
ANZIAM J. 60 (CTAC2018) pp.C247–C260, 2019 C247

Derandomised lattice rules for high
dimensional integration

Y. Kazashi1 F. Y. Kuo2 I. H. Sloan3

(Received 12 March 2019; revised 22 October 2019)

Abstract

We seek shifted lattice rules that are good for high dimensional
integration over the unit cube in the setting of an unanchored weighted
Sobolev space of functions with square-integrable mixed first derivatives.
Many existing studies rely on random shifting of the lattice, whereas
here we work with lattice rules with a deterministic shift. Specifically,
we consider ‘half-shifted’ rules in which each component of the shift
is an odd multiple of 1/(2N) where N is the number of points in the
lattice. By applying the principle that there is always at least one
choice as good as the average, we show that for a given generating
vector there exists a half-shifted rule whose squared worst-case error
differs from the shift-averaged squared worst-case error by a term
of only order 1/N2. We carry out numerical experiments where the
generating vector is chosen component-by-component (cbc), as for

doi:10.21914/anziamj.v60i0.14110 gives this article, c© Austral. Mathematical Soc.
2019. Published November 17, 2019, as part of the Proceedings of the 18th Biennial
Computational Techniques and Applications Conference. issn 1445-8810. (Print two pages
per sheet of paper.) Copies of this article must not be made otherwise available on the
internet; instead link directly to the doi for this article.

http://dx.doi.org/10.21914/anziamj.v60i0.14110

Contents C248

randomly shifted lattices, and where the shift is chosen by a new ‘cbc
for shift’ algorithm. The numerical results are encouraging.

Contents
1 Introduction C248

1.1 Function spaces and worst-case errors C250
1.2 Component-by-component constructions C251

2 Error analysis C253

3 Component-by-component for shift algorithm C255

4 Numerical results C255

1 Introduction

Lattice rules are often used for high dimensional integration over the unit
cube, that is, for the numerical evaluation of the s-dimensional integral

Is(f) :=

∫ 1
0

· · ·
∫ 1
0

f(x1, . . . , xs)dx1 · · ·dxs =
∫
[0,1]s

f(x)dx . (1)

A shifted lattice rule for the approximation of the integral is an equal weight
cubature rule of the form

QN,s(z,∆ ; f) :=
1

N

N∑
k=1

f

({
kz

N
+∆

})
, (2)

where z ∈ {1, . . . ,N−1}s is the generating vector, ∆ ∈ [0, 1]s is the shift, while
the braces around an s-vector indicate that each component of the vector is
to be replaced by its fractional part in [0, 1) . The special case ∆ = 0 yields

1 Introduction C249

the unshifted lattice rule which has been proved to work well for periodic
functions [6]. If the integrand is not periodic, then the shift plays a useful
role. The implementation of a shifted lattice rule is relatively easy once the
vectors z and ∆ are prescribed, even when s is very large, say, in the tens of
thousands.

The central concern of this article is the construction of a good shift vector ∆,
given a specific choice of a good z. At the present time the overwhelmingly
favoured method for fixing the shifts in a non-periodic setting is to choose
them randomly. In a randomly shifted lattice rule the shift ∆ is chosen from
a uniform distribution on [0, 1]s , and the integral (1) is approximated by an
empirical estimate of the expected value 1

q

∑q
i=1QN,s(z,∆i ; f) , where q is

some fixed number and ∆1, . . . ,∆q are q independent samples from the
uniform distribution on [0, 1]s . With the shift chosen randomly, all that
remains in the randomly shifted case is to construct the integer vector z,
which is done very effectively by using the component-by-component (cbc)
construction to yield a vector z∗ that gives a satisfactorily small value of the
shift-averaged worst-case error [1].

In the present article we construct a new kind of shifted lattice rule which
is derandomised in the sense that the generating vector is the same z∗
determined by the cbc algorithm for the shift-averaged worst-case error,
while the shift ∆∗ is determined by a new cbc construction, ‘cbc for shift ’:
the components of the shift vector are obtained one at a time, chosen from
the odd multiples of 1/(2N). We argue that there is a significant potential
cost saving in this deterministic alternative, in that it becomes no longer
necessary to compute an empirical average over shifts.

Approaches to estimating the error for lattice rules for non-periodic functions
without randomisation include those of Dick et al. [2] and Goda et al. [3],
where a mapping called the tent transform is applied to the lattice rule.
However, in this article, no transformation of the lattice points is considered.

1 Introduction C250

1.1 Function spaces and worst-case errors

The central element in any cbc construction is the worst-case error which,
for the case of the shifted lattice rule (2) and a Hilbert space Hs, is defined by

eN,s(z,∆) := sup
f∈Hs ,‖f‖Hs61

|QN,s(z,∆ ; f) − Is(f)| .

Here we consider a weighted unanchored Sobolev space of functions with
square-integrable mixed first derivatives on (0, 1)s and squared norm

‖f‖2Hs,γ
:=
∑

u⊆{1:s}

γ−1
u

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|f

∂xu
(xu ; x{1:s}\u)dx{1:s}\u

)2
dxu ,

where {1 : s} = {1, 2, . . . , s} , γu is a positive number which is the ‘weight’
corresponding to the subset u ⊆ {1 : s} with γ∅ = 1 , and xu denotes the
variables xj for j ∈ u . Suitably decaying weights are essential if we are to
have error bounds independent of dimension [8]. The squared worst-case error
has an explicit formula [e.g., 1]

e2N,s(z,∆) =
1

N2

N∑
k=1

N∑
k ′=1

∑
∅6=u⊆{1:s}

γu

∏
j∈u

[
1

2
B2

({
(k− k ′)zj

N

})
+Ak,k ′,zj(∆j)

]
,

(3)
where B2(x) = x2 − x+ 1/6 for x ∈ [0, 1] denotes the Bernoulli polynomial of
degree two and

Ak,k ′,z(∆) :=

({
kz

N
+ ∆

}
−
1

2

)({
k ′z

N
+ ∆

}
−
1

2

)
.

For the randomly shifted lattice rule the relevant form of the worst-case error
is the shift-averaged worst-case error esh

N,s(z) defined by

[esh
N,s(z)]

2 :=

∫
[0,1]s

e2N,s(z,∆)d∆ =
1

N

N∑
k=1

∑
∅6=u⊆{1:s}

γu

∏
j∈u

B2

({
kzj

N

})
, (4)

1 Introduction C251

and [esh
N,s(z)]

2 is precisely the expected value of the squared worst-case error
taken with respect to the random shift. The double sum over k,k ′ in (3)
simplified to a single sum over k in (4).

1.2 Component-by-component constructions

The principle of a cbc construction is that, at stage j, one determines the jth
component of the cubature points by seeking to minimise an error criterion
for the j-dimensional problem; then, with that component fixed, one moves
on to the next component, never going back.

In the case of randomly shifted lattice rules, we first choose z∗1 = 1 , and then,
for j = 1, 2, . . . , s−1 , once z∗1 , z∗2 , . . . , z∗j are fixed, zj+1 is chosen to be the ele-
ment from {1, . . . ,N−1} that gives the smallest error [esh

N,j+1(z
∗
1 , . . . , z∗j , zj+1)]2 .

The cost of the cbc algorithm for constructing z∗ up to s dimensions is of
order sN logN using fast Fourier transforms [5] for the simplest case of
‘product weights’ in which there is only one sequence of weight parameters
γ1,γ2, . . . ,γs and the value of γu is taken to be the product

∏
j∈u γj . In this

case the sum over u in (4) can be rewritten as a product of s factors.

The proven quality of the cbc construction for randomly shifted lattice rules
is very good in the sense that, with ζ the Riemann zeta function and ϕ the
Euler totient function, for all λ ∈ (1

2
, 1] [e.g., 1],

esh
N,s(z

∗) 6

 1

ϕ(N)

∑
∅6=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|
1/(2λ) . (5)

It follows from the definition (4) that for f ∈ Hs,γ the error bound for the
randomly shifted lattice rule constructed by cbc is

√
E
[
|QN,s(z∗, · ; f) − Is(f)|2

]
6

 1

ϕ(N)

∑
∅6=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|
1/(2λ) ‖f‖Hs,γ .

1 Introduction C252

When N is prime we have ϕ(N) = N − 1 . Thus the convergence rate is
arbitrarily close to 1/N as λ→ 1/2 , but with a constant that blows up as
λ→ 1/2 because ζ(2λ)→∞ .

For our new derandomised lattice rule we take the components of the gen-
erating vector to be z∗1 , z∗2 , . . . , z∗s , as determined by the cbc algorithm
for randomly shifted lattice rules. We then determine the components of
the shift by a new cbc for shift algorithm (see Section 3), in which at
stage j > 0, with ∆∗1 , . . . ,∆∗j already fixed, we choose ∆j+1 by minimising
the squared worst-case error e2N,j+1((z

∗
1 , . . . , z∗j , z∗j+1), (∆∗1 , . . . ,∆∗j ,∆j+1)). Of

course it is not possible to check all real numbers in [0, 1) for desirable values
of ∆1, . . . ,∆s . We argue that it is sufficient to restrict the set of possible
shift components to the odd multiples of 1/(2N), that is, to the N values
SN := {1/(2N), 3/(2N), . . . , (2N− 1)/(2N)} .

Theorem 1 presents our argument for the sufficiency of restricting the search
over shifts to the odd multiples of 1/(2N). In this theorem we show that for
any choice of generating vector z, the average of the squared worst-case error
over all shifts in [0, 1]s differs from the average over the discrete set SsN by a
term of only order 1/N2.

The restriction from the continuous interval [0, 1] to the discrete set SN for the
shift was previously considered by Sloan et al. [7] in a different cbc algorithm
which constructs the components of z and ∆ simultaneously, in the order of
z1,∆1, z2,∆2,

Now we discuss the error with respect to the shift ∆∗ obtained by the present
cbc for shift algorithm. Define the ratio

κ(N, s) :=
eN,s(z

∗,∆∗)
esh
N,s(z

∗)
. (6)

Then, from the definition of the worst-case error and using (5) the error bound

2 Error analysis C253

for the present cbc algorithm is

|QN,s(z
∗,∆∗ ; f) − Is(f)| 6 κ(N, s) esh

N,s(z
∗) ‖f‖Hs,γ

6 κ(N, s)

 1

ϕ(N)

∑
∅6=u⊆{1:s}

γλu

(
2ζ(2λ)

(2π2)λ

)|u|
1/(2λ) ‖f‖Hs,γ ,

for all λ ∈ (1/2, 1] . This is an explicit and deterministic error bound in which
in any practical situation κ(N, s) is a known constant. Numerical experiments
in Section 3 suggest that κ(N, s) can often be smaller than one, making the
derandomised option attractive in practice.

The presented cbc for shift algorithm is expensive: the cost of a single
evaluation of the worst-case error (3) is of order sN2 in the simplest case of
product weights, and therefore the cost of a search over N values of the shift
up to dimension s is of order sN3 (if we store the products during the search).
But the cost is an off-line cost, since spare computing capacity can be used
to complement existing cbc vectors z∗ for randomly shifted lattice rules by
deterministic shifts ∆∗ generated by the cbc for shift algorithm.

2 Error analysis

Theorem 1 shows that for any choice of generating vector z, the squared
worst-case error with shift averaged over SsN, defined by

[e
1
2 sh
N,s (z)]

2 :=
1

Ns

∑
∆∈SsN

e2N,s(z ; ∆) , (7)

differs from the average of the squared worst-case error over all shifts [esh
N,s(z)]

2

by a term of only order 1/N2.

2 Error analysis C254

Theorem 1. For arbitrary z ∈ {1, . . . ,N− 1}s , with esh
N,s(z) and e

1
2 sh
N,s (z) as

defined in (4) and (7), respectively, we have∣∣∣[esh
N,s(z)]

2 − [e
1
2 sh
N,s (z)]

2
∣∣∣ 6 1

4N2

∑
∅6=u⊆{1:s}

γu

(
1

3

)|u|

|u| .

Proof: We see from (3) that

[esh
N,s(z)]

2 − [e
1
2 sh
N,s (z)]

2 =
1

N2

N∑
k=1

N∑
k ′=1

∑
∅6=u⊆{1:s}

γu

(∏
j∈u

ak,k
′

j −
∏
j∈u

bk,k
′

j

)
,

where for k,k ′ = 1, . . . ,N , j = 1, . . . , s , m = 1, . . . ,N ,

ak,k
′

j := ck,k
′

j +

∫ 1
0

Ak,k ′,zj(∆)d∆ , bk,k
′

j := ck,k
′

j +
1

N

N∑
m=1

Ak,k ′,zj(µm) ,

ck,k
′

j :=
1

2
B2

({
(k− k ′)zj

N

})
, µm :=

2m− 1

2N
.

Since |B2(x)| 6 1/6 for all x ∈ [0, 1] and |(x − 1/2)(y − 1/2)| 6 1/4 for all
x,y ∈ [0, 1) , we have trivially |ak,k

′

j | 6 1/3 and |bk,k
′

j | 6 1/3 . It follows by
induction that∣∣∣∣∣∏

j∈u

ak,k
′

j −
∏
j∈u

bk,k
′

j

∣∣∣∣∣ 6
(
1

3

)|u|−1∑
j∈u

∣∣∣ak,k ′j − bk,k
′

j

∣∣∣ .
We therefore consider the difference

ak,k
′

j − bk,k
′

j =

∫ 1
0

Ak,k ′,zj(∆)d∆−
1

N

N∑
m=1

Ak,k ′,zj(µm)

=

N∑
m=1

[∫m/N
(m−1)/N

Ak,k ′,zj(∆)d∆−
1

N
Ak,k ′,zj

(
2m− 1

2N

)]
,

3 Component-by-component for shift algorithm C255

which is precisely the error of a composite midpoint rule approximation to
the integral of

Ak,k ′,zj(∆) =

{
kzj

N
+ ∆

}{
k ′zj

N
+ ∆

}
−
1

2

{
kzj

N
+ ∆

}
−
1

2

{
k ′zj

N
+ ∆

}
+
1

4
.

Since kzj/N is a multiple of 1/N, the function {kzj/N+ ∆} is linear in ∆ on
each subinterval [(m− 1)/N,m/N) of length 1/N, and so the midpoint rule
is exact on each subinterval. The same conclusion holds for {k ′zj/N+∆} . On
the other hand, the expression {kzj/N+∆}{k ′zj/N+∆} as a function of ∆ is
quadratic on each subinterval [(m− 1)/N,m/N) , and its second derivative is
the constant function 2, which is uniformly continuous on ((m− 1)/N,m/N)
and can be uniquely extended to [(m−1)/N,m/N] . Therefore, the midpoint
rule has error bounded by 1/(12N3) on each subinterval, leading to the total
error |ak,k

′

j − bk,k
′

j | 6 1/(12N2) , and in turn yielding∣∣∣∣∣∏
j∈u

ak,k
′

j −
∏
j∈u

bk,k
′

j

∣∣∣∣∣ 6
(
1

3

)|u|−1
|u|

12N2
.

This completes the proof. ♠

3 Component-by-component for shift
algorithm

Theorem 1 provides a good motivation for Algorithm 1.

4 Numerical results

We ran the cbc for shift algorithm in weighted unanchored Sobolev spaces
with product weights γj = 1/j2 , γj = 0.9j , γj = 0.75j , and γj = 0.5j , with

4 Numerical results C256

Algorithm 1 cbc for shift
Input: smax, N, and z∗1 , . . . z∗smax

, a generating vector obtained by the cbc
construction for randomly shifted lattice rules.

Output: shifts ∆∗1 , . . . ,∆∗smax
∈ SN , and

κ(N, s) =
eN,s((z

∗
1 , . . . , z∗s), (∆∗1 , . . . ,∆∗s))
esh
N,s(z

∗
1 , . . . , z∗s)

, s = 1, . . . , smax .

Do
∆∗1 ∈ argmin

{
e2N,1(z

∗
1 ,∆1) | ∆1 ∈ SN

}
,

and κ(N, 1) = eN,1(z
∗
1 ,∆∗1)/esh

N,1(z
∗
1) ,

for s from 2 to smax do

∆∗s ∈ argmin
{
e2N,s((z

∗
1 , . . . , z

∗
s), (∆

∗
1 , . . . ,∆

∗
s−1,∆s)) | ∆s ∈ SN

}
,

and κ(N, s) = eN,s((z
∗
1 , . . . , z∗s), (∆∗1 , . . . ,∆∗s))/esh

N,s(z
∗
1 , . . . , z∗s) ,

end for

the number of points N = 1024 and 2048. We used the lattice generating
vectors z∗ as in the original version developed by Kuo [4].

Table 1 shows the values of the indices m∗s for the components of the shifts
∆∗s = (2m∗s − 1)/(2N) together with the values of κ(N, s), for the case
N = 2048 and γj = 1/j2 . As a comparison, we also provide the values of the
ratio (6) with ∆∗ replaced by the zero shift vector, denoting the new ratio
by κ0(N, s) . We see that κ(N, s)< 1 , whereas κ0(N, s)> 1 .

Table 2 shows the same as Table 1, but for the case γj = 0.5j . Again, we see
that κ(N, s)< 1 , whereas κ0(N, s)> 1 . The same observation holds for the
other cases that we considered (not shown).

Acknowledgements We gratefully acknowledge the financial support from
the Australian Research Council (DP180101356).

4 Numerical results C257

Table 1: Shifts ∆∗s = (2m∗s − 1)/(2N) and error ratio κ(N, s) obtained by the
cbc for shift algorithm for N = 2048 and weight γj = 1/j2 for dimensions
s = 1, . . . , 50 . Also tabulated is κ0(N, s), the value of κ(N, s) corresponding
to zero shift. We see that κ(N, s)< 1 .
s m∗s κ(2048, s) κ0(2048, s)
1 1 0.7082 1.4148
2 227 0.7748 1.2426
3 17 0.8047 1.1841
4 1955 0.8176 1.1599
5 1273 0.8276 1.1642
6 1250 0.8358 1.1532
7 1698 0.8414 1.1404
8 1970 0.8456 1.1357
9 476 0.8480 1.1342
10 646 0.8507 1.1304
11 779 0.8535 1.1293
12 1093 0.8558 1.1264
13 1498 0.8572 1.1234
14 550 0.8591 1.1223
15 1218 0.8603 1.1230
16 1124 0.8614 1.1214
17 135 0.8624 1.1206
18 717 0.8635 1.1200
19 854 0.8645 1.1192
20 1634 0.8652 1.1183
21 1692 0.8658 1.1178
22 1002 0.8665 1.1164
23 1034 0.8670 1.1171
24 249 0.8675 1.1171
25 1477 0.8681 1.1163

s m∗s κ(2048, s) κ0(2048, s)
26 626 0.8686 1.1170
27 1987 0.8691 1.1162
28 1676 0.8696 1.1165
29 1323 0.8698 1.1161
30 1037 0.8702 1.1156
31 416 0.8706 1.1161
32 416 0.8706 1.1163
33 928 0.8708 1.1161
34 928 0.8708 1.1161
35 711 0.8712 1.1157
36 711 0.8712 1.1153
37 1852 0.8715 1.1152
38 1852 0.8715 1.1155
39 785 0.8718 1.1151
40 785 0.8718 1.1153
41 696 0.8721 1.1151
42 1497 0.8758 1.1148
43 1587 0.8760 1.1146
44 638 0.8762 1.1145
45 848 0.8764 1.1141
46 954 0.8765 1.1139
47 1042 0.8767 1.1136
48 20 0.8769 1.1136
49 589 0.8770 1.1138
50 617 0.8771 1.1138

4 Numerical results C258

Table 2: Shifts ∆∗s = (2m∗s − 1)/(2N) and error ratio κ(N, s) obtained by the
cbc for shift algorithm for N = 2048 and weight γj = 0.5j for dimensions
s = 1, . . . , 50 . Also tabulated is κ0(N, s), the value of κ(N, s) corresponding
to zero shift. We see that κ(N, s)< 1 .
s m∗s κ(2048, s) κ0(2048, s)
1 1 0.7082 1.4148
2 227 0.7748 1.2426
3 17 0.8047 1.1841
4 1955 0.8176 1.1599
5 422 0.8291 1.1464
6 1698 0.8363 1.1307
7 1917 0.8418 1.1319
8 2005 0.8456 1.1271
9 5 0.8484 1.1214
10 135 0.8518 1.1161
11 1139 0.8539 1.1181
12 1410 0.8571 1.1118
13 982 0.8593 1.1098
14 1151 0.8605 1.1076
15 751 0.8621 1.1049
16 1043 0.8636 1.1029
17 1083 0.8648 1.1076
18 412 0.8661 1.1071
19 211 0.8671 1.1064
20 854 0.8679 1.1055
21 418 0.8686 1.1367
22 849 0.8692 1.1648
23 13 0.8769 1.1979
24 1280 0.8771 1.1977
25 1229 0.8825 1.2174

s m∗s κ(2048, s) κ0(2048, s)
26 11 0.8902 1.2372
27 1696 0.8970 1.2537
28 820 0.8965 1.2568
29 1629 0.9005 1.2693
30 1272 0.9041 1.2799
31 1661 0.9048 1.2830
32 633 0.9091 1.2912
33 205 0.9129 1.2986
34 1841 0.9162 1.3054
35 2038 0.9171 1.3075
36 1433 0.9199 1.3130
37 405 0.9204 1.3149
38 1042 0.9215 1.3170
39 589 0.9224 1.3191
40 1068 0.9246 1.3229
41 1763 0.9271 1.3263
42 1364 0.9293 1.3295
43 1946 0.9314 1.3325
44 214 0.9320 1.3337
45 1511 0.9338 1.3362
46 1835 0.9344 1.3374
47 128 0.9359 1.3395
48 1500 0.9365 1.3405
49 1023 0.9379 1.3424
50 561 0.9391 1.3442

References C259

References

[1] J. Dick, F. Y. Kuo, and I. H. Sloan. “High-dimensional integration: The
quasi-Monte Carlo way”. In: Acta Numer. 22 (2013), pp. 133–288. doi:
10.1017/S0962492913000044 (cit. on pp. C249, C250, C251).

[2] J. Dick, D. Nuyens, and F. Pillichshammer. “Lattice rules for
nonperiodic smooth integrands”. In: Numer. Math. 126.2 (2014),
pp. 259–291. doi: 10.1007/s00211-013-0566-0 (cit. on p. C249).

[3] T. Goda, K. Suzuki, and T. Yoshiki. “Lattice rules in non-periodic
subspaces of Sobolev spaces”. In: Numer. Math. 141.2 (2019),
pp. 399–427. doi: 10.1007/s00211-018-1003-1 (cit. on p. C249).

[4] F. Y. Kuo. Lattice rule generating vectors. url:
http://web.maths.unsw.edu.au/~fkuo/lattice/index.html
(visited on 02/27/2019) (cit. on p. C256).

[5] D. Nuyens and R. Cools. “Fast algorithms for component-by-component
construction of rank-1 lattice rules in shift-invariant reproducing kernel
Hilbert spaces”. In: Math. Comput. 75 (2006), pp. 903–920. doi:
10.1090/S0025-5718-06-01785-6 (cit. on p. C251).

[6] I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford
Science Publications. Clarendon Press and Oxford University Press,
1994. url: https://global.oup.com/academic/product/lattice-
methods-for-multiple-integration-9780198534723 (cit. on
p. C249).

[7] I. H. Sloan, F. Y. Kuo, and S. Joe. “On the step-by-step construction of
quasi-Monte Carlo integration rules that achieve strong tractability
error bounds in weighted Sobolev spaces”. In: Math. Comput. 71 (2002),
pp. 1609–1641. doi: 10.1090/S0025-5718-02-01420-5 (cit. on
p. C252).

[8] I. H Sloan and H. Woźniakowski. “When are quasi-Monte Carlo
algorithms efficient for high dimensional integrals?” In: J. Complex. 14.1
(1998), pp. 1–33. doi: 10.1006/jcom.1997.0463 (cit. on p. C250).

http://dx.doi.org/10.1017/S0962492913000044
http://dx.doi.org/10.1007/s00211-013-0566-0
http://dx.doi.org/10.1007/s00211-018-1003-1
http://web.maths.unsw.edu.au/~fkuo/lattice/index.html
http://dx.doi.org/10.1090/S0025-5718-06-01785-6
https://global.oup.com/academic/product/lattice-methods-for-multiple-integration-9780198534723
https://global.oup.com/academic/product/lattice-methods-for-multiple-integration-9780198534723
http://dx.doi.org/10.1090/S0025-5718-02-01420-5
http://dx.doi.org/10.1006/jcom.1997.0463

References C260

Author addresses

1. Y. Kazashi, Mathematics Institute, CSQI, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
mailto:yoshihito.kazashi@epfl.ch

2. F. Y. Kuo, School of Mathematics and Statistics, University of New
South Wales, Sydney NSW 2052, Australia.
mailto:f.kuo@unsw.edu.au

3. I. H. Sloan, School of Mathematics and Statistics, University of New
South Wales, Sydney NSW 2052, Australia.
mailto:i.sloan@unsw.edu.au

mailto:yoshihito.kazashi@epfl.ch
mailto:f.kuo@unsw.edu.au
mailto:i.sloan@unsw.edu.au

	Introduction
	Function spaces and worst-case errors
	Component-by-component constructions

	Error analysis
	Component-by-component for shift algorithm
	Numerical results

