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Abstract

We consider Radon measuresµ and pairs(κ,λ) of cardinals such that among everyκ many
positive measure sets there areλ many whose intersection is nonempty. Such families are conne
with the cardinal invariants of the ideal ofµ-null sets and have found applications in various subj
of topological measure theory. We survey many of such connections and applications and giv
new ones. In particular we show that it is consistent to have a Corson compact space carrying
measure of typec > ℵ1 and we partially answer a question of Haydon about measure precalibr
 2004 Published by Elsevier B.V.
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0. Introduction

Combinatorial properties of families of sets and their intersections are a well st
subject in set theory and topology, starting from the Delta-System Lemma to num
chain conditions of topological spaces. The general ilk of such investigations is that
is given a large family of sets with a certain common property, for example, a fa
of κ many sets of some fixed size, and one looks for a large subfamily with s
intersection properties: being centred, independent, et cetera. In addition to its in
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of its applications to chain conditions in forcing.
Calibres and precalibres form a fruitful area of interest in general topology.

monograph by Comfort and Negrepontis [9] is a very general reference, of part
relevance to the present paper is its Chapter 6; Todorčevíc [41] gives an excellent rece
survey; see also Turzański [42] and Juhász and Szentmiklóssy [27].

The present paper studies precalibres of measure algebras or, equivalently, cal
Radon measures on topological spaces. The exact notions we work with are defi
Section 2, but for the sake of this introduction the reader may concentrate on the situa
which one is given a family ofκ many positive elements in some measure algebra and f
with the question of the existence of a subfamily ofλ many whose all finite intersections a
nonzero. Given the relevance of chain conditions in mathematics it is not at all surp
that this and similar notions have found their way into a number of applications rega
measure algebras and topological measure theory. We give some of them in the ref
and explain some in the paper, whilst including some new applications in Section 5.

In contrast with the general theory in the context of pure sets or the one of topol
spaces, where extensive literature exists, there seems to be a lack of the similarly gene
treatment of the concept of precalibres in measure algebras. We hope that this pa
narrow that gap. We of course hasten to add that many authors have already con
precalibres of measure algebras within various contexts and we include their result
in particular the list includes Cichon et al. [6], Cichoń and Pawlikowski [8], Cichón [7],
Fremlin [16,17]. In the fifth volume of his extensive monograph on Measure Theor
preparation as [24]), D.H. Fremlin surveys several cardinal invariants related to measur
In particular, Chapter 524 of [24] contains many of the facts we discuss here.

Our intention is to present a unified treatment of the subject including some o
results mentioned in the references above and some new results, while avoiding a
as possible an unnecessary repetition of what is already available in the literature. S
the right balance has not always been easy and we apologise in advance to the
of the many related theorems that have notbeen mentioned for the lack of space. Amo
new results presented here there are two results on cardinal numbersκ > c which are
precalibres of measure algebras; see Section 4. Theorem 4.3 partially answers a question
Haydon about measure precalibres; Theorem 4.7was inspired by Shelah’s result from [4
on independent families in measure algebras. It turned out that the methods develop
in the proof of Theorem 4.7 could be used to give a somewhat easier proof of Sh
theorem which also has slightly weaker assumptions than the original; see Sectio
Section 5 we prove that it is consistent to have a Corson compact space carrying a
measure of typec > ℵ1.

The paper is organised as follows: Section 1 gives all the necessary backgrou
is divided into the following subsections: Radon measures, measure algebras, id
null sets and combinatorics. Section 2 introduces the main notions, those of ca
and precalibres and shows that for our purposes they are more or less equ
Section 3 studies the connections between precalibres and the ideals of null sets,
concentrating on the situation below and at the continuum. The situation abovec is studied
separately in Section 4. In Section 5 we give some applications. Section 6 is devoted
U
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above. Finally, Section 7 gives some open questions.

1. Background and the notation

In the interest of clarity we include a section giving our notation and some basic
that will be used later.

Notation 1.1.

(1) Greek lettersκ , λ andθ always stand for infinite cardinals.
(2) χA denotes the characteristic function of the setA. For a setA contained in some

universal setB which is clear from the context, we writeA1 for A andA0 for the
complement ofA.

(3) For a setX of ordinals 2X denotes the setX2 endowed with the product topology. Th
subbasic clopen sets here are

Cl
α,X

def={
f ∈ X2: f (α) = l

}
for l ∈ {0,1}.

If X is clear from the context then we writeCl
α for Cl

α,X . We also write (following (2))

Cα for C1
α .

(4) ForZ ⊆ X we denote byπZ : 2X → 2Z the coordinatewise projection.

1.1. Radon measures

We remind the reader of some basic concepts from topological measure theory
the notation concerning product measures on Cantor cubes.

Definition 1.2. We say thatµ is a Radon measureon a (Hausdorff topological) spaceT
whenµ is a complete finite measure defined on someσ -algebraΣ of subsets ofT , and

(i) every open subset ofT is in Σ (so thatΣ contains the Borelσ -algebra ofT );
(ii) µ(A) = sup{µ(K): K ⊆ A,K compact} for everyA ∈ Σ .

Such a measure is calleda Radon probability measureif µ(T ) = 1.

Notation 1.3. For an arbitrary setX, by the measureon 2X we mean the completed produ
measure on 2X induced by giving each subbasic clopen set measure 1/2. It will be denoted
by µX, and its domain byΣX .

We shall now recall some basic properties ofµX; more facts on measuresµX can be
found in Fremlin [16, 1.15–1.16]; see also Fremlin [22, 254]; [23, 416]. The follow
definition is crucial in understanding product measures.
U
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coordinates inZ ⊆ X iff A = π−1
Z [πZ[A]].

In other words, ifA ⊆ 2X is determined by the coordinates inZ ⊆ X thenx ∈ A and
y|Z = x|Z imply y ∈ A for y ∈ 2X . Clearly every clopen subset of 2X is determined by the
coordinates in some finite set.

Fact 1.5. LetX be an infinite set and let us writeΣ = ΣX andµ = µX for simplicity.

(1) Every compactGδ set in2X is the intersection of countably many basic clopen s
and hence is determined by the coordinates in a countable subset ofX.

(2) For everyA ∈ Σ we have

µ(A) = sup
{
µ(K): K ⊆ A,K is a compactGδ

}
. (∗)

(3) Every open subset of2X is in Σ , soµ is a Radon probability measure on2X.
(4) For every subsetA of 2X of positive measure there is a compactGδ setF which is

determined by countably many coordinates and satisfiesF ⊆ A andµ(F) > 0.
(5) For every A ∈ Σ there is B ∈ Σ such thatB is determined by countably man

coordinates,B ⊆ A andµ(A \ B) = 0.
(6) For everyA ∈ Σ andδ > 0 there is a clopen setC such thatµ(A � C) < δ.

Proof. (1) LetC be a compactGδ-set such thatC = ⋂
n<ω On where eachOn is open. By

compactness we can find for eachn a basic clopen setCn such thatC ⊆ Cn ⊆ On. Hence
C = ⋂

n<ω Cn.
(2) LetF be the family of thoseA ∈ Σ for which (∗) holds. ThenF contains all clopen

sets andF is a monotone class (i.e., is closed under increasing unions and cou
decreasing intersections). SoF contains the smallest monotone class generated by
clopen sets; i.e.,F contains the productσ -algebra, and hence its (measure-theore
completionΣ .

(3) This follows from the fact that the measure is completion regular, which is a
known theorem of Kakutani from [28].

(4) and (5) follow immediately from (1), (2). To check (6) first find a compactK ⊆ A

such thatµ(A \ K) < δ/2; next find a clopen setC ⊇ K with µ(C \ K) < δ/2. ThenC is
as required. �

Fact 1.5(4) will be in frequent use, which is why we state it explicitly above. Actu
we do not use Kakutani’s theorem anywhere—we may think ofµX as the usual produc
measure, but it seems to be worth recalling thatµX is really Radon.

1.2. Measure algebras

Concerning measure algebras we generally follow Fremlin [16] but again we t
assume that all measures are finite, so bya measure algebrawe mean aσ -complete
Boolean algebra equipped with a finite strictly positive and countably additive functio
U
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set of measure 0 are measurable) measure with domainΣ andA is its measure algebra
For A ∈ Σ we denote byA˙ the corresponding element ofA. Recall that alifting of µ is
a Boolean homomorphismϕ :A → Σ such thatϕ(0) = ∅ andϕ(a)˙ = a for everya ∈ A.
Part (2) of the following Fact is one of the most useful properties of liftings.

Fact 1.6.

(1) Every(finite) complete measure admits a lifting.
(2) If ϕ :A → Σ is a lifting then for every family{aξ : ξ < κ} ⊆ A the union

⋃
ξ<κ ϕ(aξ )

is measurable, and in fact there is a countableJ ⊆ κ such that the measure o⋃
ξ<κ ϕ(aξ ) is the same as that of

⋃
ξ∈J ϕ(aξ ).

Proof. For (1), which is a celebrated result with a long proof and a long history see
Theorem 4.4].

To check (2) let

Z =
⋃
ξ<κ

ϕ(aξ ), r = sup

{
µ

( ⋃
ξ∈I

ϕ(aξ )

)
: I ∈ [κ]ℵ0

}
.

Then there is a setJ ∈ [κ]ℵ0 such that writingA = ⋃
ξ∈J ϕ(aξ ) ∈ Σ we haveµ(A) = r.

Therefore for everyξ < κ the setϕ(aξ ) \ A is null. This implies thataξ = ϕ(aξ )˙ � A ,̇
andϕ(aξ ) ⊆ ϕ(A )̇. HenceA ⊆ Z ⊆ ϕ(A )̇; asϕ(A )̇ \ A is of measure zero this gives th
Z ∈ Σ and thatJ is as required. �

The Maharam typeτ (A) of A (or of a measureµ itself ) can be defined as the dens
of the metric space(A, ρ), whereρ(a, b) = µ(a � b). In other words

τ (A) = min
{|C|: C ⊆ Σ, C is �-dense inΣ

}
,

whereC is said to be�-dense inΣ if for everyE ∈ Σ and everyε > 0 there isC ∈ C such
thatµ(E � C) < ε.

A measureµ is Maharam homogeneousor just homogeneousif it has the same type
on everyE ⊆ Σ with µ(E) > 0, and then we also say that its measure algebra
homogeneous.

Notation 1.7. For everyκ we denote byAκ the measure algebra ofµκ . The set of positive
elements of a Boolean algebraA endowed with the induced operations is denoted byA+.

Recall that for everyκ , Aκ is a homogeneous measure algebra of typeκ . The essenc
of the Maharam theorem (see [16, p. 908, Paragraph 1]) states that ifµ is a homogeneou
probability measure of typeκ then its measure algebraA is isomorphic toAκ . Recall also
the following (see [16, Corollary 3.12]):

Fact 1.8. If (A,µ) is a probability measure algebra of typeκ then there is a measur
preserving homomorphismf :A → Aκ (so µκ [f (a)] = µ(a) for everya ∈ A and f is
necessarily injective).
U
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LetN be a proper ideal of subsets of a spaceX with
⋃

N = X. Recall that the cardina
numbers add(N ), cov(N ) and non(N ) of N are defined as follows

add(N ) = min
{|E |: E ⊆N ,

⋃
E /∈N

}
,

cov(N ) = min
{|E |: E ⊆N ,

⋃
E = X

}
,

non(N ) = min{|Y |: Y /∈N }.
It is clear that add(N ) � cov(N ), and add(N ) � non(N ). The ordering of cov(N )

and non(N ) depends on the model. See, e.g., the proof in [4] that Mathias fo
increases non(N ) and leaves intact cov(N ) whereN is the ideal of Lebesgue null set
while [4] also gives a model (Model 7.5.5, pg. 384) in which non(N ) < cov(N ). In fact
a fundamental example of such a model is provided by Solovay’s random real mo
V |= GCH and V [G] is the extension obtained by addingκ random reals forκ > ℵ1
regular, then inV [G] there is a Sierpiński set of sizeℵ1 and 2ω is not a union of fewer than
κ null sets. Soℵ1 = add(N ) = non(N ) < cov(N ) = κ . This may be found in Kunen’
exposition [30], including Theorem 3.18 where one takesN for S, and Theorem 3.19
where the notation BAIRE(N ) is used to say that cov(N ) = κ ; see also Remark 1.10(6
below. We shall consider these cardinal functions on the ideals ofµκ -null sets.

Notation 1.9. For everyκ we denote byNκ theσ -ideal{N ⊆ 2κ : µκ(N) = 0}.

Basic facts concerning idealsNκ and their cardinal functions, as well as furth
references, may be found, e.g., in Fremlin [16]; Vaughan [43] surveys many other ca
functions related to combinatorics, measure and category; Kraszewski [29] offers a d
discussion on cardinal functions on a larger class ofσ -ideals in Cantor cubes.

A useful fact is that ifµ is a Radon measure then the cardinal functions of the ide
µ-null sets can be expressed in terms of the measure algebra ofµ, see Fremlin [16], Sectio
6 (in particular, Theorem 6.13). This implies that if two Radon measures have isomo
measure algebras, then the cardinal invariants agree on their corresponding ideals
sets.

Remark 1.10.

(1) If N is aσ -ideal, in particular ifN is the ideal of null sets for a non-trivial measu
then add(N ) > ℵ0 (hence cov(N ),non(N ) > ℵ0 as well).

(2) The functionκ 	→ cov(Nκ ) is nonincreasing; in particular cov(Nℵ0) � cov(Nℵ1) and
the equality need not hold (addingℵω random reals over a model of GCH produce
model of this; see [29, Remark after Theorem 5.5]).

(3) The functionκ 	→ non(Nκ) is nondecreasing; however,

non(Nℵ0) = non(Nℵ1) = non(Nℵ2),

where the first equality is standard while the latter is a striking result due to Krasz
(see [29, Corollary 3.11]).
U
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of GCH produces a model of this; see [29, Remark after Theorem 5.5]).
(5) The existence of an atomlessly measurable cardinal impliesℵ1 = non(Nℵ0) <

cov(Nℵ1) (see [17, 6G and 6L]).
(6) Bartoszýnski et al. [5] (see also [4, Theorem 3.2.57]) construct a modelV of set

theory such that adding a random real over it produces a modelV [G] that satisfies
add(Nℵ0) < cov(Nℵ0).

1.4. Combinatorics

When dealing with calibres and precalibres one often encounters the combinato∆-
System Lemma. We quote the instances of it that we need. The complete references
and a historical discussion can be found in [9]. We note only that Theorem 1.12 has a
simpler proof than 1.13 and was proved about thirty years earlier (1940s versus 197

Definition 1.11. We say thatκ is ℵ1-inaccessibleand writeℵ1 
 κ iff for every τ < κ also
τℵ0 < κ .

In particular forℵ1-inaccessibleκ we haveℵ1 � c = 2ℵ0 < κ .

Theorem 1.12. If κ is regular andℵ1 
 κ then for every family{Jξ : ξ < κ} of countable
sets there isX ∈ [κ]κ such that the family{Jξ : ξ ∈ X} forms a∆-system with some rootJ ,
meaning that for everyξ �= η ∈ X we haveJξ ∩ Jη = J .

Theorem 1.13. Suppose thatθ is a singular cardinal satisfyingℵ1 
 θ . Then for every
family {Jα : α < θ} of countable sets and for any increasing sequence of regularℵ1-
inaccessible cardinals〈θi : i < cf(θ)〉, converging toθ , there are〈Ij : j < cf(θ)〉 and
〈Rj : j < cf(θ)〉 such that

(i) Ij ∈ [θ ]θj are pairwise disjoint;
(ii) Jα ∩ Jβ = Rj for α �= β ∈ Ij ; and
(iii) Jα ∩ Jβ ⊆ Rj ′ for α ∈ Ij , β ∈ Ij ′ andj < j ′.

Another fact aboutℵ1-inaccessible cardinals that willbe useful to us is contained in th
following simple Lemma, which we give with a proof.

Lemma 1.14. Let κ be anℵ1-inaccessible cardinal of countable cofinality. Then there
an increasing sequence〈κn: n < ω〉 of regularℵ1-inaccessible cardinals with limitκ .

Proof. Let 〈ρn: n < ω〉 be any sequence of cardinals increasing toκ . By induction onn

defineτn, κn as follows.

Let τ0 = ℵ0. For anyn, assuming thatτn < κ let κn
def=(τ

ℵ0
n )+. Thenκn < κ is regular,

and if τ < κn thenτ � τ
ℵ0
n soτℵ0 � τ

ℵ0
n < κn. We defineτn+1

def= max{ρn, κn}. �
We shall also use the following Theorem of Engelking and Karłowicz from [15].
U
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Theorem 1.15. Suppose thatθ = θℵ0. Then there is a family of functions{fγ : γ < 2θ } in
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θ θ such that for all sequences〈γn: n < ω〉 in 2θ and〈ζn: n < ω〉 in θ , there isζ < θ such
thatfγn(ζ ) = ζn holds for alln.

2. Calibres and precalibres

In this section we introduce the definition of the precalibre of a measure algebra a
note some elementary properties. With only a few exceptions, the facts given belo
either basic, from the literature or belong to the mathematical folklore.

Definition 2.1. If κ � λ are cardinal numbers andA is a Boolean algebra we say that(κ,λ)

is aprecalibre ofA iff for every family {aξ : ξ < κ} of (not necessarily distinct) elemen
of A+, there isX ∈ [κ]λ such that{aξ : ξ ∈ X} is centred, i.e.,

∧
ξ∈J aξ �= 0 for any finite

J ⊆ X. In the caseκ = λ we simply say thatκ is a precalibre ofA.

We shall consider this concept mainly for measure algebras. Notealso that there is
interesting combinatorics involving calibre(κ, κ,n) for measure algebras, see 6.12–6
of [9] but we shall not go into it for reasons of space. It will be convenient to use
following notation.

Notation 2.2. We write pcθ (κ, λ) to say that(κ,λ) is a precalibre ofAθ (i.e., the measur
algebra of the usual product measureµθ on 2θ ). Let pc(κ,λ) mean that pcθ (κ, λ) holds for
every cardinal numberθ .

We shall use some obvious conventions in the caseλ = κ . In particular, we say thatκ is
a precalibre ofAθ iff pcθ (κ, κ) holds.

Notice that if A is any nonatomic Boolean algebra thenA contains a sequence
pairwise disjoint nonzero elements, soℵ0 is trivially not a precalibre ofA. Henceℵ0 is
not a precalibre of any nonatomic measure algebra. One can similarly check that p(κ, κ)

does not hold for anyκ with countable cofinality. The following version of the notion of a
precalibre enables us to avoid such trivialities when dealing withκ with cf(κ) = ℵ0. It was
suggested by R. Haydon.

Definition 2.3. If κ and λ are cardinal numbers and(A,µ) is a measure algebra w
say that(κ,λ) is a measure precalibre ofA iff for every {aξ : ξ < κ} ⊆ A satisfying
infξ<κ µ(aξ ) > 0 (and again not necessarily consisting of distinct elements), the
X ∈ [κ]λ such that{aξ : ξ ∈ X} is centred.

Note that(ℵ0,ℵ0) is a measure precalibre of every measure algebra (see the rem
after the proof of Lemma 2.5), and also that as opposed to the notion of precalibres
has a well-known analogue in the theory of compact ccc spaces, the notion of a meas
precalibre seems to be restricted to the context of measures.

Our notation for measure precalibres follows the one we use for precalibres,
write mpcθ (κ, λ) to say that(κ,λ) is a measure precalibre ofAθ , and mpc(κ,λ) means tha
U
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mpcθ (κ, λ) holds for every cardinal numberθ . In a similar manner we define whenκ itself
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is a measure precalibre.
It is often convenient to use the language ofmeasure spaces rather than that of mea

algebras.

Definition 2.4. If κ andλ are cardinal numbers and(T ,Σ,µ) is a finite measure space w
say that(κ,λ) is acalibre of µ iff for every subfamily{Aξ : ξ < κ} ⊆ Σ of (not necessarily
distinct) sets of positive measure there isX ∈ [κ]λ such that

⋂{Aξ : ξ ∈ X} �= ∅. The
definition of ameasure calibre ofµ is similar, but the sets{Aξ : ξ < κ} ⊆ Σ we start with
are required to have measure bounded away from 0.

In our context it turns out that precalibres and calibres express the same prop
slightly different languages:

Lemma 2.5. Let A be the measure algebra of a measure space(T ,Σ,µ). Then the
following are equivalent

(i) (κ,λ) is a precalibre ofA;
(ii) for every family{Eξ : ξ < κ} ⊆ Σ of not necessarily distinct sets of positive meas

there isX ∈ [κ]λ such that the family{Eξ : ξ ∈ X} is centred.

Consequently, ifµ is a Radon measure then(κ,λ) is a precalibre ofA if and only if
(κ,λ) is a calibre ofµ. A similar statement holds for measure precalibres and mea
calibres.

Proof. The implication from (i) to (ii) follows immediately from the fact that if{Eξ :̇ ξ ∈
X} ⊆ A is a centred family then so is{Eξ : ξ ∈ X} ⊆ Σ .

To prove the reverse implication, notice first that without loss of generality we
assume that(T ,Σ,µ) is a complete measure space. Letϕ :A → Σ , be a lifting (so
ϕ(a)˙ = a for every a ∈ A; see Fact 1.6(1)). Now if{aξ : ξ < κ} is any family in A+
then{ϕ(aξ ): ξ < κ} is a family of sets of positive measure so there isX ∈ [κ]λ such that
{ϕ(aξ ): ξ ∈ X} is centred. This implies that the family{aξ : ξ ∈ X} is centred (asϕ is a
homomorphism andϕ(0) = ∅).

If µ is a Radon measure and{Eξ : ξ < κ} is a family of sets of positive measure th
by 1.2(ii) we may assume that eachEξ is compact, and hence every centred subfamily
nonempty intersection.�

As one can notice from the above, the fact that in the definition of calibres
precalibres the family we start with does not necessarily consist of distinct ele
appears rather often, so we shall take it for granted in every such instance. To co
it is a classical fact from measure theory thatℵ0 is a measure calibre of every fini
measure(T ,Σ,µ). Recall the proof: writing for a given sequence〈En: n < ω〉 of sets
whose measures are bounded away from 0 byε

E =
⋂
n<ω

⋃
k�n

Ek,
U
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we haveµ(E) � ε, soE is nonempty. Anys ∈ E is in infinitely many setsEn so we are
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done. It is also easy to verify the following.

Observation 2.6. Suppose that cf(κ) > ℵ0 and letA be any measure algebra.

(a) For everyλ � κ of uncountable cofinality,(κ,λ) is a measure precalibre ofA iff (κ,λ)

is a precalibre ofA.
(b) (κ,ℵ0) is a precalibre ofA.

We now collect some implications about various calibre pairs and note some case
basic cardinal arithmetic ofκ andλ leads to a conclusion about the calibre pair(κ,λ).

Lemma 2.7. For infinite cardinal numbersκ,λ, θ the following are satisfied:

(i) if pcθ (κ, λ) thenpcθ (κ
′, λ′) wheneverκ ′ � κ andλ′ � λ;

(ii) if pcθ (κ, λ) thenpcθ ′(κ,λ) wheneverθ ′ � θ ;
(iii) if κ > θℵ0 thenpcθ (κ, κ).

Proof. (i) is obvious; (ii) follows from the fact thatAθ ′ is embeddable as a subalgebra
Aθ whenθ ′ � θ . Part (iii) follows from Fact 1.5 (4), because there are onlyθℵ0 compact
Gδ sets in 2θ (see Fact 1.5(1)). �

The following fact is very useful; it has been noted by D.H. Fremlin (unpublished)

Theorem 2.8. If κ � λ � ℵ0 then the following are equivalent:

(i) (κ,λ) is a precalibre of every measure algebra;
(ii) pc(κ,λ);
(iii) pcκ(κ,λ).

The analogous equivalence holds when we replace ‘precalibre’ by ‘measure preca

Proof. Trivially, (i) implies (ii), and (ii) implies (iii).
Assume now pcκ(κ,λ) and suppose that{aξ : ξ < κ} is a family of nonzero elemen

in some measure algebraA. Let B be the complete subalgebra ofA generated by the
family {aξ : ξ < κ}. ThenB is a measure algebra of Maharam type� κ , and there is a
homomorphic measure preserving embeddingφ :B → Aκ (see Fact 1.8). Since pcκ(κ,λ)

holds, there isX ∈ [κ]λ such that{φ(aξ ): ξ ∈ X} is a centred family. Then{aξ : ξ ∈ X}
is centred too. The same argument canbe applied to measure precalibres, asφ preserves
measure. �

Finally we note an obvious connection with topological calibres, which foll
immediately from the Stone representation theorem.
U
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Remark 2.9. Assume that(κ,λ) is a calibre of all ccc compact spaces (i.e., whenever we
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haveκ many nonempty open sets in a compact ccc space then we can chooseλ of them
having a nonempty intersection). Then(κ,λ) is a precalibre of all measure algebras.

3. Precalibres and ideals of null sets

In this section we analyse calibre-like properties in terms of suitable properties of
of null sets. This enables us to discuss when small uncountable cardinals are precalibres
measure algebras. The discussion is based on Cichoń [7] and Fremlin [17].

Definition 3.1. Suppose thatN is aσ -ideal of subsets ofT . A family R= {Nξ : ξ < κ} ⊆
N is a(κ,λ)-Rothberger family forN if for everyX ∈ [κ]λ we have

⋃
ξ∈X Nξ = T .

The following theorem combines Theorem 7.1 from Cichoń [7] and Lemma A2U from
Fremlin [17].

Theorem 3.2. Suppose that(T ,Σ,µ) is a finite complete measure space,N is its ideal of
null sets andA is the corresponding measure algebra.

(i) If κ � λ, cf(κ) > ℵ0 and (κ,λ) is not a precalibre ofA then there is a setA ∈ Σ of
positive measure and a(κ,λ)-Rothberger family for the idealNA = {N ∈ N : N ⊆ A}
of subsets ofA.

(ii) If κ is regular uncountable and is not a precalibre ofA then there is an increasin
sequence〈Nξ : ξ < κ〉 of elements ofN such that

⋃
ξ<κ Nξ ∈ Σ \N .

Proof. (i) Take a family{Eξ : ξ < κ} ⊆ Σ witnessing that(κ,λ) is not a precalibre ofA.
We define inductively a sequence〈Iα : α < κ〉 of pairwise disjoint countable subsets ofκ

such that for everyα∨
ξ∈Iα

Eξ˙ =
∨

ξ∈Rα

Eξ˙ whereRα = κ \
⋃
β<α

Iβ .

Since cf(κ) > ℵ0, there isα0 < κ anda ∈ A+ such that∨
ξ∈Rα

Eξ˙ = a for everyα � α0.

Now we takeA ∈ Σ with A˙= a and for everyα < κ put

Nα = A \
⋃
ξ∈Iα

Eξ .

Then we claim that{Nα : α < κ} is a(κ,λ)-Rothberger family forNA.
Indeed, it is clear thatNα ∈ NA for everyα < κ ; suppose that

⋃
α∈X Nα �= A for some

X ∈ [κ]λ. Takingt ∈ A \⋃
α∈X Nα , we havet ∈ ⋃

ξ∈Iα
Eξ for everyα ∈ X, hencet is in λ

many setsEξ , a contradiction.
U
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(ii) Take a family {aξ : ξ < κ} ⊆ A witnessing thatκ is not a precalibre ofA. Let
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ϕ :A → Σ be a lifting. For everyξ < κ we put

Fξ =
⋃

ξ�η<κ

ϕ(aη).

Then Fξ ∈ Σ by Fact 1.6(2). Since cf(κ) > ℵ0 there isη0 such thatµ(Fη) = µ(Fη0)

wheneverη0 � η < κ .
It is clear that the setsNη = Fη0 \ Fη form an increasing family of null sets. We clai

that
⋃

η<κ Nη = Fη0. Otherwise, there is a pointt ∈ Fη0 such thatt ∈ ⋂
η<κ Fη. Then the

setX = {ξ : t ∈ ϕ(aξ )} is cofinal inκ , so |X| = κ asκ is regular. But then{aξ : ξ ∈ X} is
centred, a contradiction.�
Lemma 3.3. If (T ,Σ,µ) is a nontrivial Radon measure space and there is a(κ,λ)-
Rothberger family for the idealN of µ-null sets, then(κ,λ) is not a calibre ofµ.

Proof. Let {Nξ : ξ < κ} ⊆ N be a(κ,λ)-Rothberger family. We haveµ(T ) > 0, so for
everyξ < κ there is a compact setFξ such thatFξ ⊆ T \Nξ andµ(Fξ ) > 0. It is clear that
no point ofT belongs toλ many among the setsFξ . �

Part (1) of the following result is due to Cichoń [7].

Corollary 3.4. Suppose thatℵ0 < cf(κ) andκ � λ.

(1) For any θ , pcθ (κ, λ) holds if and only if there is no(κ,λ)-Rothberger family for the
idealNθ of the null subsets of2θ .

(2) pc(κ,λ) if and only if there is no(κ,λ)-Rothberger family forNκ .
(3) There isθ such that there is a(κ,λ)-Rothberger family forNθ iff there is in fact a

(κ,λ)-Rothberger family forNκ .

Proof. (1) follows from Theorem 3.2 and Lemma3.3; (2) is a consequence of (1) a
Theorem 2.8. (3) is a consequence of (1) and (2).�
Corollary 3.5. Let µ be a totally finite Radon measure on a spaceT , and letN be the
ideal ofµ-null sets:

(1) If κ = add(N ) = cov(N ) thenκ is not a calibre ofµ.
(2) If κ = non(N ) = |T | thenκ is not a calibre ofµ.
(3) If κ is regular,µ is homogeneous andκ > non(N ) thenκ is a calibre ofµ.

Proof. If either κ = add(N ) = cov(N ) or κ = non(N ) = |T | then we can writeT as an
increasing union ofκ many null sets. This gives a(κ, κ)-Rothberger family forN soκ is
not a calibre ofµ by Lemma 3.3.

We can argue for (3) as follows. First note that the assumptions imply thatκ is
uncountable. Ifκ is not a calibre ofµ then (it is not a precalibre of the measure alge
of µ by Lemma 2.5 and) by Lemma 3.2(2) there is a setA ∈ Σ of positive measure whic
U
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is an increasing union ofκ many null sets{Nξ : ξ < κ}. Sinceµ is homogeneous we can
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assume that in factA = T (indeed, the measureµ restricted toA has the same non, se
Section 1.3).

Take a setZ ⊆ T which is not null and|Z| = non(N ). Since non(N ) < κ there must
beξ < κ such thatZ ⊆ Nξ , which is impossible. �

Recall that for any uncountableκ we have add(Nκ ) = ℵ1, see, e.g., Theorem 2.
in [29]. Therefore part (1) of Corollary 3.5 is interesting mostly whenκ = ℵ1.

Corollary 3.6.

(1) If κ is regular andnon(Nκ) < κ thenκ is a precalibre of all measure algebras.
(2) ℵ1 is a precalibre of all measure algebras if and only ifcov(Nℵ1) > ℵ1.

Proof. (1) follows from Corollary 3.5 (3) and Theorem 2.8; (2) is a consequenc
Corollary 3.5(1), Theorem 2.8 and Theorem 3.2 combined with the homogene
µℵ1. �

In connection with the above considerations we mention the following result d
D.H. Fremlin.

Theorem 3.7. If κ < cov(Nκ) thenκ is a measure precalibre of all measure algebras.

Note that forκ of uncountable cofinality the result follows directly from Theorem 3.2
The case cf(κ) = ℵ0 requires an additional nontrivial argument, see 524M of [24]
details. Combining (the easier part of ) Theorem 3.7 with Corollary 3.6 and Corollar
we can obtain the following:

Corollary 3.8. If κ is regular andnon(Nκ) < cov(Nκ ) then

(a) κ is a precalibre of all measure algebras; and
(b) every regularλ is a calibre ofµκ .

The next result (with two different proofs) can be found in Argyros and Tsarpalia
Theorem 4.1] (see also [9, Theorem 6.18], and Shelah [40, Theorem 1.3]). I
generalisation of the fact that under CH the cardinalℵ1 is not a precalibre of measu
algebras.

Theorem 3.9. If κ is a strong limit cardinal of countable cofinality andκ+ = 2κ thenκ+
is not a calibre ofµκ .

Proof. The point is that under such assumptions non(Nκ) = 2κ see [16, 6.17e] and th
argument for 6.18d. Hence we can apply Corollary 3.5(2).�
U
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We can now discuss what the possibilities for pc(κ,λ) are whenλ � κ � c. The
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following theorem is due to Cichoń and Pawlikowski and was proved as a claim wit
the proof of Theorem 3.1 of [8].

Theorem 3.10. Suppose thatV is any universe of set theory, andc is a Cohen real ove
V. Then inV[c] there is a(c,ℵ1)-Rothberger family for the idealNℵ0 (and hence, by
Lemma3.3(c,ℵ1) is not a calibre of the Lebesgue measure).

The following corollary will be useful in Section 5.

Corollary 3.11. It is consistent thatc > ℵ1 and (c,ℵ1) is not a calibre of the Lebesgu
measure.

Proof. Start withV which fails CH and add a Cohen real overV. HenceV[G] will fail
CH and satisfy¬pcℵ0

(c,ℵ1), by Theorem 3.10. �
Theorem 3.10 suggests a consideration of the situation when a Cohen subset is ad

to a regular cardinalλ > ℵ0. Must ¬pcλ(2
λ, λ+) hold in the extension? The proof in [8

uses the Borel structure of 2ω, but there are alternative proofs for which it is not immedi
if one needs to be atω. However, it turns out thatc+ is always a precalibre of measu
algebras (see Section 4), hence if we add a Cohen subset toℵ1 over a model of GCH we
shall not obtain a(2ℵ1,ℵ2)-Rothberger family ofNℵ1 in the extension and we shall eve
have pcℵ1

(2ℵ1,ℵ1
+).

To finalise this section let us consider the possibilities whenc = ℵ2. Employing the
fact that non(Nℵ0) = non(Nℵ1) = non(Nℵ2) (see Remark 1.10(3)), Corollary 3.5(2) a
Corollary 3.6 we can draw the following conclusions. They show that all combina
between pc(ℵ1,ℵ1) and pc(ℵ2,ℵ2) follow from various assumptions about cov and n
See Table 1.

The assumptions of the second line of the table hold in the iterated Sacks mode
e.g.,[4]. In Chapter 7.3.B [4] presents a forcing with perfect trees whose countable s
iteration of lengthω2 over a model of GCH gives a model of the third line of the tab
Adding ℵ2 random reals to a model of GCH gives a model satisfying the assumptio
the last line of the table (see the remark after Theorem 5.5 of [29]). However we d
know of a model in which the assumptions of the first line hold. This also leaves ope
problem of the “mixed types”, see Problem 7.4.

Table 1

Assumptions pc(ℵ1,ℵ1) pc(ℵ2,ℵ2)

cov(Nℵ1) = ℵ2 and non(Nℵ0) = ℵ2 yes no
cov(Nℵ0) = ℵ1 and non(Nℵ0) = ℵ1 no yes
cov(Nℵ0) = ℵ1 and non(Nℵ0) = ℵ2 no no
cov(Nℵ1) = ℵ2 and non(Nℵ0) = ℵ1 yes yes
U
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There are many cardinals above the continuumthat are precalibres of every measu
algebra. For instance,c+ is such a cardinal and in fact it is a calibre of all ccc comp
spaces (the latter statement follows using Remark 2.9). This a particular case of a res
due to Argyros and Tsarpalias [2], Theorem 2.5 see also [9], Theorem 6.21). We form
their theorem in the (less general) measure-theoretic terms.

Theorem 4.1. Supposeκ is a cardinal such that bothκ and cf(κ) are ℵ1-inaccessible
Thenκ is a precalibre of measure algebras.

The proof we give of Theorem 4.1 is simpler than that of the original. First, we p
it for κ regular, using a well-known method. Then, taking advantage of the regular
cf(κ), Theorem 4.1 follows from the more general Theorem 4.3 below.

Lemma 4.2. If κ is a regularℵ1-inaccessible cardinal thenκ is a precalibre of measur
algebras.

Proof. The proof uses Theorem 2.8 and Lemma 2.5. We consider positive measure s
Fξ of 2κ (ξ < κ), so we can assume that everyFξ is a closed set depending only on t
coordinates in a countable setJξ ⊆ κ . Having a family{Jξ : ξ < κ} of countable sets an
using the assumption on theℵ1-inaccessibility ofκ , we can apply Theorem 1.12 to ge
∆-system of sizeκ contained in{Jξ : ξ < κ}. Let us then assume thatX ⊆ κ is a set of size
κ such thatJξ ∩ Jη = J for some fixed setJ wheneverξ �= η ∈ X. SinceJ is countable
there are only� c many closed subsets of 2J , so, using the fact that cf(κ) > c, we can find
a closed setH ⊆ 2J and a setY ⊆ X still of sizeκ such thatπJ [Fξ ] = H for everyξ ∈ Y .

It follows that
⋂

ξ∈Y Fξ �= ∅. Indeed, to find an element in this intersection, take
s ∈ H and choosetξ ∈ Fξ with πJ (tξ ) = s. Define t ∈ 2κ so that it iss on J and tξ on
Jξ \ J , which is possible since the setsJξ \ J for ξ ∈ Y are pairwise disjoint. Thent ∈ Fξ

for everyξ ∈ Y . �
As an example of the use of Lemma 4.2, combining it with the fourth line of the t

at the end of Section 3, we obtain that ifc = ℵ2, cov(Nℵ1) = ℵ2, non(Nℵ0) = ℵ1 and
2ℵn = ℵn+1 for everyn � 2 then pc(ℵn,ℵn) for everyn < ω.

The following Theorem 4.3 has been independently proved by Fremlin [24], see 5
and it is likely to be known otherwise as well.

Theorem 4.3. Suppose thatκ is anℵ1-inaccessible cardinal andcf(κ) is a precalibre of
measure algebras. Then so isκ .

The converse of Theorem 4.3 is easily seen to be true even without the assump
ℵ1-inaccessibility ofκ , see Observation 4.5.

Our proof of the next theorem, with minimal changes, gives another proo
Theorem 4.3. We state Theorem 4.4 in terms of measure precalibres in order to give
explicit partial answer to a question of Haydon (Problem 7.3).
U
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Theorem 4.4. Suppose thatκ is anℵ1-inaccessible cardinal ofcountable cofinality. Then
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κ is a measure precalibre.

Proof. We shall apply Theorem 1.13, starting by an application of Lemma 1.14. Lκ

be given as in the assumptions of the theorem and let〈κn: n < ω〉 be as provided by
Lemma 1.14. Suppose thatε > 0 and we are given a family{Bα : α < κ} of subsets of
2κ each of which has measure> ε. Without loss of generality eachBα is a closed se
determined by a countable set of coordinatesJα .

By Theorem 1.13 there are sequences〈In: n < ω〉 and〈Rn: n < ω〉 such that

(i) In ∈ [κ]κn and the sets in〈In: n < ω〉 are pairwise disjoint,
(ii) if α �= β ∈ In thenJα ∩ Jβ = Rn (hence eachRn is countable) and
(iii) if n < m andα ∈ In,β ∈ Im thenJα ∩ Jβ ⊆ Rm.

For n < ω let πn : 2κ → 2Rn be the natural projection. Fix for a momentn < ω and for
α ∈ In let Fn

α = πn[Bα]. Hence eachFn
α is a closed subset of 2Rn . There are at mostc

closed subsets of 2Rn , asRn is countable. Sincec = 2ℵ0 < κn = cf(κn) by the choice ofκn,
and this holds for anyn, we may in addition assume that

(iv) for eachn < ω the setFn
α (α ∈ In) is a fixed closed setFn in 2Rn .

Asµκ(Bα) > ε for everyα we have in particular thatµκ(π−1
n [Fn]) > ε for everyn < ω.

Sinceℵ0 is a measure precalibre we may without loss of generality assume that

(v) the family{π−1
n [Fn]: n < ω} is centred.

Let us again fixn < ω and consider anym > n. For anyj ∈ Rm \ Rn we have that (by (ii))∣∣{α ∈ In: j ∈ Jα}∣∣ � 1.

By throwing away from eachIn thoseα for which there ism > n such that for some
j ∈ Rm \ Rn we havej ∈ Jα (so countably many suchα) we may further assume

(vi) if n < m andα ∈ In thenJα ∩ Rm ⊆ Rn.

We claim that (the many times trimmed by now) family{Bα : α ∈ ⋃
n<ω In} is centred,

which suffices to prove the theorem.
By (v) we may choose and fixy ∈ ⋂

n<ω π−1
n [Fn]. We now try to definex ∈ 2κ so that

x ∈ Bα for everyα ∈ ⋃
n<ω In. We putx(ξ) = y(ξ) wheneverξ ∈ ⋃

n<ω Rn. Consider now
n < ω andα ∈ In. By our choice ofy

πn(y) ∈ Fn = πn[Bα],
so we can findxα ∈ Bα such thatπn(y) = πn(xα). Our intention is to let

x(ξ) = xα(ξ) for everyξ ∈ Jα (∗)

and to havex(ξ) = 0 for all otherξ .
U
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If such an elementx really exists thenx ∈ Bα for everyα ∈ ⋃
n<ω In (by (∗), as every
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Bα is determined by the coordinates inJα) and the proof is complete. So we check
consistency of the above definition ofx.

If ξ /∈ ⋃
n<ω Rn then by (iii)ξ ∈ Jα for at most oneα andx(ξ) is well defined. Conside

now ξ ∈ ⋃
n<ω Rn and letm be the firstm < ω for which ξ ∈ Rm.

Suppose there isn < m andα ∈ In such thatξ ∈ Jα . Then by (vi),ξ ∈ Jα ∩ Rm ⊆ Rn,
a contradiction. If there isn > m and α ∈ In such thatξ ∈ Jα then by (vi) ξ ∈ Rn so
x(ξ) = y(ξ) = xα(ξ).

In conclusion,x(ξ) is well defined for everyξ . �
The reader has probably noticed that by starting with a family of sets of positive me

and replacing the fact thatℵ0 is a measure precalibre by the assumption that cf(κ) is a
precalibre of measures, the above proof gives the proof of Theorem 4.3. As a fina
about singular cardinals we give the following simple observation.

Observation 4.5. Suppose thatκ is a precalibre of measure algebras (measure precalibre
Then so is cf(κ).

Proof. The proof in both instances is along the same lines, so we concentra
precalibres of measure algebras. Suppose for contradiction that the claim is not tr
that κ demonstrates this. Clearlyκ is singular, letθ = cf(κ) < κ and let〈κα : α < θ〉 be
an increasing sequence of regular cardinals converging toκ , with κ0 > θ . Let {Fα: α < θ}
exemplify thatθ is not a precalibre of measure algebras, so without loss of generality
Fα is a subset of 2θ of positive measure and

⋂
α<θ Fα = ∅. We now form a family ofκ

many subsets of 2κ by taking for eachα κα many copies of the inverse projection ofFα

in 2κ . This family contradicts the assumption thatκ is a precalibre of measure algebras.�
A small twist on the above proof gives a family ofκ distinctsets that show thatκ is not

a precalibre of measure algebras, in case one wishes to insist in having distinct set
definition of precalibre. The distinction between these notions seems to be blurred
literature and we have not found another instance but the above where the difference co
matter.

Under suitably simple assumptions on the cardinal arithmetic (GCH) the re
presented so far enable us to completely classify which cardinals are precalibres of measu
algebras.

Corollary 4.6. Under GCH exactly one of the following holds for any uncounta
cardinalκ :

(1) κ = τ+ for someτ and thenpc(κ, κ) ⇐⇒ cf(τ ) > ℵ0; or
(2) κ is a limit cardinal andcf(κ) = ℵ0, in which casempc(κ, κ) and¬pc(κ, κ); or
(3) κ is weakly inaccessible, in which casepc(κ, κ); or
(4) κ is a singular limit cardinal withθ = cf(κ) > ℵ0 and thenpc(θ, θ) ⇐⇒ pc(κ, κ).
U
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Proof. (1) If cf(τ ) = ℵ0 then¬pc(κ, κ) by Theorem 3.9. If cf(τ ) > ℵ0 then from GCH
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implies thatκ is ℵ1-inaccessible and we have pc(κ, κ) by Lemma 4.2.
(2) follows from Theorem 4.4 since under GCH every limit cardinal isℵ1-inaccessible
(3) follows similarly from Lemma 4.2 and (4) from Theorem 4.3 and Obse

tion 4.5. �
We now move away from GCH and present a measure-theoretic version of a theore

due to Shelah [40]. Shelah’s original assumptions were

�2 � θ = θℵ0 < cf(κ) � κ � 2θ

and conclusion that for every family ofκ positive measure sets in 2κ , there is an
independent subfamily of sizeκ . Consequently pc(κ, κ). It turns out that the conclusio
about the precalibres can be obtained under weaker assumptions, as we do in Theorem
below. It is in fact also possible to slightly weaken the assumptions of the original the
and in fact one can view Shelah’s proof (or our rendition of it) as consisting of two p
one in which one uses a part of the assumptions to get the conclusions about the prec
and the other where the rest of the assumptions are used to get the full independ
seems also that the original proof is somewhat harder to read than what we make of
so we decided to present it as well, in Section 6. It will build on the proof we give bel

Theorem 4.7. Suppose thatθ andκ are cardinal numbers such that

θ = θℵ0 < cf(κ) � κ � 2θ .

Thenκ is a precalibre of measure algebras.

Note 4.8. Clearly, the assumptions of Theorem 4.7 imply thatc = 2ℵ0 < cf(κ).
It might also be worthwhile to compare the assumptions of this theorem with

of Lemma 4.2. Ifθ = θℵ0 then for anyn < ω we have(θ+n)ℵ0 = θ+n, so if θ and
κ of Theorem 4.7 are close to each other in the sense thatκ = θ+n for somen, then
the assumptionθ = θℵ0 implies that cf(κ) = κ is ℵ1-inaccessible, hence the conclusi
already follows by Lemma 4.2. However, movingκ away fromθ it is perfectly possible
that for someλ ∈ (θ, κ) we have, for example, thatλℵ0 � κ . By König’s lemma this will
happen any time thatκ is the successor of a singular cardinal of countable cofinality
an example, we could have

θ = 2ℵ0 = ℵ1, 2ℵ1 = ℵ++
ω , κ = ℵ+

ω ,

which is the situation obtained whenℵ++
ω Cohen subsets are added toℵ1 over a model

of GCH. In this situation Lemma 4.2 and Theorem 4.3 do not apply but Theorem 4.7
We also observe that many, even regular, cardinals might not satisfy eithe

assumptions of Lemma 4.2 or the assumptions of Theorem 4.7. For instance, suc
of singulars of countable cofinality in a model of GCH will fail both sets of assumptions
as is to be expected from Theorem 3.9. The assumptions of Theorem 3.9 may al
Magidor [32] proved starting from the existence of an infinite sequence of superco
cardinals that for every 0< n < ω there is a model of ZFC in whichℵω is a strong limit
cardinal but 2ℵω = ℵω+n, hence forn � 3, κ = ℵ+

ω in such a model does not satisfy t
U
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assumptions of any of Lemma 4.2, Theorem 4.7 or Theorem 3.9. We do not know ifκ is a
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precalibre of measure algebras in such a model.
We note that there are many later and more refined consistency results about the

of the singular cardinal hypothesis, of which Magidor’s theorem is the first instance
may consult the introduction to Shelah’s book [39] for a survey. See also the com
about Problem 7.1 below.

Proof. We consider a family{Bα : α < κ} of subsets of{0,1}κ with positive measure. W
can assume that everyBα is a closed set determined by the coordinates in a coun
set Jα ⊆ κ . Further assume that everyJα is infinite and has a 1–1 enumerationJα =
{i(α,n): n < ω}, as the situation ofκ many among theJαs being finite can be handle
in a much easier manner using a∆-system argument.

Sinceθ = θℵ0 we can apply the Engelking–Karłowicz lemma to find a family{fγ : γ <

2θ } of functions fromθ into θ , with the property that for every sequence〈γn: n < ω〉 ⊆ 2θ

and〈ζn: n < ω〉 ⊆ θ there isζ < θ such thatfγn(ζ ) = ζn for everyn.
Using the above functions we define forζ < θ

Xζ = {
α < κ : fi(α,n)(ζ ) = n for all n

}
.

We have
⋃

ζ<θ Xζ = κ by the choice offγ s. Sinceθ < cf(κ) there isζ < κ such that
|Xζ | = κ .

For everyα < κ we define a mappingπα , where

πα : {0,1}κ → {0,1}ω, πα(x)(n) = x
(
i(α,n)

)
for everyn.

ThenFα = πα[Bα] is a closed subset of{0,1}ω. Using c < cf(κ) we can as well assum
that Fα = F for everyα < κ . Thus we haveπα[Bα] = F ; note also thatπ−1

α [F ] = Bα

for everyα < κ . Namely if πα(x) ∈ F thenπα(x) = πα(y) for somey ∈ Bα ; asBα is
determined by the coordinates inJα this implies thatx ∈ Bα .

We claim that
⋂

α∈Xζ
Bα �= ∅. Indeed, take anyt ∈ F and attempt to definex ∈ {0,1}κ

so thatx(i(α,n)) = t (n) for everyn and everyα ∈ Xζ (andx(ξ) = 0 for otherξ ). Note
that if α,β ∈ Xζ andi(α,n) = i(β, k) thenn = k, so the definition is consistent and hen
we can fix such anx. For everyα ∈ Xζ we haveπα(x) = t ∈ F sox ∈ π−1

α [F ] = Bα and
we are done. �

5. Some applications

We now mention some applications of precalibres. Although the applications are m
in topological measure theory, we start by a purely combinatorial notion isolate
Fremlin.

A family D of finite subsets ofκ is said to beε-dense openfor ε ∈ (0,1) if D is closed
under subsets and for any finiteF ⊆ κ there isF ′ ⊆ F with F ′ ∈ D and|F ′| � ε|F |.

We say thatκ is a λ-Fremlin cardinal iff wheneverD is a 1/2-dense open family o
finite subsets ofκ , there isA ∈ [κ]λ such that all finite subsets ofA are inD. By a result of
Fremlin [20], the definition ofκ being aλ-Fremlin cardinal does not change if 1/2 in the
above is replaced by anyε ∈ (0,1).
U
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There is a connection with precalibres which can be explained as follows, see [20];
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other properties of Fremlin cardinals are discussed in Apter and Džamonja [1]; se
Džamonja and Plebanek [14].

Theorem 5.1. If cf(κ) > ℵ0 andκ is λ-Fremlin thenpc(κ,λ).

Proof. Suppose that the family{Fα : α < κ} witnesses that pc(κ,λ) fails, where cf(κ) >

ℵ0. We can assume that there isε > 0 such that allFα have measure at leastε. Let D be
given by

D def=
{
d finite⊆ κ :

⋂
α∈d

Fα �= ∅
}
.

ThenD is ε-dense open. Indeed, for any finitea ⊆ κ we have∥∥∥∥∑
ξ∈a

χFξ

∥∥∥∥ �
∫ ∑

ξ∈a

χFξ dµκ � ε|a|,

which implies that there isd ⊆ a, |d| � ε|a| such that
⋂

ξ∈d Fξ �= ∅ (here‖ · ‖ denotes the
supremum norm). By the choice ofD it follows thatκ is notλ-Fremlin. �

For any setΓ , the Corson spaceΣ(RΓ ) is defined as the set

Σ
(
R

Γ
) = {

x ∈ R
Γ :

∣∣{γ ∈ Γ : x(γ ) �= 0
}∣∣ � ℵ0

}
endowed with the subspace topology. A topological spaceK is called aCorson compactum
if K is homeomorphic to a compact subset ofΣ(Rκ) for some κ . The following
Theorem 5.2 was proved by Kunen and van Mill [31] in the special caseκ = ℵ1; the result
shows that precalibres of measure algebras areclosely related to the question of what t
Maharam types of measures defined on Corson compacta are. The proof of (i)⇒ (ii) is
standard and well known; the argument for the reverse implication is taken from [36].

Theorem 5.2. The following are equivalent for any cardinalκ :

(i) there is a Corson compact spaceK carrying a Radon measure of Maharam typeκ ;
(ii) pc(κ,ℵ1) does not hold.

Proof. (i) ⇒ (ii). Let µ be a probability Radon measure of typeκ on a Corson compac
spaceK. We can assume thatK is a subset ofΣ(RΓ ) for someΓ . For γ ∈ Γ let
Cγ = {x ∈ K: x(γ ) �= 0}.

Claim 5.3. LettingG = {γ ∈ Γ : µ(Cγ ) > 0} we have|G| � κ .

Proof. Let

KG = {
x ∈ K: x(γ ) = 0 for all γ ∈ Γ \ G

}
.

Note thatγ ∈ Γ \ G means thatµ({x ∈ K: x(γ ) = 0}) = 1 and soKG is an intersection
of a family of closed sets of full measure and thereforeµ(KG) = 1, since the measure
U
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Radon. Sinceµ is of typeκ , the topological weight ofKG is at leastκ , so |G| � κ . Here
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we use the following simple observation: IfK is a topological space of weightκ then every
Radon measure onK has Maharam type at mostκ . �

Take anyγ ∈ G. We haveµ(Cγ ) > 0 and

Cγ =
⋃
n�1

{
x ∈ K:

∣∣x(γ )
∣∣ � 1/n

}
,

so there isnγ � 1 such that lettingDγ = {x ∈ K: |x(γ )| � 1/nγ } we haveµ(Dγ ) > 0.
Now the family {Dγ : γ ∈ G} witnesses thatµ does not have calibre(κ,ℵ1), which

suffices by Lemma 2.5.
(ii) ⇒ (i). We shall again use Lemma 2.5, as well as Theorem 2.8. Hence

assumptions allow us to choose a family{Cξ : ξ < κ} of compact positive measure subs
of {0,1}κ witnessing that(κ,ℵ1) is not a calibre of the product measureµ = µκ .

Using the fact thatµ has Maharam typeκ on every set of positive measure, we may
induction onξ < κ to find compact setsFξ such that for everyξ we haveFξ ⊆ Cξ and

inf
{
µ(A � Fξ ): A ∈Aξ

}
> 0, (∗)

whereAξ is the Boolean algebra of sets generated by the family{Fα : α < ξ}.
We take the algebraA = ⋃

ξ<κ Aξ and show that its Stone spaceK is the required
space. The measureµ restricted toA uniquely defines a Radon measureν on K which is
generated by letting for everyA ∈ A, ν(Â) = µ(A), whereÂ ⊆ K is the clopen subset o
K induced byA. Then it follows from(∗) above thatν is of type at leastκ . The fact that
K is Corson compact andν has type at most (hence exactly)κ follows from the fact that
the mapping

g :K → {0,1}κ, g(p) = (
χF̂ξ

(p)
)
ξ<κ

,

is 1–1, hence by its definition a homeomorphic embedding, whileg[K] ⊆ Σ(Rκ ) since
there is no uncountable centred subfamily of{Fξ : ξ < κ}. �
Corollary 5.4. It is consistent thatc > ℵ1 and there is a Corson compact space carryin
Radon measure of typec.

Proof. Apply Corollary 3.11 and Theorem 5.2.�
Note that by Theorem 5.2, since pc(c+, c+) by Lemma 4.2, every Radon measure o

Corson compactum is of type at mostc. We might generalise Theorem 5.2 to the case
an arbitrary pair(κ,λ) (whereλ � κ), replacing Corson compacta byλ-Corson compacta

Let us also mention another interesting and simple construction of a Corson co
space resulting from a family that witnesses that pc(κ,ℵ1) does not hold. Let(A,µ) be a
measure algebra and suppose that{aξ : ξ < κ} ⊆ A+ is a family without an uncountabl
centred subfamily. Then one obtains a Corson compact space by letting

K = {
x ∈ {0,1}κ :

{
aξ : x(ξ) = 1

}
is centred

}
.

U
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See e.g., Plebanek [35] for some applications of this construction, where it is shown, for
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instance, that such a spaceK admits a strictly positive measure. Earlier such a construc
was used by Marciszewski [33] to prove the following.

Theorem 5.5. The following are equivalent.

(i) There is compactK ⊆ Σ(Rω1) such thatconv(K) �⊆ Σ(Rω1).
(ii) ℵ1 is not a precalibre of measure algebras.

The following theorem summarizes some ofthe remarks above and results from Kun
and van Mill [31], Marciszewski [33] and Plebanek [35].

Theorem 5.6. pc(ℵ1,ℵ1) is equivalent to each of the following:

(i) Every Radon measure on a Corson compact space has a separable support.
(ii) Every Radon measure on a Corson compactum is of countable type.
(iii) conv(K) ⊆ Σ(Rκ ) for everyκ and every compactK ⊆ Σ(Rκ ).
(iv) Every Radon measure on a first countable space is of countable type.

The class of compact spaces on which every measure is of countable type w
investigated by Džamonja and Kunen [12,13].

Calibres are also crucial in understanding the so-called Haydon problem abo
equivalence between the existence of continuous surjections onto[0,1]κ and homogeneou
measures of typeκ . The question originated in R. Haydon’s results on the isomorph
structure of Banach spaces, see [25,26]; cf. Fremlin [18,19] and Plebanek [36,38
recall here just one result along these lines, see [38] for details.

Theorem 5.7. The following are equivalent for anyκ � ℵ2:

(i) there is a continuous surjection fromK onto [0,1]κ iff K carries a homogeneou
Radon measure of typeκ ;

(ii) κ is a measure precalibre.

Finally, let us mention that calibre-like properties of measure algebras are even re
to a question on Pettis integrability of Banach-valued functions with respect to R
measures, see, e.g., Plebanek [37].

6. Shelah’s theorem on independent families

A theorem we were inspired by when working on this paper is Shelah’s theorem
independent sets in measure algebras from [40], as we explained in the introduc
Theorem 4.7. As we mentioned before, it also turned out that one can use the m
developed here to give a somewhat simpler proof and slightly weaken the assumpt
the original theorem of Shelah. The first part of the argument necessary to do this is
U
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the same as the one already familiar from the proof of Theorem 4.7. We decided to give
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also the rest of the argument for the sake of completeness, and this is what this section
devoted to.

Definition 6.1. A subfamily of a Boolean algebraA is said to be independent iff eve
nontrivial finite Boolean combination of its elements is nonzero.

Recall that by the Balcar–Franék theorem [3] every complete Boolean algebraA
contains an independent family of size|A|. If A is a measure algebra this fact follow
easily from the Maharam theorem. The result discussed below says that for largeκ , in fact
every family ofκ many distinct elements of some measure algebra contains an indep
subfamily of full size. Note that every nonatomic measure algebra contains a lin
ordered subfamily of cardinalityc so it is not always possible to choose an indepen
subfamily amongc many elements of a measure algebra. Shelah’s original assumptio
Fact 2.1 from [40] were

�2 � θ = θℵ0 < cf(κ) � κ � 2θ

and conclusion that for every family ofκ many distinct elements inAκ , there is an
independent family of sizeκ . We shall see that the assumptions may be somewhat rel

Prior to the main theorem we enclose the following technical lemma from [40]
everyY ⊆ κ we writeAκ [Y ] for the family of allB˙ ∈ Aκ for whichB ∈ Σκ is determined
by the coordinates inY .

Lemma 6.2. Suppose that{aα: α < κ} is a family of distinct elements ofAκ , where
aα ∈ A[Jα], with Jα ⊆ κ countable for everyα. Then for everyY ⊆ λ, denoting

ind(Y )
def=

{
α ∈ Y : ¬(∃m < ω)(∃β0, . . . , βm−1 ∈ Y ∩ α)aα ∈ Aκ

[ ⋃
k<m

Jβk

]}
,

we have| ind(Y )| + c � |Y |.

Proof. The lemma follows easily from the fact that|Aκ [J ]| � c wheneverJ ⊆ κ is
countable. �
Theorem 6.3. Suppose thatθ andκ are cardinals satisfying

(i) θ = θℵ0 < cf(κ) � κ � 2θ ;
(ii) �2 < cf(κ).

Then for every family ofκ many distinct elements of some measure algebra there
independent subfamily of sizeκ .

Example 6.4. An example of a situation covered by Theorem 6.3 but not the orig
Shelah’s theorem is when 2ℵ0 = ℵ2, θ = 2ℵ1 = ℵ57, �2 = 2ℵ2 = ℵ99, while 2θ = ℵω1+1.
Then anyκ � ℵω1+1 with cofinality ℵ58 will satisfy the assumptions of Theorem 6.3 b
not of the original theorem.
U
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Proof. (1) By Maharam’s theorem we can suppose that we are given a family{aα: α < κ}
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of distinct elements ofAκ and we need to find an independent subfamily of sizeκ . We shall
work in the space 2κ rather than in the algebraAκ itself. Let us fix a liftingϕ :Aκ → Σκ

and putBα = ϕ(aα) for everyα < κ . Next we choose measurable setsB0
α andB1

α so that

B0
α ⊆ Bα, B1

α ⊆ 2κ \ Bα,

B0
α˙= aα, B1

α˙ = 1− aα,

B0
α andB1

α depend only on the coordinates in a countable setJα ⊆ κ.

To chooseB0
α we apply Fact 1.5(5) toBα and we similarly chooseB1

α .
(2) For the rest of the proof we consider disjoint pairs(B0

α,B1
α). We shall prove tha

there isX ∈ [κ]κ such that the pairs(B0
α,B1

α) for α ∈ X are independent, i.e.,⋂
α∈I

Bε(α)
α �= ∅ for every finiteI ⊆ X and every ε : I → {0,1}.

This will prove the theorem since
⋂

α∈I B
ε(α)
α �= ∅ implies that

ϕ

( ∧
α∈I

aε(α)
α

)
=

∧
α∈I

ϕ
(
aε(α)
α

) �= ∅,

hence
∧

α∈I a
ε(α)
α �= 0, and therefore the family{aα: α ∈ X} ⊆ Aκ is independent.

(3) Using Lemma 6.2 we can assume that for everyα < κ andβ0, . . . , βk−1 < α we
haveaα �= B˙ wheneverB depends on the coordinates in

⋃
k<m Jβk .

(4) Now we use the same argument as in the proof of Theorem 4.7, using the assu
thatθ = θℵ0 to obtainXζ as there. Hence thanks to the assumptionθ < cf(κ) we can now
pass to a subfamily of the original family if necessary and assume thatXζ = κ . This implies
the following:

if i(α,n) = i(β, k) thenn = k. (∗)

(5) Again, for everyα < κ we define a mappingπα , where

πα : {0,1}κ → {0,1}ω, πα(x)(n) = x
(
i(α,n)

)
for everyn.

ThenF 0
α = πα[B0

α] andF 1
α = πα[B1

α] are Borel subsets of{0,1}ω. Usingc < cf(κ) we can
as well assume thatF 0

α = F 0 andF 1
α = F 1 for fixedF 0,F 1 and everyα < κ .

(6) We now come to the point of the argument where we shall need to use the assu
�2 < cf(κ). For eachα < κ we define an idealNα on ω. It is the ideal generated by th
sets

Zα
β

def={
n < ω: i(β,n) = i(α,n)

}
for β < α.

By (3) the idealNα is proper. Namely suppose that for someβ0, . . . , βm−1 < α we have⋃
l<m Zα

βl
= ω. Thenaα belongs toB[{i(βl, n): l < m, n < ω}], contradicting (3).

As the number of possible ideals onω is at most�2, by our assumption cf(κ) > �2 for
the rest of the proof we can fix a setX ⊆ κ of sizeκ , such that for everyα ∈ X Nα = N ,
whereN is a fixed proper ideal onω.
U
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(7) We can at last prove that our family of pairs(B0
α,B1

α), α ∈ X, is independent as
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defined in (2) above. So let us fix a finite setI ⊆ X and a functionε : I → {0,1} and try to
definex ∈ 2κ such thatx ∈ ⋂

α∈I B
ε(α)
α . Let

N = {
n < ω: i(α,n) = i(β,n) for someα,β ∈ I,α �= β

}
,

Rα = {
i(α,n): n ∈ N

}
, R =

⋃
α∈s

Rα.

Let us denote byπN : 2ω → 2N the usual projection. For the setsF 0,F 1 ⊆ 2ω defined in
(5) we put

F 0+ = π−1
N πN

[
F 0], F 1+ = π−1

N πN

[
F 1].

Claim 6.5. F 0+ ∩ F 1+ �= ∅.

Proof. Indeed, otherwise takingα = max(I) andC = π−1
α [F 0+] we would haveC˙ = aα .

HenceC is determined by the coordinates inRα . But N is in the idealN fixed in (6)
and we haveN = Nα , so there areβ0, . . . , βk−1 < α such thatN ⊆ ⋃

i<k−1 Zα
βi

. Then
Rα ⊆ ⋃

i<k−1 Jβi , and we get a contradiction with (3).�
Fix an elementt ∈ F 0+ ∩ F 1+; we define a desired elementx :κ → {0,1} as follows:

– onR we letx(i(α,n)) = t (n) wheneverα ∈ I andi(α,n) ∈ R. Note that by(∗) of (4),
this definition is consistent.

– Take anyα ∈ I with ε(α) = 0 (so that we wantx in B0
α). Sincet ∈ F 0+, there iss ∈ F 0

such thats|N = t|N . We can putx(i(α,n)) = s(n) for n /∈ N . Thenx(i(α,n)) = s(n)

for everyn < ω, sox ∈ π−1
α [F 0] = B0

α , as required.
– Forα ∈ I with ε(α) = 1 we proceed analogously.

Thusx is defined so thatx ∈ ⋂
α∈I B

ε(α)
α , and this finishes the proof.�

Analysing the argument above we can see that the requirement (ii) of Theorem 6
applied only once, in (6) to make Claim 6.5 work. This enables us to derive the follo
conclusion (which is, in a sense, motivated by Claim 2.4(2) of [40]). Say that a fa
{aα: α < κ} in a measure algebra(A,µ) is separatedif there is a constantδ > 0 such that
µ(aα � aβ) � δ wheneverα �= β .

Corollary 6.6. Suppose thatθ and κ are cardinals satisfyingθ = θℵ0 < cf(κ) � κ � 2θ

and letF be a family ofκ many distinct elements of some measure algebra. If either

(i) κ is ℵ1-inaccessible; or
(ii) F is separated;

thenF contains an independent subfamily of sizeκ .
U
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Proof. We again deal with measurable sets in{0,1}κ . Recall first that for a measurable set
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B ⊆ {0,1}κ there may be no minimal setJ ⊆ κ of indices with the property thatB depends
only on the coordinates inJ . However, there is a (countable) setJ ∗ such that wheneve
C˙= B˙ andC depends only on the coordinates inI thenJ ∗ ⊆ I , see Fremlin [21].

Now we proceed as in the proof of Theorem 6.3with the following changes. First w
shall note that if either (i) or (ii) hold then we can replace (3) of the proof of Theorem
by the requirement

(3)′ aα �= B˙ wheneverB depends on the coordinates in
⋃

β<α Jβ .
Indeed, for the setY = ⋃

β<α Jβ we have|Y | < κ , so if ℵ1 
 κ thenAκ[Y ] has only

|Y |ℵ0 < κ elements. Similarly, if (ii) holds thenAκ[Y ] contains at most|Y | elementsaξ .
Next we replace (6) from the proof of Theorem 6.3 by the following. For everyα < κ

let J ∗
α be the minimal set of coordinates foraα , in the sense explained above. By(3)′ we

have for everyα < κ

J ∗
α �⊆

⋃
β<α

Jβ .

Now passing to a suitable subfamily we can assume that there is a natural numbern∗ such
that for everyα < κ we have

i(α,n∗) ∈ J ∗
α \

⋃
β<α

Jβ.

Having this property we can verify Claim 6.5 in the same way.�

7. Open problems

We list some open problems and partial solutions.

Problem 7.1 (Fremlin). Is it consistent that every regularκ is a precalibre of measur
algebras?

Theorem 3.9 shows that if this is consistent then GCH fails at every strong lim
cofinality ℵ0. (Recall that�ω is such a strong limit). A positive answer to Problem
also implies the existence of 0�. Jensen showed (see [11]) that if 0� does not exist then th
singular cardinal hypothesis (SCH) is true, that is, for any singular cardinalκ the value of
2κ is the least cardinalλ � 2<κ with cf(λ) > κ . In particular, 2κ = κ+ for every singular
strong limit cardinal and so we obtain

Remark 7.2. If 0� does not exist then there is a regular cardinal which fails to b
precalibre of measure algebra.

Assuming various large cardinal hypotheses, many models make SCH false. O
seems particularly relevant given Theorem 4.1 and Theorem 3.9 was construc
Cummings in [10], where (assuming the existence of aP3κ-hypermeasurable cardina
a model is constructed in which 2κ = κ+ if κ is a successor and 2κ = κ++ if κ is a limit
U
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cardinal. One may consult [10] for further references. Calling Cummings’s modelV we
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may perform inV a forcing to collapseℵ1 followed by a forcing to addℵ2 random reals
to obtainV [G] in which c = ℵ2 = cov(Nℵ1) while non(Nℵ0) = ℵ1. Then by the table a
the end of Section 3 the only regular cardinals that may fail to be precalibres of me
algebras inV [G] are successors of singulars of countable cofinality, and Theorem 3.9
not rule out that these cardinals are precalibres as well.

Theorem 4.4 gives a partial solution of the following

Problem 7.3 (Haydon). Let κ = supn<ω κn, where everyκn is a measure precalibre o
measure algebras. Doesκ have the same property?

The table at the end of Section 3 suggests the following problem:

Problem 7.4. Is it consistent that pc(ℵ2,ℵ1) but¬pc(ℵ2,ℵ2) and¬pc(ℵ1,ℵ1)?

Proofs of Lemma 4.2 and Theorem 4.7 show that there is a combinatorial proper
suffices for a cardinalκ to be a precalibre of measure algebras, namely that for e
family {Iξ : ξ < κ} of countably infinite subsets ofκ there isX ∈ [κ]κ and enumeration
Iξ = {i(ξ, n): n < ω} for ξ ∈ X with the property thati(ξ, n) = i(η, k) impliesn = k. It
might be interesting to see if this combinatorial property isolates a useful class of car
and understanding how to force this property might be useful for Problem 7.1.
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