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ABSTRACT 

We consider the class of doubly diagonally dominant matrices (A = [ ajj] E C”, ‘, 
la,,1 l”jjl > Ck+ i laiklCk+ jlajkl. i #j) and its subclasses. We give necessary and 
sufficient conditions in terms of the directed graph for an irreducibly doubly diago- 
nally dominant matrix to be a singular matrix or to be an H-matrix. As in the case of 
diagonal dominance, we show that the Schur complements of doubly diagonally 
dominant matrices inherit this property. Moreover, we describe when a Schur 
complement of a strictly doubly diagonally dominant matrix is strictly diagonally 
dominant. 0 Elsevier Science Inc., 1997 

1. PRELIMINARIES 

The theorem of Gerggorin and the theorem of Brauer are two classical 
results about regions in the complex plane that include the spectrum of a 
matrix (see e.g., Horn and Johnson [4]). They, respectively, locate the 
eigenvalues of an n X n complex matrix A = [aij] in the union of n closed 
discs (known as the GerXgorin discs), 
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or in the union of n(n - 1)/2 ovals (known as the ovals of Cassinil, 

{Z E c: I2 - Oiil 1’ - ujjl G ( zi I"ikl)( & l’jki,) 
(i,j = 1,2 ,..., i #j). 

As a consequence of either of these theorems, but more precisely as a 
consequence of Gerggorin’s theorem, every strictly diagonally dominant ma- 
trix is invertible. In geometric terms, strict diagonal dominance means that 
the origin does not belong to the union of the GerZgorin discs and hence it 
cannot be an eigenvalue. In this article we will consider a condition weaker 
than diagonal dominance, whose geometric interpretation regards the loca- 
tion of the origin relative to the ovals of Cassini. This condition gives rise to 
the class of doubly diagonally dominant matrices and its subclasses, whose 
precise definitions are found later in this section. 

We continue with definitions, notation, and some background results. 
Given a positive integer n, let (n> = { 1,2, . . . , nl. Let C”, ” denote the 

collection of all n X n complex matrices, and let Z”, n denote the collection 
of all n x n real matrices A = [aij] with 
Throughout this section A = [u,~] E C”, “. 

aij Q 0 for all distinct i,j E (n). 

With A we associate its (loopless) directed graph, D(A), defined as 
follows. The vertices of D( A) are 1,2, . . . , n. There is an arc (i, j) from i to j 
when aij # 0 and i #j. A path (of length p> from i to j is a sequence of 
distinct vertices i = i,, i,, . . . , i, = j such that (i,, ii), (i,, is), . . . , (i,_,, i,) 
are arcs of D(A). We denote such a path by pij = (i,, i,, . . . , i,). A circuit y 
of D(A) consists of the distinct vertices i,, i,, . . . , i,, p > 1, provided that 
(iO, il), (il, i,), . . . , (i,_,, i ), and (iP, iO> are arcs of D(A). We write 
y = (i,, i,, . . . , i,, i,) and &note the set of all circuits of D(A) by 8(A). 

The matrix A is called irreducible if its directed graph is strongly 
connected, i.e., for every pair of distinct vertices i, j there is a path Pij in 
D(A). 

A particular directed graph which will arise in our subsequent discussion 
is the directed graph of a matrix A E C”, ” in which the diagonal entries are 
nonzero, the entries of the i,-th row and column (for some i, E (n)) are 
nonzero, and all other entries are zero. Prompted by its shape, we refer to 
D( A) as a star centered at i,. 

The comparison matrix of A, denoted by M(A) = 1 oij] E C”, *, is 
defined by 

( laiil if i =_j, 
aij = 

\ 
-JaijJ if i #j. 
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If A E Z”-“, then A is called an M-matrix provided that it can be 
expressed in the form A = SZ - B, where B is an (entrywise) nonnegative 
matrix and x > p(B) [ w h ere p(B) denotes the spectral radius of B]. The 
matrix A is called an H-m&-ix if A( A) is a nonsingular M-matrix. It is well 
known that H-matrices are nonsingular. For the properties of M-matrices 
and H-matrices and related material the reader is referred to Berman and 
Plemmons [l] and Horn and Johnson 151. 

We will use the notation Ri( A) = & + i (aikl (i E (n)). Recall that A is 
called (row) diagonally dominant if 

laiil > Rj( A) (i E (n)). (1.1) 

If the inequality in (1.1) is strict for all i E (n), we say that A is strictly 
diagonally dominant. We say that A is irreducibly diagonally dominant if A 
is irreducible and at least one of the inequalities in (1.1) holds strictly. We 
now formally introduce the definitions and the notation pertaining to double 
diagonal dominance. 

DEFINITION 1.1. The matrix A E C”,” is doubly diugonuEly dominant 
(A E G’.“) if 

IaiiI IajjI > fli( A) Rj( A) > i,j E (n), i #j. (1.2) 

If the inequality in (1.2) is strict for all distinct i, j E (n), we call A strictly 
doubly diagonally dominant (A E G;, “). If A is an irreducible matrix that 
satisfies (1.2) and if at least one of the inequalities in (1.2) holds strictly, we 
call A irreducibly doubly diagonally dominant ( A E Gz* “>. 

Notice that the diagonal entries of every matrix in G;,” or G;‘, 11 are 
nonzero. 

Let us now review some classical results and note some similarities and 
differences between diagonal dominance and double diagonal dominance: 

(1) If A is strictly diagonally dominant then det A # 0 (Levy-De- 
splanques theorem). If A E G;x fl then det A f 0 (by Brauer’s theorem). 

(2) If A is irreducibly diagonally dominant then det A f 0 (see Taussky 
[8, 91). However, a matrix in 
following example shows: 

A= 

G zz n is not necessarily nonsingular, as the 

1 -1 -1 

-1 2 -1 0 0. 1 2 
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If A E G,“,” and if (1.2) holds strictly for at least one pair of the vertices of 
some circuit y E 8(A), we can conclude that det A # 0 (see Zhang and Gu 
[ll, Theorem I]). 

(3) If A is strictly diagonally dominant or irreducibly diagonally dominant 
then A is an H-matrix (see e.g., Varga [lo]). More precisely, A is an 
H-matrix if and only if there exists a positive diagonal matrix D such that AD 
is strictly diagonally dominant. In the literature the latter property is referred 
to as “generalized diagonal dominance” (see e.g., [I]), because it reduces to 
diagonal dominance when D is the identity. The example in (2) above also 
shows that not every matrix in Gz, n is an H-matrix. 

(4) When A is irreducible, a form of diagonal dominance based on the 
circuits of D(A), introduced by Brualdi in [2], implies the invertibility of A: 

THEOREM 1.2 ([2, Theorem 2.91). Let A = [aijl E C”,” be irreducible. 
suppose 

with strict inequality holding for at least one circuit 7. Then det A # 0. 

In what follows we will characterize H-matrices in G”, n and G,“, “, and 
will describe the singular matrices in G,“,” (Section 2). In Section 3 we will 
prove several results regarding the Schur complements of doubly diagonally 
dominant matrices, leading up to the fundamental result that the Schur 
complements of matrices in G”, ” are also doubly diagonally dominant. 

2. DOUBLE DIAGONAL DOMINANCE, SINGULARITY, AND 
H-MATRICES 

We begin with some basic observations regarding matrices in G”, “. 

THEOREM 2.1. Let A E G”,“. Then the following hold: 

6) 

(?; 
(iv) 

vertices 

A( A) is an M-matrix. 
A is an H-matrix if and only $ JY( A) is nonsingular. 
Zf A E G;,“, then A is an H-matrix. 
Zf A E G;*” is such that (1.2) holds strictly for at least one pair of 
i, j that lie on a comnwn circuit of D( A), then A is an H-matrix. 
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Proof. To show (i), for E > 0, let B, =_&(A) + EI = [b,jl. Since 
(bii] ]bjj] > R,(B,)Rj(B,) for all i, j, i #j, it follows from Brauer’s theorem 
that B, E Z n, * is nonsingular for every E > 0, which implies that A( A) is an 
M-matrix (see e.g., condition (C,) of Theorem 4.6 in [l, Chapter 61). Parts (ii) 
and (iii) are immediate consequences of part (i) and Brauer’s theorem. Part 
(iv> follows from part (ii) and Theorem 1.2 applied to M( A). ??

Some results related to Theorem 2.1 appear in [6]. There it is claimed that 
matrices in Gi,” are H-matrices, which is false as we have seen by an 
example in Section 1. 

Next we will characterize the singular matrices in Gi. “. First we need the 
following lemma. 

LEMMA 2.2. Consider A E C”.” such that D(A) is a star centered at 
i, E (n). Then 

det A = n aji 
.i+i0 

‘i,i,, 
_ c akr,aid . 

k+i,, akk I 

Proof The terms in the expansion of the determinant of a matrix A as 
prescribed are 

,,Q ajj and - ( aki,ai,,k II anlrn) Ck E cn) \ {iol), 
m#k.io 

and the formula for the determinant follows readily. ??

THEOREM 2.3. Let A = [aij] E Gt,‘. Then A is singular if and only if 
D( A) is a star centered at some i, E (n) and the following hold: 

~azo~ol < ‘io( A)) IaioioI IajjI = Ri,(A)Aj(A) (j E (n> \ {i"}) (2.3) 

and 

(2.4) 

Proof. Suficiency: If D(A) is a star centered at i,, E (n) and (2.4) 
holds, then by Lemma 2.2, A is singular. 



226 BISHAN LI AND M. J. TSATSOMEROS 

Necessity: Assume that A = [aij] E Gg*” is singular. Since A E Gis ‘, 
one of the following two cases must occur. Either ]a,,( > R,(A) for all 
i E (n) with at least one strict inequality holding, or there exists one and 
only one i, E (n) such that 

Ie,,,i,l < Hi0 and IajjI > fij( A) (j E (n> \ (4,)). (2.5) 

In the former case A is an irreducibly diagonally dominant matrix and hence 
nonsingular, contracting our assumption. Therefore (2.5) holds. It also follows 
from the definition of G,“, ’ that 

FIY l’iil a ,vy ‘iCAl [Y E 8( A)1’ (2.6) 

If y E Z?:(A) and i, 4 y, it follows by (2.5) that 

n leiil > n fij( A). (2.7) 
iEy iEy 

Then Theorem 1.2, (2.6), and (2.7) imply that det A # 0, contradicting our 
assumption. Hence for every y E a(A), i E 7. 

We now claim that every y E 8(A) is of the form y = (io, j, i,,) for some 
j E (n) \ {ia}. Indeed if 7 = (i,, i,, . . . , i,, i,) with p > 2, then 

JJ la,,1 = l”i,i,l lai,i,l n l”iil 
isy i E y\Ii~, iI) 

> l”~oi,l l”i,i,l II 
i E y\&. ill 

w A) 

so, by Theorem 1.2, det A # 0, contradicting again our assumption that A is 
singular. 

As is well known, since D(A) is by assumption strongly connected, every 
vertex i lies on some circuit y E %‘(A). Therefore we deduce that 

8(A) = {yj :yj =(i,,j,i,),j E (n)\(i,)}. (2.8) 

In particular, it follows that there are no arcs (il, i,) in D(A) with i, Z i, 

and is # i,, otherwise y = (i o, i,, i,, i,,) E 8(A), contradicting (2.8). Thus 
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D(A) is a star centered at i,. If for some j, Iaioiol Ja..I > Rio(A)Rj(A), then, 
by Theorem 1.2, we are led to the contradiction t t at det A f 0. Thus for 
each j E (n) \ {ia}, we have 

IUi,,i,,I IUjjI = Rio( A) Rj( A) 1 

Finally, by Lemma 2.2, we can now assert that A satisfies (2.4). ??

We note that the necessity part of Theorem 2.3 also follows from the 
results of Tam, Yang, and Zhang [7]. Th e next theorem offers a characteristi- 
zation of the H-matrices in G,“, “. 

THEOREM 2.4. Let A = [a,] E Gi,“. Then A is not an H-matrix ifund 
only if D( A) is a star centered at some i, E (n) and 

IuiuioI IujjI = Rio( A) Rj( A) (j E (n) \ ii&). (2.9) 

Proof. Necessity: Suppose A is not an H-matrix. Note that if A E Gz,” 
then A( A) E Gz, “. The result follows by Theorem 2.169 and Theorem 2.3 
applied to &( A). 

Suficiency : By assumption, D( A( A)) is a star centered at some i, E (n) 
and (2.9) holds. Consider the vector x = [x,, x2,. . . , x,lT, where xi0 = R,,, 
and ri = la, i ( for all i z i,. Then &( A)x = 0, x f 0, and thus, by 
Theorem 2.1&j, A is not an H-matrix. ??

If A E G”,” is singular, by Theorem 2.1(u), &(A) is singular. The 
converse of this statement is not necessarily true. More specifically, A E Gg, ” 
being nonsingular does not in general imply that A is an H-matrix [i.e., that 

&A) is nonsingular]. This situation occurs in the next example. 

EXAMPLE 2.5. The following matrices illustrate the use of Theorems 2.3 
and 2.4 in checking whether an irreducibly double diagonally dominant 
matrix is an H-matrix or not. Consider the following matrices in Gz 3: 

-1 0 2 

[ 

1 1 1 

c= -2 4 -1 0 0, 1 3 

1 1 1 

E= I -2 4 1 1 0. 1 4 
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The directed graph of A is a star centered at i, = 1, and A satisfies (2.4). 
From Lemma 2.2, A is singular, Since A(B) = A, B is not an H-matrix 
(even though B is nonsingular). Note that D(C) is a star centered at i, = 1 
but lcirl Icssl = 3 > 2 = R,(C)&(C). Hence, by Theorem 2.4, C is an 
H-matrix. Finally, D(E) is not a star centered at any i, E { 1,2,3) and so E 
must be an H-matrix. 

3. SCHUR COMPLEMENTS 

Let A = [aij] E C”,” be partitioned as 

I (3.10) 

where A,, is the leading k x k principal submatrix of A, for some k E (n). 
Assuming that A,, is invertible, we can reduce A (using elementary row 
operations) to the matrix 

(3.11) 

where U, E C ‘vk is upper triangular and A/A,,, known as the Schur 
complement of A relative to A,,, is given by A/A,, = A,, - A,lAI,lA,,. In 
particular, if a,, z 0, we can reduce A to the matrix 

(3.12) 

where bij = a,. - ailalj/a,,, 
h 

2 < i,j < n. The trailing (n - 1) X (n - 1) 
submatrix of t e matrix above is the Schur complement of A relative to 
A,, = [all], which we will subsequently denote by B = [ biJJ, and index its 
entries by 2 ,< i, j < n. 

In this section, we shall prove that if A belongs to G”,” and det A,, # 0, 
then A/A,, belongs to Gnpk, n-k. We will first consider the Schur comple- 
ments of matrices in G;, “. We note that our proofs rely on the fact that if 
A E G;,“, then all principal submatrices of A are invertible and so the 
associated Schur complements are well defined. The following is a well-known 
fact in numerical linear algebra. 
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LEMMA 3.1. ZfA E C”,” is strictly diagonally dominant and partitioned 
as in (3.101, then det A,, # 0 and A/A,, is also strictly diagonally domi- 
nant. 

LEMMA 3.2. Let A = [ajj] E CT”. Then 

a21 a12 a31a13 a21a13 a31u12 

a22 
-- 

II 
a33 -___ > a23-- 

I I /I 

a32 - - . (3.13) 
all all alI a11 

Proof. Since A = [aij] E G’:3, from Theorem S.I(iii) we have that A is 
an H-matrix. Hence there is a positive diagonal matrix D = diadd,, d,, d,,) 
such that AD is a strictly diagonally dominant matrix. Since d, a,, f 0, UT ’ 
can reduce AD to the matrix 

0 d2a22 - 

d2a21aj2 
Aa23 - 

d,aaa,, 
/ 

a11 a11 

0 d2a3, - 
d2acj1a12 

ha33 - 

&a,, al3 

alI all 

which, by Lemma 3.1, is also strictly diagonally dominant, and (3.13) 
follows. ??

THEOREM 3.3. Let A E G; “, and let B E C’m’,n-’ as in (3.12). Z’herl 
R E G;-k-1. 

Proof Since A = [aii] E G;,“, one of the following two cases must 
occur. Either there exists i’ E (n) such that laiil < R,(A), laj,l > Rj( A), and 
(a,,1 lajil > R,(A)R,.(A) (j E (n) \ {i}), or laiil > R,(A) (i E (n>). In the 
latter case, by Lemma 3.1, B is strictly diagonally dominant and hence 
R E G;-‘.“+ We now consider the former case in two subcases: 

(i) i = 1. In this case, we shall also prove that B is strictly diagonally 
dominant (and hence in G;-‘, llP ‘>. If suffices to prove that 

lb,,1 > t I~,,l, (3.14) 
j=3 
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where b,, = as2 - a21a12/a11 and bzj = asj - a,,a,j/a,, for j > 3. Since 

lal,l la,,l > 2 laljl C lazjl = C laljl k Ja2jl + la211 i lalji 
j=Z j#Z j=Z j=3 j=2 

2 la,,1 i lazjl + lazll Ial + la2,1 5 laljl~ 
j=3 j=3 

(where we have used the assumption Iall I < R,(A) for the last inequality), 
we have 

la,,a,,l - la,,a,,l > Iall t lazjl + 
j=3 i 

$f$) >lalll~3 /a2j- ?I. 

That is, 

%1%2 
a22 

-- !!E!!!>~~a2j-~l, 
a11 

a la221 - (alll 

which is equivalent to (3.14). 
(ii) i > 2. In this case we shall see that I3 belongs 

Without loss of generality, we can assume that i = 2. Set 

14 -cjZl,3 l%jl -la,,1 
A, = -la21l la22l -Cy,3 la2jl 

-la311 -Cj+ 1,3 la3jl la331 1 
to G;-b-1. 

Since A E G;,” it follows that A, E G:3 n Z3a3 and that A, has positive 
diagonal entries. Applying Lemma 3.2 to A,, we obtain 

[ 

la211 

jazz1 - ia,,i j+:3 ‘alil 

I[ 

la33’ - 

la13a311 

lalll 
I 

[ 

n 
lazla131 

> jF3 la2jl + Ja,,l 
I[ 

la311 

’ la3j’ + Iall j+1,3 
- C laljl . (3.15) 

j#1,3 I 
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Setting 
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y3 = c (u3j( + !!fd 
j+1,3 

lUllI c l4 
jf1,3 

we see that (3.15) is equivalent to 

[ 

lu21u121 
lu22’ - lUllI 11 

l%l%3l 
la331 - ,ull, 

I 

’ Yl + Y2Y3 

For yl we have 

b,,l n 
Yl = i;;;;ijF4 l’,jl la,,1 - * 

a11 

From (3.16) and (3.17), it follows that 

a21a12 a31a13 

%2 
-- 

II 
a33 

-- 

a11 a11 

[ 

lU21%2l 

2 h2l - (ull( II la3,a,3l 

lu33’ - lUllI 

> 71 + 7273 

(3.16) 

(3.17) 

’ Ja,,l ,F l”,jl + 2 l”2jl + w Y3 
[ 

l%,l n 

J 4 j=3 a11 1 
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= $ ,g hjl + i la,jl 
[ 

c l&J + 
3 3 j=3 I[ j+1,3 

n 

2 C azj- 
j=3 

yl,,S, Ia3j - ?I, 

or equivalently lb,,1 lb,,] > R,(B)R,(B). Similarly, lb,,] ]bjjI > Rs(B)Rj(Bl 
for j = 4,5,. . . , n. In general, since row reduction with respect to a strictly 
diagonally dominant row preserves strict diagonal dominance, we have that 
lb,,] lb,] > R,(B)R,.(B) for i,j = 3,4,. . . , n and i Zj. Hence B E 
G”-l,fl-1 

1 ??

COROLLARY 3.4. i-f A = [aij] E G;,” and lalll < R,(A), then B, as in 
(3.12), is strictly diagonally dominant. 

Proof. This is subcase (i) in the proof of the previous theorem. 

We continue now with general Schur complements of matrices in G;,“. 

THEOREM 3.5. Let J = {i E (n): (aiiJ Q R,(A)}, where A = [aij] E 
G 7, n is partitioned as in (3.10). Then 

(i) A/A,, is strict1 diagonally dominant if] C {1,2, . . . , k); 
(ii) A/A,, E G;- !I!“4 if 0 #J C {k + 1,. . . , nl. 

Proof. (i): If J = 0, th en A is strictly diagonally dominant and hence 
the result follows by Lemma 3.1. If J + 0, then J can only contain one 
element. Without loss of generality, assume that i = 1 E J (otherwise we can 
symmetrically permute the first k rows and columns of A, an operation that 
leaves the Schur complement in question unaffected). From Corollary 3.4, B 
[as defined in (3.12)] is strictly diagonally dominant. The result follows by 
noting that A/A,, is equal to a Schur complement of B (see e.g., Fiedler [3, 
Theorem 1.251) and by applying Lemma 3.1 to B. 

(ii): From Theorem 3.3 we have that B E G;-l, “- ‘. Inductively, since 
A/A,, is equal to a Schur complement of B, it follows that if 0 # J c (k + 
1 , .-*> n} then A/A,, E G;-k’n-k. H 
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REMARK 3.6. If 0 # J c {k + 1,. . . , n}, then A/A,, is not necessarily 
strictly diagonally dominant. For example, consider 

Taking A,, = [2] with J = (2}, we have that 

which is not strictly diagonally dominant. 

We can now turn our attention to Schur complements of matrices in 
G”. )I 

THEOREM 3.7. IfA E G”,” 
then A/A,, E G”Pk*“-k. 

is partitioned as in (3.10) with det A,, f 0. 

Proof. Let A = [aij] b e as prescribed above. We first observe that 
a,, # 0 for i E {l, 2,. . . , k). Indeed, if a,, = 0 for some i E {l, 2,. . . , k}, 
then 0 > Ri( A)R,( A) for all j E (n) \ [i). Also R,(A) + 0, since det 
A,, # 0 and hence R&A) = 0 for all j E (n) \ {i}. Thus the ith column of 
A,, is zero, a contradiction. 

Set now D = diag(e’“‘““II, . . . , eiargnki, 6,, ,, . . . , S,), where, for j E 
lk + 1, k + 2,. . . , n}, 

if ajl#O, 

otherwise. 

Note that A + ED E G;,n, for every E > 0. Suppose that we row reduce 
A + ED and obtain the matrix 

. . . 
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Set B(E) = [bij(e)]. For 2 < i Q k we have 

ailali 
bii( e) = (laiil + E)eiargogi - (la11, + e)eiarga,l ) (3.18) 

b,(e) = aij - 
ailalj 

(lalll + E)eia’gall 
(j # i; j > 2). (3.19) 

For k + 1 Q i < n, 

bii( E) = aii + E6, - 
adali 

(1~~~1 + E)ei”rg’lL ’ 
(3.20) 

bij( E) = aij - 
ailQlj 

(lull1 + ??)eiarga1l 
(j # i; j > 2). (3.21) 

From Theorem 3.5 we obtain 

[b,,(e)(Ibjj(e)( > Ri(B(e))Rj(B(e)) (i +j; i,j B 2). (3.22) 

The combination of (3.18)~(3.21) gives 

and 

!r_no (bij(e)l =laij - 21 = lb,,1 (i #j; i,j 2 2) 

[recalling B from (3.12)]. Hence, by taking the limit in (3.22) as E + 0, we 
have 

lb,,1 lbjjl > Ri( B)Rj( B) (i Zj). 

Thus B E G”-iz”-r. The theorem follows by noting that A/A,, is equal 
to a Schur complement of B, and by applying the above argument induc- 
tively. ??
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