ) ≥ λ is finite, 7

and the consistency of whose negation is not known. By the “cov versus pp” theorem8
of [12], II 5.4, we have that for everyn ≥ 1, 9

cov(λ, κ+n+1, κ+n+1, κ+n) = sup{ppΓ (κ+n)(χ) : χ ∈ [κ+n+1, λ], cf(χ) = κ+n}, 10

so Hypothesis (F) implies (∗λ,κ ). One can see from the proof ofClaim 2.14that for our 11

purposes even weaker statements suffice. 12

Corollary 2.17. Suppose that 13

(1) cf(µ) = κ < µ < µ+ < λ, 14

(2) (∗λ,κ), and 15

(3) λ < UJbd
κ

(µ). 16

Thenfor every theory T of size< λ satisfying the oakproperty we haveuniv(T, λ) ≥ 17

UJbd
κ

(µ). 18

Proof. The conclusion follows byClaim 2.10, 2.14andTheorem 2.4. � 19

Let us also comment on the connection between the assumptions ofTheorems 2.2and 20

2.4. If ℵ0 < κ = cf(µ) < µ and for allθ < µ we haveθκ < µ, then 21

ppJbd
κ

(µ) = µκ = UJbd
κ

(µ) 22

(by [12], Chapter VII, Section 1). 23
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