
A Logical Model of Social Commitment
for Agent Communication

Mario Verdicchio
Politecnico di Milano

 Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Phone: +39-02-2399-3686

Mario.Verdicchio@Elet.PoliMi.It

Marco Colombetti
Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
University of Lugano

Via Buffi 13, 6904 Lugano, Switzerland

Marco.Colombetti@PoliMi.It

ABSTRACT
As part of the goal of developing a genuinely open multiagent
system, many efforts are devoted to the definition of a standard
Agent Communication Language (ACL). The aim of this paper is
to propose a logical framework for the definition of ACL
semantics based upon the concept of (social) commitment. Our
framework relies on the assumption that agent communication
should be analyzed in terms of communicative acts, by means of
which agents create and manipulate commitments, provided
certain contextual conditions hold. We propose formal definitions
of such actions in the context of a temporal logic that extends
CTL∗ with past-directed temporal operators. In the system we
propose, called CTL±, time is assumed to be discrete, with no start
or end point, and branching in the future. CTL± is then extended
to represent actions and commitments; in particular, we formally
define the conditions under which a commitment is fulfilled or
violated. Finally, we show how our logic of commitment can be
used to define the semantics of an ACL.

Categories and Subject Descriptors
I.2.0 [Artificial Intelligence]: General – Philosophical
foundations. I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence – Multiagent systems.

General Terms

Languages, Theory.

Keywords
Agent Communication Languages, Commitment, Speech Act
Theory, Temporal Logic.

1. INTRODUCTION
One of the main goals in the field of autonomous agents is the
development of genuinely open multiagent systems. As part of
this enterprise, many efforts are devoted to the definition of a

standard Agent Communication Language (ACL). So far, two
ACLs have been widely discussed in the literature: KQML [4]
and FIPA ACL [5], but we do not yet have a universally accepted
standard. In particular, there is no general agreement on the
definition of ACL semantics.
The aim of this paper is to propose a framework for the definition
of ACL semantics based upon the concept of (social)
commitment, thus adopting an approach that has already been
proposed and discussed by some authors [10,2]. In our view, a
commitment-based approach to semantics has remarkable
advantages over the more traditional proposals based on mental
states (see for example [1,7]). In particular, commitments,
contrary to mental states, are public and observable, thus they do
not need to be attributed to other agents by means of inference
processes, and can be stored in public records for further
reference.
Our framework, like all major proposals in the field of ACLs,
relies on the assumption that agent communication should be
analyzed in terms of communicative acts. In our view,
communicative acts are performed by agents to create and
manipulate commitments. That is, agents modify the social state
of a multiagent system by carrying out speech acts that affect the
network of commitments binding agents to one another. For
instance, when agent a informs agent b that p, then a becomes
committed, relative to b, to the fact that p holds. As we shall show
in the rest of this paper, we can similarly model other kinds of
communicative acts from the perspective of commitments.
Previous versions of our model have been published elsewhere
[2,6]. However, we try here for the first time to delineate a full
logical model of commitment, including the aspects related to
time. In Section 2 we illustrate some aspects of our model of time
and action. In Section 3 we present a formal model of
commitment. In Section 4 we investigate on the relations between
message exchanges, communicative acts and the creation and
manipulation of commitments. Finally, in Section 5, we draw our
conclusions and illustrate some future work.

2. TIME AND ACTION
2.1 Time
For the treatment of time, we adopt a framework close to the
CTL∗ temporal logic [3]. As is well known, CTL∗ is a powerful
logic of branching time, developed to prove properties of
computational processes. In the context of agent interaction, we
found it necessary to extend CTL∗ with past-directed temporal
operators. In the system we propose, called CTL±, time is
assumed to be discrete, with no start or end point, and branching
in the future.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS ’03, July 14-18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007…$5.00.

528

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/276843233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The formal language L of CTL± is the smallest set such that:
A ⊆ L, where A is a suitable set of atomic formulae;
¬L ⊆ L, (L ∧ L) ⊆ L;
X+L ⊆ L, X–L ⊆ L, (LU+L) ⊆ L, (LU–L) ⊆ L;
AL ⊆ L, EL ⊆ L.

The intuitive meaning of the temporal operators is the same as in
CTL∗, with the additional stipulation that:

X+ means at the next instant (in the future);
X– means at the previous instant (in the past);
U+ means until (in the future);
U– means since (in the past).

A and E are path quantifiers, respectively meaning for all paths
and for some path.
To define the formal semantics of L, let S be a set of states. A
CTL± frame F on S is an infinite tree-like structure on S, where
every state has exactly one predecessor and a nonempty set of
successors.
A path in frame F is an infinite sequence p = 〈p0,...,pn,...〉 of
states, such that for every element pn in the sequence, element pn+1
is one of the successors of pn in F. The subsequence of p starting
from element pn is itself a path, and will be denoted by pn. The set
of all paths starting from state s will be denoted by Paths(s). Paths
allow us to formalize the concepts of being “in the past” or “in the
future” of some state. More precisely, we say that state s’ is in the
future of s (in frame F) iff there is a path p such that s = p0 and,
for some n, s’ = pn. Symmetrically, we say that s’ is in the past of
s (in frame F) iff there is a path p such that s’ = p0 and, for some
n, s = pn.
A CTL± model is a pair M = 〈F,v〉, where F is a CTL± frame and v
is an evaluation function assigning a Boolean truth value to every
atomic formula at every state. We are now ready to define the
truth conditions of an L formula in model M on path p:

M,p |= ϕ, where ϕ is an atomic formula, iff v(ϕ,p0) = 1;
M,p |= ¬ϕ iff M,p |≠ ϕ;
M,p |= (ϕ ∧ψ) iff M,p |= ϕ and M,p |= ψ ;
M,p |= X+ϕ iff M,p1 |= ϕ;
M,p |= X–ϕ iff for some path q, (q1 = p and M,q |= ϕ);
M,p |= (ϕU+ψ) iff for some n, (M,pn |= ψ and for all m s.t.

0≤m<n, M,pm |= ϕ);
M,p |= (ϕU–ψ) iff for some path q and for some n,

(qn = p and M,q |= ψ and for all m s.t.
0≤m<n, M,qm |= ϕ);

M,p |= Aϕ iff for all q∈Paths(p0), M,q |= ϕ;
M,p |= Eϕ iff for some q∈Paths(p0), M,q |= ϕ.

We define an L formula to be true in model M at state s iff it is
true in M on all paths starting from s:

M,s |= ϕ iff for all p∈Paths(s), M,p |= ϕ.
Finally, we define a formula to be valid iff it is true on all paths of
every model:

|= ϕ iff for all M and all p, M,p |= ϕ.
Taking the temporal operators X+, X–, U+, and U– as primitives,
we can introduce the following operators as abbreviations: F+
(sometimes in the future), F– (sometimes in the past), G+ (always
in the future), G– (always in the past):

F+ϕ =def trueU+ϕ,
F–ϕ =def trueU–ϕ,
G+ϕ =def ¬F+¬ϕ,
G–ϕ =def ¬F–¬ϕ.

We also define a “weak until” and a “weak since” temporal
operators:

ϕW+ψ =def G+ϕ ∨ ϕU+ψ,
ϕW–ψ =def G–ϕ ∨ ϕU–ψ.

Later on we shall use another derived operator, representing the
intuitive concept of “until-and-no-longer”. This operator is
defined as follows:

ϕ Z+ψ =def ϕW+ψ ∧ G+(ψ → G+¬ϕ).
In other words, ϕ Z+ψ is true iff in the future: ψ never becomes
true and ϕ is true forever, or ψ eventually becomes true and since
then ϕ is no longer true. More derived temporal operators will be
defined later on to treat specific examples.

2.2 Events and Actions
We now extend the temporal language L of CTL± in order to
represent events and actions. We do this by introducing a number
of predicates on sorted arguments.
We reify events, that is, we treat them as a sort of individuals,
called event tokens. Every event token belongs to at least one
event type, and takes place (happens) at exactly one time instant.
We focus on a special kind of events, actions, which are brought
about by an agent, called the actor of the action.
In the following, variables e, e’, ..., will range on event tokens;
variables x, y, ..., will range on agents; and variables t, t’, ..., will
range on event types. We take Happ(e), Type(e,t) and Actor(e,x)
as primitive predicates, and define:

Done(e,x,t) =def Happ(e) ∧ Type(e,t) ∧ Actor(e,x).
The formula Done(e,x,t) expresses the fact that event e of type t is
brought about by agent x. For the sake of convenience, at times
we shall use the “m-dash” character to express existential
quantification, as in the example below:

Done(e,–,t) =def ∃x Done(e,x,t).
The semantics of L has now to be enriched to account for the
interpretation of the extended language. This can be done by:
adding a typed domain D of individuals to every model M;
defining an interpretation of first-order terms into D; defining an
interpretation of primitive predicates in D; and defining the
semantics of the first-order quantifiers ∀ and ∃. In this paper we
do not develop these technical aspects in details, and thus rely on
the reader’s intuition for the interpretation of first-order
expressions.
As usual, we now need to introduce a number of axioms to
constrain the interpretation of primitive predicates. It should be
noted that such axioms do not alter the structure of temporal
frames, but reduce the set of allowable models by putting
constraints on the interpretation of terms and predicates. Validity
of formulae must then be understood with respect to the class of
CTL± models that satisfy such constraints.
As we already said, the instant at which an event takes place on a
path is unique. We therefore adopt the axiom

(UH) Happ(e) → X–G– ¬Happ(e) ∧ AX+G+ ¬Happ(e).

529

3. COMMITMENT
3.1 Representing Commitments
We define a commitment as a social state between agents
including three components:

• the debtor, that is, the agent that is committed;
• the creditor, that is, the agent relative to which the debtor is

committed,
• the content, that is, the state of affairs to which the debtor is

committed relative to the creditor.
A commitment is said to be a precommitment when it has been
proposed, but not yet accepted or refused. In such a case, we say
that the (potential) debtor is precommitted to the (potential)
creditor. In our treatment, both precommitments and actual
commitments arise from the performance of communicative acts.
We view (social) commitment as a deontic state, akin to
obligation. For such a reason, it is essential to define when a
commitment is fulfilled and when it is violated. We shall give the
relevant formal definitions in the following subsections. However,
in this paper we do not investigate what is going to happen when
a commitment is fulfilled or violated (e.g., in terms of agent
reputation, sanctions, etc.). These are important aspects of
multiagent systems management, but go beyond the conceptual
definition of commitment.
We now extend our formal language to accommodate for the
treatment of commitments. The resulting language will be called
Semantic Language, given that its purpose is to define the
semantics of ACL messages. To represent a commitment, we
need to represent a debtor, a creditor, and a content. Debtors and
creditors are agents, and shall be represented by first-order terms
of sort agent like we already did in Subsection 2.2. The
representation of content is more critical. It seems to us that there
are basically two possibilities:

• The content can be represented by a formula of the Semantic
Language. In this case, commitment can be represented
through a modal operator, analogously to the deontic logic
representation of obligation.

• The content can be represented as a first-order term. In this
case, a commitment can be represented by a first-order
formula.

We believe there are at least two reasons to adopt the latter
solution. The first, obvious reason is that the technicalities
required by a predicative representation are simpler than the ones
required by a modal representation. The second, more important,
reason is that in the context of agent communication the content
of a commitment, as we shall see later on, is always derived from
an agent message. More precisely, a commitment’s content
derives from a statement in some Content Language (CL): think
for example of the value of the :content parameter in KQML
or FIPA ACL messages. With respect to a CL, the Semantic
Language we are presently defining can be viewed as a meta-
language. It is therefore feasible to represent a CL statement by a
first-order term of the Semantic Language. Such a first-order term
may be viewed as the representation of the abstract syntax of a
concrete CL statement. Of course, in the Semantic Language it is
not sufficient to represent the syntax of a CL statement: we also
need to represent its semantics. To do so, we shall assume that:

• The abstract syntax of any CL statement can be represented
by a first-order term of the Semantic Language.

• If u is such a term, then the meaning of the corresponding
statement is represented by a formula of the Semantic
Language, which we shall denote by u. In other words, u
is a truth-preserving translation of u into a formula of the
Semantic Language. For such a translation to be possible the
Semantic Language will have to include enough predicate,
function, and constant symbols to represent the meaning of
CL statements.

We introduce two predicates, Comm and Prec, to represent
commitments and precommitments. In particular,

Comm(e,x,y,u)
will mean that event e has brought about a commitment for agent
x, relative to agent y, to the truth of u. When the above formula
is true, we shall say that e is a commitment-inducing event.
Precommitments are represented analogously:

Prec(e,x,y,u)
will mean that event e has brought about a precommitment for
agent x, relative to agent y, to the truth of u.
Under given conditions, that we shall analyze later on,
commitments can be made or cancelled, and precommitments can
be made, cancelled or accepted (i.e., turned into actual
commitments). This is possible thanks to the performance of
tokens of suitable action types, formally defined in the next
subsection: make commitment (mc), make precommitment (mp),
cancel commitment (cc), cancel precommitment (cp), and accept
precommitment (ap). Such actions, as we shall see later on, are
performed by exchanging messages in an ACL.

3.2 A Logical Model of Commitment
The action types for commitment manipulation are defined by
axioms describing their constitutive effects, that is, by describing
the state of affairs that necessarily hold if a token of a given
action type is successfully performed.
Make Commitment

 (MC) Done(e,–,mc(x,y,u))
 → A (Comm(e,x,y,u) Z+ Done(–,–,cc(e,x,y,u))).

Axiom MC says that:
if an agent (not necessarily x or y) successfully performs an
action of making a commitment with x as the debtor, y as the
creditor, and u as the content,
then on all paths x is committed, relative to y, to content u,
until an agent possibly cancels such a commitment, after which
the commitment no longer exists.

It is important to remark that Axiom MC only defines what
making a commitment means. It does not establish in what way,
and under what conditions, an agent may actually make or cancel
a commitment in a concrete situation. This aspect will be dealt
with in Section 4.
Make Precommitment

(MP) Done(e,–,mp(x,y,u))
 → A (Prec(e,x,y,u) Z+ (Done(–,–,ap(e,x,y,u))
 ∨ Done(–,–,cp(e,x,y,u)))).

Axiom MP is analogous to MC.
Accept Precommitment

(AP) Done(e’,–,ap(e,x,y,u)) ∧ ¬Done(–,–,cp(e,x,y,u))
 → A (Comm(e’,x,y,u) Z+ Done(–,–,cc(e’,x,y,u))).

530

Axioms AP says that:
if an agent successfully performs an action of accepting a
precommitment brought about by event e, with debtor x,
creditor y, and content u,
and no agent has just cancelled such a precommitment,
then the action of acceptance brings about on all paths a
commitment for x, relative to y, to content u, which will stand
until it is possibly cancelled.

Again, this axiom does not say by what means or under what
conditions an agent may actually accept a precommitment in a
concrete situation.
The next axiom assures that an event, which takes place at a
certain instant, can (pre)commit agents only from that moment on.
In other words, no (pre)commitment is retroactive:

Happ(e) → X–G– (¬Prec(e,x,y,u) ∧ ¬Comm(e,x,y,u)).
Finally, the next axiom states that all (pre)commitments are
necessarily brought about by some event:

Prec(e,x,y,u) ∨ Comm(e,x,y,u) → F– Happ(e).

3.3 Fulfillment and Violation
Intuitively, a commitment is fulfilled when its content is true, and
is violated when its content is false. However, given that we are
working in the context of branching-time logic, the formal
definitions are not trivial.
Let us start with an informal example. Suppose that thanks to
event e1, agent a is committed, relative to agent b, to the content
expressed by CL sentence u1, whose intuitive meaning is “it will
rain until midnight.” Suppose further that e1 takes place at 4:00
pm, and that it persistently rains from that time to 6:00 pm,
inclusive. Intuitively, at 6:00 the commitment induced by e1 is
neither fulfilled nor violated (we shall say that the commitment is
pending). Now consider two possible developments:

• It goes on raining until midnight. In this case, the
commitment induced by e1 is fulfilled at time 0:00 am.

• At 6:01 pm it suddenly stops raining. In this case, the
commitment induced by e1 is violated at 6:01 pm.

In order to formalize these intuitions, two problems must be
solved. The first problem has to do with the temporal indexicality
of content sentences. By this we mean that the truth of the
sentence “it will rain until midnight” has to be evaluated with
respect to the state at which the commitment is made (the point of
speech, in Reichenbach’s terminology1 [9]). On the other hand, to
know whether the commitment is fulfilled or violated we have to
wait until something relevant happens, that is, until the first state
at which it stops raining, or the first state at which it is midnight
(Reichenbach’s point of event). But then, and this is the second
problem, what is the truth value of the content at a generic state
(Reichenbach’s point of reference) lying between the point of
speech and the point of event?
We propose a solution in which:

• content sentences are temporally de-indexicalized in a simple
and uniform way, by conjoining their translation into the
Semantic Language with an atomic formula setting the point
of speech;

1 The German philosopher Hans Reichenbach proposed a famous model

of verb tenses in Chapter 7 of his book Elements of Symbolic Logic. We
adopt his terminology, but reinterpret it with some freedom.

• the truth value of a content sentence at a given point of
reference is evaluated with respect to all paths starting from
the point of reference.

Fulfillment
On the basis of our previous considerations, fulfillment can be
formally defined as follows:

(FC) Fulf(e,x,y,u) =def Comm(e,x,y,u) ∧ AF– (Happ(e) ∧ u).
To understand this definition correctly, it is helpful to go back to
our previous example. Let us assume that

[u1] = (rain U+ midnight),
and suppose that the commitment-inducing event e1 takes place in
model M at state s:

M,s |= Happ(e1),
M,s |= A (Comm(e1,a,b,u1) Z+ Done(–,–,cc(e1,a,b,u1))).

Now consider an arbitrary state s’ in the future of s. We have
M,s’ |= Fulf(e1,a,b,u1)
iff M,s’ |= Comm(e1,a,b,u1) ∧ AF– (Happ(e1) ∧ u1).

Let us assume that the commitment made at s has not been
cancelled until s’ (inclusive). This implies that

M,s’ |= Comm(e1,a,b,u1).
Under such conditions, the commitment is fulfilled at s’ iff

M,s’ |= AF– (Happ(e1) ∧ u1),
that is, iff for all p∈Paths(s’),

M,p |= F– (Happ(e1) ∧ u1).
Therefore, for the commitment to be fulfilled at s’, the formula

Happ(e1) ∧ (rain U+ midnight)
must be true at some state in the past of s’. Now, thanks to Axiom
UH (Section 2.2) we know that on every path the state at which
an event takes place is unique. Thus, for the commitment to be
fulfilled at s’, the formula

(rain U+ midnight)
must be true, for all p∈Paths(s) going through s’. A model
satisfying these requirements is depicted in Figure 1.
This example shows how statement u1 is de-indexicalized by
evaluating it in the state s at which event e1 took place.

Figure 1. Formula rain U+ midnight is true on
all paths starting from s and going through s’.

s

s’

Happ(e1)
rain U+ midnight

Comm(e1,a,b,u1)

rain

rain

rain

midnight

531

Moreover, the definition of fulfillment at s’ considers the truth
value of s1 on all paths starting from s and going through s’. The
set of such paths typically becomes smaller when s’ is moved
further in the future of s. As a consequence, a commitment that is
not yet fulfilled at s may be fulfilled at some state s’ in the future
of s.

Violation
Analogously to fulfillment, we can define violation as follows:

(VC) Viol(e,x,y,u) =def Comm(e,x,y,u) ∧ AF– (Happ(e) ∧ ¬u).

Pending commitments
A commitment is pending iff it is neither fulfilled nor violated:

(PC) Pend(e,x,y,u) =def Comm(e,x,y,u)
∧ ¬Fulf(e,x,y,u) ∧ ¬Viol(e,x,y,u).

Thanks to Axiom UH (Section 2.2), from the above definition we
can derive:

|= Pend(e,x,y,u) ↔ Comm(e,x,y,u)
 ∧ EF–(Happ(e) ∧ u)
 ∧ EF–(Happ(e) ∧ ¬u).

However, Definition PC raises a fairly subtle formal problem,
which we shall analyze in the next subsection.

3.4 Some Properties of Commitment
We shall now try to show that the axioms and definitions given in
the previous subsections determine a satisfactory “logic of
commitment.”
Let us start with a few notes on fulfillment and violation. It is
easy to see that if a commitment is introduced through a make
commitment or accept precommitment action and later cancelled,
it can no longer be fulfilled or violated. This is a direct
consequence of Axioms MC and AP, and of Definitions FC and
VC. Even if a commitment has already been fulfilled or violated
in the past, it is no longer fulfilled or violated after it is cancelled.
It is possible, however, to express the idea that a commitment has
been fulfilled or violated in the past, by using the F– operator. It
would also be possible to constrain cancel commitment actions so
that commitments that have already been fulfilled or violated can
no longer be cancelled.
Some commitments can be fulfilled, but can never be violated in a
finite period of time. An example is a commitment whose content,
translated into the Semantic Language, is F+rain. Analogously,
some commitments can be violated but never fulfilled in finite
time. Consider for example a commitment to G+rain.
All commitments whose content is logically valid are
immediately fulfilled. Dually, all commitments whose content is
logically contradictory are immediately violated. Moreover, all
commitments whose point of event is in the past of the point of
speech are immediately fulfilled or violated.
From the definitions of Section 3.3, every commitment is either
fulfilled, or violated, or pending, and these three states are
mutually exclusive. In fact it is possible to prove that

|= Comm(e,x,y,u)
→ xor(Fulf(e,x,y,u),Viol(e,x,y,u),Pend(e,x,y,u));

that is, exactly one of Fulf(e,x,y,u), Viol(e,x,y,u), or Pend(e,x,y,u)
is true in all models at every state at which Comm(e,x,y,u) holds.
This result, however, should be interpreted with some care. To
show why, let us go back again to our example of Section 3.3.

Suppose that thanks to event e1, agent a is committed, relative to
agent b, to the fact that it will rain until midnight; that e1 takes
place at 4:00 pm; and that it persistently rains from that time to
6:00 pm, inclusive. As we have remarked in the previous
subsection, at 6:00 the commitment induced by e1 is intuitively
pending. However, without further assumptions it is not possible
to prove this. The reason is that there are models of the Semantic
Language in which the commitment is not pending, but fulfilled.
Consider for example a one-path frame, and assume that the
atomic formula rain is true at every state. In such a model, the
commitment to the fact that it will rain until midnight is fulfilled
as soon as it is made. Given that in some models the commitment
is fulfilled, it is not possible to prove that it is pending.
The problem has nothing to do with our definitions. Rather, it
derives from the fact that certain intuitions about the world are not
represented in the Semantic Language. In this case, the intuition is
that rain is contingent, in the sense that it is always logically
possible that it rains or that it does not rain at the next state. If we
want to carry this intuition into the Semantic Language, we need
to exclude all models that do not meet it. This can be done by
assuming the following contingency axiom for rain:

EX+rain ∧ EX+¬rain.
Of course, this axiom does not belong to a logical model of
commitment, but represents a fragment of domain knowledge.
Such knowledge has to be expressed in terms of suitable axioms if
we want to derive properties of commitments that square with our
intuitions about the world.
So far we said nothing about the behaviour of the commitment
predicate with respect to the structure of content. To do so,
however, we must make some assumptions about the abstract
syntax of the CL. Let us assume that the CL allows for the
Boolean connectives, quantifiers and temporal operators that, for
the sake of simplicity, we will represent by the same symbols we
use in the Semantic Language.
Now consider the formula

Comm(e,x,y, u ∧ v).
The question is: if e commits x, relative to y, to u ∧ v, does it also
separately commit x to u and to v? In fact, our logic does not
allow us to derive Comm(e,x,y,u) or Comm(e,x,y,v) from
Comm(e,x,y, u ∧ v). It turns out, however, that we do not need to
add anything to our axioms and definitions to obtain a satisfactory
behavior of commitment with respect to conjunction. Indeed, it is
easy to see that

|= Comm(e,x,y, u ∧ v) ∧ AF– (Happ(e) ∧ ¬u)
 → Viol(e,x,y, u ∧ v)),
|= Comm(e,x,y, u ∧ v) ∧ AF– (Happ(e) ∧ ¬v)
 → Viol(e,x,y, u ∧ v).

The validity of these formulae allows one to say, in informal
speech, that

if a debtor is committed, relative to a creditor, to the
conjunction of u and v,
then the debtor is committed, relative to the creditor, to both u
and v,
in the sense that the falsity of either u or v implies a violation of
the original commitment.

Another interesting problem is given by the treatment of
conditional commitments, that is, commitments that become
active provided some condition holds. Conditional commitments

532

are not trivial to define in terms of the material conditional, and
are often given an ad hoc treatment (see for example [6,11]), not
dissimilar from the treatment of conditional obligation in deontic
logic. To see where difficulties come from, let us see what
happens if a conditional commitment is simply defined as a
commitment with a conditional content. Suppose for example that
event e1 commits agent a, relative to agent b, to the fact that if a
lightning is seen, a thunder will be heard immediately after.
Further suppose that event e1 takes place in model M at state s
(i.e., s is the point of speech), and let formula

(1) Comm(e1,a,b, lightning → X+ thunder)
express such a commitment. The obvious problem is that the
commitment expressed by Formula 1 is immediately fulfilled if
no lightning is seen at the point of speech, because

AF– (Happ(e1) ∧ (lightning → X+ thunder))
is true at s if lightning is false at s. This problem, however, is not
due to a limitation of material conditional, but to the fact that
Formula 1 does not correctly represent the content of the
commitment. In fact, the statement to which a commits may be
interpreted in two ways: (i), “always in the future, a thunder will
be heard immediately after a lightning is seen;” or (ii), “as soon as
a lightning will be seen, a thunder will be heard immediately
after.” With the first interpretation, a’s commitment is represented
by

(2) Comm(e1,a,b, G+ (lightning → X+ thunder)).
The commitment of Formula 2 can never be fulfilled in finite
time, and is violated at state s’, in the future of s, iff

AF– (Happ(e1) ∧ ¬G+ (lightning → X+ thunder))
holds at s’, that is, iff

AF– (Happ(e1) ∧ F+ (lightning ∧ ¬X+ thunder))
holds at s’. In other words, the commitment of Formula 2 is
violated in the future of s as soon as on all paths starting from s
and going through the current state it is the case that a lightning
will be seen that is not immediately followed by a thunder.
With the second interpretation, the commitment is expressed by

(3) Comm(e1,a,b, lightning S+ X+ thunder),
where the “as soon as” operator S+ is defined as below:

u S+ v =def (u → v) ∧ (X+(u → v) W+ u).
The commitment of Formula 3 is fulfilled at a state s’, in the
future of s, iff

AF– (Happ(e1) ∧ ((lightning → X+thunder)
 ∧ (X+(lightning → X+thunder) W+ lightning))

holds at s’. This formula becomes true at state s’ if, and only if,
for all paths starting from s and going through s’ the first
occurrence of a thunder after s is immediately followed by a
lightning. Moreover, as it can easily be checked, the commitment
of Formula 3 is violated at a state in the future of s as soon as it is
the case that a lightning will be seen that is not immediately
followed by a thunder.
These examples suggest that a satisfactory logic of commitment is
induced by Definitions FC and VC, which specify the conditions
under which a commitment is fulfilled or violated.

4. COMMUNICATIVE ACTS
AND ACL MESSAGES

In the previous section we have defined the results of a number of
commitment-manipulation actions, but we have not yet explained
how these actions can be performed. The idea is the following:
agents can perform commitment-manipulation actions by
exchanging ACL messages, provided certain contextual
conditions hold.
We consider as the fundamental unit of agent communication the
exchange of a message. By this we mean that a message is sent by
an agent, the sender, and received by another agent, the receiver.
In turn, a message is viewed as a pair made up by a type indicator
and a body. Type indicators (corresponding to KQML’s
performatives) are constant symbols taken from a finite set, whose
definition is part of the ACL specification. The body can be a
sentence in some CL, whose abstract syntax is represented in our
Semantic Language by a first-order term (see Section 3), or a
more complex structure (for example a tuple of elements),
typically including a CL sentence. When event e is an exchange
of a message of type τ and body σ, sent by agent x to agent y, we
write:

Done(e,x,exch(y,τ,σ)).
Under given conditions, such an event implies a valid
performance of a commitment-manipulation action. It is important
to note that by associating commitment manipulation actions to
messages, we formally specify a commitment-based semantics for
an ACL. More precisely, the meaning of message 〈τ,σ〉 is defined
as the effect that exchanging 〈τ,σ〉 has on the network of
commitments binding the sender and the receiver. By defining a
coherent set of message types in this way, it is possible to specify
a Communicative Act Library with its associated semantics.
Below we analyze a few examples.

Informing
We assume that the body of an inform message is an arbitrary CL
sentence. Informing is then defined as committing to the truth of
the message body. More precisely, when agent x exchanges with
agent y a message of type inform with an arbitrary CL sentence s
as the body, agent x commits, relative to y, to the truth of s:

(Inf) Done(e,x,exch(y,inform,s)) → Done(e,x,mc(x,y,s)).

Requesting
We assume that the body of a request message is an action
expression, which describes the requested action by indicating its
type, its actor, and possibly a temporal constraint. Concrete action
expressions belonging to a specific CL should not be confused
with the first-order term representing the abstract syntax of the
expression in the Semantic Language. For example, here is an
example of a possible concrete action expression describing the
action type of actor ag-1 moving object obj-1 from location
loc-1 to location loc-2 before end-of-turn:
(action :actor ag-1
 :type (move :object obj-1
 :from loc-1
 :to loc-2)
 :deadline end-of-turn)

533

The abstract syntax of this expression is given by the first-order
term
u1 = before(done(ag1,move(obj1,loc1,loc2)),end-of-turn),

which in turn can be translated into the Semantic Language
formula

u1= Done(–,ag1,move(obj1,loc1,loc2)) B+ end-of-turn,
where

ϕ B+ψ =def ¬(¬ϕU+ψ).
With these assumptions, if term s represents the abstract syntax of
an action expression, the semantics of a request message is
defined by:
(Req) Done(e,x,exch(y,request,s)) → Done(e,x,mp(y,x,s)).

Accepting
We define accepting not only with respect to requests, but with
respect to precommitments in general. We assume that the body
of an acceptation message is a tuple including all the elements
that uniquely identify the accepted precommitment:
(Acc) Done(e’,y,exch(x,accept,〈e,y,x,s〉)) ∧ Prec(e,y,x,s)

→ Done(e’,y,ap(e,y,x,s)).

Ordering
The difference between a request and an order is that while
requests can be accepted or refused, orders cannot. In the terms of
our approach, a request brings about a precommitment, and an
order directly generates a commitment. To issue an order an agent
must have powers that are not required to simply make a request;
however, developing an articulated model of power relationships
lies beyond the scope of this paper.

5. CONCLUSIONS AND FUTURE WORK
Even if social commitment has already been proposed [2,10] as a
basis for the definition of ACL semantics, no full formal account
of commitment has been put forward so far. In this paper we have
presented a logical model of social commitment embedded in
CTL±, a logic of discrete time with no start or end points and
branching in the future. The logical model of commitment has
been completely specified at the level of formal semantics, and
this has allowed us to prove some properties of commitment,
expressed by valid formulae of our Semantic Language. Needless
to say, we are just at the beginning of a long way. Below we point
out some aspects that need to be further investigated.

Time
A sound and complete formal system for CTL± has to be
developed. This result should be easy to achieve by extending
some known formal system for CTL∗. It would also be important
to develop efficient model checking techniques for at least a
sublanguage of CTL±. Moreover, it may be worthwhile to
consider an extension of CTL± dealing with dense time, in order
to give a more flexible account of interactions in a multiagent
system.
Another important aspect is the expression of temporal
qualifications in content sentences. Indeed, CTL± is a powerful
but very abstract temporal language. In many practical
applications, like for example in the field of e-business, we can
expect that temporal qualifications will be expressed with respect
to some standard date system, like the Gregorian calendar. The
critical point here is to specify a language by which common
temporal qualifications can be represented in a natural and
transparent way (see for example [8]).

Action
In this paper we have defined a minimal set of logical tools for the
treatment of action. We feel, however, that it might be worthwhile
to embed our logic of commitment in a richer language, possibly
based on some version of dynamic logic.
An important point in our treatment is the association between an
action and its results. In the case of commitment, this association
has been represented by inserting an event-denoting term as the
first argument of the Comm and Prec predicates. This solution has
proved sufficient for our current goals, but may be difficult to
extend to more complex situations.

Commitment
The main contribution of this paper is the logical treatment of
commitment. Commitment is intrinsically a second-order concept,
in that an agent commits to a proposition. Driven by a concern for
simplicity, we decided to represent a commitment by a first-order
predicate, and its content as a first-order term.
In designing our representation of commitment we have
constantly kept in mind the reasons that motivate the development
of a logical model in an area of Computer Science. In our opinion,
the rigor and precision given by the use of logic is highly
valuable, but should never bring us too far from practical
applications, lest we give up the hope of influencing actual
software practice.
We believe that our model of commitment can easily be translated
into the conceptual toolkit and jargon of software designers. More
precisely, commitments may be viewed as instances of a
“commitment class,” whose instance variables contain: a
reference to the commitment-inducing event (a message
exchange), two references to agents (the debtor and the creditor),
and an abstract representation of a CL sentence. In such a context,
the commitment manipulation actions can be regarded as methods
of the commitment class (see for example [6]), with formal
specification given by Axioms MC, MP, and AP of Section 3.2.
Continuing this line of thought, the definitions of fulfillment and
violation can be viewed as the core specification of a
“commitment management system,” which may be in charge of
monitoring communicative exchanges in a multiagent system.
Finally, the examples of Section 4 suggest that a Communicative
Act Library may define a communicative act by specifying: (i),
the general form of the class of messages by which the act is
performed; (ii), relevant contextual conditions for a successful
execution of the communicative act; and (iii), the effect of a
successful execution of the communicative act, expressed in terms
of commitment-manipulation actions. Developing a fully
integrated logical and operational model of agent communication
based on the notion of commitment is the main goal for our future
research.

ACKNOWLEDGMENTS
We are grateful to Alessio Lomuscio and Marek Sergot for
commenting on the first draft of this paper and for many
interesting discussions, made possible by a British Council/CRUI
grant for the year 2002.

REFERENCES
[1] P. R. Cohen and H. J. Levesque. Rational interaction as the

basis for communication. In P.R. Cohen, J. Morgan, and M.
E. Pollack, editors, Intentions in communication, pages
221–256, MIT Press, Cambridge, MA, 1990.

534

[2] M. Colombetti, A commitment-based approach to agent
speech acts and conversation. In Proc. Workshop on Agent
Languages and Communication Policies, 4th International
Conference on Autonomous Agents (Agents 2000), pages
21–29. Barcelona, Spain, 2000.

[3] E. A. Emerson and J. Y. Halpern. ‘Sometimes’ and ‘Not
Never’ revisited: On branching versus linear time temporal
logic. Journal of the ACM, 33(1):151–178, 1986.

[4] T. Finin, Y. Labrou, and J. Mayfield, KQML as an agent
communication language. In J. Bradshaw, editor, Software
agents. MIT Press, Cambridge, MA, 1995.

[5] FIPA, Agent Communication Language. FIPA 2000
Specification, Foundation for Intelligent Physical Agents,
www.fipa.org, 2000.

[6] N. Fornara and M. Colombetti. Operational specification of
a commitment-based communication language. In
Proceedings of the 1st International Joint Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS 02),
Bologna, Italy, 2002.

[7] Y. Labrou and T. Finin, Semantics and conversations for an
agent communication language. In Proceedings of the 15th
International Joint Conference on Artificial Intelligence
(IJCAI’97), Nagoya, Japan, 1997.

[8] H. J. Ohlbach and D. Gabbay. Calendar logic. Journal of
Applied Non-classical Logics, 8(4):291–324, 1998.

[9] H. Reichenbach, Elements of Symbolic Logic. MacMillan,
New York, 1947.

[10] M. P. Singh, Agent communication languages: Rethinking
the principles. IEEE Computer, 31:40–47, 1998.

[11] P. Yolum, M. P. Singh. Flexible protocol specification and
execution: applying event calculus planning using
commitments. In Proceedings of the 1st International Joint
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 02), Bologna, Italy, 2002.

535

