In vitro and in vivo studies of the thiol:disulphide

oxidoreductase ResA from Bacillus subtilis and

Streptomyces coelicolor

Christopher T C Hodson

A thesis submitted in part fulfilment of the degree of Doctor of Philosophy at the University of East Anglia 2010

© This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and no quotation from the thesis, nor information derived there from, may be published without the author's prior consent.

DECLARATION

I declare that the work contained in this thesis, submitted by me for the degree of Ph.D., is my own work, except where due reference is made to other authors, and has not been previously submitted by me for a degree at any other university.

Christopher T. C. Hodson April 2010

PUBLICATIONS ARISING FROM WORK IN THIS THESIS

Hodson, C. T. C., Lewin, A., Hederstedt, L., and Le Brun, N. E. (2008) "The active-site cysteinyls and hydrophobic cavity residues of ResA are important for cytochrome *c* maturation in *Bacillus subtilis*" *Journal of Bacteriology* **190** 4697-4705

Lewin, A., Crow, A., Hodson, C. T. C., Hederstedt, L., and Le Brun, N. E. (2008) "Effects of substitutions in the CXXC active-site motif of the extracytoplasmic thioredoxin ResA" *Biochemical Journal* **414** 81-91

Many of the ideas discussed in this thesis are also discussed in these papers. Reference to these papers in the main text has been deliberately restricted to a minimum, not out of any wish to diminish the importance of these works, but rather, to prevent the need to cite these works recurrently.

ACKNOWLEDGEMENTS

Throughout the course of my research I have received help, advice and support, both professionally and more informally, from many people, all of whom I wish to sincerely thank here.

In particular I would like to thank my supervisor, Nick Le Brun who has somehow managed to put up with me for the last four years and always found the time to support, advise and tutor; Allison Lewin who has offered advise and tuition long after she was contractually obliged to; Lars Hederstedt (and his laboratory) for much needed help with BdbD; Matt Hutchings and Dave Widdick for guiding me through Streptomyces genetics; Nick Cull for technical support; all my friends and colleagues in both CAP and BIO that I've not already mentioned (Jason Crack, John Holmes, Allister Crow, Alisa Gaskil, Liang Zhow, Tamara Lawson, Chloe Singleton, Oliver Hecht, Angelo Figueiredo, Rose Marie Doyle, Kate Haynes, Gaye White, Matt Bawn, Myles Cheesman, Julea Butt, Ben Thompson and sorry to anyone I have forgotten); My girlfriend Nicola; Dad, Mum, Jim, Tim and Granny, I can not thank you enough for the love and support you have all offered me over the years to get me this far; finally I would like to thank my late Grandad, Gerald Lucian Baldit, and dedicate this thesis to his memory.

This Ph.D. thesis was funded by the Engineering and Physical Sciences Research Council (EPSRC).

iv

ABSTRACT

Thiol:disulphide oxidoreductases (TDORs) are essential in many organisms for the correct insertion and/or removal of disulphide bonds into and from peptides and proteins. One process for which TDORs have been shown to be integral is cytochrome c maturation (CCM). In the Gram positive soil bacterium *Bacillus* subtilis the membrane bound TDOR ResA is involved in the removal of a disulphide bond from the CXXCH haem binding motif of apo-cytochromes c in order to allow correct haem insertion by ResBC. The majority of TDORs contain a CXXC active site in which the sulphur residues of the cysteine side chain shuffle between the oxidised (disulphide) and reduced (thiol) forms. It is demonstrated here that both cysteines of the ResA CXXC active site are essential for protein function and that other residues, Pro141, Glu80 and Glu75, are important for stability, recognition and maintaining the reducing power of the active site, respectively. Studies of the membrane anchor domain of ResA reveal that it is important but not essential for CCM. Further to this, a homologue of B. subtilis ResA found in Streptomyces coelicolor was shown to play a similar role in vivo with regard to CCM; and in vitro studies of a purified soluble form of the protein revealed that although it has a similar low reduction potential to B. subtilis ResA it also has some interesting differences. Finally, in vivo studies of an oxidising TDOR, BdbD, from B. subtilis have provided some insight to the delicate balance of the redox state of proteins on the outside of the cytoplasmic membrane as well as future perspective on how to study this protein in vivo.

v

TABLE OF CONTENTS

Section	Title	Page
	TITLE PAGE	i
	DECLARATION	ii
	PUBLICATIONS ARISING FROM WORK IN THIS	iii
	THESIS	
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	TABLE OF CONTENTS	vi
	LIST OF FIGURES	xii
	LIST OF TABLES	xvii
	ABBREVIATIONS	xix

Chapter 1: Introduction

1.1	Summary	1
1.2	Thiol:disulfide oxidoreductases (TDORs)	1
1.2.1	Thioredoxin	1
1.2.2	Structure of Thioredoxin	2
1.2.3	Thioredoxin in B. subtilis	3
1.3	TDORs of B.subtilis	4
1.3.1	ResA	5
1.3.1.1	Function of ResA	5
1.3.1.2	Structure of ResA	6
1.3.1.3	Biophysical properties of ResA	10
1.3.2	BdbD/BdbC	11
1.3.2.1	Function of BdbD	12
1.3.2.2	Structure of BdbD	13
1.3.2.3	Biopysical properties of BdbD	14
1.3.3	BdbA and BdbB	15
1.3.4	StoA	18
1.3.5	CcdA	20
1.4	Cytochromes <i>c</i>	22

1.4.1	Haem C	23
1.4.2	Cytochromes c.	24
1.4.3	Cytochromes c of B. subtilis	25
1.4.3.1	QcrC	26
1.4.3.2	CccA	27
1.4.3.3	CccB	29
1.4.3.4	CtaC	29
1.4.4	Cytochrome c maturation	31
1.4.4.1	CCM System I	32
1.4.4.2	CCM System II	38
1.4.4.3	CCM System III	42
1.4.4.4	Systems IV and V	45
1.4.4.5	CCM in S. coelicolor	47
1.5	Project Aims	52

Chapter 2: Materials and methods

2.1	Introduction	53
2.2	Bacterial Strains	53
2.3	Growth Media.	53
2.4	Molecular biology techniques	55
2.4.1	Polymerase Chain Reaction (PCR)	55
2.4.2	Site directed PCR mutagenesis	57
2.4.3	Ligations	59
2.4.4	Preparation of chemically competent Escherichia coli cells	61
2.4.5	Transformation of chemically competent E. coli cells	61
2.4.6	Preparation and natural transformation of competent B.	
	subtilis cells	62
2.4.7	Transformation of E. coli cells by electroporation	62
2.4.8	Blue/White screening	63
2.4.9	Isolation of DNA from cell cultures	64
2.4.10	DNA quantification	65
2.4.11	Agarose gel electrophoresis	65
2.4.12	DNA sequencing	66

2.4.13	LUGOL staining for amylase activity	66
2.5	Sample preparation	69
2.5.1	B. subtilis membrane preparations	69
2.5.2	S. coelicolor membrane preparations	70
2.5.3	Determination of protein concentrations	70
2.5.4	Gel filtration chromatography	71
2.5.5	Anion exchange chromatography	72
2.6	Analytical techniques	72
2.6.1	SDS PAGE	72
2.6.1.1	SDS PAGE – Laemmli	73
2.6.1.2	SDS PAGE - Shäggar and von Jargow (SVJ)	73
2.6.2	Haem staining	74
2.6.3	Western Blots	74
2.6.4	Fluorescence spectroscopy	75
2.6.5	Cytochrome c oxidase assay	78
2.6.6	TMPD staining for cytochrome c oxidase activity	79

Chapter 3: In vivo studies of the active site residues of B. subtilis

ResA

3.1	Introduction	81
3.2	Materials and Methods	82
3.3	Results	83
3.3.1	Construction of vectors and strains	83
3.3.2	Analysis of protein production by Western blotting	85
3.3.3	Investigation of ResA activities by TMPD staining	86
3.3.4	Cytochrome c oxidase assays	87
3.3.5	Haem staining of the active site variants	90
3.3.6	The wild type CCM phenotype is restored with addition of	
	dithiothreitol (DTT) to the growth media	91
3.4	Discussion.	93

hydrophobic cavity and the membrane anchor of <i>B. subtilis</i> ResA		
4.1	Introduction	95
4.2	Materials and Methods	97
4.3	Results	97
4.3.1	In vivo studies of the key residues found in the hydrophobic	
	cavity	97
4.3.2	Confirmation of expression of variant ResA proteins by	
	Western Blotting	98
4.3.3	TMPD staining of ResA variant strains P141S, P141T and	
	E80Q	100
4.3.4	Cytochrome c oxidase assays of strains producing ResA	
	hydrophobic cavity variants	101
4.3.5	Haem staining of strains producing hydrophobic cavity	
	variants	103
4.3.6	Generation, expression and production of CccA:ResA fusion	
	protein in LUL9	104
4.3.7	Western Blot of a <i>B. subtilis</i> strain producing the CccA:ResA	
	fusion	105
4.3.8	Investigation of CccA:ResA fusion activity by haem staining	106
4.3.9	Cytochrome c oxidase assays of membranes from a strain	
	producing the CccA:ResA fusion protein	107
4.4	Discussion	109

Chapter 4: In vivo studies of the functional importance of the A

Chapter 5: In vivo Studies of the TDOR BdbD from B. subtilis.

5.1	Introduction	114
5.2	Experimental Procedures	117
5.2.1	PCR amplification of <i>bdbD</i> gene and upstream ribosome	
	binding site	117
5.2.2	Cloning <i>bdbD</i> into pUC18	118
5.2.3	Cloning <i>bdbD</i> into pDG148	120
5.2.4	Targeted PCR mutagenesis of bdbD	121

5.4	Discussion	128
5.3.3	Haem staining of membranes from BdbD variant strains	126
5.3.2	Western Blotting	124
5.3.1	TMPD staining of variant BdbD producing LUL7 strains.	123
5.3	Results	122
	bdbD genes	121
5.2.5	Transformation of B. subtilis LUL7 protoplasts with variant	

Chapter 6: Studies of the Res system in *S. coelicolor*

6.1	Introduction	131
6.2	Experimental Procedures	131
6.2.1	Generation of <i>resA</i> and <i>res</i> operon mutants	131
6.2.1.1	Verifications of cosmid StD65 by restriction digest	132
6.2.1.2	PCR amplification of the resA and res operon disruption	134
	cassettes	
6.2.1.3	Transformation of BW25113/pIJ790 with StD65	137
6.2.1.4	Disruption of the resA gene and the res operon on StD65 by	
	recombineering	138
6.2.1.5	Conjugative transfer of StD65 Δ resA and StD65 Δ resA-C to S.	
	coelicolor from E. coli	143
6.2.2.	Purification of a soluble form of S. coelicolor ResA	144
6.2.2.1	Purification of a soluble native form of ScResA	144
6.2.2.2	Expression of GST-ScResA in E. coli BL21	
	CodonPlus(DE3)-RP	151
6.2.2.3	Purification of GST:ScResA	153
6.3	Results and preliminary characterisation of the function	
	and physiology of S. coelicolor ResA	156
6.3.1	The S. coelicolor M145∆resA and M145∆resA-C phenotypes	156
6.3.1.1	S. coelicolor produces one detectable membrane associated	
	cytochrome c	157
6.3.1.2	The resA and res operon deletion strains are deficient in QcrC	
	maturation	158

6.3.2	Characterisation of ScResA	159
6.3.2.1	Determination of the extinction coefficient of ScResA at 280	
	nm.	159
6.3.2.2	Reduced ScResA has only one reactive thiol group at neutral	
	pH.	161
6.3.2.3	pH stability of ScResA	162
6.3.2.4	The reactive active site cysteine of ScResA has a pK_a of 6.9	
	(± 0.1)	165
6.3.2.5	Reduction potential determination for ScResA.	169
6.3.2.6	Stability studies of ScResA	173
6.4	Discussion	175
Chapte	r 7: General discussion and future perspectives	180

Chapter 8: References

188

LIST OF FIGURES

Figure	Title	Page
	Chapter 1:	
Figure 1.1	Schematic depiction of the accepted mechanism of	2
	disulphide exchange.	
Figure 1.2	Structure of thioredoxin from E. coli.	3
Figure 1.3	Ribbon structure of the oxidised form of <i>B. subtilis</i>	
	ResA.	6
Figure 1.4	Structure of B. subtilis BdbD	15
Figure 1.5	The locations of thiolether and disulfide bonds in	
	sublancin.	17
Figure 1.6	Comparison of the structural difference between sStoA	
	and sResA from <i>B. subtilis</i> .	19
Figure 1.7	Comparison of the predicted topology of B. subtilis	
	CcdA and <i>E. coli</i> DsbD.	21
Figure 1.8	Haem attachment to cytochrome c	22
Figure 1.9	Haem B (protohaem IX) and haem C	23
Figure 1.10	Schematic topography of <i>B. subtilis</i> cytochromes <i>c</i>	25
Figure 1.11	Aerobic respiratory chains of B. subtilis	26
Figure 1.12	CCM system I from E. coli.	32
Figure 1.13	CCM system II from B. subtilis.	38
Figure 1.14	The res operon from B. subtilis.	39
Figure 1.15	CCM biogenesis system III from Saccharomyces	
	cerevisiae.	42
Figure 1.16	Gene organisation of the predicted S. coelicolor res	
	operon	48
Figure 1.17	Sequence alignment of BsResA and ScResA	49
Figure 1.18	The qcr and cytochrome c oxidase gene cluster of S .	
	coelicolor	50
	Chapter 2:	
Figure 2.1	Insertion of pALR12 into the amyE gene in the B.	
	subtilis genome	67

Figure 2.2	Conformation of gene insertion at amy locus by LUGOL	
	staining	69
Figure 2.3	Badan	77
Figure 2.4	A typical cytochrome c oxidation assay plot.	79
	Chapton 2.	
F ! 3 1	Chapter 5:	
Figure 3.1	Crystal structures of wild type ResA and active site	- 0
	cysteine variants	79
Figure 3.2	Insertion of pALR12 in to the <i>amyE</i> gene in the <i>B</i> .	
	subtilis genome	82
Figure 3.3	Confirmation of gene insertion at <i>amyE</i> locus by	
	LUGOL staining.	83
Figure 3.4	PCR amplification of <i>amyE</i> region of the LUL9	
	chormosome.	84
Figure 3.5	Western blot analysis of ResA production in LUL9-	
	derivative strains	85
Figure 3.6	TMPD stains of B. subtilis wild type, ResA deficient and	
	ResA active site variant strains.	86
Figure 3.7	Cytochrome c oxidase assays.	88
Figure 3.8	Haem stain of cytochromes c present in the membranes	
	of active site cysteine variant ResA strains	91
Figure 3.9	Haem stain of cytochromes c found in membranes of	
	cysteine variant ResA strains and LUL9 grown in the	
	presence of 1 mM DTT.	92

Chapter 4:

Figure 4.1.	Crystal structure of the active site and hydrophobic	
	cavity region of wild type B. subtilis ResA obtained at	
	рН 9.25.	98
Figure 4.2.	Comparison of the N-terminal amino acid sequences	
	from B. subtilis ResA and B. subtilis CccA.	101
Figure 4.3	PCR amplification of <i>resA</i> insertion in to the genome of	

B. subtilis LUL9 at the amyE locus.	104
Western blot of ResA E80Q variant	105
Western blot of proline 141 variants.	106
TMPD staining of the hydrophobic cavity variants.	106
Cytochrome c oxidase assays of ResA hydrophobic	
cavity variants.	108
Haem stain of cytochromes c present in the membranes	
of B. subtilis strains containing hydrophobic cavity	
variants of ResA.	110
Western blot analysis of CccA:ResA production in the	
ResA deficient strain, LUL9	111
Haem stain of <i>B. subtilis</i> cytochromes <i>c</i> in	
LUL9/CccA:ResA membranes	112
Cytochrome c oxidase assays of CccA:ResA fusion	113
Alignment of haem binding domain of B. subtilis	
cytochromes c.	116
	 <i>B. subtilis</i> LUL9 at the <i>amyE</i> locus. Western blot of ResA E80Q variant Western blot of proline 141 variants. TMPD staining of the hydrophobic cavity variants. Cytochrome <i>c</i> oxidase assays of ResA hydrophobic cavity variants. Haem stain of cytochromes <i>c</i> present in the membranes of <i>B. subtilis</i> strains containing hydrophobic cavity variants of ResA. Western blot analysis of CccA:ResA production in the ResA deficient strain, LUL9 Haem stain of <i>B. subtilis</i> cytochromes <i>c</i> in LUL9/CccA:ResA membranes Cytochrome <i>c</i> oxidase assays of CccA:ResA fusion Alignment of haem binding domain of <i>B. subtilis</i>

Chapter 5:

Figure 5.1	Calcium binding site of BdbD.	116
Figure 5.2	PCR amplification of the <i>bdbD</i> gene from <i>B. subtilis</i> 1A1	
	genomic DNA.	118
Figure 5.3	Restriction digest confirmation of <i>bdbD</i> insertion into	
	pUC18	119
Figure 5.4	Confirmation of successful ligation of <i>bdbD</i> into	
	pDG148	120
Figure 5.5	TMPD staining of LUL7 expressing variant <i>bdbD</i>	
	induced by different concentrations of IPTG.	124
Figure 5.6	Western blot showing wild type BdbD production from	
	pCHN18 in B. subtilis LUL7.	125
Figure 5.7	Haem stain of membrane samples prepared from	
	LUL7/pCHN18 grown in the presence of 10–0.1 μ M	
	IPTG.	127

Chapter 6:

Figure 6.1	Verification of StD65 by restriction digest.	134
Figure 6.2	Schematic of primer design process to design primers to	
	PCR amplify apra ^R +oriT cassette with <i>ScresA</i> flanking	
	regions.	135
Figure 6.3	PCR amplification of the resA and resA-C disruption	
	cassettes.	137
Figure 6.4	Schematic of λ -Red mediated double crossover.	138
Figure 6.5	SacI restriction digest of wild type StD65 and the resA	
	and <i>resA-C</i> knock out (KO) mutants.	141
Figure 6.6	PCR confirmation of <i>resA</i> and <i>resA-C</i> disruption with	
	apra ^R resistance cassette.	142
Figure 6.7	Test expressions of the pCHN12 plasmid in BL21 DE3.	145
Figure 6.8	Ammonium precipitation and anion exchange of	
	ScResA.	147
Figure 6.9	Heat stability of ScResA.	148
Figure 6.10	PCR amplification of part of ScresA gene predicted to	
	encode soluble domain.	150
Figure 6.11	Conformation of correct insertion of the gene encoding	
	ScresA into pUC18.	150
Figure 6.12	Confirmation of correct ScResA encoding gene insertion	
	into pGEX-4T-1.	151
Figure 6.13	Test expression/test purification of GST:ScResA from	
	different E. coli strains:	152
Figure 6.14	Coomassie stained SDS PAGE showing different stages	
	of ScResA purification.	154
Figure 6.15	Absorbance at 280 nm from elution from gel filtration	
	column.	155
Figure 6.16	Coomassie stained SDS PAGE showing fractions eluted	
	from S75 gel filtration column	156
Figure 6.17	Haem stain of membranes prepared from S. coelicolor	157
	M145 and M145 Δqcr .	

Figure 6.18	Haem stain of M145, M145 Δ resA and M145 Δ resA-C	158
	membranes	
Figure 6.19	Absorbance spectra of unfolded (UF) and folded (F)	
-	ScResA used to calculate the extinction coefficient.	160
Figure 6.20	Fluorescence spectra of ScResA from pH 2 to pH 12.	163
Figure 6.21	Fluorescence at 349 nm plotted as function against pH.	164
Figure 6.22	pH unfolding of ScResA.	165
Figure 6.23	Example of Badan fluorescence between 400 and 600 nm	
	of badan incubated with ScResA.	167
Figure 6.24	Badan fluorescence at 544 nm	168
Figure 6.25	The observed pseudo first order rate constant (k_o) values	
	plotted against pH and the curve fitted using the	
	Henderson Hasselbalch equation.	169
Figure 6.26	Fluorescence emission spectra of oxidised and reduced	
	ScResA	170
Figure 6.27	Fluorescence spectra of ScResA between -330 mV and $-$	
	210 mV.	171
Figure 6.28	Determination of the ScResA reduction potential	172
Figure 6.29	Unfolding and refolding of ScResA in guanidine	
	hydrochloride.	174

LIST OF TABLES

Table	Title	Page
	Chapter 1	
Table 1.1	Changes in active site cysteine pK_a and redox midpoint	11
	potential of ResA with the active site altered to that of E.	
	<i>coli</i> DsbA	
	Chapter 2:	
Table 2.1	Bacterial strains used and/or generated throughout the	
	course of this study	54
Table 2.2	Growth media used in this work	55
Table 2.3	Typical components of a PCR amplification reaction	56
Table 2.4	Typical conditions of a DNA amplification PCR reaction	56
Table 2.5	Typical reaction mixture used for a PCR mutagenesis	
	reaction	57
Table 2.6	Typical conditions of a site directed PCR mutagenesis	
	reaction	57
Table 2.7	Primers used in this study	58
Table 2.8	The components of a typical ligation reaction mixture	59
Table 2.9	Plasmids and cosmids generated and/or used throughout	
	the course of these studies	60
	Chapter 3:	
Table 3.1	Cytochrome c oxidation activities of ResA and ResA	
	active site variants	89

Chapter 4:

Table 4.1	Cytochrome <i>c</i> oxidase activity of hydrophobic variants	103
Table 4.2	Cytochrome c oxidase assays of CccA:ResA fusion protein	108

Chapter 6:

Table 6.1	Expected bands generated by the restriction digest of	
	StD65 with <i>Eco</i> RI and <i>Hin</i> dIII.	133
Table 6.2	Primers used to generate resA and the res operon knock-	
	out disruption cassettes by PCR	136
Table 6.3	PCR reaction conditions required to amplify the AprR	
	cassette with the 5' and 3' flanking regions of the gene of	
	interest	136
Table 6.4	Predicted SacI restriction digest pattern of wild type StD65	
	and the StD65 resA and resA-C knock out mutants	139

LIST OF ABBREVIATIONS

aa	Amino acid
Abs, A	Absorbance
Amp	Ampicillin
Badan	6-Bromoacetyl-2-dimethylaminonaphthalene
B&W	Bott and Wilson solution
BCA	Bicinchononic acid
bp	Base pairs
Bs	Bacillus subtilis
<i>caa</i> ₃	Cytochrome c oxidase
Da	Daltons
DTNB	5,5'-dithio-bis(2-nitrobenzoic acid)
DTT	Dithiothreitol
3	Extinction coefficient (M ⁻¹ cm ⁻¹)
EDTA	Ethylene diamide tetraacetic acid
GST	Glutathione S-transferase
IPTG	Isopropyl-β-D-thiogalactopyranoside
Kan	Kanamycin
nt	Nucleotide
dNTPs	Deoxynucleotide 5'-triphosphates
LB	Luria-Bertani broth
LBA	Luria-Bertani agar
MG	Minimal glucose
MOPS	3-(N-morpholino)-propanesulfonic acid
NSMP	Nutrient sporulation medium with phosphate

OD	Optical density
PAGE	Polyacrylamide gel electrophoresis
PCR	Polymerase chain reaction
PDB	Protein data bank
PMSF	Phenylmethanesulphonylfluoride
Sa	Staphylococcus aureus
Sc	Streptomyces coelicolor
SDS	Sodium dodecyl sulphate
TBAB	Tryptose blood agar base
TCA	Trichloroacetic acid
TIM	Inner membrane transport machinary
TMPD	N,N,N',N'-tetramethyl-p-phenylenediamide
TOM	Outer membrane transport machinery
Tris	Tris(hydroxymethyl)aminomethane
Trx	Thioredoxin
UV	Ultraviolet
% v/v	ml per 100 ml
% w/v	grams per 100 ml
WT	Wild type
X-gal	5-bromo-4-chloro-3-indonyl-β-D-galactopyranoside