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Abstract

Accurate profiles of alkali spectral lines pressure broadened by col-
lisions with molecular hydrogen and atomic helium perturbers are of
crucial importance for the modeling of atmospheres of brown dwarfs.
Calculations of these Lorentzian profiles are computationally demand-
ing as they involve the integration of coupled second order differential
equations describing the colliding atoms out to large radial separa-
tions, for a wide range of energies and relative angular momenta of the
perturbers. We report on the use of two R-matrix packages, rprop2
and farm, to solve these equations for collisions of atomic helium with
Na and K, the dominant alkalis in brown dwarf spectra. Overall we
find that the farm package to be far less transparent and, although
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computationally faster, more cumbersome to use. For systems involv-
ing smaller sets of coupled differential equations, where there are no
convergence problems with either method, rprop2 appears to be the
most appropriate method to use. However, for larger systems, where
rprop2 may become unreliable at higher temperatures, the farm
package appears to be our only feasible option.
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1 Introduction

Accurate profiles of alkali spectral lines pressure broadened by collisions with
molecular hydrogen and atomic helium are of crucial importance for the
modelling of atmospheres of late M, L and T type brown dwarfs and for
generating their synthetic spectra in the region 500–900 nm. A brown dwarf
is an object heavier than a giant planet but with insufficient mass to initiate
or sustain hydrogen fusion. The central cores of the profiles have a Lorentzian
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form and highly accurate calculations of these Lorentzian cores are needed
in order to estimate the effects of dust in brown dwarf atmospheres.

We are currently undertaking a study of the Lorentzian profiles of alkali
spectral lines broadened by helium perturbers [3]. The calculations are an
extension to higher temperatures (≤ 3000 K) of our previous study [4] of pres-
sure broadening of Na lines by He at laboratory temperatures (≤ 500 K) and
are based on a fully quantum mechanical description of the colliding atoms.

The calculations are computationally demanding in that they involve the
integration of coupled second order differential equations describing the col-
liding atoms out to large radial separations where the solution is matched to
a combination of the solutions for non-interacting atoms. This process has to
be repeated for a wide range of energies and relative angular momenta of the
colliding helium atoms. We chose to use R-matrix propagation techniques
as they have high numerical stability and are computationally efficient when
large numbers of scattering energies are needed as the matrix diagonalisa-
tions, the dominant part of the propagation process, are energy independent.

We report here on two R-matrix packages rprop2 [1] and farm [2] that
we modified and implemented to calculate the temperature dependences of
the widths and shifts of Lorentzian spectral profiles. The rprop2 routine is
extremely slow, but is simple to use and to modify where necessary. Con-
versely the farm routine is extremely fast but considerably less transparent,
incorporating a less computationally intensive potential-following propaga-
tor at intermediate radial separations where the potential is more slowly
varying and an analytical, asymptotic solution fitting routine for large radial
separations.

Section 2 outlines the background theory appropriate to the calculation of
spectral line profiles. Numerical aspects of the calculations and details of the
two R-matrix packages are presented in Section 3. Section 4 discusses results.
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2 Background theory

The half half-width w and shift d at temperature T of the Lorentzian profile
for a spectral line emitted by the alkali atom as it undergoes a transition
between the initial and final states |ji〉 and |jf〉 (where j is total electronic
angular momentum) is [4]

w + id = N

∫ ∞
0

f(E)S(E) dE , (1)

where f(E) is the normalized Maxwellian distribution

f(E) = 2π(πkBT )−3/2
√
E exp

(
− E

kBT

)
, (2)

for the energies of the perturbing helium atoms, N is the perturber number
density and

S(E) = β
∑
l,l′

∑
Ji,Jf

c
JiJf
l,l′

[
δl,l′ − 〈jil′Ji|S|jilJi〉〈jf l′Jf |S|jf lJf〉∗

]
. (3)

describes the effects of collisions on the two states forming the spectral line.
Here β is a constant, l and l′ are the values of the relative emitter-perturber
angular momentum LR before and after the collision, J = LR + j is the total
angular momentum of the emitter-perturber system (which is conserved dur-

ing collisions) and c
JiJf
l,l′ are known constants. The quantities 〈j′l′J |S|jlJ〉 are

called scattering matrix elements and give the probability that the collision
causes the system, initially in the state |jlJ〉, to undergo a transition into
the final state |j′l′J〉.

The scattering matrix elements in (3) are determined from the asymptotic
behaviour of the radial functions GJ

jl(R) for each scattering channel (j, l, J)
which satisfy the coupled radial Schrödinger equations [4][

∂2

∂R2
− l(l + 1)

R2
+ k2

j

]
GJ
jl,j′′l′′(R) =

2M

h̄2

∑
j′,l′

V J
jl,j′l′(R)GJ

j′l′,j′′l′′(R) . (4)
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Here (j′′, l′′) labels the linearly independent solutions of (4), M is the reduced
mass of the emitter-perturber system and

k2
j = 2M

[
E − (Eatom

j )
]
/h̄2 (5)

where Eatom
j is the energy level of the alkali atom before interaction. V J

jl,j′l′(R)
are the matrix elements of the potential energy V (R) describing the interac-
tion between the colliding atoms. They are readily calculated for each atomic
level. The equations (4) decouple into two sets of opposite parity (−1)J±1/2.

3 Numerical aspects

3.1 R-matrix

The close coupled equations (4) were solved using the R-matrix packages
rprop2 [1] and farm [2], the latter as modified by Venturi et al. [5]. The
R-matrix is defined in terms of the inverse logarithmic derivative of the
solution matrix G(R) via

R(R) = G(R)

(
R
∂G

∂R

)−1

, (6)

where G(R) satisfies

[H(R)− E ] G(R) = 0 . (7)

In equation (7), the scaled Hamiltonian matrix H(R) is

Hjl,j′l′(R) =

[
− ∂2

∂R2
+
l(l + 1)

R2

]
δj,j′δl,l′ +

2M

h̄2 V
J
jl,j′l′(R) , (8)

and the diagonal scaled energy matrix E is

E = k2
j . (9)
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In the R-matrix propagation method the total integration range for the
coupled equations is divided into sectors [RL, RR]. The R-matrix is then
propagated across each sector such that the knownR-matrix at one boundary
of the sector is used to calculate the R-matrix at the other boundary.

The rprop2 package uses the solution following propagator developed by
Burke, Baluja and Morgan (bbm) whereas the farm package incorporates
a combination of the bbm solution following propagator at small distances
where V (R) is rapidly varying and the potential following Light–Walker (lw)
propagator at larger distances where V (R) is slowly varying. farm also
uses an accelerated Gailitis expansion to minimize the distance at which the
matching procedure is undertaken.

3.2 The BBM R-matrix propagator

The bbm R-matrix propagator [1] for the pth sector [Rp
L, R

p
R] is

Rp
RR(Rp

R) = Gp(Rp
R, R

p
R)−Gp(Rp

R, R
p
L) [Gp(Rp

L, R
p
L) +Rp

LR(Rp
R)]−1

×Gp(Rp
L, R

p
R) . (10)

The four matrices Gp(Rp
α, R

p
β) are the Green’s function matrices

Gij(R
p
α, R

p
β) =

∑
k

Uik(R
p
α)Ũkj(R

p
β)

Ek − E
, α, β = L,R . (11)

Here Uk and Ek are the eigenvectors and eigenvalues of H + Lb, where Lb is
the Bloch operator

Lb =

[
δ(R−RR)

∂

∂R
− δ(R−RL)

∂

∂R

]
, (12)

which has been introduced to ensure that H̄ ≡ H + Lb is Hermitian over
the sectors [RL, RR]. The eigenvectors Uk and eigenvalues Ek of H̄ are found
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by expanding Uk in terms of shifted Legendre polynomials and determin-
ing the expansion coefficients by QL matrix diagonalisation. The Hamilto-
nian H̄ over each sector is expressed in terms of integrations over shifted
Legendre polynomials, and the integrations are performed using 32 point
Gauss–Legendre quadrature.

3.3 The LW R-matrix propagator

The Light–Walker R-matrix propagator [6, 7] is a potential-following tech-
nique used for medium to large internuclear separations where the molecular
potentials are more slowly varying. As the potential is slowly varying over
short distances in this region, the interaction potential is assumed to be con-
stant within each of the sectors and is therefore represented by the constant
potential matrix at the centre of the sector.

The coupled differential equations for the pth sector [Rp
L, R

p
R] have the

form [
d2

dR2
−V(Rp) + E

]
G(R) = 0 , (13)

where Rp = 1
2

[Rp
L +Rp

R] and the elements of V(R) are

Vjl,j′l′(R) =
l(l + 1)

R2
δj,j′δl,l′ +

2M

h̄2 V
J
jl,j′l′(R) . (14)

The Green’s function matrix corresponding to the solution matrix G(R) is
then [

d2

dR2
−V(Rp) + E

]
G(R,R′) = δ(R−R′)I . (15)

The Light–Walker method requires the constant interaction potential ma-
trix to be diagonalised for each sector in order to obtain the sector transfor-
mation matrix Tp, that is

(Tp)−1V(Rp)Tp = V̄p . (16)
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The matrix Tp converts (15) into a set of Nγ uncoupled equations for which
analytical solutions are then found. Tp is also used to diagonalise the Green’s
function matrix

Ḡp(R,R′) = (Tp)−1G(R,R′)Tp , (17)

and the R-matrix,

R̄p(R) = (Tp)−1R(R)Tp . (18)

In terms of these matrices, the lw R-matrix propagation equation is

Rp
RR̄

p(Rp
R) = −Ḡp(Rp

R, R
p
R) + Ḡp(Rp

R, R
p
L)(Qp)−1

[
QpḠp(Rp

L, R
p
L)(Qp)−1

−Rp
LR̄

p−1(Rp−1
R )

]−1
QpḠp(Rp

L, R
p
R) , (19)

where the adiabatic overlap matrix is Qp = (Tp−1)−1Tp .

3.4 The Gailitis asymptotic solution method

The Gailitis method [8] allows fitting to the interaction-free solutions without
propagating the R-matrix all the way to the asymptotic V (R) ≈ 0 region. It
is computationally advantageous because it not only restricts the region over
which the R-matrix must be propagated but also addresses the problem that
R-matrix propagation methods actually decrease in efficiency with larger
radial separation.

The matching is performed by expressing the interaction potential in the
form of a multipole expansion so that the coupled equations take the form[

d2

dR2
− li(li + 1)

R2
+ k2

i

]
Mi(R) =

Nγ∑
j=1

Λ∑
λ=1

αλij
Rλ+1

Mj(R) , i = 1, . . . , Nγ . (20)

The asymptotic solution is then assumed to have the form

Mi(R) = S(R)
∑
µ=0

aµi R
−µ + Ṡ(R)

∑
µ=0

bµi R
−µ , (21)
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where S(R) and Ṡ(R) satisfy[
d2

dR2
− L(L+ 1)

R2
+ k2

]
S(R) = 0 , (22)

and

Ṡ(R) =
1

k

d

dR
S(R) . (23)

Recursion relations are then obtained for the expansion coefficients, aµi and bµi ,
for both open and closed channels, and these are in turn used to evaluate the
wavefunctions (21) and their derivatives.

4 Results and discussion

rprop2 was originally implemented for calculations of pressure broadening
in neon. These calculations involved repeated solution of up to 20 coupled dif-
ferential equations and were very time consuming, taking up to three months
per spectral line. Also, as expected, rprop2 became unstable at higher tem-
peratures. Consequently, when the farm package was released, we adapted
it to line broadening applications and compared its performance to that of
rprop2 for the case of the Na line 3d 2D3/2 → 3p 2P1/2 perturbed by He.
This system is described by five coupled differential equations and farm was
found to be up to five times faster than rprop2.

Both packages require extensive convergence testing before actual produc-
tion runs are undertaken to produce the necessary S-matrix elements. This
requires variation of up to ten parameters including step sizes for the inner
and asymptotic regions, total integration distance and number of Legendre
polynomials used in the bbm propagator. All combinations of these ten pa-
rameters need to be checked for each atomic level. However farm utilises a
number of automatic checks for varying step size, particularly for the Gailitis
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method, which limits the range over which the convergence testing must be
conducted and hence reduces the computational time.

The nature of the solutions to (4) varies with l and E so that different
inner and asymptotic stepsizes are required for convergence. When l is small
the required asymptotic stepsize is large but the effective origin and infinity
of the integration range are small, whereas the converse is true for larger l.

Additional issues faced involve the convergence of the sum over partial
waves l in (3) and of the integration (1) over perturber energies E. At low
temperatures (small E) the maximum value of l needed for convergence is
small but this increases with temperature. The present calculations required
over 130 energy nodes up to 5000 K, more than half of which were under
1000 K, in order to obtain satisfactory convergence. In order to maximise
the efficiency of the final production runs, the total energy range was broken
up into seven sectors in which only the minimum number of partial waves
required for convergence were used. This ranged from 350 for T < 100 K
to 800 for T > 4600 K.

The convergence of the real part of the collision function S(E), which
determines the broadened width of the spectral line for the given transition,
with number of partial waves is illustrated in Figure 1 for several values of
energy.

In summary, although the rprop2 package is easy to use and modify,
farm is the only feasible option for calculations at higher temperatures
where the coupled differential equations have to be integrated out to larger
distances, especially for atomic systems requiring the solution of larger sets
of equations.
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Figure 1: Convergence of Re[S(E)] with l for the Na 3d 2D3/2 → 3p 2P1/2

transition. The atomic unit of energy E0 is equivalent to 3.1577× 105 K.
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