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Selecting Representative Benchmark Inputs for Exploring
Microprocessor Design Spaces

MAXIMILIEN B. BREUGHE and LIEVEN EECKHOUT, Ghent University, Belgium

The design process of a microprocessor requires representative workloads to steer the search process toward
an optimum design point for the target application domain. However, considering a broad set of workloads to
cover the large space of potential workloads is infeasible given how time-consuming design space exploration
typically is. Hence, it is crucial to select a small yet representative set of workloads, which leads to a shorter
design cycle while yielding a (near) optimal design.

Prior work has mostly looked into selecting representative benchmarks; however, limited attention was
given to the selection of benchmark inputs and how this affects workload representativeness during design
space exploration. Using a set of 1,000 inputs for a number of embedded benchmarks and a design space
with around 1,700 design points, we find that selecting a single or three random input(s) per benchmark
potentially (in a worst-case scenario) leads to a suboptimal design that is 56% and 33% off, on average,
relative to the optimal design in our design space in terms of Energy-Delay Product (EDP). We then propose
and evaluate a number of methods for selecting representative inputs and show that we can find the optimum
design point with as few as three inputs.
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1. INTRODUCTION
Designing a microprocessor core involves making a large number of tradeoffs. Com-
puter architects need to decide on a large number of design choices such as core type
(out of order versus in order), pipeline depth and width, clock frequency, cache size
and organization, branch predictor type and configuration, various buffer sizes, and so
forth. Making these design choices not only involves considering performance but also
requires taking into account other criteria or constraints such as energy and power
consumption, temperature, chip area, cost, reliability, and so forth. In fact, for many
of today’s systems, these constraints are at least as equally important as performance,
if not first-order design targets. The huge design space along with the complex, multi-
objective optimization criteria makes design space exploration a challenging problem.
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To make things even worse, architects and designers typically rely on detailed cycle-
accurate simulation during the exploration. In other words, the evaluation of each
possible design point under consideration involves time-consuming detailed simula-
tion, which makes the whole design process extremely challenging, especially given
the short time to market.

Exploring the design space reliably requires representative workloads. Workloads
that are nonrepresentative for the envisioned target workloads may lead to subop-
timal designs, for example, designs with poor performance and/or excess power con-
sumption. In other words, the final design hinges on the workloads used during the
exploration and design cycle. The importance of having representative workloads is
well known, and several prior works have proposed methods to evaluate benchmark
representativeness; see, for example, Eeckhout et al. [2002] and Yi et al. [2003]. Next
to being representative, a benchmark suite should also be relatively small: Simulating
a very broad set of benchmarks is not only time-consuming but also requires a lot of
simulation resources, which can be costly. Hence, the key challenge when composing a
benchmark suite is that it should be relatively small while being representative.

Most of the prior work on the topic of workload selection has focused on selecting
representative benchmarks, and limited effort has been geared toward exploring the
impact of the benchmark inputs. While runtime behavior may be relatively insensitive
to the inputs for some applications, other applications may be very sensitive. For
example, a streaming application, such as a filter operation, may be largely input
insensitive as the application executes the same code and accesses memory in a highly
predictable way no matter what input it is given. On the other hand, a video application
that decodes an action movie with lots of complex scenery versus a recording of a news
reader with little variation across subsequent frames is likely to lead to different code
regions being executed, as well as different memory access patterns being observed,
which in turn leads to different runtime behavior.

In this article, we quantify how sensitive design space exploration is to benchmark
inputs, and we subsequently present methods for identifying representative inputs
for reliable design space exploration. Using 1,000 inputs for a set of 20 embedded
benchmarks while considering a core microarchitecture design space with approxi-
mately 1,700 design points, we find that selecting a single randomly chosen input per
benchmark may (in a worst-case scenario) lead to a design point with an Energy-Delay
Product (EDP) that is 56% worse, on average, compared to the optimum design point
(the design point with the minimum EDP in our design space for the benchmarks
and inputs considered in this study); three randomly chosen inputs may still lead to a
design point that is 33% worse. We then present three methods for selecting represen-
tative benchmark inputs, with each method representing a different tradeoff in time
complexity versus accuracy. The most accurate method identifies three representative
inputs that lead to the optimum design point during design space exploration. The
fastest method, which requires a single, relatively fast profiling run for each potential
input to identify two representative inputs, yields a design point that is within 3.7%
on average compared to the optimum design point.

Overall, we make the following contributions in this article:

—We study how sensitive microarchitecture design space exploration is with respect to
benchmark inputs. Whereas prior work focused on selecting representative bench-
marks, this article is the first to comprehensively explore the impact of benchmark
inputs during design space exploration. We find benchmark inputs to have a signifi-
cant impact on the final design point.

—We quantify that the common practice of randomly selecting a single (or few) bench-
mark input(s) may lead to suboptimal designs with significant deficiencies compared
to the optimal design point.
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Table I. Design Space for Detailed Simulation

conf0 conf1 conf2 conf3 conf4
Issue width 2 4 4 2 4
Data cache size 16KB 64KB 8KB 64KB 64KB
Instruction cache size 16KB 8KB 32KB 16KB 32KB
Branch predictor 1KB global 1KB global 3.5KB hybrid 1KB global 3.5KB hybrid
Pipeline depth 9 9 9 7 9

—We present and evaluate several methods for selecting representative inputs, making
the design space exploration more reliable and leading to better performing design
points. These methods vary in the way they characterize inputs, leading to varying
degrees of time complexity, as well as representativeness of the selected inputs.

We believe this work is both important and timely. Given the end of Dennard scaling
[Dennard et al. 1974] in the presence of continued transistor integration via Moore’s
Law, there is a trend toward specialization in order to keep improving performance
and energy efficiency [Esmaeilzadeh et al. 2011; Hameed et al. 2010; Venkatesh et al.
2010]. Designing application-specific processors and/or accelerators is a promising and
fruitful avenue in this direction. This work quantifies the importance of representa-
tive benchmark inputs to the quality of the final design point and provides a method
for identifying representative inputs when specializing a processor design for a par-
ticular application. We hope this work will help researchers and developers design
high-performance yet energy-efficient processors across a broad range of workloads by
paying attention to having representative benchmark inputs.

2. MOTIVATION
We first set up a limited experiment to further motivate the problem and gain some ini-
tial insight before diving into a systematic evaluation of the importance of benchmark
inputs during design space exploration. We consider one benchmark from the MiBench
benchmark suite [Guthaus et al. 2001], namely, sha, a secure hash algorithm, with
five inputs and five processor configurations. The five inputs were randomly selected
from the 1,000 input sets provided through KDataSets [Chen et al. 2010], and the
five processor configurations are shown in Table I; we consider superscalar in-order
processors and vary issue width, data and instruction cache size, branch predictor con-
figuration, and pipeline depth. We simulate these processor configurations using the
gem5 simulator [Binkert et al. 2011].

Figure 1 reports normalized EDP for each of the five inputs across these five pro-
cessor configurations, along with the average EDP across all inputs. The EDP values
are normalized against the processor that is optimal for the given input. Hence, an
EDP value of 1 denotes the optimal processor configuration for a given input (e.g.,
configuration 0 for input C), and the closer the normalized EDP values are to 1, the
better. It is immediately clear from the results shown in Figure 1 that configuration 0
is the most optimal processor configuration (i.e., the one with the lowest EDP) across
all five inputs: For most inputs, its EDP is close to 1 and it has the lowest EDP on
average (see the “average” bars in the graph). The same result would be obtained in
case inputs A, B, or C would have been chosen to guide the design space exploration.
However, using inputs D or E during design space exploration would have led us to
believe that configuration 4 is most optimal. The risk now is that if configuration 4
were to be deployed in the field, an end-user using another input, for example, input C,
would experience a 73% worse EDP compared to configuration 0. The pitfall here is
that it is unclear at design time whether we are in the case of inputs D or E or one of
the other inputs. In other words, using a nonrepresentative input to drive the design
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Fig. 1. Normalized EDP for sha for five different processor configurations and five different inputs.

Table II. Design Space Considered in This Study

Parameter Range
Issue width 1 - 2 - 3 - 4
Data cache size 8KB - 16KB - 64KB
Data cache associativity 2 - 4
Instruction cache size 8KB - 16KB - 32KB
Instruction cache associativity 2 - 4
Cache block size 32 - 64 byte blocks
Branch predictor 1KB global - 3.5KB hybrid
Pipeline depth 5 - 7 - 9

space exploration may lead to a design point with poor performance for other inputs,
and this is hard to know a priori (if at all possible) without doing a full exploration.

This case study motivates the need for a methodology for identifying representative
inputs for design space exploration. The remainder of the article will further investigate
and quantify the pitfall of nonrepresentative inputs in a systematic way and will
present methods for identifying representative inputs so as to minimize the chance
of ending up with a design point during design space exploration that could lead to
suboptimal and even poor performance for unseen inputs when deployed in the field.

3. EXPERIMENTAL SETUP
We now give a detailed overview of the design space and the workloads considered in
this article. We also describe our modeling infrastructure to efficiently explore the huge
design space, as well as the optimization criterion we are targeting.

3.1. Design Space
The design space considered in our exploration is shown in Table II. We assume a super-
scalar in-order processor core and we vary instruction and data cache size, associativity
and line size, pipeline depth, issue width, and the branch predictor configuration. We
consider two to four options along each of these axes. The cross-product of all these
design options leads to a design space consisting of 1,728 microarchitectures. This is
a fairly small design space compared to real-life design spaces, yet it enables us to
illustrate our contribution while being manageable in terms of time complexity. The
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Table III. Overview of Benchmarks

Benchmark Suite Category Description
adpcm_c MiBench Telecommunication Pulse code modulation with ADPCM (encode)
adpcm_d MiBench Telecommunication Pulse code modulation with ADPCM (decode)
dijkstra MiBench Network Shortest path calculation between nodes in a graph
gsm MiBench Telecommunication Voice encoding with GSM
jpeg_c MiBench Consumer Lossy image compression with JPEG standard
jpeg_d MiBench Consumer Decompression of JPEG compressed images
lame MiBench Consumer MP3 encoding
patricia MiBench Network Compression of network data structures
qsort MiBench Automobile/Industrial Data sorting (e.g., 3D coordinates)
rsynth MiBench Office Text-to-speech synthesis
sha MiBench Security Secure hashing for, e.g., digital signatures
stringsearch MiBench Office Searching of words in phrases (case insensitive)
susan_c MiBench Automobile/Industrial Corner recognition in images
susan_e MiBench Automobile/Industrial Edge recognition in images
susan_s MiBench Automobile/Industrial Smoothening of an image
tiff2bw MiBench Consumer Conversion of a TIFF image to black and white
tiff2rgba MiBench Consumer Conversion of a TIFF image into RGB-formatted TIFF
tiffdither MiBench Consumer Dithering of a black-and-white TIFF image
tiffmedian MiBench Consumer Conversion of an image by reducing its color palette
h264 CPU2006 Video Compression Video compression according to H.264/AVC

reason for choosing in-order processors is that in-order processors are inherently more
energy efficient compared to out-of-order processors, which is in line with the workloads
selected (as described next) and our goal of exploring application-specific processors.

3.2. Workloads
Table III provides an overview of the benchmarks used in this article. All but one of
the benchmarks are taken from MiBench [Guthaus et al. 2001]. We use the MiBench
benchmark suite for two reasons. First, MiBench is targeted toward embedded proces-
sors and devices, which aligns well with the goal of tuning processor architectures for
a specific workload domain. Second, there exists a large set of inputs for each of these
benchmarks, which we use to explore input sensitivity. The inputs were taken from the
KDataSets database [Chen et al. 2010], which provides 1,000 inputs per benchmark.
These inputs have a working set size that is too large to fit in the processor core’s
caches; that is, the data working set is typically larger than the 64KB data cache con-
sidered during the exploration. Using 1,000 inputs per benchmark leads to significant
simulation time requirements for the experiments in this article; nevertheless, a suf-
ficiently large number of inputs is needed to quantify the impact of input selection on
design space exploration. Chen et al. [2010] found these inputs to be diverse based on
a detailed characterization using both microarchitecture-dependent and -independent
metrics.

In addition to these MiBench benchmarks, we also include the h264 benchmark from
SPEC CPU2006 [Henning 2006] as it is highly relevant for our application domain of
interest while exhibiting interesting dynamic, time-varying behavior not observed in
the MiBench benchmarks. Because CPU2006’s h264 is not part of the KDataSets inputs
database, we had to create our own set of 1,000 video inputs. We took 50 raw video files
from the public domain [Xiph.org 2012] and generated 4 to 11 different sequences for
each of these videos by selecting different begin and end points, leading to 250 different
video sequences in total. For each video sequence, we generated four random encoding
schemes by varying 48 different parameters. Parameters include varying the number
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of B frames; quantization parameters for I, P, and Bslices; enabling/disabling pyramid
encoding; and so forth. The end result is 1,000 video inputs for the h264 benchmark.

We compiled all of our benchmarks using the gcc-4.3 cross-compiler for the Alpha
ISA. Our default optimization flag is -O3. We also evaluate the impact of compiler opti-
mization flags on processor architecture design space exploration in one later section in
the article. We therefore consider 250 randomly chosen combinations of compiler opti-
mization flags. Random selection of compiler optimization flags was previously shown
to give a fairly good coverage of the impact of compiler flags on overall performance,
and 250 combinations was found to be sufficient to achieve near-optimal performance
[Chen et al. 2010].

3.3. Modeling Infrastructure
Because of the very large number of measurements needed in this study (the processor
design space contains 1,728 design points, and there are 20 benchmarks and 1,000
inputs per benchmark—a total of more than 34 million measurements), using detailed
cycle-accurate simulation (e.g., using gem5 as done in the motivation section) would
have been totally infeasible.

Instead, we resort to a previously proposed mechanistic analytical model for es-
timating performance [Breughe et al. 2012] in order to collect this huge number of
measurements in a reasonable amount of time. The model targets superscalar in-order
processors and models the performance impact of issue width, pipeline depth, nonunit
instruction execution latencies, interinstruction dependencies, cache/TLB misses, and
branch mispredictions. It predicts performance within 2.5%, on average, compared to
detailed cycle-accurate simulation. The model takes as input a number of program
statistics to characterize an application’s instruction mix, interinstruction dependen-
cies, and cache and branch behavior. This collection is a one-time cost per benchmark
and input. Although we need to characterize each benchmark/input pair, the charac-
terization is much faster than detailed simulation. The other model inputs relate to
the processor architecture being considered, such as pipeline depth, width, instruction
latencies, and so forth.

We use McPAT to estimate power consumption [Li et al. 2009]. The inputs to Mc-
PAT are various processor configuration parameters, such as pipeline depth, width,
cache configuration, memory latency, chip technology (32nm), and so forth, along with
program parameters, such as the number of dynamically executed instructions, the in-
struction mix, and so forth, and finally, program-machine parameters, such as number
of cache misses, branch mispredictions, and so forth.

Put together, performing all experiments reported in this article (including program
profiling, running the performance model, and collecting power estimates) required
12,000 compute days on a single machine, or, in our case, 40 days on a cluster with 300
machines.

3.4. Optimization Criterion
Although the problem we want to tackle is fairly easy to state, attacking it in a system-
atic way is rather complex. There are multiple dimensions involved in our study: we
consider multiple benchmarks, and multiple inputs per benchmark, each leading to a
different dynamic instruction count; we consider multiple microarchitectures; and we
consider two optimization criteria, namely, performance and power/energy.

In order to accurately and confidently evaluate how well a limited set of (presumably)
representative inputs, selected by our methods, captures the behavior of the complete
input database, we need to have an appropriate metric. We quantify a microarchitec-
ture’s energy efficiency using the EDP, which is computed as the total energy con-
sumed multiplied by the total execution time to perform a given unit of work (i.e., the
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complete execution of the benchmark with its input). Because we have multiple inputs
per benchmark, we need an appropriate way of computing the average EDP across
these inputs to obtain the EDP for a particular benchmark and microarchitecture. We
also need a way of comparing the EDP of the presumably optimal processor determined
using a limited set of inputs against the EDP of the optimal processor configurations
determined using all inputs. This is done as follows:

(1) Calculate the execution time T (i, j) for each input i and microarchitecture j. This
is done using the mechanistic analytical performance model previously described.

(2) Calculate the consumed energy E(i, j) for each input i and microarchitecture j.
This is done using McPAT.

(3) Compute the execution time and energy consumption per instruction. This is done
by dividing execution time and energy consumption by the number of dynamically
executed instructions I(i), following Equations (1) and (2):

TPI(i, j) = T (i, j)
I(i)

, (1)

EPI(i, j) = E(i, j)
I(i)

. (2)

(4) Identify the microarchitecture with the minimum EDP value across all inputs.
EDPmin is computed following Equation (3), with N the number of inputs in the
input database (N = 1,000 in our setup):

EDPmin = min
j

( N∑

i

TPI(i, j) ×
N∑

i

EPI(i, j)

)

. (3)

Note that this formula complies with the recommendations by Sazeides et al. [2005]
regarding how to compute average EDP across benchmarks.

(5) We can now compute the normalized EDP (ẼDP) of processor configuration j rela-
tive to the minimum EDP:

ẼDP( j) =
∑N

i TPI(i, j) ×
∑N

i EPI(i, j)
EDPmin

. (4)

The metric ẼDP thus quantifies the energy efficiency of a processor configuration
relative to the optimal configuration with the lowest average EDP across all inputs
and design points considered in our setup. Hence, our goal is to minimize ẼDP using as
few inputs as possible during the exploration. For the remainder of this article we will
refer to the design with minimum ẼDP as the optimal design. We will refer to ẼDP as
“normalized EDP.” Although we use this normalized EDP as our metric throughout the
article, the proposed input selection methods are not constructed in a way that they
are bound to using EDP as an evaluation metric.

4. QUANTIFYING THE IMPLICATIONS OF NONSYSTEMATIC SELECTION OF BENCHMARK
INPUTS AND COMPILER OPTIMIZATIONS

Before presenting and evaluating methods for selecting a limited yet representative set
of benchmark inputs, we first quantify the implications of not having a systematic way
of identifying representative inputs. We do this using the experimental setup described
earlier, that is, using 20 benchmark applications, 1,000 inputs per application, and
while considering the approximately 1,700 microarchitecture configurations. (The prior
motivation section considered just a case study with a few benchmarks, five inputs
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Fig. 2. Quantifying the impact of selected benchmark inputs for identifying the optimum processor
configuration.

per benchmark, and five processor configurations.) In addition, we also evaluate the
impact of compiler optimizations on design space exploration, and how it compares to
benchmark inputs, in order to understand their relative significance, which justifies
our focus on studying sensitivity to benchmark inputs.

4.1. Sensitivity to Benchmark Inputs
We first quantify the sensitivity of benchmark inputs on design space exploration.
Figure 2 reports normalized EDP values (as defined in Equation (4)) across all bench-
marks in our study while considering three scenarios. The first scenario (“best case”) is
an ideal scenario in which we would always pick a single benchmark input that, when
used to determine the (presumably) most optimal processor configuration, would yield
a configuration with a normalized EDP that is as close as possible to 1 (the normal-
ized EDP of the globally optimal configuration across all inputs). The second scenario
(“average case”) is the average scenario in which we were to pick a random benchmark
input for design space exploration and reports the average EDP across these randomly
selected inputs. This scenario represents what is expected to happen on average. The
third scenario (“worst case”) is the scenario in which we would be unfortunate to pick a
benchmark input that would result in a (presumably) optimal processor configuration
with the worst possible EDP compared to the global optimum.

There are several interesting observations to be made here. The normalized EDP
values obtained through the best-case scenario are equal to one for all benchmarks.
This indicates that there exists at least one benchmark input that, when selected and
used to drive the design space exploration, yields an optimal processor configuration
that is indeed optimal across all inputs. The question now is whether it is possible to
find, and if so, how to find such an input. As mentioned earlier, this is an ideal case,
and it is hard (if not impossible) to know a priori whether a given input is going to lead
to the optimal design point during design space exploration.

Picking a random input leads to a design point that is fairly competitive to the
global optimum on average. For all but one of the benchmarks, we observe that a
random input leads to a design point with an EDP that is close to the global optimum.
For one benchmark, however, namely, dijkstra, a random input leads to a processor
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Fig. 3. Quantifying the impact of compiler optimization flags on the identification of the optimum processor
configuration.

configuration with an EDP that is 176% worse on average compared to the global
optimum. In other words, for some applications, selecting a single random input may
lead to severe average deficiencies during design space exploration.

Picking the worst possible input leads to an EDP deficiency of 56% on average across
all benchmarks, and ranges up to 477%. We observe substantial deficiencies for around
two-thirds of the benchmarks; one-third of the benchmarks seem unaffected. Note
that these EDP deficiency numbers are average numbers across all inputs. Whereas
the average EDP deficiency for a particular benchmark across all inputs can be as
high as 477%, for some inputs the deficiency can be even higher, up to 82× the EDP
compared to the optimum design point. This illustrates the high sensitivity of design
space exploration with respect to benchmark inputs. While the worst-case scenario is
not the common case, or what is to be expected on average, it might happen, and the
pitfall is that it is unclear a priori whether we have picked an input that represents the
worst, average, or best case. In other words, there is no way for a designer to verify this
unless one were to explore the entire design space with all possible inputs, which is
infeasible in practice. We focus on the worst-case scenario in this article, for this reason.
We want to avoid picking benchmark inputs that lead to suboptimal designs, and these
results clearly illustrate the need for a systematic method for selecting representative
benchmark inputs.

4.2. Sensitivity to Compiler Optimization Flags
Before presenting our methods for selecting representative inputs, we also evaluate
how sensitive design space exploration is with respect to another characteristic that
may affect workload behavior, namely, the compiler and its optimizations. Further, we
want to understand the relative importance of input versus compiler sensitivity toward
workload representativeness.

We therefore consider 250 randomly selected combinations of compiler optimization
flags. (As mentioned before, random selection of 250 combinations of compiler opti-
mization flags is found to be a robust way of measuring the performance impact of
compiler optimizations [Chen et al. 2010].) According to the results shown in Figure 3,
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Fig. 4. Input selection workflow.

for none of the benchmarks do we observe a severe EDP deficiency in the average (and
best) case scenario. We observe some EDP deficiency for some of the benchmarks in
the worst-case scenario: 16%, on average, and up to 35%. In other words, the com-
piler optimizations used to compile the benchmarks may lead to some EDP deficiency
if one were to be unlucky to select a compiler optimization that is nonrepresentative
compared to the other optimizations for driving microarchitectural design space ex-
ploration. Comparing Figure 3 against Figure 2, we conclude that microarchitectural
design space exploration is much more sensitive to benchmark inputs than to compiler
optimizations. For this reason, we focus on the selection of representative benchmark
inputs and leave the selection of representative combinations of compiler optimization
flags for future work.

5. REPRESENTATIVE BENCHMARK INPUT SELECTION
We now present and evaluate various methods for selecting representative benchmark
inputs. We do this using a common workflow as shown in Figure 4. We start off with
the input database shown at the top left (i.e., 1,000 inputs per benchmark), from which
we select a number of presumably representative inputs, called the reduced input set,
shown at the top right. We evaluate all possible processor configurations for the selected
inputs and determine the most optimal configuration, which is our presumably optimal
processor. To evaluate the effectiveness of the input selection method, we compare the
presumably optimal processor with the (globally) optimal processor obtained by taking
into account all inputs during the design space exploration (left-hand side of Figure 4).
We do this by computing normalized EDP for the presumably optimal processor, using
Equation (4). The closer the normalized EDP is to 1, the closer the presumably optimal
processor is to the (globally) optimal processor.

We consider four benchmark input selection methods, which we describe next.

5.1. Random Selection
To provide a solid ground of comparison, we first implemented random selection; that is,
we select a number of inputs at random out of the pool of available benchmark inputs.
More specifically, we evaluate the effect of the number of randomly selected inputs on
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Fig. 5. Random input selection: normalized EDP as a function of number of randomly selected inputs.

the presumably optimal design. The expectation is that as we consider more randomly
chosen inputs, the more representative this set of inputs becomes and hence the closer
the presumably optimal processor will be to the globally optimal processor. This is
indeed the case: As we increase the number of selected inputs from one to five, the
average worst-case EDP decreases from 56% (one input), to 33% (two inputs), to 28%
(five inputs), over the globally optimal processor; see Figure 5. These results were ob-
tained by taking 1,000 randomly chosen sets of n inputs, with n varying from 1 to 5, and
selecting the worst possible set. (Note that selecting one input at random corresponds
to the results previously shown in Figure 2 under the “worst-case” scenario.)

As we increase the number of randomly selected inputs from one to two, we observe
a fairly steep decrease in the average worst-case EDP from 56% to 33%, after which
adding more inputs delivers diminishing returns. Some benchmarks greatly benefit
from selecting a couple of randomly chosen inputs; see, for example, tiff, patricia, and
jpeg_c. Unfortunately, there are also quite a few benchmarks for which selecting multi-
ple inputs at random does not solve the problem; see, for example, lame, jpeg_d, dijkstra,
and h264. Picking five randomly selected inputs may still lead to a suboptimal design
point with an average 28% worst-case EDP deficiency compared to the globally optimal
processor configuration. Clearly, random input selection is not effective at composing a
representative input set, if few inputs are to be selected. Picking many more inputs is
likely to solve this issue; however, it comes at the cost of requiring substantially longer
simulation times during design space exploration. Instead, we devise other input se-
lection methods that are more effective at selecting a few representative inputs than
random selection.

5.2. Microarchitecture-Independent Selection
Our second input selection mechanism, microarchitecture-independent selection, selects
a pair of representative inputs after characterizing the inputs in the input database
through microarchitecture-independent characterization. Characterizing inputs incurs
some overhead compared to random selection (as previously discussed, which incurs
no overhead at all); however, the cost is a one-time cost only (i.e., each input needs
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Fig. 6. Microarchitecture-independent input selection using Basic Block Vectors (BBVs).

to be characterized only once). Fortunately, this characterization step is much faster
than detailed cycle-accurate simulation. The advantage of using a microarchitecture-
independent characterization is that it characterizes the inputs in such a way that the
characterization can be leveraged across microarchitectures and processor configura-
tions. The microarchitecture-independent characterization used here is based on the
concept of a Basic Block Vector (BBV), as previously introduced by Sherwood et al.
[2001]. A basic block is an atomic piece of code with a single entry and exit point.
A basic block vector is a vector that keeps track of how often each basic block is be-
ing executed dynamically. The dimensionality of a BBV equals the number of basic
blocks in a program and each index in the BBV counts how many times the respec-
tive basic block is executed for a given input. In other words, a BBV represents which
blocks of code are being executed, and how frequently. We normalize a BBV so that
the absolute value of the vector equals one. We compute a BBV for each input and
use it to characterize the dynamic behavior of the program and the given input in a
microarchitecture-independent way. Previous work has demonstrated the good corre-
lation between BBVs and dynamic execution behavior [Lau et al. 2005]. We build on
this prior work and use BBVs to understand (dis)similarities among inputs.

The microarchitecture-independent input selection method is composed of three steps
to create a reduced input set of two inputs; see also Figure 6. We first characterize each
input through a BBV; that is, we execute the benchmark and its input and count
how often each basic block is being executed—this can be done through functional
simulation (using an architectural simulator such as gem5, as we did) or through a
dynamic binary instrumentation tool such as Pin [Luk et al. 2005]. We subsequently
normalize the BBVs. Next we calculate the Manhattan distance between the BBVs of
each possible pair of inputs. The Manhattan distance between the BBVs of inputs i
and j is calculated as follows:

MD(BBVi, BBVj) =
N∑

k=1

|BBVi(k) − BBVj(k)|, (5)

with N the dimensionality of the BBV, or the total number of static basic blocks in
the program. In the third and last step, we determine the pair of inputs (i, j) with the
biggest Manhattan Distance (MD):

(i, j) = arg max
i, j

(MD(BBVi, BBVj)). (6)
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Fig. 7. Normalized EDP for microarchitecture-independent input selection using BBVs versus random
selection.

Intuitively, this pair denotes inputs with the most divergent code execution behavior,
which is likely to lead to diverse runtime behavior and is therefore likely to be more
representative than randomly selected inputs.

Figure 7 compares the microarchitecture-independent selection using BBVs, as just
described, against random selection. On average, this method results in a presumably
optimal design point that is no more than 3.7% off compared to the globally optimal
design point, which is a substantial improvement over random selection (e.g., 33%
off, on average, for two randomly selected inputs). The maximum EDP deficiency for
the BBV selection method is observed for stringsearch (33.6%); the reason we are see-
ing relatively high deficiencies using the BBV method (see jpeg_d and stringsearch)
might be that a BBV only tracks the code being executed and not how it inter-
acts with the microarchitecture (e.g., different memory access behavior may be ob-
served even though the same code is being executed). For all applications, we are
better off (or equally good) using BBV selection compared to randomly selecting
two inputs. In fact, we even do better (or equally good) compared to three ran-
domly selected inputs. This makes the microarchitecture-independent selection method
using BBVs a reliable method for selecting representative inputs for design space
exploration.

5.3. Filtered Selection
The third input selection method combines design space exploration and input filtering
before randomly selecting a number of inputs. The basic idea is that if we can filter
out nonrepresentative inputs, we can greatly reduce the worst-case scenario when
randomly picking inputs. We have developed two filtered selection methods, which we
describe next: one-level and two-level filtered selection. Both techniques use all inputs
to perform a design space exploration in a limited subspace. Inputs that lead to far-
from-optimal design points in the limited subspace are filtered out as it is likely that
they are nonrepresentative of the larger design space. The resulting Filtered Input
Database (FIDB) is then used to randomly select inputs.
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Fig. 8. One-level filtered input selection uses design space exploration in a limited subspace to filter out
nonrepresentative inputs.

Fig. 9. Normalized EDP through one-level filtered input selection.

5.3.1. One-Level Filtered Selection. The one-level filtered selection method performs de-
sign space exploration with all the inputs on a single subspace of the larger design
space, as shown in Figure 8. The design space exploration in this subspace involves es-
timating performance and power/energy for all design points in the subspace and for all
inputs in the input database. We consider a subspace of 10 design points; these design
points include a baseline configuration (conf0 from Table I) along with nine other design
points derived from this baseline by randomly changing a number of the microarchi-
tecture parameters shown in Table II, one at a time. Once the exhaustive evaluation is
done in this subspace, we filter out the inputs that result in poor average normalized
EDP, relative to the optimum design point in the subspace. This results in an FIDB. The
hope then is that the FIDB no longer contains inputs that may lead to poor design points
in the larger design space. From the FIDB, we then select a number of inputs at random.

Figure 9 reports worst-case normalized EDP for the one-level filtered selection
method when randomly picking one, two, and three inputs from the FIDB. One-level
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Fig. 10. Two-level filtered input selection uses two levels of design space exploration in limited subspaces
to filter out nonrepresentative inputs.

filtered input selection leads to average worst-case EDP deficiencies of 22.6%, 8.6%,
and 8.1%, respectively, which is a substantial improvement over random selection.
This confirms that performing a preliminary design space exploration in a small sub-
space of the larger design space filters out a number of nonrepresentative inputs.
For most benchmarks, between 0 and 200 inputs are filtered out; that is, the FIDB
contains between 800 and 1,000 inputs. However, for two benchmarks (dijkstra and
jpeg_c), the FIDB contains slightly more than half of the original input database.
The cost of one-level filtered selection is a one-time cost involving detailed simula-
tion of all design points in the subspace for all inputs. In our setup with 1,000 in-
puts and 10 design points in the subspace, this results in 10,000 evaluations per
benchmark.

5.3.2. Two-Level Filtered Selection. To further improve the effectiveness of the filtered
input selection method, we now consider two levels of filtering; see also Figure 10. As
with the one-level filtered selection method, we first rely on a design space exploration
in a limited subspace. However, instead of selecting a single subspace, we select k
subspaces. We randomly divide the original input database in (k − 1) sets of inputs
and we perform an exhaustive evaluation in (k − 1) subspaces. This leads to (k − 1)
level-one (L1) FIDBs. Next, we randomly select a number of inputs from each of the
FIBDs, which we use to exhaustively evaluate the kth subspace. This leads to a second
level of filtering, yielding the level-two (L2) FIDB. We then select a number of inputs
at random from the L2 FIDB.

In our implementation, we aimed at having the same number of simulations as
for one-level filtered input selection, namely, 10,000 evaluations per benchmark. We
therefore set k to 10 and simulate 100 inputs per subspace. Each subspace is ran-
domly selected and consists of 10 design points. For most benchmarks the L1 FIDBs
contain at least 56 inputs of the original 100 inputs. One benchmark, sha, has an L1
FIDB of 17 inputs only. Some benchmarks have a couple of L1 FIDBs with around 60
inputs only, while the other FIDBs contain around 100 inputs. This implies that the se-
lected subspace influences the selection of inputs and having multiple subspaces could
potentially lead to better results than using a single subspace. To construct the L2
FIDB, we select 100 random inputs across all the L1 FIDBs. The size of the L2 FIDB
ranges between 56 and its maximum possible value of 100.
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Fig. 11. Normalized EDP through two-level filtered input selection.

Figure 11 reports that picking one random input from the L2 FIDB leads to an aver-
age worst-case EDP deficiency of 12.9% over the globally optimal design point, which
is a substantial improvement over random selection and one-level filtered selection.
This implies that two-level filtered selection effectively does a better job filtering out
nonrepresentative inputs. Randomly picking two and three inputs from the L2 FIBD
leads to an average worst-case EDP deficiency of 8.7% and 6.7%, respectively.

It is worth noting that the input filtering approach, while effective on average, is not
perfect. We observe a clear benefit from filtering for all benchmarks, except for patricia.
In particular, for patricia, when considering two inputs, random selection outperforms
two-level filtering; similarly, for three random inputs, random selection outperforms
one-level filtering; likewise, for two inputs, one-level outperforms two-level filtering.
This counterintuitive result suggests that we may be discarding representative inputs,
which may be due to the small subspaces used to filter out inputs; that is, the subspaces
may not be representative for the larger space. A systematic way of determining sub-
spaces may solve this issue; however, we leave this for future work as the random
subspace selection process seems to work well for most benchmarks in our study.

5.4. Min-Median-Max Selection
The filtered input selection method, while effective, has two major shortcomings. First,
the cost for building the FIDB is quite high; that is, it requires detailed evaluation of
all inputs on a number of design points. Second, there is a random component to the
selection of inputs from the FIDB. We now propose an input selection method, called
min-median-max selection, that overcomes these issues. It involves a single evaluation
of a particular design point only and selects representative inputs in a systematic way,
not through random selection.

The min-median-max selection method was inspired by filtered selection, but instead
of evaluating subspaces, we consider a single baseline design point only, on which
we evaluate all inputs. As we have a single design point only, we have no means
of filtering out nonrepresentative inputs based on their performance with respect to
ranking design points in the subspaces. We therefore resort to relative performance of
the input compared to the other inputs in the input database; that is, we pick inputs
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Fig. 12. Min-median-max selection.

Fig. 13. Normalized EDP through min-median-max selection.

based on the achieved Cycles Per Instruction (CPI) on the baseline architecture. When
selecting one input, we pick the input that has the median CPI across all inputs; when
selecting two representative inputs, we pick the input with median CPI and another
input that has a value as close as possible to the median CPI;1 when selecting three
inputs, we pick the inputs with the minimum, median, and maximum CPI value. See
Figure 12 for a schematic overview of the min-median-max selection method.

The min-median-max method is effective at identifying representative inputs, as
shown in Figure 13 for one input (with median CPI), two inputs (with median CPI and
nearly median CPI), and three inputs (minimum, median, and maximum CPI). One
input leads to an average worst-case EDP deficiency of 2% compared to the globally
optimal design point (with one outlier of 22% for h264). Two inputs brings the worst-
case EDP deficiency further down to 1%, on average (and at most 7% for sha). Three

1We found selecting two inputs close to the median CPI to outperform selecting the inputs with the minimum
and maximum CPI.
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Fig. 14. CPI across datasets for a number of benchmarks.

Table IV. Summary of Input Selection Methods in Terms of Their One-Time Cost, Number of Inputs Selected,
Average Worst-Case EDP Deficiency, and Maximum Worst-Case EDP Deficiency, Where N is the Number of

Inputs in the Database

Selection method One-time cost # Inputs Avg worst case Max worst case
Random selection None 1 - 2 - 3 56% - 33% - 33% 477% - 477% - 477%
One-level filtering 10 × N detailed evaluations 1 - 2 - 3 23% - 9% - 8% 103% - 53% - 52%
Two-level filtering 10 × N detailed evaluations 1 - 2 - 3 13% - 9% - 7% 52% - 52% - 52%
BBV selection Instrumentation of N inputs 2 4% 34%
Min-median-max N detailed evaluations 1 - 2 - 3 2% - 1% - 0% 22% - 8% - 2%

inputs leads to no EDP deficiency; that is, the three representative inputs lead to the
same optimum design point as using all inputs. The intuition is that the three most
extreme inputs, the ones with the minimum, median, and maximum performance on
a baseline design point, are representative of the entire input database—the other
inputs can be considered “interpolations” with respect to the extreme inputs—which
leads to effective design space exploration.

Figure 14 shows CPI values for the baseline configuration of a number of benchmarks
across all of their respective inputs and provides intuition why for some of the bench-
marks it is better to pick inputs with median and near-median CPI rather than inputs
with minimum and maximum CPI. Benchmarks such as tiffmedian and tiff2rgba (and
some others that are not displayed due to space reasons) that have an S-shaped curve
for their CPI values tend to have good results when selecting inputs with minimum
and maximum CPI. Benchmarks sha and stringsearch (and others not displayed due to
space reasons), on the other hand, are L-shaped, and selecting inputs with minimum
and maximum CPI tend to perform poorly on these benchmarks. The reason is that
there are very few inputs with a relatively high CPI. Selecting these inputs puts too
much weight on these inputs that occur infrequently and are nonrepresentative for the
rest of the inputs. Adding the inputs with median CPI addresses this issue.

5.5. Overview and Discussion
Table IV summarizes and compares the proposed input selection methods. While ran-
dom selection incurs no cost for selecting inputs, it may lead to severe EDP deficiencies.
Even selecting three inputs at random may result in an average worst-case EDP defi-
ciency of 33% compared to using all inputs. The filtering method is more effective at
selecting representative inputs, with an average worst-case EDP deficiency of 6.7% for
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the two-level approach and three randomly selected inputs. However, filtering comes
at the cost of requiring 10 × N detailed evaluations (detailed simulations), with N the
number of inputs in the input database. The microarchitecture-independent selection
method using BBVs incurs a one-time cost of collecting BBVs for all inputs. Fortunately,
collecting BBVs is essentially a profiling step, which is much faster than detailed sim-
ulation. The BBV selection method is more effective than filtering. It achieves an
average worst-case EDP deficiency of 3.7% while using only two inputs during de-
sign space exploration; we observed an EDP deficiency of 33.6% for one benchmark
though. Min-median-max selection is the most effective approach: Selecting the inputs
with the minimum, median, and maximum CPI for a baseline configuration leads to
identifying the globally optimal design point for all benchmarks. This comes at the
cost of requiring N detailed evaluations, which is more time-consuming than BBV
profiling.

These results lead to two important conclusions or insights. First, it is important
to select benchmark inputs in a systematic way. Randomly selected inputs, even from
a subset of inputs as with the filtering approach, may lead to nonrepresentative be-
havior, which eventually leads to nonoptimal design points during design space ex-
ploration. Selecting inputs based on their behavior, either through microarchitecture-
independent characterization (e.g., BBV selection) or through detailed measurements
on a particular system (e.g., min-median-max), improves the representativeness of the
workload, ultimately leading to a better final design. Second, the two most accurate
input selection methods involve a tradeoff. Min-median-max selection is (slightly) more
effective compared to BBV selection at identifying the optimum design point; however,
this comes at the cost of incurring more overhead as it requires detailed measurements
for all inputs on a given baseline design point.

Although the presented techniques have only been evaluated for superscalar in-order
processors, we believe that they also apply (and might be even more important) for
more complex microarchitectures (e.g., out-of-order processors). Performance might be
more sensitive to inherent workload behavior and input selection as the architecture
is more complex; hence, a broader set of inputs might be needed compared to in-
order processors. Some of the proposed techniques might need minor adjustments to
select a slightly broader range of representative inputs. For example, the min-med-max
selection method can be extended by adding inputs between the minimum and median,
and between the median and maximum, to have a more fine-grained selection of inputs.
When looking at multicore processors, special attention should be given regarding
how to best select inputs to form representative multiprogram and multithreaded
workloads. Prior work has selected multiprogram workloads randomly [Van Craeynest
and Eeckhout 2011] or based on microarchitecture-independent characterization of
benchmarks [Van Biesbrouck et al. 2007]. Extending and/or combining these techniques
with techniques for selecting representative inputs is left for future work.

6. RELATED WORK
It is well known that having representative benchmarks is key to design space ex-
plorations, as using nonrepresentative benchmarks may lead, or is likely to lead, to
suboptimal design points. As a result, substantial prior work has been done toward
identifying representative benchmarks; however, to the best of our knowledge, no com-
prehensive study was previously published regarding the impact of benchmark inputs
on design space exploration.

We now discuss some of the prior work in benchmark selection, followed by a descrip-
tion of prior work in generating and evaluating benchmark inputs and design space
exploration methods.
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6.1. Benchmark Selection
Common practice when composing a benchmark suite is to identify key applications
in a given application domain of interest, from which benchmarks and inputs are
then selected. An important requirement for benchmark suites to be shared across
parties (academia and/or industry) is that the benchmarks are open source, although
NonDisclosure Agreements (NDAs) may enable processor manufacturers to use pro-
prietary customer workloads to evaluate future designs. Example open-source bench-
mark suites are SPEC CPU [Henning 2006] for general-purpose computing, DaCapo
[Blackburn et al. 2006] for Java workloads, PARSEC [Bienia et al. 2008] for multicore,
Rodinia [Che et al. 2009] for heterogeneous CPU/GPU systems, MiBench [Guthaus
et al. 2001] for embedded workloads, CloudSuite [Ferdman et al. 2012] for cloud work-
loads, and so forth. The benchmark selection typically involves making sure the bench-
mark suite, as a whole, covers the most important application behaviors in the target
domain while being portable enough to use across different platforms.

A number of papers have been published to evaluate the representativeness of a
benchmark suite and/or to select a representative subset from a larger pool of bench-
marks. Eeckhout et al. [2002] propose data analysis (principal components analysis)
and machine learning (cluster analysis) techniques to identify a diverse and represen-
tative benchmark subset. Follow-on work used microarchitecture-independent bench-
mark characterization as input to this methodology [Joshi et al. 2006] or a number of
real hardware measurements [Phansalkar et al. 2007]. Yi et al. [2003] use a Plackett-
Burman design of experiment in which they measure performance on a number of
different processor architectures to understand how differently benchmarks interact
with microarchitecture parameters. They then pick diverse benchmarks using cluster
analysis to cover the workload space as much as possible. SubsetTrio [Jin and Cheng
2011] translates the benchmark selection problem into a geometrical problem and uses
the notion of a convex hull to identify most diverse benchmarks—the benchmarks at
the outer range of the benchmark space—in contrast to cluster analysis, which groups
benchmarks into clusters of similar benchmarks and then picks a representative bench-
mark per cluster. Yi et al. [2006] quantify the pitfall of using nonrepresentative, old
benchmarks to design future processors. They discuss a case study in which they iden-
tify the optimum processor for SPEC CPU95 and then evaluate this processor using
CPU2000. They report an EDP deficiency of 18.5%. This, once more, underlies the
importance of using representative benchmarks during design space exploration.

While composing representative benchmark suites is challenging for single-core ex-
periments, it is a daunting task for multicore and multithreaded processors. Such
processors can run multiple independent thread contexts, which leads to an explosion
in the number of possible multiprogram workloads [Van Biesbrouck et al. 2007; Van
Craeynest and Eeckhout 2011; Velasquez et al. 2013] and combinations of benchmark
starting points [Van Biesbrouck et al. 2006; Sandberg et al. 2013].

In addition to finding representative benchmarks, an additional concern is to find
regions within a benchmark’s execution that are representative for the entire bench-
mark execution. SimPoint [Sherwood et al. 2002] collects BBVs on a per-region basis
and uses cluster analysis to find representative regions within a benchmark execution.
Eeckhout et al. [2005] use microarchitecture-independent characterization to identify
representative regions across benchmarks. Van Biesbrouck et al. [2004] introduce the
Co-Phase Matrix to find the most representative regions in multiprogram workloads.

6.2. Input Selection
As mentioned before, the amount of work done in characterizing the impact of
input datasets on design space exploration is limited. KleinOsowski and Lilja [2002]
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proposed reduced input sets for SPEC CPU2000 to reduce simulation time. Later
work by Eeckhout et al. [2003] found these reduced inputs to be representative for
some benchmarks, but not for others. Chen et al. [2010] propose KDataSets, a set of
1,000 datasets for a broad set of the MiBench benchmarks. They use KDataSets to
understand dataset sensitivity for iterative optimization, which aims at finding the
best set of compiler optimizations for a given application. Breughe et al. [2011] uses
KDataSets to study how sensitive processor customization is with respect to applica-
tion inputs. While this paper correctly states that using a single (or just a few) input(s)
is sufficient to determine a processor design optimal for a specific application—see the
“best case” results in Figure 2—it does not provide a method to select this input.

6.3. Design Space Exploration
Design space exploration is a very complicated endeavor for a number of reasons. For
one, the design space is typically huge. Second, the evaluation of a single design point
typically takes a very long time due to the slow simulation speeds of detailed cycle-
accurate simulators. Given the importance of the problem, a fair amount of research
has been done on design space exploration. In particular, Yi et al. [2003] use a Plackett-
Burman design of experiment to identify the important axes in the design space in order
to drive the design process. Eyerman et al. [2006] leverage machine learning techniques
and optimization strategies such as genetic algorithms to more quickly steer the search
process to the optimum design point. Lee and Brooks [2008] use empirical models to
explore the design space of adaptive microarchitectures, while Karkhanis and Smith
[2007] use a mechanistic model to guide the design of application-specific out-of-order
processors.

7. CONCLUSION
In this article, we provide a comprehensive study to emphasize the sensitivity of design
space exploration to benchmark inputs. Because using a large number of inputs to drive
design space exploration is infeasible, we propose a number of methods to find a reduced
set of inputs. The representativeness of the set of inputs produced by these methods is
evaluated in the article.

Our setup to study input sensitivity for design space exploration involves 1,000
inputs for 20 embedded benchmarks and a design space consisting of around 1,700
design points. We use EDP as our optimization criterion, and we focus on the average
EDP deficiency across all inputs, when the worst possible input(s) are used during
design space exploration. This is a case that should be avoided at all cost because it
is unknown a priori whether the selected inputs are representative or not. Using a
single randomly selected input, the design space exploration could lead to an aver-
age worst-case EDP deficiency of 56% compared to the design point with minimum
EDP. When using three randomly selected inputs, the worst-case EDP deficiency can
be reduced to 33%. However, these high-deficiency numbers can be greatly reduced
by the three methods proposed in this article: filtered input selection, input selection
through microarchitectural-independent characterization (BBV selection), and min-
median-max selection. If we apply two levels of filtering before randomly selecting
three inputs, we reduce the worst-case EDP deficiency to 6.7% on average. BBV se-
lection achieves an EDP deficiency of 3.7% with two inputs selected; min-median-max
selection finds the design point with minimum EDP (i.e., 0% deficiency) by using no
more thanr three inputs. BBV selection and min-median-max selection are more effec-
tive than filtered selection while incurring a lower overall cost.

Overall, we hope this article increases awareness to benchmark inputs and its im-
portance to design space exploration. As nowadays architecture research and devel-
opment is increasingly data driven, it requires researchers and designers to pay close

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 37, Publication date: December 2013.



37:22 M. B. Breughe and L. Eeckhout

attention to selecting representative benchmark inputs. We believe this is going to be
even more necessary as we resort to application-specific and domain-specific special-
ization of processor hardware to sustain the performance and energy-efficiency growth
curve in the absence of Dennard scaling.
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