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1. Introduction

In this paper we study regular orbits of cyclic subgroups of finite simple
groups. The main result is the following theorem.

Theorem 1.1. Let G be a known finite simple group, not isomorphic to an alter-
nating group A,, which admits a doubly transitive permutation representation.
Then every cyclic subgroup H C G hasa regular orbit in any non-trivial permu-
tation representation of G.

If H acts onA then anH-orbit is regular if its cardinality is |H|. The
alternating groups, already in their natural representation, do not have the
property of the theorem, hence the exception. The other known simple groups
with a doubly transitive permutation representation B&.(n,q), F(2n, 2)

(two representations)l/z(¢), %B2(¢), 2Ga2(g) and a short list of sporadic
examples which are reproduced in Section 5. If one assumes the completeness
of the classification of finite simple groups then these are all doubly transitive
representations of finite simple groups and the wkmown can be omitted in

the theorem. In our paper [8] the Theorem 1.1 was provedP&i(n, ¢). Here

we consider the remaining doubly transitive groups. The same method can in
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principle be extended to other groups of Lie type. Similarly, it may also be
interesting to investigate the doubly transitive groups of affine type. However,
both problems may require essential additional efforts.

The theorem can be proved using the same ideas as in [8]. For each group one
distinguishes thembedding case where the result is proved for cyclid c G
in doubly transitive representations, and thetorization case where the result
is proved for cyclicH Cc G acting on aG-set A for which G = G, - Gs
factorizes, withs € A and w € £2, for some doubly transitives-set 2. The
details of this are explained again in Section 2. The proof of Theorem 1.1 follows
from Theorem 1.1 of [8] folPSL(n, ¢), from Proposition 3.6 and Theorem 3.7
for (2n, 2), from Theorems 4.1, 4.3, 4.4, and 4.5 t&4(q ), 2Bg(q), andez(q),
and from Theorem 5.1 for the sporadic examples.

2. Preliminaries

The notation in this paper is the usual onedlfis a group and?2 a G-set
thengw is the image ofw € 2 underg € G and if H C G is a subgroup then
Hw is the orbit ofw under H. The stabilizer ofw in G is G, and if I’ C 2
thengl” :={gy: y € I'}. All G-sets considered here are finite. The number of
G-orbits on$2 of sizek is denoted by (G, k) or justn(G, k). If K is a field
thenKG is the group ring ovek andK §2 denotes the natur&lG-module with$2
as a basis.

We collect the general results needed for this paper. The first is Theorem 3.1
in [8].

Theorem 2.1. Supposethat G acts doubly transitively on £2 and also transitively
on A, where |£2| > 2. Let K be a field whose characteristic does not divide the
order of G. Then one and only one of the following occurs:

(i) There exists an injective KG-homomorphismge: K2 — K A.
(i) Foranywe Qands € AwehaveG =Gy, - Gs.

We refer to (i) as thembedding case and to (ii) as thdactorization case. The
conditionG = G,, - Gs means thaG; is transitive ons2 or, equivalently, that
G, is transitive onA. Instrumental in the embedding case is the following, see
Theorem 3.6 in [8]:

Theorem 2.2. Supposethat G acts doubly transitively on £2 and also transitively
on A, where |2 > 2. Let K be a field, let H C G be a cyclic group and put
h := |H|. If there exists an injective KG-homomorphism ¢ : K2 — K A then
no(H,h) <na(H,h).
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In [8] we have proved Theorem 1.1 for the projective special linear groups.
More precisely:

Theorem 2.3. Let PSL(n,q) € G € PGL(n, ¢q) and let H be a cyclic subgroup
of G. Then H hasaregular orbit in every non-trivial G-set £2 unless one of the
following holds:

(@) (n,9) €{(2,2),(2,3)}, 0r
(b) (n.q)=(4,2),|2|=8and |H|=60r |H| =15

In the original statement of Theorems 1.1(b) and 1.2(b) in [8] we should
have mentioned the possibility?| = 6 for G = 9.(4, 2) = Ag. In addition, in
Theorem 1.2(b) the exceptioH = C3 x C3 should have been stated. These
omissions have no effect on any other result in [8].

The strategy of this paper is now clear. For each gréumder consideration
we first prove the result for any doubly transitive representafiGns2). So
1<nge(H,h)and henceg(H, h) <na(H,h) forany A in the embedding case.
This exhausts the vast majority of permutation representatiéh 6br the second
part it remains to examine the maximal factorisation&ofhese are available in
Liebeck et al. [7]. Attimes5 has several doubly transitive representations and the
following simple fact cuts down further on the factorisation caséifis a factor
in one doubly transitive representation but not in some other doubly transitive
representation then no further work is needed, the result follows by embedding
the second representation. We start with the symplectic groups which are the most
difficult case to deal with.

3. The symplectic groups Sp(2n, 2)

In this section we treat the case whe¥res the symplectic group(2n, 2).
As we shall use induction, we denote this group Gy. Let Q;f and Q;
denote the quadratic forms defining the orthogonal gragjps= 0" (2n, 2) and
H, := O~ (2n, 2), respectively, and le®," := G, /H,}, 22,7 := G,/H, . Then
2,7 and$2, are doubly transitivé ,-sets. Ifd, := |G, : H,f| andc, := |G, : H, |
one may observe that, = 2"~1(2" — 1) andd,_1 = 2"~ 1(2" + 1). We set
Qn=2 U0,

We start off with an observation on the natural representatioiis,ot.et F,
be the field of; elements and let = F22’1 be the natural;,;-module. We keep the
same symbol for the restrictions 1, and H,. Let V,;*, V;* (respectivelyV,”,
V,”) denote the set of singular and non-singular vectof inith respect toQ;
(respectivelyQ;). Let C denote the field of complex numbers. The following
observation illustrates the use of Theorem 2.1
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Proposition 3.1. (G, V) and (G,, £2,) are not isomorphic as permutation sets
while CV and C$2,, areisomorphic as CG,-modules.

Proof. For the first part note that, has an orbit of length2— 1 onV and no
orbit of this length on®2,,. For the second part note th@™ and 2, are doubly
transitive permutationis,,-sets so thaCQ;,F =1, +¢1 andCR2, =1, + ¢2

where ¢1 and ¢, are irreducibleCG,-modules. Therefore digh = d,, — 1

and dimp2 = ¢, — 1. As H,” and H,” are not transitive orv* =: v \ {0},

Theorem 2.1 implies that there are injective homomorphigi2g — CV* and
C,;F — CVv*. In particular,CV* contains a direct sumg], & ¢1 ® ¢2. As the
dimension of the right hand side moduleds + ¢, — 1 = 22" — 1, we have
the equalityCV* = 1g, ® ¢1 ® ¢2. As C$2, = 15, + CV*, the proposition
follows. O

Corollary 3.2. If A C G, is a cyclic subgroup then (A, V) and (A, £2,) are
isomor phic permutation sets.

Proof. This follows from [8, Corollary 2.5] and Proposition 3.1.
3.1. The embedding case for Sp(2n, 2)

Here we show that every cyclic subgroup®f has regular orbits in the doubly
transitive representations a@,” and £2,7. We start with the following lemma
which is valid for arbitrary classical groups (with the same proof; however, to
avoid introducing more notation we record the proof only$p¢2n, 2)). Observe
that similar situations (but different from the lemma below) are discussed in
Huppert [4, Satz 2] and Aschbacher [1, Section 5].

Lemma 3.3. Let X C G,, be a subgroup such that V is a completely reducible
X-module. Let W be a homogeneous component of X on V. Then W is either
non-degenerate or totally isotropic. In the second case there is another totally
isotropic homogeneous component W’ of V such that W + W’ is non-degenerate.

Proof. Recall that a homogeneous componentVofis the sum of all irre-
ducible X-submodules isomorphic to some irreducibklemoduleN, say. So let
Homy (N, W) # 0. Let N* denote the dual aF. SetWo=WN WL, U = W/ Wy
andVo=V/ Wol. We show first that eitheWp = 0 or Wo = W. For suppose
the contrary whenVy # 0 andU # 0. Then all irreducible constituents &
are dual to those oy and in particular Hom(N*, Vo) # 0. As W € Wx-,
Homy (N, Vp) = 0 so N is not self-dual. Observe thdf is a non-degenerate
symplectic space and a homogeneavianodule. As every non-degenerate
X-submodule otJ is self-dual, each irreduciblg-submodulg/; of U is totally
isotropic. Hencd/ /Ui = U;j.As Uy = N, this is a contradiction.
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NextletW = Wp. As Homy (N*, Vo) # 0 andV is completely reducible, there
exists a homogeneous compon&ritof V such that Homg (N*, W) # 0. Show
thatZ = W + W' is non-degenerate. Indeed 4 = Z N Z+ + 0 then irreducible
constituents oV/Zé are dual to those afg so they are isomorphic tv or N*.
This is a contradiction. O

Lemma3.4.Let A C G, bean abelian subgroup with cyclic Sylow 2-subgroup S.
Suppose that A £ S and that A does not stabilize a pair of complementary and
mutually orthogonal subspacesof V. Then A iscyclic and at least 3- 22*—2 points
of V belong to regular A-orbits.

Proof. LetA=Bx S.LetV=V1®---®V, whereVy, ..., V; are homogeneous
components foB. Clearly, AV; = V; for eachi =1, ..., k. Thereforek < 2 by
Lemma 3.3 and ik = 2 thenV4, V> are totally isotropic. In the latter case, under
dual bases i, and V>, the matrices ofA have shape didg, (a')~1) wherea
runs overA; = A|Vi. Set By = B|Vy and letX = (B1)r, be the enveloping
algebra ofB1. As V1 is homogeneous faB, and hence foB1, X is a field and so
B is cyclic. ThereforeB and henced are cyclic.

Let | X| = 2! wherel > 1 asB; # 1. As X is a field, V1 can be viewed as
a vector space oveX (in particularm = dimy V1 < dim V1) andL = Endy (V1)
is a subalgebra of End(V1) formed by all elements of Enpd(V1) that commute
with those in X. ThereforeA1 C L. Let Vx denoteV; viewed as a vector
space ovelX. Let Vx = W1 & --- @& W, whereW, ..., W, are indecomposable
X A-submodules and; = dimxy W1 > d; = dimy W; for i > 1. Assume first that
r = 1. ThenVy is uniserial X A-module (equivalently, a generatarof A is
represented by a single Jordan block). Udbe the largest propef A-submodule
of Vx. Then dimy U =m — 1 andU contains each propéf A-submodule oVy.
Letw € Vx andw ¢ U. We claim thatw belongs to a regulat-orbit. Indeed, if
b=a' #1andbw =w thenW = {v € Vx: bv = v} is a properA-submodule.
Hencew € W C U which is a contradiction. The number of vectorsiip \ U is
equal tog™ — ¢! whereg = | X|.

Next letr > 1. AsA is cyclicanddi > d; fori =1,...,r, it follows thatA is
faithful on Wy (that is, noa € A excepta = 1 acts trivially onWs). Therefore at
least(g? — g@1—1ygm—d1 = g™ — g™~ yectors ofVy belong to regulad -orbits.

If V1=V then dimVy = 2n sog™ — g1 =22 _ 22—l > p2n _ p2n—2 _
3.22-2 a5/ > 1 and we are done.

If V # V4 then dimVy = n. In this case at leagt” (¢ — g™ 1) vectors ofV
belong to regular orbits. Sg"(¢" — g™~ 1) = 2n(2" — 21y =220 _ 2~ >
3.2%~2 as above. O

For 1< m < n consider the subgrou,, C G, isomorphic toG,;, x G,—_p,.
This is the stabilizer irG,, of a non-degenerate-dimensional subspace 6f.
We are interested in the action &f, on £2,} and2,, .
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Lemma 3.5. (1) As an X,,-set 2,7 is the union of two orbits isomorphic to
Q2FxQF , and 2. x 2, .

(2) Asan X,,-set £2, is the union of two orbits isomorphic to 22,/ x £,
and 2, x 2}

n—m-*

Proof. Let V,, be a non-degeneraie-dimensional subspace df such that

X is the stabilizer ofV,, in G. SetV,_,, = an. Fori =m,n —m let f; be

a (unique) bilinear form orV; preserved byX,,. Let Q;L and Q; denote non-
degenerate quadratic forms on-dimensional vector spaces of Witt defect 0
and 1, respectively, with associated bilinear form giverybyrhenQ:t 4+ 0

and Q,, + 0,_,, are quadratic forms of Witt defect 0 whil@;; + 0,_,, and

0,, + 0,7, are of Witt defect 1, see [6, 2.5.11]. Observe that the stabilizer
of 0)f + 0, In X, is H x H,f, and the stabilizer oD,, + Q,_,, in X»

is H; x H, . HenceX,, has orbits on®2;" isomorphic to2;} ® 2,",, and
2, @2, _,.. Asthe lengths of these orbits atgd,,—,, andc,,c,—n, their union

is £2,7. Similarly, the stabilizer ofQ,, + Qi in X,, is H x H; and the
stabilizer of 0}, + Q,_,, in X,, is H;” x H, . HenceX,, has an orbit on2,"
isomorphic to2,, ® 2, ,, and2}+ ® 2, .. As the lengths of these orbits are

dmCn—m andc,,dp—p, theirunionis2,”. O

Proposition 3.6. Let A € G, be an abelian subgroup with cyclic Sylow
2-subgroup S. Then A has a regular orbit on £2,F. If, in addition, the Sylow
3-subgroup of A is cyclic then A has a regular orbit on £2, unlessn =1 or,
possibly, n =2 with |A]| = 6.

Proof. Suppose first that is not an orthogonal sum of proper non-degenerate
A-modules. IfA = S the claim is trivial. LetA # S. By Lemma 3.44 is cyclic
and at least 322'~2 vectors ofV belong to regulari-orbits. By Lemma 3.5 the
permutationA-set$2,} U £2,” is isomorphic toV . As 3.221-2 > 20— 1 1) =
cn = 182,F| > 182,71, not all points of regulas-orbits ons2," U £2,” belong tos2,
or £2,.

Next suppose that = V1 @ V2 whereVs, V, are non-degenerate-modules
and Vo = Vi-. Let 2n = dimVy. ThenA C X,, = Stal;, (V1). SetA; = A|V;
for i = 1, 2. The cases witlk < 4 can be easily verified by using the tables in
[2] or by refining the argument below. So let> 4, and we can assume that
m < n —m. By Lemma 3.5, viewing as anX,,-set, contains2,} x £,
hence the result follows by induction en Observe thati, has a regular orbit
on £2,_,, (otherwise,n —m < 2 which conflicts withn > 4). As 27 contains

n—m

Q. x §2,_,,, the result is again obtained by inductiora

n—m?
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3.2. Thefactorisation case for Sp(2n, 2)

It remains to analyse the factorisationsSp{2#, 2), denoted byG,, as before.
These are determined by Liebeck, Praeger and Saxl in [7]. Having in mind the
remark made following Theorem 2.2 we need to consider only those factorisations
where the maximal subgroup factors both wéh (21, 2) and O~ (2n, 2). This
only happens wheBp(2n,2) = M - 0*(2n, 2) whereM = S(2k, 2°) - C; with
n = k¢ andC, being the cyclic group of prime ordér see Table 1 in [7]. In fact,

M = Ng, (S) wheresS = Sp(2k, 2°) is naturally embedded i,

The field of ¢ elements is denoted by,. If n is a positive integer let
R := M (2n, F») denote the ring of all 2 x 2n matrices overFs. Let o denote
an anti-automorphism at such thatG,, = {x € R: xo(x) = Id} = S(2n, 2).

The aim of this section is to prove the following:

Theorem 3.7. Let R = M (2n, F») withn > 1. Let F be a subfield of R such that
Ide F,o(x) =x for all x € F andsuch that ¢ = [F: F>] isa prime. Let H be
a cyclic subgroup of G, and set N := Ng, (F). Then there exists some g € G,
suchthat H N gNg~1 =1, except for n = 2 with |H| = 6.

We mention thatVg, (S) with § = Sp(2k, 2%) is equal toN = Ng, (F), where
F = Cg(S) is a field on whicho acts trivially, and thatV is determined up to
conjugacy for any embedding d¢f in G,,. The proof of this theorem requires
some preparatory results, and these follow now.

Lemma 3.8. Let o and R be as above and let ¢ £ 0 be an idempotent such that
o(e) =e #1d. Set d =ranke, C =¢eRe and C, = {x € C: o(x)x = e}. Then
C, isagroup isomorphicto Sp(d, F).

Proof. Let V be the naturaR-module andW = eV. Let vy, ..., vy, be a basis
of V such thaty, ..., vs € W. Itis well known thaio can be described fore R
aso(r) = @r'd~1 where® is a symmetric matrix with zero diagonal ant
denotes the transposenfAs o (e) = e ande’ = ¢ in this case, we hav@e = e®
and hence® = diag(®1, @2) where @1 stabilizesW. Clearly, eRe consists
of matrices of shapeéég) wherea € M(d, F). Theno(a) = 451qu51*1, The
matrix @1 is the Gram matrix of a symplectic form d#i and hence the grou@,
is a symplectic group(d, F) corresponding to this form.o

Lemma 3.9. The theoremistruefor Go.
Proof. As can be seen from [2], the gro®p(4, 2) is isomorphic toSs and N is

isomorphic toSs. SoG2/N is the natural permutation set f§§ = G2. Hence the
result follows. O
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Lemma3.10.Let F = F 2 and X =SU(m, q).

(i) If m > 2then X is not contained in the normalizer of a proper non-central
subring L of M (m, F);
(i) if m =2then X isconjugateto SL(2, F,).

Proof. (i) is well known. LetV be the naturalk-module. From [6, 2.10.6(ii)]

it follows that X is absolutely irreducible. LeR be the Jacobson radical &f

If R #0 thenRV # V asR is nilpotent andc RV = RV for all x € X. This

is impossible and s& = 0. If L is not simple thenX permutes the minimal
central idempotents df, so X is imprimitive. This means that there exists a non-
trivial homomorphismX — Sym(m). As |PSU(m, F,;)| > (m)! we see thaX

is not simple. Hencém, ¢q) = (3, 2). The latter case does not hold as the order
of an imprimitive group inSL(3, 4) is at most 54. Thereford, is simple and
so L = M(k,T) for some fieldT and integerk. Observe thatLV =V for
otherwiseXLV = LX. Therefore,V is a homogeneouk-module (as all non-
trivial irreducible L-modules are isomorphic). We identif§y with the subfield

of scalar matrices il (k, T). ThenT contains the identity oM (m, F). As

T is the centre ofL, it is normalized byX. Since AutT) is abelian, we
have X € Cuym,r)(T) unless(m, q) = (3, 2) which implies that|T| = 8 and
|X| < 24. This is absurd. HencE centralizesT. By Schur's Lemmay7 C F.
SetC := Cym, F)(L). As each automorphism df which is trivial onT is inner,
we conclude thak € L*C* where* indicates the group of units in the ring.
If C # F thenX is tensor-decomposable which is not the caseCSe F and

X C L*F*. As X = X/, this implies thatX € L. However,X cannot be realized
over a subfield of’, see [6, 2.10.10(i)]. This completes the proof of (i)2

Lemma 3.11. Let X C M (2n, F») with n > 2 be a non-central subring such that
gXg l=Xforall geG,. Then X = M(2n, F>). If n = 2 then thisremains true
with G2 being replaced by G, = Ae.

Proof. For convenience abbreviafg, to G. Suppose thaX # M (2n, 2). Then
X is semisimple. Indeed, i¥ = RadX thenYV is a G-module, asgYV =
g¥g lgV Cc YV. If X is not simple thenG is imprimitive and so we have
a non-trivial homomorphisng — Sym(2n). If 2n > 4 thenG is simple and so
|G| < | Sym(2n)| which is not the case. Ifi2= 4 thenG has a simple subgroup
G’ = Ag of index 2. As|Ag| > 2|GL(2, 2)|, in this case5’ is primitive. ThusX is

a simple ring and s&X = M (l, F,) for some even. If ¢ > 2 let L denote the
centre ofX, that isL = F,. ThengLg~! = L for all g € G which means that
there is a homomorphism froi@ into GakL/F»), which is abelian. If 2 > 4,
this homomorphism has to be trivial and &b centralizesL. If 2n = 4, the
homomorphism must be trivial oi’ = Ag so thatG’ centralizes.. By Schur's
Lemmag, if 2n > 4, andG’, if 2n = 4, are not absolutely irreducible. 112> 4,
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this contradicts [6, 2.10.6]. Ifi2= 4 thenAg is not isomorphic to a subgroup
of GL(2, r) for any everr. So Ag is absolutely irreducible. Thug,= 2. Clearly,

X contains Id, as otherwisgeg—! = ¢ for the central idempotent of X and
all g € G. This is not the case by Schur’s lemma. Every automorphism¥ of
is known to be inner. Therefore, for eaghe G there existsy, € X such that
gxg 1= ygeyg*l for all x € X. It follows thatG has a projective representation
7:G — GL(2n, 2). It is in fact ordinary as botlG and GL(2xn, 2) have trivial
center. It follows from Schur’s lemma thatis non-trivial, and also non-trivial
on G’ if 2n = 4. It is well known thatG, andG’ if 2n = 4, has no non-trivial
representation of degrée< 2n. O

Lemma 3.12. Let 2n > 4 beevenand let Id = e1 + e2 € R = M (2n, F>) where
e1 and ez are idempotents of R with o (e1) = e2. Set C; :=¢; Re; for i € {1, 2},
C :=Cpg(e1) (henceC =C1 @ C2),and C, :=C N G,. Let M C R be a proper
subring.

() Thereisge G, suchthate;(gMg 1N Cy)# CrandgMg™ 1 NC, # C,.
(ii) Let!beprime, M = M(2n/1, Fy) and N = NgL(21.2)(M). Thenei(gNg~1n
Cy) #e1Cs.

Proof. For convenience abbreviatg, to G. As e> = Id — e1, we have that
e1e2 = epe1 = 0. By Lemma 3.11 there is somee G such thate; ¢ gMg1.
So we can assume that¢ M. SetM, = M NG andC, = CNG. Clearly,C, =

{x + o (x~1)} wherex runs overC; = GL(n, 2). Hencee1G, = Cj. Observe that
e1M, # C;. Indeed, ag1(x + o (x~1)) = x, the equalityes M, = C; implied
that M, = C, = Cj. Thereforey — e1x andy — exx for y e C; = M,; are dual
representations of ; = GL(n, 2). As n > 2 they are non-equivalent. Therefore
(Ms) is not a simple ring. Then it is easy to see thM,) = C whereby
e1 € C € M, contradicting the above. Thug,M, # C; andCy # M, = MNCy,
asCj =e1C,. This proves (i). AsV /M, is of prime ordet, it is abelian. Hence
if e1C, C e1(Cy NgNg~1) thene1C, C e1 M, . Thisis nottrue ag, = GL(n, 2)

is simple. O

Lemma 3.13. Let X C R be a subring and let 7, J be ideals of X such that
I+J=X.

(i) Supposethat I NJ #J and X/I issimple. ThenJ/(INJ) = X/I.

(i) Let e € R be an idempotent with ¢ # 0,1d and X C Cg(e). Suppose that
eX is a simple non-commutative ring and that (Id — ¢) X is commutative.
TheneX C X.

Proof. The first part is obvious. To prove (i) s@t X — X with n(x) =ex,
n”:X - (1 —e)X with n’(x) = (1 — e)x for x € X, and let I := Kerp,
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J:=Kery’.ThenINnJ=0andJ CeX asx=ex+ (1—e)x =ex forx € J.
Also, J # 0 asX/J is commutative and is not. By (i) J = X/I = eX and as
J CeX we haveeX = J as desired. O

We now have the prerequisites to prove the main theorem of this section.

Proof of Theorem 3.7. By Lemma 3.9, we assume that- 2. SetM := Cr(F)
so thatM = M(2n/1, F) and F is the centre ofM. For convenience again
abbreviateG, to G. ThenM, =: GNM = Cg(F) ={x € M: xo(x) = Id}
is isomorphic toSp(2n/1, F) and N/Cg(F) is isomorphic to GdlF/F>). In
particular,N/Cg (F) is cyclic of orderl. SetA := (H)f,. SOA is a commutative
ring. We split the argument into five parts.

(i) Suppose first tha#i is a field. Then H| is odd. Aso (h) = h~1 # h for
h € H, we observe that acts non-trivially on the subfiel¢h) of A for each
h # 1. Sinces? = 1 it follows that[(h) : F»] is even, andh) contains a unique
subfield L, isomorphic toF4. The same is true foA and soL;, = L does not
depend om. Lett € L be an element of order 3. AH, := HNgNg™ 1 #1
for eachg € G, we observe that eacH, containst, and hence € Ny :=
ﬂgec gNg~1. Clearly, N1 is normal inG and|N1| > 2 which is impossible as
2n > 4.

(i) Now we assume that there exist idempoteatsand es in Cr(H) such
thato (e1) = e2 andey + e2 = Id. SetC = Cg(e1). Clearly,C = C1 & C2 where
0(C1) = Co2, C; = M(n, F2) and wheree; is the identity ofC; fori =1, 2. Set
Co:=CNG andN¢c =: NN C,. By Lemma 3.12 we have thai N¢ # C. By
Theorem 1.1 of [8] there is somee C] such thaki1 H N yetNcy 1 =1, except
possibly whem = 4 andei1 N¢c = A7. As A7 is simple andV¢ /M, is cyclic, this
impliese1 M, = e1N¢c = A7. However,A7 is absolutely irreducible itGL (4, 2)
and so it is not contained in any proper subring7lE= diag(y, o (y~1)) then
H NtHt~1 =1, completing the proof of the theorem in the case under discussion.

(i) Suppose thatd is local. Let H; be a maximal subgroup of odd order
in H. The theorem is trivial iff; = 1. So suppose thadi; # 1. ThenB := (H1)
is a semisimple ring by Maschke’s Theorem and heBce a field asA is
local. SetC = Cr(B), C, =G NC, B, :=BNG. ThenC = M(k, B) where
k-[B: F2] = 2n. By (ii) we can assume thd& NN =1, henceH1N N = 1. Then
Cs # NN Cy,, as otherwise I HHC BNGCCNG=C,=NNC, CN,
which is false.

Recall thatH < C, and thatH N gNcg~! # 1 for eachg € C, € G. Let
1+he HNgNcg 1 Then|h| is a 2-power, as otherwise= h* € H; for
somea. Therefore, ifr denotes the unique involution i, we have that e
gNcg™* for eachg € C,. Hencer € (N, ¢Ncg™* =: D and D is normal
in C,. As C = M(k, B) and aso|p # Id, we haveC, = U(k, B). Since D
containsz, we conclude thatD contains a subgroup isomorphic 8J(k, B).
Clearly,M N C is not central inC as otherwise is abelian becaus&/(N N M)
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is cyclic. In addition,N normalizesM, henceN N C normalizesM N C so that
M N C is normalized by8U (k, B). If k > 2 then, by Lemma 3.10, it follows that
M NC=C. ThereforeH1 € B, CC, C M NG C N, which is false. So we are
left with k = 2.

Thus we have shown that i# N gNg=1 # 1 for all g € G thenk = 2,
[B: F2]l=nandSU(2, B) = 39.(2, q) whereq = 2". Observe that all involutions
in SL(2,q9) are conjugate (ag is even) and sa normalizes some subgroup
Y € SU(2, B) of orderq — 1. SetE := H1Y. ThenE is cyclic as|H1| divides
g +1 and asH; is central inC, = U(2, q). Clearly, Y stabilizes an isotropic
1-subspace of the natur@U (2, B)-module M, so C = M (2, B) contains non-
trivial idempotents1, e2 which centralizey', and such thad (e1) = e2 ande; +
e2=1d. (In M(2, B) we haveY = {diagle, « 1)} wherea € F,2, ¢! =1 and
e1 =diag(l, 0), e2 = diag(0, 1) with respect to a Witt basis 0%1.) Furthermore,
e1 ande; centralizeH1, and hencé&'. Therefore by (i) there is somee G such
thatENgNg1=1.

With this information fork = 2 we rearrange the argument above, assuming
from the very beginning of (iii) thaCs (H1) contains a subgroup of order
g — 1 such that H1Y) " N = 1. Here alsoH1 N N = 1 and so all of the above
argument remains valid. However, ndv¢ cannot contain a subgroup isomorphic
to SU(2, ¢) as all subgroups of order— 1 in Cg(H1) = U (2, B) are contained
in U2,q). SoY NN =1 impliesN NnSU(2, B) # (2, B). Therefore, there
exists some € SU(2, B) such that ¢ xNcx~1. ThenH NxNx~1=1.

(iv) Here we assume that contains an idempoteatsuch that (¢) = ¢. We
use induction om: and also on the order aff therefore assuming the theorem
being true for all proper subgroups &f. Replacinge by Id — e we can assume
that |eH| > |(Id — e)H| and we do this but one exception: [§H| =5 and
|(Id — e) H| = 6 or conversely, we prefer to haweH | = 5.

Let H> be the kernel ofH — e¢H. Then |Hz| < |H| as equality would
mean thateH = ¢. By minimality of H there exists somg € G such that
H>oNgNg~1 =1.Hence we can assume ti#&tN N = 1. Now it suffices to show
that there ist € G such thatx = x andxeHx 1 NneNe = Id. To use induction
here, we needNe to normalize a proper non-central subringe@fe.

SetC :=eRe = M(r,2) wherer :=rank(e), let A, = (Id —e)A. Ase c A,
clearly, A2 C A and A = e¢A @ As. SetCo := C + A». ClearlyeCo = C and
(1 —e)Co = Ao. HenceC and A, are ideals ofCo, and H C Cg. Let Mg :=
M N Cpand soH N M = H N Mp. Observe thatlp N C # C, for otherwiseMg
would contain a matrix of rank 1 and this is not the case. More@Mp, # C.
Indeed, suppose to the contrary thadfy = C. By Lemma 3.13, we hav€ C Mg
and this contradictd3fo N C # C.

SetL:=eMg# C andNg=NNCoNG. TheneNg # e(CNG) =:Cy,
as eNg = C, implied that C, normalizesL. By Lemma 3.8C, = S(r, 2).
As r > 2, by Lemma 3.11L is central inC. TheneNg would be abelian (as
N’ € M), which is impossible. If > 4 and|eH| # 6, we can use the induction
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assumption that Theorem 1.1 is true fo& 2n to conclude that there exists some
h e C, = (r, 2) such thattH N heNch~1 =1, unlessr = 4 andeN¢ = As.

In the latter situation, ade is simple ancde N¢ normalizesL, by Lemma 3.11,
we conclude thal. = C. Letr =4 and|eH| = 6. ThenH is of exponent 6 by
the above, hence of order 6 as it is cyclic. The group algébfé has only one
nontrivial idempotent. It follows thdt{ld — ¢) H| < 2. Then one can easily reduce
the question to the case= 3 and use [2]. (Alternatively, the case witH | = 6
can be settled by using Lemma 4.2 below.)

(V) Let e be a minimal idempotent id. By the above we are left with the
situation whero (e) # ¢ which implies thato (e)e = 0. Thene; :=e + o (e) is
an idempotent ofA ando (e1) = e1. If e1 = Id then the theorem is true by (ii),
otherwise, it is true by (iv). O

4. ThegroupsUs(q), °B2(q), and 2G2(q)

We turn to the permutation representations of the unitary grdiyeg), the
Suzuki groupsSz(q) = 2Bo(q) and the Ree groupB(q) = °G2(q). First we note
a fact that can be found in [7]:

Theorem 4.1. None of the groups Uz (¢), 2B2(q), and 2G 2(¢) admitsa non-trivial
factorisation.

It will therefore be sufficient to consider only the doubly transitive represen-
tations. It turns out that each case is a simple application of the following trivial
lemma:

Lemma 4.2. Let H C G befinite groups. Let 2 be a G-set such that H has no
regular orbit on £2. Let S1, ..., S, bethe minimal non-trivial subgroups of H.
Then 2] < Y704 [ fix(Si)].

Proof. If @ € Q then H, # 1 and sou is fixed by some non-trivial minimal
subgroupS € H,. O

The basic description of the unitary grotig(q) = PSU(3, ¢2), with ¢ some
power of a primep, is the following, see [3,5]. The group has one doubly
transitive representation aff + 1 points. The order igg3 + 1)¢3(¢%2 — 1)d 1
whered = (¢ + 1, 3). The stabilizerB of a point is the normalizer of a Sylow
p-subgroupS and B is a split extension of by a cyclic groupC. Clearly, C is
the stabilizer of 2 points, of order® — 1.

Theorem 4.3. In the doubly transitive permutation action of Us(g) of degree
g2+ 1with ¢ > 2 every cyclic subgroup H hasa regular orbit.
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Proof. Suppose the theorem is false anddet. .., S,, € H be asin Lemma 4.2.
Clearly, if p; is the order ofS; then we may assume thah dividesq and
P2, ..., pm divide g2 — 1. Thens; fixes exactly one point and fi%;) < g + 1
as can be seen from page 242 of [5]. As a rough estimatenfave may
usem < 1+ In(g? — 1). Lemma 4.2 now gives the contradictigrf + 1 <
1+In@g?2-1)-(@+1. O

The basic description of the Suzuki gro8e(q) = 2B2(g) with g = 22"+1
taken from [3] is the following. The group acts doubly transitively gh+ 1
points such that the stabilizer of any three points is the identity. Its order is
(¢% + 1)g%(qg — 1). The stabilizerB of one point is the normalizer of a Sylow
2-subgroups andB is a split extension of by a cyclic groupC. In other words,

B is a Frobenius group with kernéland complement which is the stabilizer
of two points, of ordey — 1.

Theorem 4.4. In the doubly transitive permutation representation of Sz(g) of
degree g2 + 1 with ¢ > 2 every cyclic subgroup H hasa regular orbit.

Proof. Suppose the theorem is false anddet. . ., S,, € H be asin Lemma 4.2.
Clearly, if p; is the order ofS; then we may assume that = 2 and that
p2, ..., pm divide g — 1. ThenS; fixes exactly one point and fi%;) = 2. We
have, as beforem < 1+ In(¢ — 1) and Lemma 4.2 gives the contradiction
¢’°+1<1+4+2Ing—-1). O

The Ree grouR(g) = 2G2(q) with ¢ = 3*"+1 is doubly transitive o3 + 1
points, see again [3], and this is the only doubly transitive action. Its order is
(g% + 1)¢%(g — 1). The stabilizerB of one point is the normalizer of a Sylow
3-subgroups and B is a split extension of by a cyclic groupC. Clearly, C is
the stabilizer of 2 points, of order— 1.

Theorem 4.5. In the doubly transitive action of R(¢) of degree ¢3 + 1 withg > 3
every cyclic subgroup H hasaregular orbit.

Proof. Suppose the theorem is false anddet. . ., S,, € H be asin Lemma 4.2.
If p; is the order of5; then we may assume that = 3 and thatpy, . .., p,, divide

g — 1. Then$; fixes exactly one point and fi%;) < 2¢ + 1 as can be seen easily
from page 251 in [3]. Asn < 1+ In(g — 1), Lemma 4.2 gives the contradiction
¢®+1<14+In(g—-1)-2(¢g+1). O
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5. Sporadic doubly transitive representations

Apart from the doubly transitive representations RfL(n, q), Sp(2n, 2),
Us(q), °Bo(q), and?Ga(q) discussed in [8] and Sections 3 and 4 above, all other
known permutation actions belong to a small list of sporadic examples:

(1) PSL(2,11) of degree 11, two representations;
(2) PSL(2, 8) of degree 28;
(3) A7 of degree 15, two representations;
(4) PSL(2,11) of degree 11, two representations;
(5) M;1of degree 11;
(6) M11 of degree 12;
(7) M1, of degree 12, two representations;
(8) Mo of degree 22;
(9) My3of degree 23;
(10) M>4 of degree 24;
(11) HSof degree 176, two representations;
(12) Cos of degree 276.

Three of the first four groups have already been dealt with in [8, Theorem 1.1]
and we may ignored;7. To complete the proof of the main theorem it suffices
therefore to look at the remaining cases:

Theorem 5.1. Let G be any of the groups M11, M12, M22, M3, M24, HSor Cos
and let £2 be any non-trivial G-set. Then every cyclic subgroup H C G has
aregular orbit on £2.

Proof. This can be checked from the information given in the Atlas [2]. Elements
of composite ordefH | involve at most two primes, sgy andg, except inCos

which has elements of order 30. To verify the statement for the representations
stated as items 5-12 in the list above it is sufficient to use Lemma 4.2 together
with the fact that all pairs op- andg-elements together fix an insufficient number

of elements. The same argument applies for the elements of order 2, 3, and 5 in
the Conway group. This completes the embedding case.

The factorizations o& are available in Table 6 of [7] and in the Atlas. In each
case we are looking at a factorisatieh= G, - Gs whereG,, is the one-point-
stabilizer in one of the presentions 5-12 in the list. We may make use of the
comment following Theorem 2.2 earlier and so we have to consider only the
following cases:

(1) ForG = M12 andG, = M11 we haveGs = L2(11), Gs =2 x S5,
Gs= 42.D12 orGs = Ag x S3;
(2) ForG = Mp3andG,, = M2 we haveGs = 23.11;
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(8) ForG = M4andG,, = Moz we haveGs = M12.2,Gs = 26.3.56,
Gs = L2(23), Gs = 2%(L3(2) x $3) or Gs = La(7);
(4) ForG =HSandG,, = Us(5).2 we haveGs = M2>.

Now we repeat the same argument as before for the actiGroofthe cosetgl
of Gs in G. In all cases where the character@fon A is given in the Atlas the
Lemma 4.2 gives the result immediately. The remaining cases are

(1) G = M1 with Gs = A4 x Sz and|A| = 1320;

(2) G = Ma3with Gs =2311 and A| = 40320;

(3) G = Mpq with G5 = L2(23) and |A| = 40320, or withGs = L»(7) and
|A| = 1457280.

These can be ruled out by easy character estimates. £t +n1x1+---+n, xr

with n; > 0 be the character off on A. For G = M1> we have to consider
only elements of ordeiH | = 6. HereY_n; < 3221 while the number of fixed
points of 2- and 3-elements i, <1+ 7Y n; and f3 <14 3> n;. This
contradictsf> + f3 > 1320. ForG = M>3 we have to consider elements of order
|H| =6, 14 or 15 but here all 2-, 3-, 5-, and 7-elements are fixed-point-free.
For G = M»4 we have to consider elements of ordéf| = 6, 10, 12, 14, 15

or 21. If Gs = L(23) one may estimatg < 14+ 36) n;, f3<1+8) n;

and f5 = f7 =0, thus contradicting Lemma 4.2. Finally,dfs = L>(7) one has
f2<1+36) n;, 3<1+16> n; andfs =0andfy <1+4> n;. The result
follows from Lemma 4.2 except for elements of order 6 where a slight variation
of the same argument will work. O
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