
ANZIAM J. 56 (CTAC2014) pp.C52–C67, 2015 C52

Removing a mixture of Gaussian and
impulsive noise using the total variation

functional and split Bregman iterative method
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Abstract

We apply the split Bregman iterative method to minimise the total
variation of a piecewise polynomial function to remove Gaussian and
impulsive noise from an image. We compare these numerical results
with another approach based on the gradient penalty. Both approaches
use a finite element method. Numerical results show that the method
based on the total variation functional is superior only for one class of
images.
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1 Introduction

One of the very important problems in image processing is how to recover
a clear image out of a noisy image. Although it is very difficult to know
the model governing the noise, the most common noise types encountered in
real applications are impulsive noise, Gaussian noise or a mixture of both.
More details concerning digital image processing are found elsewhere [1, 2, 3].
In this article, we consider a mixture of impulsive and Gaussian noise. We
apply a finite element method to remove the noise using a total variation (tv)
minimisation functional and split Bregman iterative solution method. Finite
element methods have recently become popular in different areas of image
processing [4, 5, 6, 7, 8].

While there are many efficient approaches to remove impulsive noise or
Gaussian noise from an image [9, 6, 10, 11, 12, 13], removing a mixture of
Gaussian and impulsive noise is more difficult. To recover a clear image
when the original image is corrupted with a mixture noise, we use a finite
element smoothing based on the minimisation of a functional involving the
total variation of a piecewise polynomial function. Section 3 introduces the
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finite element smoothing technique based on the minimisation of a functional
involving the total variation and an approach for solving the minimisation
problem is given.

A digital image is an array of numbers, where the size of the array determines
the size of the image. An intensity image, for example, is a single matrix of
size m× n, where each element of the matrix represents the intensity of the
image pixel or grey level. These intensity images are also called black and
white images. On the other hand, an array of sizem×n×3 describes a colour
image where the image has the size m× n, and each pixel has three values
representing the red, green and blue intensities that make up the colour. In
this article, we restrict ourselves to intensity images.

We consider salt and pepper noise as an example of impulsive noise. The
advantage of this noise is that the pixel location of an impulse can be identified.
Salt and pepper noise is caused by transmission errors, where the corrupted
pixels are randomly set either to zero or the maximum value, leading to a
‘salt and pepper’ like appearance in the image. Here the zero value denotes
black and the maximum value denotes white in an intensity image [2]. Our
approach is applicable for a general impulsive noise after using an impulse
detector [9, 6, 10] to identify the impulsive pixels.

2 The mixture of Gaussian and impulsive
noise

If a noisy image is transmitted over faulty communication lines, then the
received image might be corrupted with a mixture of Gaussian and impulsive
noise. For an image corrupted with a mixture of Gaussian and impulsive noise,
it is necessary to smooth the image pixels as well as remove impulses. For
example, Garnett et al. [10] used a noise filter based on a local image statistic
to remove a mixture of noise, whereas Xu et al. [14] used a fuzzy based
method, and Lamichane [15] used a finite element method with a gradient
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penalty.

Let Ω = [0, 1]× [0, 1] . We explain the mixture of noise using a set of points.
Define a set of points S ⊂ Ω in an image where

S = {(ai,bj)}n,m
i=1,j=1 with ai =

i− 1

n− 1
and bj =

j− 1

m− 1
. (1)

We also define an image function If : S → Rk , k ∈ N , where, for a colour
image k = 3 and for an intensity image k = 1 . In a colour image If gives
the three values, red, green and blue, at (ai,bj) and in an intensity image If
gives the intensity at (ai,bj). For intensity images, the number If(ai,bj) is
either defined to be in [0, 1] or in [0, 255]. In either case, the smallest intensity
represents black, and the largest intensity represents white.

Let Ĩ be the image corrupted with a mixture of Gaussian and impulsive noise,
and let I be the original image. We associate the set of points S as defined
in (1) with both images, and image functions If : S → R and Ĩf : S → R with
the images I and Ĩ, respectively. Let Sn and Sp be the set of points corrupted
with impulsive noise and non-corrupted, respectively, with S = Sn∪Sp . As the
positions of the noisy pixels are random, the points in Sp have no structure.

Since the image is corrupted with a mixture of Gaussian and impulsive noise,
after removing the impulsive pixels from the noisy image

Ĩf(ai,bj) = If(ai,bj) + nij , (ai,bj) ∈ Sp ,

where the nij are drawn from a zero-mean Gaussian distribution. Hence our
problem is to fit a smooth surface to the scattered data in Sp. In the following,
we denote the set of points in Sp by {(xi,yi)}Ni=1 and {zi = Ĩf(xi,yi)}Ni=1 .
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3 Total variation smoothing using a finite
element method

Radial basis functions and thin plate splines are often used to interpolate
and smooth scattered data [16, 17]. Here, we consider an approach based on
minimising the total variation of the image function, which requires minimising
the functional

λ

2

N∑
i=1

[u(xi,yi) − zi]2 +
∫
Ω

|∇u|dxdy , (2)

over a suitable space of functions, where u is an interpolant, N is the number
of uncorrupted pixels in the image, ∇ is the gradient operator, and λ is
a positive constant called a smoothing parameter. The gradient penalty
approach is obtained by replacing

∫
Ω
|∇u|dxdy with

∫
Ω
|∇u|2 dxdy in (2),

leading to a linear approach [15].

The motivation of our approach is that, although the given data is completely
unstructured because of the random positions of the impulses, we want to
reconstruct the image in a structured grid.

Let C0(Ω) be the space of continuous functions in Ω, where Ω is the unit
square. Let T be a structured decomposition of the unit square Ω into
rectangles or triangles using the set of points S, where rectangles and triangles
are obtained by joining points in S. Note that T is the set of triangles and
rectangles. Then let

V = {u ∈ C0(Ω) : u|T ∈ P(T), T ∈ T} (3)

be a finite element space, where |u|T is the restriction of u on T , P(T) is the
linear polynomial space if T is a triangle and the bilinear polynomial space
on T if T is a rectangle [18]. Now our discrete problem is to minimise the
functional (2) over the function space V so that the discrete problem is

min
u∈V

λ

2

N∑
i=1

[u(xi,yi) − zi]2 +
∫
Ω

|∇u|dxdy . (4)
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We aim to solve this problem using the split Bregman method proposed by
Goldstein and Osher [19], which is one of the most efficient approaches to
solve the total variation minimisation problem. To this end we approximate
the total variation integral over an element T ∈ T as∫

T

|∇u|dxdy ≈ |T |

√
(∂xu)2T + (∂yu)2T ,

where (∂xu)T and (∂yu)T are partial derivatives of u with respect to x and y
evaluated at the centroid of T , respectively. Since∫

Ω

|∇u|dxdy =
∑
T∈T

∫
T

|∇u|dxdy ,

we have the approximation∫
Ω

|∇u|dxdy ≈
∑
T∈T

|T |

√
(∂xu)2T + (∂yu)2T .

Let Q be the space of piecewise functions with respect to the mesh T. We
now introduce two piecewise constant functions Dx and Dy in Q with respect
to the mesh T, defined as

Dx|T =
√
|T |(∂xu)T and Dy|T =

√
|T |(∂yu)T for T ∈ T .

The vector of all u at the corrupted points is

Pu = (u(x0,y0),u(x1,y1), . . . ,u(xN,yN)),

and the vector z = (z1, z2, . . . , zN) . We want to solve

argmin
u∈V

[
λ

2
‖Pu− z‖2 + ‖D(u)‖1

]
, (5)

where ‖ · ‖ is the Euclidean norm and D(u) = (Dx,Dy) with

‖D(u)‖1 = ‖(Dx,Dy)‖1 =
∑
T∈T

|T |

√
(∂xu)2T + (∇yu)2T .
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The idea of the split Bregman iteration is to split the minimisation problem (5)
into two minimisation problems which are solved separately [19]. This is done
by introducing two additional unknown functions dx and dy to approximate
Dx and Dy, and then performing the following steps, increasing k after
each loop until convergence, after initialising dk, uk and bk for k = 0 .
Here dk,bk ∈ Q , whereas uk is the vector representation of a finite element
function in V for k ∈ N0 .

1. For tolerance ε, while ‖uk − uk+1‖ > ε repeat the following steps;

2. uk+1 = argminu∈V λ‖Puk − z‖2 + µ‖dk −D(uk) − bk‖22 ;

3. dk+1 = argmind∈Q ‖d‖1 + µ‖d−D(uk+1) − bk‖22 ;

4. bk+1 = bk +D(uk+1) − dk+1 .

The above iteration finds a fixed point (u∗,d∗,b∗) of

(uk+1,dk+1) = argmin
u,d

‖d‖1 + λ‖Pu− z‖2 + µ‖d−D(u) − bk‖22 ,

bk+1 = bk +D(uk+1) − dk+1 ,

so that the fixed point b∗ satisfies b∗ = b∗ +D(u∗) − d∗ leading to D(u∗) =
d∗ [19].

Step 2 is a differentiable optimisation problem and is therefore solved by using
the conjugate gradient or other iterative methods. It is sufficient to perform
just a few conjugate gradient iterations in this step. Step 3 is solved by using
shrinkage [19]. One of the big advantages of the split Bregman algorithm over
the continuation method [20] is that the parameter µ in the above algorithm
can be safely chosen to be a constant [19]. We have set µ = 1 and ε = 10−3

in the following numerical results.
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4 Numerical results

Real-life images Tables 1 and 2 show the peak signal-to-noise ratios for
the reconstructed images, where the images are corrupted with both Gaussian
and salt and pepper noises. The peak signal-to-noise ratio is defined as

psnr = 10 log10

(
max2I
mse

)
= 20 log10

(
maxI√
mse

)
,

where maxI is the maximum pixel value of the image, and mse is the mean
square error, that is,

mse =
1

mn

m∑
i=1

n∑
j=1

‖If(ai,bj) − Îf(ai,bj)‖2 .

Here, If is the image function for the original image and Îf is the image
function for the image recovered after removing the noise. We consider
Gaussian noise with mean zero and variances σ = 0.05 and σ = 0.1 , as shown
in Tables 1 and 2, respectively. Salt and pepper noise with densities 50%,
60% and 70% are applied. We compare two different methods of removing a
mixture of Gaussian and salt and pepper noises. To find the optimal value
of λ we run the test code with different λ and choose the one yielding the best
psnr. We see that there is not much difference between the two methods:
the gradient penalty method and total variation method [21].

Figure 1 shows recovered images for a Baboon image using Gaussian noise
of variance 0.05 and impulsive noise of density 60%. We see that the image
recovered by using the tv method looks a bit sharper than the one recovered
by the gradient penalty. However, the peak signal to noise ratios are very
similar for both approaches.

Figure 2 shows recovered images for a peppers image using the same noise as
in the baboon image. As in the previous baboon example, the tv method
produces a slightly sharper image than the gradient penalty method.
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Table 1: psnr of the test images with various noise densities (Gaussian and
salt and pepper noise, σ = 0.05).

psnr for Baboon image psnr for Peppers image
Noise Density Noise Density

Denoising method 50% 60% 70% 50% 60% 70%
Gradient penalty 18.82 18.57 18.45 22.21 22.02 21.63
Total variation 18.62 18.62 18.51 21.79 21.19 19.72

Table 2: psnr of the test images with various noise densities (Gaussian and
salt and pepper noise, σ = 0.1).

psnr for Baboon image psnr for Peppers image
Noise density Noise density

Denoising method 50% 60% 70% 50% 60% 70%
Gradient penalty 17.95 18.07 17.88 20.73 20.51 20.26
Total variation 18.32 18.01 17.51 21.04 20.94 19.47

Figure 1: Baboon image (first), noisy image (second), image recovered by the
tv method (third) and by the gradient penalty method (last).
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Figure 2: Peppers image (first), noisy image (second), image recovered by the
tv method (third) and by the gradient penalty method (last).

Figure 3: Apple image (first), noisy image (second), image recovered by the
tv method (third) and by the gradient penalty method (last).

Binary images We now perform numerical analyses of the binary images.
Intensity images with only black and white pixels are called binary images.
It is well-known that total variation image denoising does an excellent job
of preserving the sharpness of an image [2]. Figure 3 shows the numerical
results for a binary image using the same noise as in the previous examples.
In this example, we see the strong visual difference between the tv method
and the gradient penalty method.

Table 3 shows the peak signal to noise ratios for the binary test image using
Gaussian noise with mean zero and variances σ = 0.05 and σ = 0.1 . We see
the superiority of the total variation method as peak signal to noise ratios
are significantly better for the total variation method.

Finally, we investigate the convergence of the split Bregman algorithm with
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Table 3: psnr of the binary test image with various noise densities (Gaussian
and salt and pepper noise)

psnr with σ = 0.05 psnr with σ = 0.1
Noise density Noise density

Denoising method 50% 60% 70% 50% 60% 70%
Gradient penalty 16.61 16.21 15.91 17.88 14.73 14.39
Total variation 22.30 22.11 21.51 19.90 19.74 19.37

respect to λ. Figures 4, 5 and 6 show the number of iterations of the split
Bregman algorithm and psnr for different values of λ for all three test images.
We see that the number of iterations is small when we have higher psnr.

5 Conclusion

We presented a method of removing a mixture of impulsive and Gaussian
noise from images using a total variation functional. The total variation
functional is discretised by using a finite element method and solved by the
split Bregman iterative method. Numerical results demonstrate that the
approach based on the total variation penalty is superior to the gradient
penalty approach only for images with sharp jump discontinuities.
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Figure 5: Number of iterations and peak signal-to-noise ratio versus λ: peppers
image.
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Figure 6: Number of iterations and peak signal-to-noise ratio versus λ: apple
image.
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