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Boundary control of a rotating
Timoshenko beam

Stephen W. Taylor∗ Stephen C. B. Yau†
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Abstract

The boundary control of a rotating beam is investigated.
The beam is modelled by the Timoshenko beam equations,
which are a system of two coupled wave equations that in-
clude the effects of shearing and the rotational inertia of
cross-sections of the beam. The beam, which is pivoted at
one end and free at the other, has physical parameters that
may vary along the length of the beam. Conditions are found
for which both the angle of rotation and the vibrations of the
beam may be controlled by applying a force at the free end
and a torque at the pivoted end. This is an improvement on
previous work of the first author, who showed only that the
vibrations may be controlled.
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1 Introduction

Vibration has long been known for its capacity for disturbance, dis-
comfort, damage and destruction. Since ancient times, mankind has
tried to investigate ways to control this phenomenon. Thus, in the
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development of control theory for partial differential equations over
the last few decades, it is not surprising that fundamental elastic
systems such as beams have received a lot of attention. The familiar
Euler–Bernoulli beam equation has been the subject of many inves-
tigations. In its simplest form this models the beam’s transverse
vibrations by the equation

ρAWTT + EIWXXXX = 0 .

Here the X-axis coincides with the beam when it is at rest and
W (X,T ) is the displacement of the beam at time T in a direction
that is perpendicular to the X-axis. The parameters appearing here
are the beam’s density as mass per unit volume ρ, Young’s modulus
of elasticity E, cross-sectional area A, and moment of inertia I.

The Timoshenko beam theory has also received some attention.
This theory is an improvement of the Euler–Bernoulli system in
that it also takes into account rotational inertia and the shearing
deformation that occurs within a beam as it vibrates. The model
involves two coupled wave equations

ρAWTT + (kAG(Ψ−WX))X = 0 ,

ρIΨTT − (EIΨX)X + kAG(Ψ−WX) = 0 .

Here W and Ψ are the transverse and angular displacements respec-
tively. This model is described in detail in the next section.

One way to impose controls for partial differential equations
(pdes) is through boundary conditions. The space–variable domain
for a beam of length L may be taken to be the interval [0, L] which
has boundary points X = 0 and X = L . Various boundary condi-
tions are possible. For instance, if the beam is hinged at the origin
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and free at its other end then the boundary conditions take the form

W (0, T ) = 0 ,

EI(0)ΨX(0, T ) = −τ(T ) ,

ΨX(L, T ) = 0 ,

kAG(L)(Ψ(L, T )−WX(L, T )) = −f(T ) .

Here τ is an external torque applied at the origin and f is a force
applied at the free end. Such boundary conditions are described
in greater detail in the next section. Null boundary controllability
concerns finding functions f and τ that drive solutions of the pde
to its zero displacement rest state during a specified time interval.
The functions f and τ are often called controls or control functions.
In fact, for linear systems such as this, null-controllability implies
that initial states can be driven to any specified state.

The Timoshenko system is hyperbolic and consequently distur-
bances move with finite speed along the beam. Because of this it is
impossible to control the Timoshenko beam within an indefinitely
small time interval. In fact there is a time T0 associated with the
speed of propagation of singularities (see the next section for a de-
scription of this) such that the beam is not controllable during time
intervals [0, t] if t < T0 . It is interesting to note that boundary
controllability of the Euler–Bernoulli beam equation is possible for
arbitrarily small time intervals.

The boundary controllability of hinged–free and clamped–free
Timoshenko beams is investigated in [6]. The hinged–free case is
more closely related to the case of a rotating beam, so we briefly
discuss its controllability here. Provided that the control time is
chosen to be greater than T0 , it is shown in [6] that the system may
be driven to one of its rest states if and only if there are no nontrivial
solutions of an overdetermined eigenvalue problem consisting of the



2 Timoshenko Beam Theory E147

des

µ2ρW − (kAG(Ψ−WX))X = 0 ,

µ2ρIΨ + (EIΨX)X − kAG(Ψ−WX) = 0 ,

and the six homogeneous boundary conditions

W (0) = 0 , Ψ(0) = 0 , ΨX(0) = 0 ,

W (L) = 0 , WX(L)−Ψ(L) = 0 , ΨX(L) = 0 .

It is shown in [6] that nontrivial solutions of this system exist for
certain values of the elastic parameters.

One shortfall of the theory developed in [6] is the fact that the
hinged–free system has many rest states Ψ(X) = θ0 , W (X) = θ0X .
A further shortfall is that the hinged-free beam is a simplistic model
of a rotating beam that allows for only small angular displacements.

The two main aims of this paper are to overcome these two short-
falls. In fact in Section 3 we develop a better model for a rotating
Timoshenko beam which allows for larger angular displacements
and in Section 4 we modify our method to obtain controllability
for the θ0 = 0 case as well. A further aim is to correlate existing
information on the Timoshenko Theory.

2 Timoshenko Beam Theory

2.1 Basic Beam Theory

The Timoshenko theory (or thick beam theory) accounts for both
the effect of rotary inertia and shear deformation, which are ne-
glected when applied to Euler-Bernoulli beam theory (or thin beam
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theory). The transverse vibration of the beam depends on its geo-
metrical and material properties as well as the external applied force
and torque. The geometrical properties refer mainly to its length L,
size and shape of its cross-section such as its area A, moment of iner-
tia I with respect to the central axis of bending, and Timoshenko’s
shear coefficient k which is a modifying factor (k < 1) to account
for the distribution of shearing stress such that effective shear area
is equal to kA. The material properties refer to its density ρ in mass
per unit volume, Young’s modulus or modulus of elasticity E and
shear modulus or modulus of rigidity G. We assume that ρ, E, G,
k, A and I are all positive, C2 functions of the space variable.

A differential element of a beam is shown in Figure 1. Here W
is the transverse displacement of the neutral line at a distance X
from the left end of the beam at time T . Due to the effect of shear,
the original rectangular element changes its shape to somewhat like
a parallelogram with its sides slightly curved.

The shear angle ϑ (or loss of slope) is now equal to the slope of
bending Ψ less slope of centerline WX in the form

ϑ = Ψ−WX ,

and the shear force Q is against the internal shear loading in the
form

Q = −kAGϑ = −kAG(Ψ−WX) .

Similarly, the bending moment M is against the internal elastic
inertia in the form

M = −EIΨX .

Moreover, from Figure 1, we equate the transverse force and rotary
inertia of the element to form the following four simultaneous pdes
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Figure 1: Differential analysis of Timoshenko beam

M + EIΨX = 0 , (1a)

Q + kAG(Ψ−WX) = 0 , (1b)

MX −Q + ρIΨTT = 0 , (1c)

QX − ρAWTT = 0 . (1d)

Further, Equations (1a) and (1c) involve rotational motion while
Equations (1b) and (1d) involve transverse motion of the element.

Eliminating M and Q from (1) yields two simultaneous pdes in
W and Ψ:

ρAWTT + (kAG(Ψ−WX))X = 0 , (2a)

ρIΨTT − (EIΨX)X + kAG(Ψ−WX) = 0 . (2b)
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Equation (2a) is an equilibrium of translational force per unit length
against the internal shear force gradient while Equation (2b) is an
equilibrium of rotational torque per unit length equating to the
gradient of internal bending moment against the internal shear force.
This form is convenient for finding the normal modes and frequency
of free vibration and the solution is in the form of (W, Ψ) .

In the case of a uniform beam, Ψ can be eliminated from the
above two equations to form a single equation

EI

ρA
WXXXX −

I

A

( E

kG
+ 1
)
WXXTT +

ρI

kGA
WTTTT + WTT = 0 . (3)

This equation has four terms in the unit of force per unit mass or
acceleration. They are terms involving bending moment, shear force,
rotational motion and translational motion respectively. When the
shear and rotational terms are small and disregarded, the equation
will be that of the Euler-Bernoulli beam.

2.2 Characteristics of the beam

We differentiate (1a) and (1b) with respect to time T and introduce
new variables, linear velocity V and angular velocity Ω to yield

ΩX +
MT

EI
= 0 , (4a)

VX −
QT

kAG
− Ω = 0 , (4b)

MX −Q + ρIΩT = 0 , (4c)

QX − ρAVT = 0 . (4d)

A linear combination of Equations (4a) and (4c) yields

α(MT + EIΩX) + MX + ρIΩT −Q = 0 , (5)
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where α can be determined in such a way that the partial derivatives
of the above equation combine to give total derivatives dM

dX
and dΩ

dX

in the direction of unknown characteristic lines.

From dM
dX

= MX + MT
dT
dX

, we have α = dT
dX

and from dΩ
dX

=
ΩX + ΩT

dT
dX

, we have α = ρ
E

/
dT
dX

. Since the slope of characteristics
must be the same in both cases

α2 =
ρ

E

α =
dT

dX
= ±

√
ρ

E
= ± 1

v2

where v2 =
√

E/ρ . Substituting these equations back into (5) and
multiplying by dT yields

± 1

v2

dM + ρIdΩ−QdT = 0 ,

where dT = ± 1
v2

dX .

Similarly, a linear combination of Equations (4b) and (4d) yields

± 1

v1

dQ− ρAdV ± kAG

v1

ΩdT = 0

where v1 =
√

kG/ρ and dT = ± 1
v1

dX , hence the system of Equa-
tions (4) is hyperbolic and associated with it are the four real char-
acteristic equations:

I+ and I− ,
dT

dX
= ± 1

v2

; (6a)

II+ and II− ,
dT

dX
= ± 1

v1

. (6b)

Figure 2 illustrates these four characteristics, I+, I− and II+, II−

passing through a point P in the space-time plane. By properties of
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Figure 2: The characteristics of Timoshenko equations through
point P
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characteristics, the values of the unknowns M , Q, Ω and V at the
point P depend only on their initial values on the X-axis, between
X+

1 and X−
1 for characteristics I+ and I−, and between X+

2 and X−
2

for characteristics II+ and II−. Furthermore, these values at P can,
in turn, have influence only on points lying in the region above P
enveloped by the I+ and I− characteristics through P . Thus no
signal can proceed along the beam with a velocity greater than v2 .
In contrast, the Euler-Bernoulli beam theory predicts incorrectly
that disturbances propagate with infinite velocity.

For easy reference, the four characteristic differential equations
are grouped below:

along I+, I− : ± 1

v2

dM + ρIdΩ−QdT = 0 ; (7a)

along II+, II− : ± 1

v1

dQ− ρAdV ± ρAv1ΩdT = 0 . (7b)

2.3 Propagation of singularities

Characteristics are lines across which singularities may exist. In
Figure 2, singularities or jumps in M and Ω can therefore exist
across the I+ and I− characteristics and propagate with velocity v2,
while singularities in Q and V can exist across the II+ and II−

characteristics and propagate with velocity v1.

Let a and b be two points on I− across point P and very close
to P as shown in Figure 2. Assuming instantaneous loading, if M is
discontinuous across P , a finite value of moment δM = Ma − Mb

is allowed to approach P from either side. From Equation (7a), dT
approaches zero because a and b are very close, so

δM = v2ρIδΩ .
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Thus, such jumps δM and δΩ across P will travel along character-
istic I+ at speed v2. Similarly, the jumps on I+ across P will travel
along I− at speed v2 when passing through P . Applying the same
theory, similar results can be obtained with jumps δQ and δV for II
across P with speed v1.

Taking account of the direction of the characteristics, we have:

along I+, I− : δM = ±v2ρIδΩ ; (8a)

along II+, II− : δQ = ∓v1ρAδV . (8b)

Hence a jump in M on I+ or I− is always accompanied by a definite
jump in Ω. Similarly Q and V are coupled together.

From (7a) along I+, since Q is continuous across I+, the differ-
ence across P gives

d(δM) + v2ρId(δΩ) = 0 ,

Eliminating δΩ from (8a),

d(δM) + v2ρId(
δM

v2ρI
) = 0 .

which can be integrated for a jump from point 1 to point 2 to give

(δM)2 = (δM)1

√
(v2ρI)2

(v2ρI)1

.

Similarly, we eliminate δM from (8a) to give

(δΩ)2 = (δΩ)1

√
(v2ρI)1

(v2ρI)2

.

It can be shown that the identical relationship holds between jumps
in M or 2 similar points on I− characteristics.
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Applying the same theory to II yields

(δQ)2 = (δQ)1

√
(v1ρA)2

(v1ρA)1

,

(δV)2 = (δV)1

√
(v1ρA)1

(v1ρA)2

.

The interested reader may refer to John [2, p.35–37] or Leonard and
Budiansky [3] for more details for propagation of singularities and
travelling waves in beams.

2.4 Ratio of Moduli and Wave Speeds

Hooke’s law states that the uniaxial stress σX (or axial force per unit
sectional area) applied to a bar in the X direction is proportional
to the strain εX (or elongation per unit length) within the elastic
limit in the form

E =
σX

εX

,

where the constant E is the modulus of elasticity. In the case of 3-
dimensions, if a bar is lengthened by an axial force along the X-axis,
there is always a corresponding reduction of length in the Y and Z
directions and a ratio known as Poisson’s ratio ν (0 < ν < 1) is
introduced. This ratio refers to the strains in these directions and
is a constant for stresses within the elastic limit defined by

ν = − εY

εX

= − εZ

εX

(9)

where εX is the strain due only to the axial force in the X direction,
and εY and εZ are the strains induced in the Y and Z directions
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respectively. The minus sign indicates a decrease in transverse di-
mensions when εX is positive, as in the case of tensile elongation.

G

E
=

1

2(1 + ν)
.

Proof of this formula and further details can be obtained from most
Mechanics or Strength of Material books such as [5] Pages 74–84.

Hence the ratio of wave speeds V can be derived directly from
k and ν as

V =
v1

v2

=

√
kG

E
=

√
k

2(1 + ν)
<

1√
2
≈ 0.7071 . (10)

So in practice, G, E, v1 and v2 are all different such that 2G < E
and

√
2v1 < v2 . Hence the characteristics are distinct.

Common values of Poisson’s ratio ν are 0.25 to 0.30 for steel,
approximately 0.33 for most other metals, and 0.20 for concrete [5,
p.43].

The Timoshenko shear coefficient k is derived by Mindlin and
Deresiewics [4] to be π2/12 ≈ 0.822 for rectangular cross-section
and 0.847 for circular cross-section.

2.5 Boundary Conditions

In general, there are three common types of boundary conditions
at each end of the beam. They are hinged, clamped and free type,
again involving dynamics and geometrical properties of the beam:

hinged type W = 0 , M = EIΨX = 0 ;
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clamped type W = 0 , Ψ = 0 ;

free type Q = kAG(Ψ−WX) = 0 , M = EIΨX = 0 .

The combination of the above at both ends of the beam yields six sit-
uations: hinged-free, clamped-free, hinged-clamped, hinged-hinged,
clamped-clamped, and free-free types.

In this section we investigate free vibration and controls mainly
on the hinged-free type (for convenience, hereafter we call it a hinged
beam). Also we study the clamped-free type (hereafter called a
clamped beam), which has a similar set of equations to the hinged
beam, and use it for comparison of equations and as a test problem
to test numerical code.

The control functions of the hinged beam with one end hinged at
the origin and the other end free, are a torque τ applied at the origin
and a force f applied at the free end. The associated boundary
conditions are

W (0, T ) = 0 , (11a)

EI(0)ΨX(0, T ) = −τ(T ) , (11b)

ΨX(L, T ) = 0 , (11c)

kAG(L)(Ψ(L, T )−WX(L, T )) = −f(T ) . (11d)

For the clamped beam with one end clamped at the origin and the
other end free, the control functions are a force f and a torque τ
applied at the free end. The associated boundary conditions for this
case are

W (0, T ) = 0 , (12a)

Ψ(0, T ) = 0 , (12b)

kAG(L)(Ψ(L, T )−WX(L, T )) = −f(T ) , (12c)

EI(L)ΨX(L, T ) = −τ(T ) . (12d)
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In each case, the system is completed by including the initial con-
ditions

W (X, 0) = W o(X) , WT (X, 0) = Vo(X) , (13a)

Ψ(X, 0) = Ψo(X) , ΨT (X, 0) = Ωo(X) . (13b)

2.6 Boundary Controllability of the
non-Rotating Beams

Let T1 and T2 denote the times required for the two types of waves
to travel along the whole length of the hinged beam

T1 =

∫ L

0

dX

v1(X)
, T2 =

∫ L

0

dX

v2(X)
, (14)

and To = 2 max(T1, T2), and suppose that T > To . We seek control
functions f and τ belonging to L2(0, T ) for the hinged beam that
drives the solutions to one of the states

WT (X, T ) = ΨT (X, T ) = 0 , Ψ(X, T ) = θo , W (X, T ) = θoX , (15)

where θo is a constant that can be interpreted as the weighted aver-
age angle of rotation of the beam about the point at X = 0 .

For the clamped beam, solutions are driven to the states

W (X, T ) = Ψ(X, T ) = WT (X, T ) = ΨT (X, T ) = 0 .

In [6] it is shown that there are certain over-determined eigenvalue
problems associated with the hinged beam and the clamped beam.
We discuss these here and that of a rotating beam in Section 4. The
controllability of each of these two beam systems is linked to the
non-existence of an eigenfunction, and uncontrollability is linked
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to the existence of such an eigenfunction. For this reason, we call
such eigenvalue problems controllability eigenvalue problems. Here,
each eigenvalue problem with eigenvalue parameter µ consists of the
ordinary differential equations

µ2ρW − (kAG(Ψ−WX))X = 0 , (16a)

µ2ρIΨ + (EIΨX)X − kAG(Ψ−WX) = 0 , (16b)

and six homogeneous boundary conditions. The boundary condi-
tions associated with the eigenvalue problem for the hinged beam
are

W (0) = 0 , Ψ(0) = 0 , ΨX(0) = 0 , (17a)

W (L) = 0 , WX(L)−Ψ(L) = 0 , ΨX(L) = 0 . (17b)

The boundary conditions associated with the eigenvalue problem
for the clamped beam are

W (0) = 0 , W (L) = 0 , WX(L) = 0 , (18a)

Ψ(0) = 0 , Ψ(L) = 0 , ΨX(L) = 0 . (18b)

The eigenvalue problem for the clamped beam has only trivial solu-
tions (one need consider only the boundary conditions at X = L to
see this), so it is controllable.

2.7 Existence of Solutions to the Beam
Equations

To outline the existence theory of each of the systems (2), (11),
(13) and the systems (2), (12), (13), we use the classical method of
characteristics approach as used in Section 2.2. In this section, we
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assume that ρ, E, G, k, A and I are all positive, C1 functions of
the space variable.

The analysis is simplified by introducing the column vector U =
[U1, U2, U3, U4]

T where

U1 = −(
√

kAG(Ψ−WX) +
√

ρA WT )/2 , (19a)

U2 = −(
√

kAG(Ψ−WX)−
√

ρA WT )/2 , (19b)

U3 = −(
√

EI ΨX −
√

ρI ΨT )/2 , (19c)

U4 = −(
√

EI ΨX +
√

ρI ΨT )/2 , (19d)

from which we see that

U2 + U1 = −
√

kAG(Ψ−WX) ,

U2 − U1 =
√

ρA WT ,

U4 + U3 = −
√

EI ΨX ,

U4 − U3 = −
√

ρI ΨT .

The reason for coupling U1 and U2 together is that they are
equations involving translational motion. Similarly, U3 and U4 are
coupled together because they are equations involving rotational
motion.

The beam equations (2) are thus transformed to a single vector
equation

UT + ΛUX = BU− ΛXU/2, (20)

with

Λ =


v1

−v1

v2

−v2

 and B =


0 b1 b2 −b2

−b1 0 b2 −b2

−b2 −b2 0 b3

b2 b2 −b3 0

 ,
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where Λ is a diagonal matrix, v1 and v2 are speeds of the charac-
teristics derived in Section 2.2, and B is a skew-symmetric matrix
with

b1 =
1

2

(
√

kAG

(
1√
ρA

)
X

− (
√

kAG )X√
ρA

)
,

b2 = −1

2

√
kAG

ρI
,

b3 =
1

2

(
√

EI

(
1√
ρI

)
X

− (
√

EI )X√
ρI

)
.

The mechanical energy of the beam is

E =
1

2

∫ L

0

kAG(Ψ−WX)2 + ρAW 2
T + EIΨ2

X + ρIΨ2
T dX . (21)

In the new variables, the energy equation (21) is now in the form

E =

∫ L

0

U2
1 + U2

2 + U2
3 + U2

4 dX . (22)

Boundary conditions (11) for the hinged beam now take the form

U2(0, T )− U1(0, T ) = 0 , (23a)

U4(0, T ) + U3(0, T ) = (EI)(0)−1/2τ(T ) , (23b)

U4(L, T ) + U3(L, T ) = 0 , (23c)

U2(L, T ) + U1(L, T ) = (kAG)(L)−1/2f(T ) . (23d)

Boundary conditions (12) for the clamped beam take the form

U2(0, T )− U1(0, T ) = 0 , (24a)

U4(0, T )− U3(0, T ) = 0 , (24b)

U2(L, T ) + U1(L, T ) = (kAG)(L)−1/2f(T ) , (24c)

U4(L, T ) + U3(L, T ) = (EI)(L)−1/2τ(T ) . (24d)
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In each case, the initial condition of the system can be denoted

U(X, 0) = g(X) . (25)

We quote herewith the theorems of Classical and Finite Energy
Solutions without proof from the paper [6].

Theorem 1 (Classical Solutions) If the boundary data f , τ and
the initial data g are continuously differentiable and satisfy the ap-
propriate compatibility conditions, then each of the systems (20),
(23), (25) and that of (20), (24), (25) has a unique classical solu-
tion.

Theorem 2 (Finite Energy Solutions I) If the boundary data f ,
τ are in L2(0, T ) and the initial data g ∈ H , then each of the sys-
tems (20), (23), (25) and that of (20), (24), (25) has a unique finite
energy solution U . In fact, U ∈ C(0, T ;H) .

Theorem 3 (Finite Energy Solutions II) If the boundary data f ,
τ are in L2(0, T ) and (W o, Ψo) ∈ Vh and (Vo, Ωo) ∈ Ho , then the
system (2), (11), (25) has a unique weak solution (W, Ψ) such that
(W, Ψ) ∈ C(0, T ;Vh) , (WT , ΨT ) ∈ C(0, T ;Ho) .

Here we define the finite energy space H = (L2(0, L))4 , the norm of
which is given by

‖U‖ =
(∫ L

0

|U1|2 + |U2|2 + |U3|2 + |U4|2 dX
)1/2

and say that a weak solution U is a finite energy solution if U ∈
L∞(0, T ;H) . Also we set Ho = (L2(0, L))2 and Vh = {(W, Ψ) ∈
H1(0, L)2 : W (0) = 0} . Further we can state a theorem simi-
lar to Theorem 3 for (2), (12), (25) by replacing Vh with Vc with
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Vc = {(W, Ψ) ∈ H1(0, L)2 : W (0) = Ψ(0) = 0} where (W, Ψ) ∈
C(0, T ;Vc) .

We again call such solutions finite energy solutions. The inter-
ested reader may refer to paper [6] for proof. We will see that similar
results hold for the rotating beam.

3 A Rotating Timoshenko Beam

3.1 Relative Motion of the Rotating Beam

Consider a beam rotating anticlockwise about the pinned point at
the origin with its moving frame as indicated by X-Y axes which is
inclined at an angle θ relative to a fixed reference frame as indicated
by X̃-Ỹ axes at time T . The centerline of the beam is more or
less coincident with the X-axis. More precisely, θ is the weighted
average angle of inclination through the origin to be defined by
Equation (30) and shown in Figure 3. Here we assume that the
speed of rotation is small so that any longitudinal elongation and
stress of the beam due to rotation are small and may be neglected.

Let P = [X, W ]T be the position vector of a point P on the
centerline of the beam at a distance X from the origin. The tangent
vector ∂P

∂X
of the centerline at P is inclined at an angle β with the

X-axis.

To avoid confusion and for our easy reference, we use nota-
tions W , Ψ (and β to be defined as below), and X-Y axes in the
moving frame as we have defined before as in Figure 1 and intro-
duce the corresponding new notations W̃ , Ψ̃, β̃ and X̃-Ỹ axes in
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Figure 3: Rotating beam with moving frame

the fixed frame such that

Ψ̃ = Ψ + θ , (26a)

β̃ = β + θ . (26b)

The transverse displacement W is now in the form

W =

∫ X

0

β(u) du . (27)

The position vector with respect to the fixed reference frame is

P =

[
cos θ − sin θ
sin θ cos θ

] [
X
W

]
=

[
X cos θ −W sin θ
X sin θ + W cos θ

]
,
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hence the velocity vector PT is given by

PT = (XθT + WT )

[
− sin θ

cos θ

]
−WθT

[
cos θ
sin θ

]
≈ (XθT + WT )

[
− sin θ

cos θ

]
,

and

|PT |2 ≈ (XθT + WT )2 = W̃ 2
T ,

where

W̃ =

∫ X

0

β̃(u) du = W + Xθ . (28)

To define the angle θ we need to express the idea that a certain
weighted average of the displacements is zero in the moving coor-
dinate frame. We soon see that there are mathematical advantages
to do this by requiring∫ L

0

ρIΨ + ρAXW dX = 0 , (29)

or ∫ L

0

ρI(Ψ̃− θ) + ρAX

∫ X

0

(β̃(u)− θ) du dX = 0 ,

from which we define the weighted average angle θ as

θ =

∫ L

0
ρIΨ̃ + ρAXW̃ dX∫ L

0
ρI + ρAX2 dX

. (30)
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3.2 Energy and Equations of a Rotating Beam

The kinetic energy of the beam is in the form

KE =
1

2

∫ L

0

ρIΨ̃2
T + ρAW̃ 2

T dX

=
1

2

∫ L

0

ρI(ΨT + θT )2 + ρA(WT + XθT )2 dX

=
1

2

∫ L

0

ρIΨ2
T + ρAW 2

T + ρ(I + AX2)θ2
T dX .

The potential energy of the beam is now in the form

PE =
1

2

∫ L

0

EIΨ̃2
X + kAG(Ψ̃− W̃X)2 dX.

=
1

2

∫ L

0

EIΨ2
X + kAG(Ψ−WX)2 dX .

The virtual work functional subjected to constraint (29) is now in
the form

W =

∫ T

0

KE− PE− γ(T )

∫ L

0

ρIΨ + ρAXW dX dT

where γ(T ) is the Lagrange multiplier associated with the constraint
at time T . We calculate the first variation δW in order to apply the
principle of virtual work and find the equations of motion. Applying
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integration by parts yields

δW =

∫ T

0

∫ L

0

ρIΨT δΨT + ρAWT δWT + ρ(I + AX2)θT δθT

− EIΨXδΨX − kAG(Ψ−WX)(δΨ− δWX)

− γ(T )(ρIδΨ + ρAXδW ) dX dT

=

∫ L

0

[
ρIΨT δΨ + ρAWT δW + ρ(I + AX2)θT δθ

]T
0

dX

−
∫ T

0

[
EIΨXδΨ− kAG(Ψ−WX)δW

]L
0

dT

−
∫ T

0

∫ L

0

(
ρIΨTT − (EIΨX)X + kAG(Ψ−WX) + ρIγ(T )

)
δΨ

−
(
ρAWTT + (kAG(Ψ−WX))X + ρAXγ(T )

)
δW

− ρ(I + AX2)θTT δθ dX dT .

For free vibration, and from Hamilton’s principle for conservative
systems as stated by Géradin and Rixen [1], δW = 0 so the coeffi-
cients of δW , δΨ and δθ must all be zero in the integrand and also
at the end points.

Equating the coefficients of δW , δΨ and δθ yields

ρA(WTT + Xγ(T )) + (kAG(Ψ−WX))X = 0 , (31a)

ρI(ΨTT + γ(T ))− (EIΨX)X + kAG(Ψ−WX) = 0 , (31b)

θTT

∫ L

0

ρ(I + AX2) dX = 0 . (31c)

with homogeneous boundary conditions

ΨX(0, T ) = ΨX(L, T ) = W (0, T ) = Ψ(L, T )−WX(L, T ) = 0 .

Also from Equation (31c), since the moment of inertia at the ori-

gin
∫ L

0
ρ(I + AX2) dX > 0 , the angular acceleration part θTT of
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the equation must vanish, which means that the beam rotates with
constant angular velocity θT under free vibration.

When a torque τ(T ) is applied at X = 0 and a force f(T ) is
applied at X = L, we must add the following term to the virtual
work:

δW+ =

∫ T

0

fδ(displacement)|X=L + τδ(angle)|X=0 dT

=

∫ T

0

f(Lδθ + δW (L, T )) + τ(δθ + δΨ(0, T )) dT

=

∫ T

0

(fL + τ)δθ + fδW (L, T ) + τδΨ(0, T ) dT .

Equating the coefficient of δθ = 0 of the equation δ(W +W+) = 0
yields

θTT

∫ L

0

ρ(I + AX2) dX = f(T )L + τ(T ) . (32)

The associated boundary conditions are

W (0, T ) = 0 , (33a)

EI(0)ΨX(0, T ) = −τ(T ) , (33b)

ΨX(L, T ) = 0 , (33c)

kAG(L)(Ψ(L, T )−WX(L, T )) = −f(T ) . (33d)

Taking second derivatives of Equation (29) and substituting (31),
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(32) and (33) yields

0 =
d2

dT 2

∫ L

0

ρIΨ + ρAXW dX

=

∫ L

0

(EIΨX)X − kAG(Ψ−WX)−X(kAG(Ψ−WX))X

− ρ(I + AX2)γ(T ) dX

=
[
EIΨX −XkAG(Ψ−WX)

]L
0
− γ(T )

∫ L

0

ρ(I + AX2) dX

= τ + fL− γ(T )

∫ L

0

ρ(I + AX2) dX

= (θTT − γ(T ))

∫ L

0

ρ(I + AX2) dX .

Hence the Lagrange multiplier γ is identified as the angular accel-
eration:

γ(T ) = θTT . (34)

Substituting (34) into (31) yields

ρAW̃TT + (kAG(Ψ̃− W̃X))X = 0 , (35a)

ρIΨ̃TT − (EIΨ̃X)X + kAG(Ψ̃− W̃X) = 0 . (35b)

where W̃ = W +Xθ and Ψ̃ = Ψ+θ as defined. Hence Equation (35)
has been put in exactly the same form as that of (2) simply by
replacing W with the arc length (W + Xθ) and Ψ by (Ψ + θ) as
shown in Figure 3.

The associated boundary conditions of the rotating beam in
terms of W̃ and Ψ̃ are

W̃ (0, T ) = 0 , (36a)

EI(0)Ψ̃X(0, T ) = −τ(T ) , (36b)

Ψ̃X(L, T ) = 0 , (36c)

kAG(L)(Ψ̃(L, T )− W̃X(L, T )) = −f(T ) , (36d)
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which are identical to those of the hinged beam as given by Equa-
tions (11).

3.3 Partial Boundary Controllability of the
Rotating Beam

Recall from Section 2.6 that the hinged beam can be driven to one
of the states given by (15)

WT (X, T ) = ΨT (X, T ) = 0 , Ψ(X, T ) = θo, W (X, T ) = θoX,

where θo is a constant and T > 2 max(T1, T2) with T1 and T2 defined
by Equations (14). Consequently the rotating beam can be driven
to one of the states

W̃T (X, T ) = Ψ̃T (X, T ) = 0 ,

Ψ̃(X, T ) = θf , W̃ (X, T ) = θfX, (37)

with θf = θo + θT where θT is the weighted average angular dis-
placement of the beam at time T .

The following conditions are relevant to our controllability re-
sults:

1. ρ, A, I, k, G and E are all positive functions of the space
variable X and all belong to C2([0, L]) .

2. T > 2 max(T1, T2) .

We summarise these partial controllability results as a theorem.

Theorem 4 (Controllability) Suppose that conditions 1–2 above
hold. Then the following statements are true.
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1. Suppose that there are no nontrivial solutions of the eigen-
value problem (16), (17). Given finite energy initial data of
the hinged beam problem (2), (11) and (25), there exist con-
trol functions f ∈ L2(0, T ) and τ ∈ L2(0, T ) , that drive the
system to its rest state at time T :

W (X, T )− θoX = Ψ(X, T )− θo = 0 ,

WT (X, T ) = ΨT (X, T ) = 0 , 0 < X < L .

2. Suppose that there are no nontrivial solutions of the eigen-
value problem (16), (17). Given finite energy initial data of
the rotating beam problem (35), (36) and (25), there exist con-
trol functions f ∈ L2(0, T ) and τ ∈ L2(0, T ) , that drive the
system to its rest state at time T :

W̃ (X, T )− θfX = Ψ̃(X, T )− θf = 0 ,

W̃T (X, T ) = Ψ̃T (X, T ) = 0 , 0 < X < L .

with θf = θo + θT where θT is the weighted average angular
displacement of the beam at time T .

3. If there exist nontrivial solutions of the eigenvalue problem (16)
and (17), then both the hinged problem (2), (11) and (25), and
the rotating problem (35), (36) and (25), are not even approx-
imately controllable.
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3.4 Existence of Solutions to the Beam
Equations

For the system (35) and (36), we use Ũ = [Ũ1, Ũ2, Ũ3, Ũ4]
T in the

same way as in Section 2.7 and from (19)

Ũ1 = −(
√

kAG(Ψ̃− W̃X) +
√

ρA W̃T )/2 ,

Ũ2 = −(
√

kAG(Ψ̃− W̃X)−
√

ρA W̃T )/2 ,

Ũ3 = −(
√

EI Ψ̃X −
√

ρI Ψ̃T )/2 ,

Ũ4 = −(
√

EI Ψ̃X +
√

ρI Ψ̃T )/2 ,

with Equation (20) now taking the form

ŨT + ΛŨX = BŨ− ΛXŨ/2 .

The mechanical energy of the beam is in the same form as (21)
and (22):

Ẽ =
1

2

∫ L

0

kAG(Ψ̃− W̃X)2 + ρAW̃ 2
T + EIΨ̃2

X + ρIΨ̃2
T dX

=

∫ L

0

Ũ2
1 + Ũ2

2 + Ũ2
3 + Ũ2

4 dX

The boundary conditions analogous to (23) now take the form

Ũ2(0, T )− Ũ1(0, T ) = 0 , (38a)

Ũ4(0, T ) + Ũ3(0, T ) = (EI)(0)−1/2τ̃(T ) , (38b)

Ũ4(L, T ) + Ũ3(L, T ) = 0 , (38c)

Ũ2(L, T ) + Ũ1(L, T ) = (kAG)(L)−1/2f̃(T ) . (38d)

Also the system is completed by including the initial condition which
is the same as (25)

Ũ(X, 0) = g(X) (39)
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with the variation of θ given by (32).

Theorems 1-3 in Section 2.7 for the hinged beam are also valid
for the rotating beam.

4 An Auxiliary Problem and

Boundary Controllability

So far we have been able to make use of (partial) controllability
results in [6] already proven for the hinged beam. To make further
progress and show that the rotating beam is (completely) control-
lable, we modify the procedure followed in [6], which makes use of
a certain auxiliary problem to prove controllability.

4.1 Auxiliary Problem and Contraction
Properties

If the length of our hinged beam is extended from (0, L) to (−∞, L)
and a second semi-infinite beam is hinged at the free end, we obtain
a system which is very useful when considering controllability of the
original system. This system consists of two semi-infinite beams as
shown in Figure 4 which represent what we call an auxiliary problem.
The boundary conditions at X = 0 and X = L are

W (0, T ) = ΨX(L, T ) = 0 .

Further, since there is no external torque applied at the origin and
displacement of the two beams must be the same at X = L, we
have

ΨX(0−, T ) = ΨX(0+, T ) , W (L−, T ) = W (L+, T ) .
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X=0 X=L X

Figure 4: The Auxiliary Problem

Due to the above, it will be more convenient to break down the
beam equation UT + ΛUX = BU−ΛXU/2 into two sub-equations
for the auxiliary problem as follows:

[UI ]T + ΛI [UI ]X = BIU− [ΛI ]X UI/2 ,

for (X, T ) ∈ ((−∞, 0) ∪ (0,∞))× R ;

[UII ]T + ΛII [UII ]X = BIIU− [ΛII ]X UII/2 ,

for (X, T ) ∈ ((−∞, L) ∪ (L,∞))× R ;

U2(0, T )− U1(0, T ) = 0 , T ∈ R ;

U4(L, T ) + U3(L, T ) = 0 , T ∈ R ; (40)

where

UI = [U1, U2]
T , UII = [U3, U4]

T , U = [UI ,UII ]
T ;

BI =

[
0 b1 b2 −b2

−b1 0 b2 −b2

]
, BII =

[
−b2 −b2 0 b3

b2 b2 −b3 0

]
,

B =

[
BI

BII

]
; ΛI = v1

[
1
−1

]
, ΛII = v2

[
1
−1

]
,

Λ =

[
ΛI

ΛII

]
; R = (−∞,∞) .

and [UI ]T , [UI ]X denotes the partial derivatives of UI with respect
to T and X respectively.
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For our controllability results we now assume that ρ, E, G, k,
A and I are all positive, C2 functions of the space variable. The
properties of the auxiliary problem that we need for proving con-
trollability of the rotating beam have already been proven in [6].
We summarise these below.

In the following theorems,

U(X, 0) = G(X) = [G1(X), G2(X), G3(X), G4(X)]T

and H = (L2(R))4 is the finite energy space with norm

‖U‖ =

(∫ ∞

−∞
|U1|2 + |U2|2 + |U3|2 + |U4|2 dX

)1/2

,

and D is the set of functions U ∈ H such that

1. U1 and U2 are in H1(−∞, 0) and H1(0,∞) ,

2. U3 and U4 are in H1(−∞, L) and H1(L,∞) ,

3. U1−U2 and U3+U4 are almost everywhere equal to continuous
functions, and in this sense U1(0)−U2(0) = 0 , U3(L)+U4(L) =
0 .

For Theorem(5), we let B be the operator on H with domain D
given by

BU = −ΛUX − ΛXU/2 + BU . (41)

Theorem 5 (Finite Energy Solutions II) B is the infinitesimal
generator of a strongly continuous unitary group U(T ) on H.
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Of course, the fact that U(T ) is unitary for each T corresponds
to conservation of energy for the physical system. The solution of
the auxiliary problem with initial value g(X) is

U(X, T ) = U(T )g(X) .

Theorem 6 (Trace Property) The restrictions of components of
finite energy solutions to lines parallel to the T -axis are locally L2 func-
tions. Moreover, if U is such a solution, then the mapping X →
Ui(X, ·) into L2

loc(R) , is continuous everywhere except possibly at X =
0 for (40) and i = 1, 2, and at X = L for (40) and i = 3, 4. At
these discontinuities, the left and right limits of the mapping exist.

Recall that boundary control of hyperbolic systems requires a
time interval determined by the speed of the characteristics. In our
case we must take into account the time it takes for disturbances
to traverse the whole length [0, L] of the physical beam twice, as
is illustrated in Figure 5. In this figure, C1 is the union of the
characteristic with velocity −v1(X) starting at X = L, T = 0 and
the characteristic with velocity v1(X) starting at X = 0 at the time
when the former characteristic meets the T -axis. C2 is a similar
union of characteristics with velocities ±v2(X) . We set

T0 = 2 max

(∫ L

0

ds

v1(s)
,

∫ L

0

ds

v2(s)

)
.

Let S be the subspace of H consisting of functions with supports
in the interval [0, L] and let P denote the projection onto S. Thus
P may be regarded as the operator which multiplies functions by
the characteristic function of the interval [0, L].

Theorem 7 (Contraction Property) Suppose that
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Figure 5: Relationship between T0 and the characteristics
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1. T > T0;

2. There are no non-trivial solutions of the over-determined eigen-
value problem (16)–(17);

3. The wave speeds v1(X) and v2(X) are distinct at each point
X ∈ [0, L];

then ||PU(T )P|| < 1 .

The distinctness of the wave speeds is a technical requirement of
some of the proofs in [6] and it is possible that it is not needed. How-
ever, according to the discussion of Section 2.4, real beams satisfy
this requirement anyway.

4.2 Controlling the Hinged Beam

Before considering the control of the rotating beam, it is instructive
to see how Theorem 4 for controllability of the hinged beam may be
deduced from Theorem 7.

The idea is to start with initial data for the boundary control
problem and extend it to be initial data for the auxiliary problem
by letting it be equal to zero outside the interval [0, L]. Let g denote
the extension. Notice that g ∈ S . Next, we seek new initial data
f ∈ H such that:

1. f(X) = g(X) a.e. for X ∈ [0, L] ;

2. U(X, T ) = 0 a.e. for X ∈ [0, L] , where U(., T ) = U(T )f .



4 An Auxiliary Problem and Boundary Controllability E179

If we can find such initial data f then we can find appropriate
control functions f and τ for the boundary control problem by eval-
uating the boundary conditions (38) for the known solution U(X, T )
of the auxiliary problem. Further, the trace property, Theorem 6,
shows that f, τ ∈ L2(0, T ) .

It remains to see how we can find f . The two conditions listed
above for f may be written

Pf = g , (42a)

PΦf = 0 , (42b)

where Φ = U(T ) . Φ is a unitary operator so Φ∗ = Φ−1 , where
Φ∗ and Φ−1 denote the dual and inverse of Φ respectively. We
now see how to find such an f satisfying these properties and the
additional property that ||f || is the smallest possible.

We attempt to do this using Lagrange multipliers γ1 and γ2

belonging to H and the functional

J (f) =
1

2
(f , f)− (Pf − g, γ1)− (PΦf , γ2) .

The first variation of J is

δJ =
1

2
(f , δf) +

1

2
(δf , f)− (Pδf , γ1)− (PΦδf , γ2)

= (δf , f)− (δf ,Pγ1)− (δf ,Φ∗Pγ2)

= (δf , f −Pγ1 −Φ∗Pγ2) .

The requirement that δJ = 0 yields

f = Pγ1 + Φ∗Pγ2. (43a)

Substituting (43a) into (42b) yields

PΦ(Pγ1 + Φ∗Pγ2) = 0 ,

Pγ2 = −PΦPγ1. (43b)
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Substituting (43b) into (43a) yields

f = Pγ1 −Φ∗PΦPγ1 = (̂I−Φ∗PΦP)Pγ1, (43c)

where Î denotes the 4× 4 identity matrix.

Substituting (43c) into (42a) yields

P(̂I−Φ∗PΦP)Pγ1 = g ,

Pγ1 = (̂I−PΦ∗PΦP)−1g . (43d)

Substituting (43d) into (43c) yields

f = (̂I−Φ∗PΦP)(̂I−PΦ∗PΦP)−1g . (44)

We suppose that the conditions of the contraction result, Theo-
rem 7, are valid. If this is the case then ||PΦP|| < 1 and hence
||PΦ∗PΦP|| < 1 , so the inverse operator appearing in Equation (44)
is well defined and bounded. It is easy to verify that f satisfies the
required properties.

4.3 Controlling the Rotating Beam

The discussion above for the control of the hinged beam shows how
the beam may be brought to rest during a finite time interval but it
does not address the final angle of inclination of the beam. In this
section we consider the additional constraint that the final angle of
inclination θ is zero.

Differentiating Equation (30) with respect to T yields

θT =

∫ L

0
ρIΨ̃T + ρAXW̃T dX∫ L

0
ρ(I + AX2) dX

.



4 An Auxiliary Problem and Boundary Controllability E181

Integrating this over the time interval [0, T ] yields∫ T

0

∫ L

0

ρIΨ̃T + ρAXW̃T dX dT = (θ(T )− θ(0))

∫ L

0

ρ(I + AX2) dX,

that is∫ T

0

∫ L

0

−
√

ρI(Ũ4 − Ũ3) +
√

ρA X(Ũ2 − Ũ1) dX dT = constant,

or ∫ T

0

(Z, Ũ) dT = κ,

where Z(X) = [−
√

ρA X,
√

ρA X,
√

ρI,−
√

ρI ]T , Ũ = [Ũ1, Ũ2, Ũ3, Ũ4]
T

and (Z, Ũ) denotes the Hilbert space inner product of Z and Ũ. The
constraint equation can be rewritten as∫ T

0

(Z, Ũ) dT =

∫ T

0

(Z, PU(T )f) dT

=

(
Z, P

∫ T

0

U(T ) dT f

)
= (Z, PΩ(T ) f)

= κ .

where Ũ(T ) = PU(T )f is equal to the solution in the interval [0, L]

and is zero outside the interval and Ω(T ) =
∫ T

0
U(T ) dT .

The constraint problem for rotating beam now takes the form:
minimise

||f ||2 = (f , f) ,

subject to

Pf = g , (45a)

PΦf = 0 , (45b)

(PΩf ,Z) = κ . (45c)
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Using Lagrange multipliers γ1 ∈ H , γ2 ∈ H and γ3 ∈ R , we have

J (f) =
1

2
(f , f)− (Pf − g, γ1)− (PΦf , γ2)− γ3((PΩf ,Z)− κ) ,

δJ = (δf , f)− (Pδf , γ1)− (PΦδf , γ2)− γ3(PΩδf ,Z)

= (δf , f −Pγ1 −Φ∗Pγ2)− γ3(δf ,Ω
∗PZ)

= (δf , f −Pγ1 −Φ∗Pγ2 − γ3Ω
∗PZ)

But we require δJ = 0 , so we have

f = Pγ1 + Φ∗Pγ2 + γ3Ω
∗PZ . (46a)

Substituting (46a) into (45a) yields

Pγ1 + PΦ∗Pγ2 + γ3PΩ∗PZ = g . (46b)

Substituting (46a) into (45b) yields

Pγ2 = −(PΦPγ1 + γ3PΦΩ∗PZ) . (46c)

Substituting (46c) into (46b) yields

Pγ1 = −(̂I−PΦ∗PΦP)−1(γ3(P−PΦ∗PΦ)Ω∗PZ− g) . (46d)

Substituting (46c) and (46d) into (46a) yields

f = (̂I−Φ∗PΦP)Pγ1 + γ3(̂I−Φ∗PΦ)Ω∗PZ

= γ3(̂I−Φ∗PΦP− (̂I−PΦ∗PΦP)−1(P−PΦ∗PΦ))Ω∗PZ

+ (̂I−Φ∗PΦP)(̂I−PΦ∗PΦP)−1g

= γ3~a + ~b . (46e)

Substituting (46e) into (45c) yields

(PΩ(γ3~a + ~b),Z) = κ,

γ3(PΩ~a,Z) = κ− (PΩ~b,Z) ,

γ3 =
κ− (PΩ~b,Z)

(PΩ~a,Z)
(46f)
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Finally, Substituting (46f) into (46e) yields

f =
(κ− (PΩ~b,Z))

(PΩ~a,Z)
~a + ~b , (47)

where the vectors

~a = (̂I−Φ∗PΦ− (̂I−PΦ∗PΦP)−1(P−PΦ∗PΦ))Ω∗PZ ,

~b = (̂I−Φ∗PΦP)(̂I−PΦ∗PΦP)−1g .

The control functions f and τ for the rotating beam are now found
as in the last section for the hinged beam. Note that we have one
extra condition for controllability: that (PΩ~a,Z) 6= 0 . Clearly
this condition, which may be verified for specific beams, must be
satisfied for our method to work. However, it is not known if the
condition is necessary for boundary controllability.
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