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Optimal boundary control of a linear
parabolic evolution system
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Abstract

We consider the optimal boundary control of a linear
parabolic boundary value problem. Firstly, the problem is
formulated as an optimization problem with the system state
governed by a parabolic partial differential equation. Based
on the formulation for the variation of the cost functional,
a gradient-type optimization technique utilizing the finite
element method is then developed to solve the constrained
optimization problem. Finally, a numerical example is given
and the results show that the method of solution is robust.

Contents

1 Introduction C837
∗Department of Mathematics and Statistics, Curtin University of

Technology, GPO Box U1987, W.A. 6845, Australia.
mailto:yhwu@maths.curtin.edu.au

0See http://anziamj.austms.org.au/V44/CTAC2001/Wu00 for this article,
c© Austral. Mathematical Soc. 2003. Published 1 April 2003. ISSN 1446-8735

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Australian Mathematical Society (AustMS): E-Journals

https://core.ac.uk/display/276819812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yhwu@maths.curtin.edu.au
http://anziamj.austms.org.au/V44/CTAC2001/Wu00


1 Introduction C837

2 Variation of the cost functional C839

3 Numerical algorithm C841

4 Solution of the state system C842

5 Numerical results C845

References C849

1 Introduction

Many natural and industrial process involve diffusion. Typical ex-
amples are the transient transfer of heat and the diffusion of chem-
icals. A diffusion process is governed by a parabolic type partial
differential equation subject to certain initial and boundary condi-
tions [3, 4], and the behavior of the process can be controlled by
the condition imposed on the boundary. In this paper, we are con-
cerned with the boundary control of a diffusion process governed by
a linear parabolic partial differential equation.

Let T be the system state, t be time, x = (x1, x2) be the position
vector, Ω be the region under consideration, Γ be the boundary of Ω,
Σ = Γ × (0, tA] , and Q = Ω × (0, tA] . Then the boundary value
problem governing the state of a typical linear parabolic evolution
system is the bvp:

∂T (x, t; u)

∂t
−∇2T (x, t; u) = f(x, t) , (x, t) ∈ Q ,

T (x, 0) = T 0(x) , x ∈ Ω ,

∂T (x, t)

∂n
= u(x, t) , (x, t) ∈ Σ , (1)
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Figure 1: Diagram showing the region Ω and the domain Q .

where T = T (x, t; u) and the inclusion of u is to indicate that the
state T (x, t) depends on the boundary control u.

Let z(x, t) be the desired target state of T and U be the admissi-
ble space for u. Then the problem of finding the boundary control u
to achieve the desired target state is cast in the least square sense
by the following constrained optimization problem (cop) [1, 6, 7]:

min
v∈U

J(v) =

∫
Q

[T (x, t; v)− z(x, t)]2 dx dt , (2)

subject to T being the solution of the bvp (1).

Theorem 1 The cost functional J(v) in (2) can be expressed as

J(v) = a(v, v)− 2I(v) + k , (3)
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where a(v, v) and I(v) are respectively the continuous bilinear and
linear functionals defined by

a(u, v) =

∫
Q

[T (x, t; u)− T (x, t; 0)] [T (x, t; v)− T (x, t; 0)] dx dt ,

I(v) = −
∫

Q

[T (x, t; v)− T (x, t; 0)] [T (x, t; 0)− z(x, t)] dx dt ,

k =

∫
Q

[T (x, t; 0)− z(x, t)]2 dx dt . (4)

Proof: by substituting (4) into (3). ♠

Various attempts have been made to solve this type of con-
strained optimization problem [8, 12, 5, 11]. However, there does
not appear to be any efficient numerical algorithm available. In this
paper, we present and test an efficient gradient type numerical tech-
nique for the solution of the problem based on previous work in the
field [7, 8, 12, 5, 11] and utilizing the finite element method for the
associated direct boundary value problems.

2 Variation of the cost functional

Consider the cost functional J(u) as defined in (3). Let h be the vari-
ation of u, then the corresponding increment of the functional J(u)
is

∆J(u) = J(u + h)− J(u) .

From Theorem 1, we have

∆J(u) = a(u + h, u + h)− 2I(u + h)− a(u, u) + 2I(u)

= 2a(u, h)− 2I(h) + a(h, h) . (5)
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Neglecting the higher order term of h, the variation of the func-
tional J(v), which is the principal linear part of the functional in-
crement, is

δJ(u) = 2a(u, h)− 2I(h) .

Let h = 1
2
v , we have

δJ(u) = a(u, v)− I(v) . (6)

Theorem 2 The variation of the cost functional can be determined
by

δJ(u) =

∫
Σ

p(u)v dx dt ,

where p(u), denoting p(x, t; u) , is defined by the following adjoint
initial boundary value problem

−∂p(x, t; u)

∂t
−∇2p(x, t; u) = T (x, t; u)− z(x, t) , (x, t) ∈ Q ,

∂p

∂n
= 0 , (x, t) ∈ Σ ,

p(x, tA) = 0 , (x, t) ∈ Ω . (7)

Proof: For simplicity in notation, we denote T (x, t; w) by T (w)
throughout the proof. Now, by the definition of a and I as given
in (4), we have from (6)

δJ(u) =

∫
Q

[T (u)− z] [T (v)− T (0)] dx dt , (8)

which, on using (7)1 (the first equation of (7)), becomes

δJ(u) =

∫
Q

{
−∂p(u)

∂t
−∇2p(u)

}
[T (v)− T (0)] dx dt . (9)
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Using Green’s Theorem and making use of equations (1)1, (1)3

and (7)2, we have

−
∫

Q

∇2p(u) [T (v)− T (0)] dx dt

=

∫
Q

p(u)

[
∂T (0)

∂t
− ∂T (v)

∂t

]
dx dt +

∫
Σ

p(u)v dx dt . (10)

Further, by using the product rule for differentiation and noting
equation (7)3 and utilizing T (x, 0; v) = T (x, 0; 0) , we have

−
∫

Q

∂p(u)

∂t
[T (v)− T (0)] dx dt =

∫
Q

p(u)

[
∂T (v)

∂t
− ∂T (0)

∂t

]
dx dt .

(11)
Substituting (10) and (11) into (9), we have

δJ(u) =

∫
Σ

p(u)v dx dt . (12)

♠

3 Numerical algorithm

The solution of the cop problem (2) is difficult, as it involves the
determination of the boundary control u(x, t) at an infinite number
of points on Σ. Thus, in order to find the numerical solution of
the problem, we approximate the problem by a finite dimensional
optimization problem. For this purpose, we firstly discretize Σ as
N equal-sized subregions ∆Σi with Σ =

⋃N
i=1 ∆Σi and then approx-

imate u(x, t) as a piecewise continuous function, namely

u(x, t) = ui , ∀(x, t) ∈ ∆Σi , i = 1, 2, 3, . . . , N .
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Thus the problem becomes to find u = [u1, u2, u3, . . . , uN ]T such
that

J(u) = inf
vi∈U

J(v) .

As the cost functional now depends on u1, u2, u3, . . . , uN , we define
the gradient of the cost functional by

G =

[
∂J

∂u1

,
∂J

∂u2

, . . . ,
∂J

∂uN

,

]T

,

where

∂J

∂ui

=
1

∆ui

[J(u1, u2, . . . , ui + ∆ui, . . . , uN)

− J(u1, u2, . . . , ui, . . . , uN)] .

Using (12) with

1

2
v(x, t) = h(x, t) =

{
∆ui , on ∆Σi ;
0 , otherwise ;

we have by using the one-point quadrature rule

∂J

∂ui

≈ 1

∆ui

[2 |∆Σi| pi∆ui] = 2 |∆Σi| pi ,

where pi is the solution of the adjoint system (7) corresponding
to ∆Σi and |∆Σi| is the area of the subregion ∆Σi. With the gradi-
ent obtained, the gradient type algorithm of Table 1 determines the
optimal value of u based on the Fletcher-Reeves method [10, 2, 9].

4 Solution of the state system

To determine the gradient of the cost functional, we need to solve the
state system for T (x, t; u) and then the adjoint system for p(x, t; u).
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Table 1: Numerical Algorithm

1. Choose an initial boundary control u0. If G(u0) = 0 , u0 is
the solution of the problem.

2. Set the first searching direction S0 = −G(u0) .

3. Set u1 = u0 +α0S0 , with α0 being the optimal step length in
the searching direction S0. Set i = 1 and go to step 4.

4. Find G(ui) by solving the state and adjoint systems
and then set Si = −G(ui) + βiSi−1 , with βi =
[G(ui), G(ui)]/[G(ui−1), G(ui−1)] .

5. Compute the optimum step length αi in the searching direc-
tion Si and update u by ui+1 = ui + αiSi .

6. Test the optimality of ui+1. If ui+1 is optimum, stop the
process. Otherwise, set i = i + 1 and go to step 4.
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Both systems are parabolic type initial boundary value problems.
Various numerical methods, such as the finite element method and
the finite difference method can be used to solve these problems.
In the present work, the finite element method [13] is used for the
solution. To keep details to a minimum, in the following, we briefly
describe only the numerical technique for the solution of the state
system. The adjoint system is solved similarly.

To find the numerical solution of the state system (1), we firstly
multiply both sides of equation (1)1 by an arbitrary function Φ and
integrate over the domain Ω to yield∫

Ω

Φ

(
∂T

∂t
−∇2T

)
dΩ =

∫
Ω

Φ [f(x, t)] dΩ . (13)

Noting the boundary condition and using integration by parts and
the divergence theorem, we have∫

Ω

Φ
∂T

∂t
dΩ +

∫
Ω

∂Φ

∂xj

∂T

∂xj

dΩ =

∫
Ω

Φ [f(x, t)] dΩ +

∫
Γ

Φu dΓ . (14)

To solve the initial boundary value problem, the domain Ω is divided
into a finite number of simple shaped regions Ωe (e = 1, 2, . . . , E)
called elements. Consequently, the boundary Γ of the domain Ω is
divided into a number of boundary segments Γb (b = 1, 2, . . . , B).
Within each element, the coordinate dependent variables T and Φ
are interpolated by functions of compatible order, in terms of values
to be determined at a set of nodal points. Denoting T e and Φe as
the column vectors of the element nodal point values of T and Φ
respectively, and N(x) as the interpolation function, then T and Φ
within each element are

T = NT T e , Φ = ΦT
e N . (15)

Substituting (15) into (14), we have

E∑
e=1

ΦT
e

{
ce

∂T e

∂t
+ keT e

}
=

E∑
e=1

ΦT
e f e +

B∑
b=1

ΦT
b f b , (16)
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where

ce =

∫
Ωe

NNT dΩ , ke =

∫
Ωe

∂N

∂xj

∂NT

∂xj

dΩ ,

f e =

∫
Ωe

f(x, t)N dΩ , f b =

∫
Γb

uN dΓ . (17)

Using a standard finite element assembling procedure, equation (16)
is represented in matrix form

ΦT

{
C

(
∂T

∂t

)
+ KT

}
= ΦT F . (18)

Further, due to the arbitrary nature of Φ, we have from equa-
tion (18)

C

(
∂T

∂t

)
+ KT = F , (19)

which constitutes a system of N first-order ordinary differential
equations with N unknown values of T and is solved by using a
standard time stepping scheme.

5 Numerical results

To test the numerical algorithm developed, consider the following
example. Find u(x, t) such that

J(u) =

∫
Q

[T (x, t; u)− z(x, t)]2 dx dt , (20)

is minimized subject to T (x, t; u) being governed by

∂T (x, t; u)

∂t
−∇2 [T (x, t; u)] = f(x, t) , in Q

T (x, 0) = T 0(x) , in Ω

∂T (x, t)

∂n
= u(x, t) , on Σ , (21)
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Figure 2: Value of the scaled cost functional (J/Q) versus itera-
tion.

where z(x, t) is the target system state given by

z(x, t) = 50et +
(
x2

1 + x2
2 + 0.5x2

1x
2
2

)
t .

Ω is the square region [0, 4]×[0, 4], Q = Ω×(0, tA] , Γ is the boundary
of Ω, Σ denotes Γ× (0, tA], tA = 0.5 , T 0(x) = 50 and the function

f(x, t) = 50et + (1− t)(x2
1 + x2

2) +
x2

1x
2
2

2
− 4t .

For this particular problem, the exact solution for u is

u(x, t)exact =


8t + 4x2

2t , on x1 = 4 ;
8t + 4x2

1t , on x2 = 4 ;
0 , on x1 = 0 and x2 = 0 .

To validate the numerical algorithm, we use it to solve the prob-
lem and then compare the numerical results with the exact solution.



5 Numerical results C847

0
2

4

0
2

4
49

50

51

0
2

4

0
2

4
49

50

51

0
2

4

0
2

4
60

80

100

0
2

4

0
2

4
50

100

150

0
2

4

0
2

4
50

100

150

0
2

4

0
2

4
0

100

200

0
2

4

0
2

4
49

50

51

0
2

4

0
2

4
50

100

150

0
2

4

0
2

4
0

100

200

0
2

4

0
2

4
49

50

51

0
2

4

0
2

4
50

100

150

0
2

4

0
2

4
0

100

200

t = 0.00 

t = 0.25 

t = 0.5 

a) Iteration 0 b) Iteration 1 c) Iteration 80 d) Target State 

Figure 3: Comparison between computed states and the target
state .

Figure 2 shows the variation of the value of the scaled cost func-
tional (J/Q) in the iteration process. Figure 3 shows the computed
system state T (x, ti, u) at various stages of the iteration process
against the target state. It is noted that, the system state converges
to the target state. Figure 4 shows the variation of the computed
boundary control u during the iteration process at various time
steps. The results show that the numerical algorithm is robust.
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Figure 4: Comparison between the computed boundary control
at the typical point (2, 4) and the exact solution: —— Computed
result; - - - Exact result.
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[12] Tröltzech, T. (1989), “On the semigroup approach for the
optimal control of semilinear parabolic equations including
distributed and boundary control”, Zeitschr. F. Analysis and
ihre Anwedungen, Vol. 8, pp. 431–443. C839

[13] Wu, Y. H., Hill, J. M. and Flint, P. (1994), “A novel finite
element method for heat transfer in the continuous caster”,
J. Austral. Math. Soc., Ser. B, Vol. 35, pp. 263–288. C844


	Introduction
	Variation of the cost functional
	Numerical algorithm
	Solution of the state system
	Numerical results
	References

