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Buckling and collapse of heavy tubes resting
on a horizontal or inclined plane
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Abstract

The buckling and collapse of empty and liquid-filled thin-wall cylindrical tubes resting on a horizontal or inclined plane is
considered. The deflection is due to the action of gravity causing the tube to deform under the influence of its own weight, or due
to a negative transmural pressure pushing the tube inward on the outside. Classical thin-membrane theory is used to formulate a
boundary-value problem describing the shell deformation, and the results illustrate families of deformed shapes of inextensible
shells with point or segment contact occurring between the shell and the supporting surface or between two collapsed sections
of the shell. The computed two-dimensional deformed shapes are used to reconstruct the three-dimensional shape of a slowly
collapsing fluid-conveying vessel in the absence of significant hydrostatic pressure variations over the cross section.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Buckling and collapse of compliant shells is encountered in a broad variety of natural, technological, and biomedical
applications including fluid transport through commercial pipelines, the wrinkling of fabric cloth, the hydroscopic buckling
of paper (cockling), the waving of a flag, the floating of elastic structures and sea ice, the collapse of biological vessels under
a negative transmural pressure, and the deformation of industrial capsules and biological cells enclosed by elastic membranes
(Bishop et al., 1986; Bloom and Coffin, 2000; Pozrikidis, 2001).

Of particular interest are situations where the thickness of the shell is small compared to its overall size. In this limit, the
elastic, plastic, and more general tangential stresses developing over the shell cross section due to deformation under load may
be integrated to yield tensions or stress resultants exerted along the designated shell mid-surface. The non-uniform distribution
of the tangential stresses over the cross section is responsible for the development bending moments accompanied by transverse
shear tensions oriented normal to the shell surface. Equilibrium equations for forces and torques exerted over a section of
the shell may then be written down in surface curvilinear or global Cartesian coordinates, and constitutive equations for the
tensions and bending moments may be introduced to derive a simplified system of governing equations that are amenable to
analytical and numerical methods. This approach has provided a convenient and fruitful means for assessing the stability of
loaded structures and for computing stationary deformed shapes after post-buckling. In particular, small and large deformations
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Nomenclature

ρ tube density
g acceleration due to gravity
l arc length
�pt transmural pressure
τ, q in-plane/shear tensions
m bending moment
κ curvature
κR resting curvature
EB bending modulus
G axial pressure gradient
Q flow rate

of rigid and highly compliant shells have been studied extensively under the auspices of stability and bifurcation theory and
in the context of boundary-value and nonlinear eigenvalue problem theory (e.g., (Antman, 1995; Libai and Simmonds, 1998;
Pozrikidis, 2002a)).

In this paper, we consider the deformation of empty and liquid-filled tubular heavy shells resting on a horizontal or inclined
plane. The deformation is due to the combined influence of the weight of the shell and a negative transmural pressure pushing the
shell with a greater force on the outside than on the inside. Although relevant situations are familiar from everyday experience
and engineering practice, our main motivation for undertaking this study has been a desire to illustrate possible modes of
deformation of fluid-carrying biological vessels under general conditions.

Of particular interest to this work is the early study of Wu and Pluncett (1965) on the elastic contact between two circular
shells pressed together on either side by two planar or circular surfaces of arbitrary curvature. These authors pieced together
a composite solution consisting of analytical expressions for three types of segments: free segments with loads specified at
the ends; segments with specified deformation; and segments with internal contact, zero tangential frictional load, and an
unspecified normal load. The complementary problem of buckling and post-buckling of cylindrical shells under the action of a
negative transmural pressure has been studied by a large number of authors, as will be discussed in Section 3.

The deflection of a heavy elastic shell under the influence of its own weight was first considered by Bickley (1934) for the
specific purpose of developing a method for testing the mechanical properties of cotton fabric (see also (Frisch-Fay, 1962)).
Much later, Wang (1981) studied the deformation of a section of a cylindrical shell with circular resting shape pinned on
an inclined plane, and presented numerical solutions parameterized by the inclination angle and a dimensionless parameter
involving the shell modulus of bending, the curvature of the resting configuration, and the linear density of the material. The
mathematical formulation of the problem describing the equilibrium configuration of open shells, such as those studied by Wang
(1981), is significantly simpler than that of the closed tubular shells presently considered, in that the order of the governing
differential equation is lower by one unit.

To compute the deformed shell shapes, we work under the auspices of the generalized membrane theory for two-dimensional
structures (e.g., (Steigmann and Ogden, 1997, 1999; Libai and Simmonds, 1998)). In the mathematical formulation, the tube
is modeled as an inextensible elastic shell of infinitesimal thickness developing tensions and bending moments according to a
linear constitutive equation when deformed from a reference configuration. A differential equation governing the distribution
of the equilibrium curvature with respect to arc length is derived incorporating the effect of the body force, and solutions to
a boundary-value problem are computed by numerical methods. Our interest is focused on all possible deformed shapes that
constitute legitimate mathematical solutions of the governing equations with no regard to stability. In practice, nature is likely
to prefer those shapes that possess minimum energy, and it is possible that only the first mode of deformation describing simple
shapes will be realizable under most conditions. A rigorous mathematical discussion of the energetics and stability of higher
modes would constitute further research.

The computed two-dimensional deformed shapes are used to reconstruct the three-dimensional shape of a slowly collapsing
fluid-conveying, completely filled vessel when the weight of the fluid is negligible. The reconstruction procedure involves
stacking together profiles at axial positions that are found by integrating the differential equation determining the axial pressure
distribution in unidirectional pressure-driven flow, subject to a constant flow rate. The dimensionless coefficient relating the
local pressure gradient to the flow rate is computed by solving the Poisson equation governing unidirectional viscous flow
using a boundary-element method (e.g., (Pozrikidis, 1992)). High accuracy results are obtained by expressing the flow rate as
a boundary integral involving the shear stress, which is available from the solution of an integral equation. In the context of
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haemodynamics, such a calculation provides a relatively simple means of predicting buckling and collapse of a vein resting on
surrounding tissue (Pedley, 1980). More generally, fully three-dimensional shell theory is needed to predict local collapse.

In Section 2, we present the problem statement and governing equations. In Sections 3 and 4, we discuss the results of
numerical computations for weightless (unsupported) and heavy (supported) shells. In Section 5, we explain how the two-
dimensional profiles of cylindrical (two-dimensional) shells may be used to construct three-dimensional shapes of fluid-carrying
vessels collapsing due to an internal pressure drop that is necessary to drive the viscous flow, and present three-dimensional
illustrations.

2. Problem statement and mathematical formulation

We consider the deformation of an empty or fluid-filled thin-wall cylindrical tube resting on a horizontal or inclined plane,
as illustrated in Fig. 1(a). The wall of the tube consists of an elastic material that develops stresses due to the deformation from
a specified reference resting state. Utilizing the generalized membrane theory (e.g., (Libai and Simmonds, 1998)), we replace
the elastic stresses with tensions (stress resultants) and bending moments acting along the centerline, as illustrated in Fig. 1(b).
When the plane is inclined, the shell will be assumed to be pinned at the designated origin. Our objective is to study the shape
of the shell under the influence of its own weight and because of a negative transmural pressure

�pt ≡ pint − pext, (1)

wherepint is the interior pressure andpext the exterior ambient pressure.
When the tube is vacant,pint is uniform along the inside surface, and the transmural pressure is constant. Under more general

conditions,pint may vary along the perimeter of the tube. Consider, for example, a tube that is partially filled with a stationary
liquid lying underneath a gas. In this case, the interior pressure is constant along the section of the tube in contact with the gas,
and increases according to the laws of hydrostatics in the direction of gravity along the section of the tube in contact with the
liquid. Although our mathematical formulation allows for this possibility, for simplicity, we shall consider the fluid within the
vessel to be weightless so that the transmural pressure is constant.

We begin formulating the governing equations by considering the shell in the deformed state, and identify point particles
distributed along the shell by the deformed-state arc lengthl varying in the range[0,L], whereL is the shell perimeter. Because
of the deformation, the shell develops an in-plane tensionτ , a transverse shear tensionq, and a bending momentm, as illustrated
in Fig. 1(b). The vector tension exerted on a cross section of the shell is given by

T = τ t + qn, (2)

wheret is the unit vector tangential to the shell pointing in the direction of increasing arc lengthl, andn is the unit normal
vector pointing outward.

A force balance over an infinitesimal section of the shell requires the equilibrium condition

dT
dl

+ p = d

dl
(τ t + qn)+ p = 0, (3)

(a) (b)

Fig. 1. (a) Illustration of a cylindrical tube resting on an inclined plane after it has deformed under the influence of its own weight or due to a
negative transmural pressure. (b) Elastic tensions and bending moments developing along the wall of the tube due to the deformation.
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wherep is the distributed load due to gravity and to a non-zero transmural pressure, given by

p = ρg +�ptn, (4)

andρ is the constant density of the shell. In the inclined system of coordinates depicted in Fig. 1(a), the acceleration of gravity
vector is given by

g = −g sinθ0ex − g cosθ0ey , (5)

whereg is the magnitude of the acceleration of gravity,ex is the unit vector along thex axis, andey is the unit vector along the
y axis.

Expanding out the derivatives of the products in (3) and using the relations

dt
dl

+ κn = 0,
dn
dl

− κt = 0, κ = dα

dl
, (6)

whereκ is the curvature of the shell in thexy plane andα is the angle subtended between the tangentt and thex-axis, we
obtain the normal and tangential scalar force balances

−κτ + dq

dl
= −p · n ≡ −pn, κq + dτ

dl
= −p · t ≡ −pt . (7)

The tangential and normal components of the load are given by

pt = ρg · t, pn = ρg · n +�pt , (8)

where, according to our earlier discussion, the transmural pressure�pt can be allowed to be a function of arc length. Solving
the first of Eqs. (7) forτ and substituting the result into the second equation, we derive a second-order differential equation
governing the distribution of the transverse shear tension,

d

dl

[
1

κ

(
dq

dl
+pn

)]
+ κq + pt = 0. (9)

Performing next a moment balance over an infinitesimal section of the shell, we find

q = dm

dl
. (10)

At this stage, we introduce a constitutive equation for the bending moments expressed by the linear relation

m=EB(κ − κR), (11)

whereEB is the bending modulus, andκR(l) is the curvature of the shell in a resting configuration where the bending moments
are assumed to vanish (e.g., (Steigmann and Ogden, 1997, 1999; Pozrikidis, 2002a)). The theory of thin plates provides us with
the estimateEB =Eh3/[12(1−ν2)], whereE is the volume modulus of elasticity,ν the Poisson ratio, andh the shell thickness
(e.g., (Fung, 1965, p. 461)). Heretoforth, we shall assume thath and thusEB is constant, independent of position along the
shell mid-plane.

Substituting (11) into (10) and using the resulting expression to eliminateq from (9), we obtain a differential equation
governing the distribution of the curvature,

d

dl

[
1

κ

(
d2(κ − κR)

dl2
+ pn

EB

)]
+ κ

d(κ − κR)

dl
+ pt

κb
= 0, (12)

which can be recast into the form:

d

dl

[
1

κ

(
d2(κ − κR)

dl2
+ pn

EB
+ 1

2
κ3

)]
− κ

dκR
dl

+ pt

EB
= 0. (13)

Integrating (13) once with respect tol, we derive the integro–differential equation

d2κ

dl2
= −1

2
κ(κ2 + c)− pn

EB
+ d2κR

dl2
+ κ

l∫
l0

κ(l′)dκR
dl′ dl′ − ρ

EB
g · [x(l)− x(l0)

]
, (14)

wherec is an integration constant with dimensions of inverse squared length, andl0 is an arbitrarily specified arc length.
Substituting (5) into (4) and the result into (14), we derive the more explicit form:
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d2κ

dl2
= −1

2
κ(κ2 + c)− �pt

EB
− ρg

EB

[
cosθ0

dx

dl
− sinθ0

dy

dl

]
+ d2κR

dl2
+ κ

l∫
l0

κ(l′)dκR
dl′ dl′

+ ρg

EB
κ
{
sinθ0

[
x(l)− x(l0)

] + cosθ0
[
y(l)− y(l0)

]}
. (15)

Note that the derivative of the resting curvature, but not the curvature itself, appears in the equilibrium equation (15).
Furthermore, the Cartesian coordinates and their derivatives with respect to arc length appear only when the gravitational
term is present.

It is important to emphasize that a constitutive equation for the in-plane tensionτ may be additionally imposed, and its role
will be to determine the total length of the shell in the deformed state,L, and the relative distribution of point particles along
the deformed contour with respect to the resting configuration. Thus, shell inextensibility is required only insofar as to provide
justification for the constitutive equation for the bending moments with uniform shell thickness, as discussed in the end of the
paragraph following Eq. (11). On a practical level, inextensibility is invoked to define thea priori unknown reference curvature
distributionκR(l), wherel is the arc length around the shell in thedeformed state; an exception occurs whenκR is constant, as
in the case of a circular unstressed shell or a rolled-up flat sheet.

The boundary conditions accompanying (15) depend on the particular problem under consideration. For example, symmetry
conditions may be imposed to capture shapes with a desired set of symmetries. In all cases, Eq. (15) involves an unspecified
constantc that may play the role of an eigenvalue. Multiple solutions corresponding to bifurcating or disconnected solution
branches are possible, as will be discussed in Section 3.

At small and moderate deformations, a heavy shell resting on a horizontal or inclined plane touches the support at a
single point where the shell is locally concave upward and turns away from the plane, as depicted in Fig. 2(a). As the shell
becomes increasingly deformed, the curvature at the contact point is reduced, and the shell tends to spread over the support. At
critical conditions, the contact-point curvature vanishes and a transition occurs from single-point contact to contact over a finite
segment. The end-points of the segment are unknown in advance and must be found as part of the solution from the requirement
of vanishing curvature. A similar behavior occurs when two remote sections of a weightless or heavy shell collapse and are
pressed together, as illustrated in Fig. 2(b).

Consider a weightless shell that has collapsed onto itself to form two loops, as illustrated in Fig. 2(b). Requiring that the
total force exerted on each one of the two loops on either side of the contact point or segment vanish, we find that the in-plane
tension at the contact point must vanish. Settingτ in the first of Eqs. (7) equal to zero, and using (9), (10) and (11) withρ = 0,
we derive a boundary condition for the curvature at the contact point in terms of the constantc. For example, in the case of a
shell with uniform resting curvature, we find

κ2 = −c. (16)

which plays the role of a mixed boundary condition.
Nondimensionalizing all lengths and distances using the total perimeter of the shell in the deformed state,L, we find that

the shape of the shell is determined by three parameters: the inclination angleθ0, the dimensionless transmural pressure

�p̂ ≡ − �pt

EBκ
3
u

, (17)

and the dimensionless density of the shell material

ρ̂ ≡ ρg

EBκ
3
u

. (18)

(a) (b)

Fig. 2. Pointwise and segment contact of (a) a shell resting on an inclined plane, and (b) two remote sections of a collapsed shell.
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The constantκu = 2π/L is the equivalent curvature of an inextensible shell that is circular in the undeformed state. Note that
a positive dimensionless transmural pressure corresponds to negative physical transmural pressure causing collapse.

The boundary value problem described in this section was solved using a shooting method, where improvements were made
using Newton’s method. The differential equation itself was solved using the fourth-order Runge–Kutta method, and parameter
continuation was employed to describe solutions that belong to the same branch.

3. Weightless shells

Significant simplifications occur when the density of the shell is negligible, corresponding toρ̂ = 0. In this limit, the
supporting presence of the inclined plane is not required. Previous numerical and asymptotic studies have revealed the existence
of multiple solution branches when the dimensionless transmural pressure�p̂ exceeds a sequence of thresholds that depend on
the undeformed resting shape. In the case of shells with circular resting shapes, buckled shapes are possible for all values of
�p̂ � 3, whereas in the case of shells with non-circular resting states, the undeformed shape is immediately modified upon the
imposition of a negative transmural pressure, however small (e.g., (Pozrikidis, 2002a)).

3.1. Circular shells

Consider first shells with circular undeformed shapes and uniform resting curvatureκR . In this case, all but the first two terms
on the right-hand side of (15) drop out, leaving a simplified expression. A perturbation analysis shows that small deformations
from the circular state are possible when�p̂ = n2 − 1, for any integern > 1 (e.g., (Pozrikidis, 2002a)). Solution branches
emanating from these critical points describing buckled shapes withn-fold rotational symmetry were computed by several
previous authors using numerical methods (Tadjbakhsh, 1969; Flaherty et al., 1972; Pozrikidis, 2002a).

The numerical results of Flaherty et al. (1972) revealed that, as a solution branch is traversed in the direction of increasing
�p̂, the severity of the shell deformation increases until, eventually, a critical value�p̂c is reached where point contact and
subsequent unphysical self-intersection takes place. A second solution branch describing non-penetrating shapes with point
contact arises as the pressure difference is raised beyond�p̂c until a further critical value,�p̂o . Beyond the second critical
value, for�p̂ >�p̂o, the contact points spread over contact segments whose length increases with�p̂, while the shell assumes
self-similar shapes.

By way of testing our numerical method and simultaneously verifying the previous results, we have recomputed the
deformed shapes and the critical pressures identified by previous authors. Sample results are shown in Fig. 3. In the numerical
computations, periodic and symmetry boundary conditions are imposed for post-buckled shapes with no points of contact, and
condition (16) is imposed for shapes with point contact. When point contact occurs withn� 2, we require

0 � l � l1: κ ′(0)= 0, κ2(l1)= −c,
l1∫

0

κ(ξ)dξ = π

2
, (19)

Fig. 3. Buckled shapes with three-fold symmetry (n= 3) (dotted lines) for a shell with a circular resting state (solid line).
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Table 1
Computed values of the critical transmural contact pressures for modesn= 2,3,4

�p̂c �p̂o

n→ 2 3 4 2 3 4

FKR 5.247 21.65 51.84 10.34 81.81 207.2
Present 5.246 21.65 51.84 10.33 81.80 207.2

Here, as elsewhere, the subscriptsc ando represent the point and segment contact
critical values, respectively. “FKR” indicates figures given by Flaherty et al. (1972).

l1 � l � L

2n
: κ2(l1)= −c, κ ′

(
L

2n

)
= 0,

L/(2n)∫
l1

κ(ξ)dξ = L

2n
− π

2
, (20)

where the origin of arc length has been set at the lowest point of the shapes shown in Fig. 3, andl1 is the arc length at the first
point of contact. Except in the special casen= 2 wherel1 = L/4, the unspecified lengthl1, must be computed as part of the
solution. Our computed values of the critical pressures are in good agreement with those given by Flaherty et al. (1972), as
shown in Table 1.

3.2. Non-circular shells

Consider now shells with non-uniform resting curvature described by the model equation

κR(l)= κ̄ + κ ′ cos(κusl), (21)

wheres is a natural number,̄κ is the arc-length averaged curvature, and the coefficientκ ′ expresses the amplitude of the resting
curvature. It is convenient to introduce the intermediate functiong(l), defined by

dg

dl
= κ

dκR
dl

, (22)

which is to be solved together with a modified version of (14) with the integral term replaced byg and the constantc set to
zero. The solution was computed by a shooting method where the unknown initial valueg(0) is found as part of the solution.

Pozrikidis (2002a) presented bifurcation diagrams illustrated possible solution branches for varying�p̂ when s = 2 and
s = 3. To facilitate our discussion, these diagrams are reproduced with the solid lines in Fig. 4. The vertical axis is the curvature
at the lowest point reduced by the reference curvatureκu = 2π/L, whereL is the total arc length of the shell. In both cases,
s = 2,3, the shell deforms as soon as the transmural pressure becomes negative. This contrasts with situations encountered in
Section 3.1 where the pre-buckled solution with uniform curvature is apparently valid for all values of�p̂, although it is of
course highly unlikely that this shape is stable. Pozrikidis (2002a) computed solutions up to and beyond the point where the
shells self-intersect. As an extension of the earlier work, we here allow for the development of points and lines of contact. By
way of demonstrating the possible configurations, we will discuss solutions for the casess = 2 with κ ′/κu = 0.25.

Following the upper branch marked 1 in Fig. 4(a), we find that the deformed shapes develop a dimple of increasing amplitude
until point of contact appears at the critical pressure difference�p̂c = 4.70. The shapes found by traversing branch 2 develop in
a similar but not identical manner, now reaching single-point contact at the critical value�p̂c = 5.78. Little deformation occurs
following branch 3, and the shell deviates only slightly from its incipient elliptical-like profile. Solution branches labeled 4 and 5
describe shapes with three-fold rotational symmetry. Critical shapes with three points of contact occur at the value�p̂c = 20.81,
calculated accurate to four significant figures, on both branches. The comparable values reflect the near symmetry of branches
4 and 5 apparent in the bifurcation diagram 4(a).

To illustrate the shapes of deformed shells with non-uniform resting curvature beyond the critical point of contact, we
trace the shapes occurring along branch 1 in Fig. 4(a), corresponding tos = 2. In practice, these shapes are likely to represent
the most stable configurations, at least for long tubes where the deviation from two-dimensionality is small. In the numerical
computation, the boundary conditions at the point of contact are adjusted in a manner similar to that discussed earlier for the
circular unstressed shapes. The lengthl1 is kept as an unknown and is subsequently found to have the expected valueL/4 to
within the precision of the calculation. The results show that shapes with point contact occur in the range 4.70<�p̂ < 10.03;
whereafter, a line of contact develops. The dotted line in Fig. 4(a) shows the corresponding solution branch emanating from the
critical pressure�p̂c = 4.70.

It is not possible to find self-similar shapes with line contact, as it is possible for shells with circular resting shapes, and the
numerical calculation must be done in full for every value of�p̂. For shapes with segment contact, the calculation is performed
over the range 0� l � l1, subject to the boundary conditions

κ ′(0)= 0, κ(l1)= 0, θ(0)= 0, θ(l1)= π/2, g(l1)= 0. (23)
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(a)

(b)

Fig. 4. Bifurcation diagrams showing the solution spaces for (a) an elliptical-like resting shape,s = 2, and (b)s = 3. The dotted line in (a)
traces a branch corresponding to shells with point and line contact.

Fig. 5. Shell shapes computed at various points along the branch labeled 1 in Fig. 4(a). From left to right,�p̂ = 1.0, 2.86, 4.22, 6.0, 25.0.

The remaining portion,l1 � l �L/4, is completed with a straight segment of an appropriate length. Figure 5 illustrates a family
of computed solutions with no contact, point contact, and segment contact.

We computed corresponding shapes for modes = 3 andκ ′/κu = 0.25, and found that the shell develops a single point of
contact along the upper branch labeled 1 at the critical pressure�p̂c = 5.23. The shapes corresponding to branch 2 of Fig. 4(b)
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develop a trio of contact points at the critical pressure�p̂c = 20.51. The shapes along branch 3 are similar to those along
branch 1, eventually establishing a single point of contact when�p̂c = 5.33.

4. Heavy shells

In Section 3, we discussed the buckled states of weightless shells corresponding toρ̂ = 0. We now turn to examining
configurations of heavy shells resting on a horizontal or inclined plane, taking also into account the effect of a non-zero
transmural pressure. The equilibrium shape of the shell is described by Eq. (15) accompanied by suitable boundary conditions.
Because thex andy coordinates and their derivatives with respect to arc length appear explicitly in this equation, we must
introduce, and simultaneously solve for, the nonlinear equations

dx1

dl
= x3,

dx2

dl
= x4,

dx3

dl
= −κx4,

dx4

dl
= κx3, (24)

wherex = x1(l), y = x2(l), x
′ = x3, y′ = x4, and a prime denotes a derivative with respect to the independent variable,l. Using

elementary differential geometry, we find that the curvature is given by the expressionsκ = −x′′
1x

′
2+x′

1x
′′
2 = −x′′

1/x
′
2 = x′′

2/x
′
1,

which allows us to relate the curvature to the shell shape. For a shell pinned to the surface atx = y = 0, the initial conditions
follow asx1(0)= 0, y1(0)= 0, x3(0)= 1 andx4(0)= 0.

When the dimensionless density and transmural pressure are sufficiently small, we expect that the shell will have a single
point of contact at the origin. Furthermore, by analogy with the case of weightless shells, we anticipate that point contact will
persist until critical conditions, whereupon the shell will tend to penetrate the supporting surface. Continuing the calculation
beyond this value will still produce shapes with physical significance, representing shells sagging down on either side of a
single point of support. Our main interest, however, lies in permitting the development of a line of contact between the shell
and the surface to imitate a heavy elastic membrane resting on a plane. Thus, at the critical conditions where the curvature at
the point of contact vanishes, the boundary conditions are adapted to accommodate this behavior. Further changes in the nature
of the contact between the shell and the wall, or indeed itself, must also be accompanied by suitable changes in the boundary
conditions. Recall that, once the curvature is known, the transverse shear tensionq(l) may be found using(9) and(10). The
in-plane tensionτ may then be computed in a straightforward manner using the first equation in (5).

First, we discuss shells resting on a horizontal plane,θ0 = 0, for �p̂ = 0. For small values of̂ρ, self-contact does not
occur, the governing differential equations are integrated all the way around the shell, and suitable conditions are imposed at
l = 0,L/2, andl = L. To begin with, we assume a circular resting shape and seek solutions that are symmetric with respect to
they-axis that is normal to the plane, by requiring

κ ′(0)= 0, κ ′
(
L

2

)
= 0,

L/2∫
0

κ(ξ)dξ = π, x(L)= 0. (25)

Note that the curvature at the point of contact isa priori unknown. Line contact between the shell and the supporting surface
occurs at the critical valuêρ = ρ̂c1 whereκ(0)= 0. To describe shapes with a line of contact along the base, we replace the first
of conditions (25) withκ(l1)= 0, where the unspecified lengthl1 marking the location of the end-point of the line of contact
is found as part of the solution. Continuing the calculations for increasing values ofρ̂ > ρ̂c1, we find that the top of the shell
begins to droop down in the middle, eventually making contact with the base at the origin at the second critical valueρ̂ = ρ̂c2.
The boundary conditions are then adapted to account for this new point of contact, and the calculations continue to higher values
of ρ̂ > ρ̂c2.

Typical shell shapes corresponding to vanishing transmural pressure are shown in Fig. 6. The numerical results reveal
that the critical dimensionless densities where spreading over the plane and self-contact occur are given byρ̂c1 = 0.593 and
ρ̂c2 = 5.679. At the upper point of contact developing whenρ̂ > ρ̂c2, the curvature is negative. As the dimensionless density
ρ̂ is raised, the top curvature increases in magnitude in a monotonic fashion, ultimately passing through zero at the critical
value ρ̂ = ρ̂c3 = 11.878. For higher densities, the dimpled point of contact at the origin spreads out to form a new line along
the interior side of the base. Once again, the boundary conditions are amended by the introduction of a further unknownl2
representing the half-length of the new contact line, and the computations continue for valuesρ̂ > ρ̂c3.

Next, we consider the effect of the dimensionless transmural pressure�p̂. One might reasonably expect that a negative�p̂

with a sufficiently large magnitude will tend to restore the resting shape assumed in the absence of gravity, and further increase
will eventually lead to the likely rupture of the shell due to large elastic tensions, although our equations do not incorporate
the necessary physics to predict this breakdown. By contrast, a positive dimensionless transmural pressure will deflate the shell
still further, accentuating the flattening trend apparent in Fig. 6. Figure 7(a) demonstrates the effect of the transmural pressure
on the curvature at the lowest point for various dimensionless densitiesρ̂ , for shell with point contact. Figure 7(b) shows the
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Fig. 6. Shapes of a heavy elastic shell with a circular resting shape sitting on a horizontal surface (θ0 = 0) for ρ̂ = 0.0, 1.61, 4.29, 5.64, 6.05,
11.88, 17.91, 36.28, spanning each of the four regimes discussed in the text.

(a) (b)

(c)

Fig. 7. Effect of the transmural pressure on a heavy shell with a circular resting shape. (a) Curvature at the lowest point,κ(0) plotted against�p̂
for ρ̂ = ρ̂c1 = 0.593 (solid line), and 0.504, 0.404, 0.303, 0.202 and 0.101 from left to right (dotted lines). (b) Shell shapes corresponding to
values of�p̂ marked on the solid line in (a) in an obvious physical manner; the base state (�p̂ = 0) is plotted with a solid line. (c) Dependence
of the critical valueρ̂c1 on the transmural pressure.



M.G. Blyth, C. Pozrikidis / European Journal of Mechanics A/Solids 21 (2002) 831–843 841

Fig. 8. Heavy elastic shells sitting on a plane inclined at an angleθ0 = π/4, for dimensionless densitŷρ = 0.81, 2.41, 4.03, 5.64, 6.85 and 8.06.
The crosses indicate the points where the shells are pinned to the plane.

shell profiles for a fixed value of̂ρ corresponding to the marked points on the lowest curve in Fig. 7(a). The effect of�p̂ on the
first critical densityρ̂c1 where the shell spreads over the wall is illustrated in Fig. 7(b). Note that�p̂ = 3.34 whenρ̂c1 = 0, in
agreement with the value computed by Pozrikidis (2002a) for a weightless buckled shell with a circular resting shape.

We proceed next to consider the buckling of shells resting on an inclined plane, held stationary by a pinning force. Withθ0
non-zero, it is now necessary to solve the full equation (15) with all terms retained on the right-hand side. Once again, we set
l0=0 andx(l0)= y(l0)= 0, and choose the boundary conditions at each deformation mode as in the case of the horizontal plane.
The results are qualitatively similar: for small enough values ofρ̂, the shells rest with a single point of contact on the inclined
plane; asρ̂ is sufficiently increased, the shapes begin to intersect the plane. For zero transmural pressure, the transition occurs
whenρ̂ = ρ̂c1 = 0.2729 whereupon the curvature vanishes at the contact point. We have calculated shapes beyond the critical
valueρ̂c1 up to aboutρ̂ = 8. Much beyond this value, the time required for each calculation becomes prohibitively expensive.
Fig. 8 displays some of the computed shapes for the representative caseθ0 = π/4. Note that the shells begin to droop down
slowly in the middle, and a second point of contact is ultimately established at a second critical value ofρ̂.

5. Flow through a collapsing tube

Consider now steady pressure-driven viscous flow through a collapsing tube whose cross-section changes slowly in the axial
directionz, so that the flow may be considered to be locally unidirectional. Subject to this approximation, the axial component
of the velocity,uz, satisfies the parametrically forced Poisson equation

∇2uz = −G(z)

µ
, (26)

where∇2 ≡ ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator over the tube cross section,G(z) ≡ −∂pint/∂z is the negative of
the pressure gradient in the streamwise direction inside the tube, andµ is the fluid viscosity. The no-slip boundary condition
requires thatuz vanish around the tube contour in thexy plane.

It is convenient to express the flow rate through the tube in the form:

Q≡
∫
uz dx dy = δ(z)

Gπa4

8µ
, (27)

where the integral is computed over the tube cross section,δ is the dimensionless hydraulic conductivity determined by the tube
cross sectional shape,a = L/(2π) is the equivalent tube radius, andL is the tube perimeter. In the case of a circular tube,a

is the tube radius and Poiseuille’s law requiresδ = 1 (e.g., (Pozrikidis, 1997)). Our previous discussion suggests that the tube
contour, and thusδ, is a function of the density of the shell and transmural pressure.

Rearranging (27), using the definition ofG, assuming that the external pressure is constant and the internal pressure is
uniform over the cross section, thereby neglecting hydrostatic pressure variations, we derive an ordinary differential equation
for �p,

dz= πa4

8µQ
δ(z)d�pt , (28)

which may be recast into the dimensionless form:

dẑ= δ(ẑ)d�p̂, (29)
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whereẑ ≡ zQ̂/a is the reduced axial position, and̂Q ≡ 8µQ/(πEB) is a dimensionless flow rate. Assuming that an initially
circular tube starts collapsing atz = z0 where�p̂ = n2 − 1, for integern, we may integrate Eq. (29) to generate the function
�p̂(ẑ) and its inverse. Once this has been accomplished, the three-dimensional shape of a collapsing tube may be reconstructed
by stacking next to one another adjacent cross sections, spacing them by the appropriate distances.

We have reformulated the Poisson equation (26) as an integral equation for the boundary distribution of the shear stress, and
then solved it using a boundary-element method (e.g., (Pozrikidis, 2002b)). The numerical procedure involves decomposing
the axial velocityuz into a particular solution that satisfies the Poisson equation with a constant right-hand side and a
homogeneous component that satisfies Laplace’s equation, and then solving for the boundary distribution of the normal
derivative of the homogeneous solution. The end-points of the boundary elements are generated by solving the boundary-
value problem described in previous sections. Once the boundary distribution of the normal derivative is available, the flow rate
Q and coefficientδ are computed by evaluating a boundary integral (Pozrikidis, 2002a). Testing showed that discretization into
128 uniform straight elements is sufficient for obtainingδ accurate to the third significant figure.

The solid line in Fig. 9(a) shows a graph of the dimensionless hydraulic conductivityδ plotted against�p̂ for the shapes
displayed in Fig. 3. The line terminates at the point where opposite sections of the tube come into point contact at a critical

(a) (b)

Fig. 9. Flow in a buckled tube with three-fold symmetry up to the point of contact. (a) Dependence of the downstream locationẑ and hydraulic
conductivityδ on the transmural pressure�p̂. (b) The buckling tube.

Fig. 10. Flow in a heavy collapsible tube resting of a horizontal plane forρ̂ = 140.0.
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transmural pressure, as illustrated in the bifurcation diagram displayed in Fig. 4(b). The dashed line shows the corresponding
axial positionẑ generated by integrating Eq. (29) using a numerical method. These results were used to reconstruct the three-
dimensional shape of a tube collapsing in then = 3 mode in terms of two-dimensional cross sections, as discussed in the
paragraph after Eq. (29), and the result is shown in Fig. 9(b).

Figure 10 shows the result of a similar calculation for flow in a heavy collapsible tube resting on a horizontal plane for
ρ̂ = 140.0, up to the point where the top of the tube makes contact with the base.

6. Discussion

We have discussed the mathematical formulation and presented numerical solutions of the equations governing the shape
of a light or heavy tubular shell resting on a horizontal or inclined plane. The problem formulation accounts for the effects
of gravity on the tube wall and for a negative transmural pressure. The numerical results extend the work of previous authors
in several ways; most importantly with respect to the significance of non-circular resting shapes, especially after self-contact,
and to the effect of the shell weight. Shapes with wall-shell point and segment contact and multiple contact were found under
conditions of extreme deformation.

We have computed the three-dimensional shapes of fluid-conveying tubes collapsing slowly due to a decrease in the internal
pressure with streamwise distance. In practice, three-dimensional tubes are clamped at one or both ends or meet other tubes at
junctions and bifurcations, which are known to have an important effect of the prevailing modes of deflection (e.g., (Yamaki,
1984)). For example, the three-fold deflection mode is preferred near the end of a clamped tube. To describe the shapes of such
shells, a fully three-dimensional calculation is necessary. The development of numerical methods for this purpose is the subject
of current research.
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