Regular orbits of cyclic subgroups in permutation representations of certain simple groups

Johannes Siemons* and Alexandre Zalesskiĭ

School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
Received 4 April 2002
Communicated by Jan Saxl

1. Introduction

In this paper we study regular orbits of cyclic subgroups of finite simple groups. The main result is the following theorem.

Theorem 1.1. Let G be a known finite simple group, not isomorphic to an alternating group A_{n}, which admits a doubly transitive permutation representation. Then every cyclic subgroup $H \subset G$ has a regular orbit in any non-trivial permutation representation of G.

If H acts on Δ then an H-orbit is regular if its cardinality is $|H|$. The alternating groups, already in their natural representation, do not have the property of the theorem, hence the exception. The other known simple groups with a doubly transitive permutation representation are $\operatorname{PSL}(n, q), \operatorname{Sp}(2 n, 2)$ (two representations), $U_{3}(q),{ }^{2} B_{2}(q),{ }^{2} G_{2}(q)$ and a short list of sporadic examples which are reproduced in Section 5. If one assumes the completeness of the classification of finite simple groups then these are all doubly transitive representations of finite simple groups and the word known can be omitted in the theorem. In our paper [8] the Theorem 1.1 was proved for $\operatorname{PSL}(n, q)$. Here we consider the remaining doubly transitive groups. The same method can in

[^0]principle be extended to other groups of Lie type. Similarly, it may also be interesting to investigate the doubly transitive groups of affine type. However, both problems may require essential additional efforts.

The theorem can be proved using the same ideas as in [8]. For each group one distinguishes the embedding case where the result is proved for cyclic $H \subset G$ in doubly transitive representations, and the factorization case where the result is proved for cyclic $H \subset G$ acting on a G-set Δ for which $G=G_{\omega} \cdot G_{\delta}$ factorizes, with $\delta \in \Delta$ and $\omega \in \Omega$, for some doubly transitive G-set Ω. The details of this are explained again in Section 2. The proof of Theorem 1.1 follows from Theorem 1.1 of [8] for $\operatorname{PSL}(n, q)$, from Proposition 3.6 and Theorem 3.7 for $S p(2 n, 2)$, from Theorems 4.1, 4.3, 4.4, and 4.5 for $U_{3}(q),{ }^{2} B_{2}(q)$, and ${ }^{2} G_{2}(q)$, and from Theorem 5.1 for the sporadic examples.

2. Preliminaries

The notation in this paper is the usual one. If G is a group and Ω a G-set then $g \omega$ is the image of $\omega \in \Omega$ under $g \in G$ and if $H \subseteq G$ is a subgroup then $H \omega$ is the orbit of ω under H. The stabilizer of ω in G is G_{ω} and if $\Gamma \subseteq \Omega$ then $g \Gamma:=\{g \gamma: \gamma \in \Gamma\}$. All G-sets considered here are finite. The number of G-orbits on Ω of size k is denoted by $n_{\Omega}(G, k)$ or just $n(G, k)$. If K is a field then $K G$ is the group ring over K and $K \Omega$ denotes the natural $K G$-module with Ω as a basis.

We collect the general results needed for this paper. The first is Theorem 3.1 in [8].

Theorem 2.1. Suppose that G acts doubly transitively on Ω and also transitively on Δ, where $|\Omega| \geqslant 2$. Let K be a field whose characteristic does not divide the order of G. Then one and only one of the following occurs:
(i) There exists an injective $K G$-homomorphism $\varphi: K \Omega \rightarrow K \Delta$.
(ii) For any $\omega \in \Omega$ and $\delta \in \Delta$ we have $G=G_{\omega} \cdot G_{\delta}$.

We refer to (i) as the embedding case and to (ii) as the factorization case. The condition $G=G_{\omega} \cdot G_{\delta}$ means that G_{δ} is transitive on Ω or, equivalently, that G_{ω} is transitive on Δ. Instrumental in the embedding case is the following, see Theorem 3.6 in [8]:

Theorem 2.2. Suppose that G acts doubly transitively on Ω and also transitively on Δ, where $|\Omega| \geqslant 2$. Let K be a field, let $H \subset G$ be a cyclic group and put $h:=|H|$. If there exists an injective $K G$-homomorphism $\varphi: K \Omega \rightarrow K \Delta$ then $n_{\Omega}(H, h) \leqslant n_{\Delta}(H, h)$.

In [8] we have proved Theorem 1.1 for the projective special linear groups. More precisely:

Theorem 2.3. Let $P S L(n, q) \subseteq G \subseteq P G L(n, q)$ and let H be a cyclic subgroup of G. Then H has a regular orbit in every non-trivial G-set Ω unless one of the following holds:
(a) $(n, q) \in\{(2,2),(2,3)\}$, or
(b) $(n, q)=(4,2),|\Omega|=8$ and $|H|=6$ or $|H|=15$.

In the original statement of Theorems 1.1(b) and 1.2(b) in [8] we should have mentioned the possibility $|H|=6$ for $G=S L(4,2) \cong A_{8}$. In addition, in Theorem $1.2(\mathrm{~b})$ the exception $H \cong C_{3} \times C_{3}$ should have been stated. These omissions have no effect on any other result in [8].

The strategy of this paper is now clear. For each group G under consideration we first prove the result for any doubly transitive representation (G, Ω). So $1 \leqslant n_{\Omega}(H, h)$ and hence $n_{\Omega}(H, h) \leqslant n_{\Delta}(H, h)$ for any Δ in the embedding case. This exhausts the vast majority of permutation representation of G. For the second part it remains to examine the maximal factorisations of G. These are available in Liebeck et al. [7]. At times G has several doubly transitive representations and the following simple fact cuts down further on the factorisation case: if G_{δ} is a factor in one doubly transitive representation but not in some other doubly transitive representation then no further work is needed, the result follows by embedding the second representation. We start with the symplectic groups which are the most difficult case to deal with.

3. The symplectic groups $\operatorname{Sp}(2 n, 2)$

In this section we treat the case where G is the symplectic group $\operatorname{Sp}(2 n, 2)$. As we shall use induction, we denote this group by G_{n}. Let Q_{n}^{+}and Q_{n}^{-} denote the quadratic forms defining the orthogonal groups $H_{n}^{+}:=O^{+}(2 n, 2)$ and $H_{n}^{-}:=O^{-}(2 n, 2)$, respectively, and let $\Omega_{n}^{+}:=G_{n} / H_{n}^{+}, \Omega_{n}^{-}:=G_{n} / H_{n}^{-}$. Then Ω_{n}^{+}and Ω_{n}^{-}are doubly transitive G_{n}-sets. If $d_{n}:=\left|G_{n}: H_{n}^{+}\right|$and $c_{n}:=\left|G_{n}: H_{n}^{-}\right|$ one may observe that $c_{n}=2^{n-1}\left(2^{n}-1\right)$ and $d_{n-1}=2^{n-1}\left(2^{n}+1\right)$. We set $\Omega_{n}=\Omega_{n}^{+} \cup \Omega_{n}^{-}$.

We start off with an observation on the natural representations of G_{n}. Let F_{q} be the field of q elements and let $V=F_{2}^{2 n}$ be the natural G_{n}-module. We keep the same symbol for the restrictions to H_{n}^{+}and H_{n}^{-}. Let V_{s}^{+}, V_{t}^{+}(respectively V_{s}^{-}, V_{t}^{-}) denote the set of singular and non-singular vectors in V with respect to Q_{n}^{+} (respectively Q_{n}^{-}). Let \mathbb{C} denote the field of complex numbers. The following observation illustrates the use of Theorem 2.1:

Proposition 3.1. $\left(G_{n}, V\right)$ and $\left(G_{n}, \Omega_{n}\right)$ are not isomorphic as permutation sets while $\mathbb{C V}$ and $\mathbb{C} \Omega_{n}$ are isomorphic as $\mathbb{C} G_{n}$-modules.

Proof. For the first part note that G_{n} has an orbit of length $2^{n}-1$ on V and no orbit of this length on Ω_{n}. For the second part note that Ω_{n}^{+}and Ω_{n}^{-}are doubly transitive permutation G_{n}-sets so that $\mathbb{C} \Omega_{n}^{+}=1_{G_{n}}+\phi_{1}$ and $\mathbb{C} \Omega_{n}^{-}=1_{G_{n}}+\phi_{2}$ where ϕ_{1} and ϕ_{2} are irreducible $\mathbb{C} G_{n}$-modules. Therefore $\operatorname{dim} \phi_{1}=d_{n}-1$ and $\operatorname{dim} \phi_{2}=c_{n}-1$. As H_{n}^{+}and H_{n}^{-}are not transitive on $V^{*}=: V \backslash\{0\}$, Theorem 2.1 implies that there are injective homomorphisms $\mathbb{C} \Omega_{n}^{-} \rightarrow \mathbb{C} V^{*}$ and $\mathbb{C} \Omega_{n}^{+} \rightarrow \mathbb{C} V^{*}$. In particular, $\mathbb{C} V^{*}$ contains a direct sum $1_{G_{n}} \oplus \phi_{1} \oplus \phi_{2}$. As the dimension of the right hand side module is $d_{n}+c_{n}-1=2^{2 n}-1$, we have the equality $\mathbb{C} V^{*}=1_{G_{n}} \oplus \phi_{1} \oplus \phi_{2}$. As $\mathbb{C} \Omega_{n}=1_{G_{n}}+\mathbb{C} V^{*}$, the proposition follows.

Corollary 3.2. If $A \subset G_{n}$ is a cyclic subgroup then (A, V) and $\left(A, \Omega_{n}\right)$ are isomorphic permutation sets.

Proof. This follows from [8, Corollary 2.5] and Proposition 3.1.

3.1. The embedding case for $\operatorname{Sp}(2 n, 2)$

Here we show that every cyclic subgroup of G_{n} has regular orbits in the doubly transitive representations on Ω_{n}^{+}and Ω_{n}^{-}. We start with the following lemma which is valid for arbitrary classical groups (with the same proof; however, to avoid introducing more notation we record the proof only for $S p(2 n, 2)$). Observe that similar situations (but different from the lemma below) are discussed in Huppert [4, Satz 2] and Aschbacher [1, Section 5].

Lemma 3.3. Let $X \subset G_{n}$ be a subgroup such that V is a completely reducible X-module. Let W be a homogeneous component of X on V. Then W is either non-degenerate or totally isotropic. In the second case there is another totally isotropic homogeneous component W^{\prime} of V such that $W+W^{\prime}$ is non-degenerate.

Proof. Recall that a homogeneous component of V is the sum of all irreducible X-submodules isomorphic to some irreducible X-module N, say. So let $\operatorname{Hom}_{X}(N, W) \neq 0$. Let N^{*} denote the dual of N. Set $W_{0}=W \cap W^{\perp}, U=W / W_{0}$ and $V_{0}=V / W_{0}^{\perp}$. We show first that either $W_{0}=0$ or $W_{0}=W$. For suppose the contrary when $V_{0} \neq 0$ and $U \neq 0$. Then all irreducible constituents of V_{0} are dual to those of W_{0} and in particular $\operatorname{Hom}_{X}\left(N^{*}, V_{0}\right) \neq 0$. As $W \subseteq W_{0}^{\perp}$, $\operatorname{Hom}_{X}\left(N, V_{0}\right)=0$ so N is not self-dual. Observe that U is a non-degenerate symplectic space and a homogeneous X-module. As every non-degenerate X-submodule of U is self-dual, each irreducible X-submodule U_{1} of U is totally isotropic. Hence $U / U_{1}^{\perp} \cong U_{1}^{*}$. As $U_{1} \cong N$, this is a contradiction.

Next let $W=W_{0}$. As $\operatorname{Hom}_{X}\left(N^{*}, V_{0}\right) \neq 0$ and V is completely reducible, there exists a homogeneous component W^{\prime} of V such that $\operatorname{Hom}_{X}\left(N^{*}, W^{\prime}\right) \neq 0$. Show that $Z=W+W^{\prime}$ is non-degenerate. Indeed, if $Z_{0}=Z \cap Z^{\perp} \neq 0$ then irreducible constituents of V / Z_{0}^{\perp} are dual to those of Z_{0} so they are isomorphic to N or N^{*}. This is a contradiction.

Lemma 3.4. Let $A \subseteq G_{n}$ be an abelian subgroup with cyclic Sylow 2 -subgroup S. Suppose that $A \neq S$ and that A does not stabilize a pair of complementary and mutually orthogonal subspaces of V. Then A is cyclic and at least $3 \cdot 2^{2 n-2}$ points of V belong to regular A-orbits.

Proof. Let $A=B \times S$. Let $V=V_{1} \oplus \cdots \oplus V_{k}$ where V_{1}, \ldots, V_{k} are homogeneous components for B. Clearly, $A V_{i}=V_{i}$ for each $i=1, \ldots, k$. Therefore $k \leqslant 2$ by Lemma 3.3 and if $k=2$ then V_{1}, V_{2} are totally isotropic. In the latter case, under dual bases in V_{1} and V_{2}, the matrices of A have shape $\operatorname{diag}\left(a,\left(a^{t}\right)^{-1}\right)$ where a runs over $A_{1}=A \mid V_{1}$. Set $B_{1}=B \mid V_{1}$ and let $X=\left\langle B_{1}\right\rangle_{F_{2}}$ be the enveloping algebra of B_{1}. As V_{1} is homogeneous for B, and hence for B_{1}, X is a field and so B_{1} is cyclic. Therefore B and hence A are cyclic.

Let $|X|=2^{l}$ where $l>1$ as $B_{1} \neq 1$. As X is a field, V_{1} can be viewed as a vector space over X (in particular $m=\operatorname{dim}_{X} V_{1}<\operatorname{dim} V_{1}$) and $L=\operatorname{End}_{X}\left(V_{1}\right)$ is a subalgebra of $\operatorname{End}_{F_{2}}\left(V_{1}\right)$ formed by all elements of $\operatorname{End}_{F_{2}}\left(V_{1}\right)$ that commute with those in X. Therefore $A_{1} \subset L$. Let V_{X} denote V_{1} viewed as a vector space over X. Let $V_{X}=W_{1} \oplus \cdots \oplus W_{r}$ where W_{1}, \ldots, W_{r} are indecomposable $X A$-submodules and $d_{1}=\operatorname{dim}_{X} W_{1} \geqslant d_{i}=\operatorname{dim}_{X} W_{i}$ for $i>1$. Assume first that $r=1$. Then V_{X} is uniserial $X A$-module (equivalently, a generator a of A is represented by a single Jordan block). Let U be the largest proper $X A$-submodule of V_{X}. Then $\operatorname{dim}_{X} U=m-1$ and U contains each proper $X A$-submodule of V_{X}. Let $w \in V_{X}$ and $w \notin U$. We claim that w belongs to a regular A-orbit. Indeed, if $b=a^{i} \neq 1$ and $b w=w$ then $W=\left\{v \in V_{X}: b v=v\right\}$ is a proper A-submodule. Hence $w \in W \subseteq U$ which is a contradiction. The number of vectors in $V_{X} \backslash U$ is equal to $q^{m}-q^{m-1}$ where $q=|X|$.

Next let $r>1$. As A is cyclic and $d_{1} \geqslant d_{i}$ for $i=1, \ldots, r$, it follows that A is faithful on W_{1} (that is, no $a \in A$ except $a=1$ acts trivially on W_{1}). Therefore at least $\left(q^{d_{1}}-q^{d_{1}-1}\right) q^{m-d_{1}}=q^{m}-q^{m-1}$ vectors of V_{X} belong to regular A-orbits.

If $V_{1}=V$ then $\operatorname{dim} V_{1}=2 n$ so $q^{m}-q^{m-1}=2^{2 n}-2^{2 n-l} \geqslant 2^{2 n}-2^{2 n-2}=$ $3 \cdot 2^{2 n-2}$ as $l>1$ and we are done.

If $V \neq V_{1}$ then $\operatorname{dim} V_{1}=n$. In this case at least $q^{m}\left(q^{m}-q^{m-1}\right)$ vectors of V belong to regular orbits. So $q^{m}\left(q^{m}-q^{m-1}\right)=2^{n}\left(2^{n}-2^{n-l}\right)=2^{2 n}-2^{2 n-l} \geqslant$ $3 \cdot 2^{2 n-2}$ as above.

For $1 \leqslant m<n$ consider the subgroup $X_{m} \subseteq G_{n}$ isomorphic to $G_{m} \times G_{n-m}$. This is the stabilizer in G_{n} of a non-degenerate m-dimensional subspace of V. We are interested in the action of X_{m} on Ω_{n}^{+}and Ω_{n}^{-}.

Lemma 3.5. (1) As an X_{m}-set Ω_{n}^{+}is the union of two orbits isomorphic to $\Omega_{m}^{+} \times \Omega_{n-m}^{+}$and $\Omega_{m}^{-} \times \Omega_{n-m}^{-}$.
(2) As an X_{m}-set Ω_{n}^{-}is the union of two orbits isomorphic to $\Omega_{m}^{+} \times \Omega_{n-m}^{-}$ and $\Omega_{m}^{-} \times \Omega_{n-m}^{+}$.

Proof. Let V_{m} be a non-degenerate m-dimensional subspace of V such that X is the stabilizer of V_{m} in G. Set $V_{n-m}=V_{m}^{\perp}$. For $i=m, n-m$ let f_{i} be a (unique) bilinear form on V_{i} preserved by X_{m}. Let Q_{i}^{+}and Q_{i}^{-}denote nondegenerate quadratic forms on $2 i$-dimensional vector spaces of Witt defect 0 and 1 , respectively, with associated bilinear form given by f_{i}. Then $Q_{m}^{+}+Q_{n-m}^{+}$ and $Q_{m}^{-}+Q_{n-m}^{-}$are quadratic forms of Witt defect 0 while $Q_{m}^{+}+Q_{n-m}^{-}$and $Q_{m}^{-}+Q_{n-m}^{+}$are of Witt defect 1 , see [6, 2.5.11]. Observe that the stabilizer of $Q_{m}^{+}+Q_{n-m}^{+}$in X_{m} is $H_{n}^{+} \times H_{n}^{+}$, and the stabilizer of $Q_{m}^{-}+Q_{n-m}^{-}$in X_{m} is $H_{n}^{-} \times H_{n}^{-}$. Hence X_{m} has orbits on Ω_{n}^{+}isomorphic to $\Omega_{m}^{+} \otimes \Omega_{n-m}^{+}$and $\Omega_{m}^{-} \otimes \Omega_{n-m}^{-}$. As the lengths of these orbits are $d_{m} d_{n-m}$ and $c_{m} c_{n-m}$, their union is Ω_{n}^{+}. Similarly, the stabilizer of $Q_{m}^{-}+Q_{n-m}^{+}$in X_{m} is $H_{n}^{-} \times H_{n}^{+}$and the stabilizer of $Q_{m}^{+}+Q_{n-m}^{-}$in X_{m} is $H_{n}^{+} \times H_{n}^{-}$. Hence X_{m} has an orbit on Ω_{n}^{+} isomorphic to $\Omega_{m}^{-} \otimes \Omega_{n-m}^{+}$and $\Omega_{m}^{+} \otimes \Omega_{n-m}^{-}$. As the lengths of these orbits are $d_{m} c_{n-m}$ and $c_{m} d_{n-m}$, their union is Ω_{n}^{-}.

Proposition 3.6. Let $A \subseteq G_{n}$ be an abelian subgroup with cyclic Sylow 2 -subgroup S. Then A has a regular orbit on Ω_{n}^{+}. If, in addition, the Sylow 3-subgroup of A is cyclic then A has a regular orbit on Ω_{n}^{-}unless $n=1$ or, possibly, $n=2$ with $|A|=6$.

Proof. Suppose first that V is not an orthogonal sum of proper non-degenerate A-modules. If $A=S$ the claim is trivial. Let $A \neq S$. By Lemma $3.4 A$ is cyclic and at least $3 \cdot 2^{2 n-2}$ vectors of V belong to regular A-orbits. By Lemma 3.5 the permutation A-set $\Omega_{n}^{+} \cup \Omega_{n}^{-}$is isomorphic to V. As $3 \cdot 2^{2 n-2}>2^{n-1}\left(2^{n}+1\right)=$ $c_{n}=\left|\Omega_{n}^{+}\right|>\left|\Omega_{n}^{-}\right|$, not all points of regular A-orbits on $\Omega_{n}^{+} \cup \Omega_{n}^{-}$belong to Ω_{n}^{+} or Ω_{n}^{-}.

Next suppose that $V=V_{1} \oplus V_{2}$ where V_{1}, V_{2} are non-degenerate A-modules and $V_{2}=V_{1}^{\perp}$. Let $2 m=\operatorname{dim} V_{1}$. Then $A \subset X_{m}=\operatorname{Stab}_{G_{n}}\left(V_{1}\right)$. Set $A_{i}=A \mid V_{i}$ for $i=1,2$. The cases with $n \leqslant 4$ can be easily verified by using the tables in [2] or by refining the argument below. So let $n>4$, and we can assume that $m \leqslant n-m$. By Lemma 3.5, Ω_{n}^{+}viewing as an X_{m}-set, contains $\Omega_{m}^{+} \times \Omega_{n-m}^{+}$ hence the result follows by induction on n. Observe that A_{2} has a regular orbit on Ω_{n-m}^{-}(otherwise, $n-m \leqslant 2$ which conflicts with $n>4$). As Ω_{n}^{-}contains $\Omega_{m}^{+} \times \Omega_{n-m}^{-}$, the result is again obtained by induction.

3.2. The factorisation case for $\operatorname{Sp}(2 n, 2)$

It remains to analyse the factorisations of $\operatorname{Sp}(2 n, 2)$, denoted by G_{n} as before. These are determined by Liebeck, Praeger and Saxl in [7]. Having in mind the remark made following Theorem 2.2 we need to consider only those factorisations where the maximal subgroup factors both with $O^{+}(2 n, 2)$ and $O^{-}(2 n, 2)$. This only happens when $S p(2 n, 2)=M \cdot O^{ \pm}(2 n, 2)$ where $M \cong S p\left(2 k, 2^{\ell}\right) \cdot C_{\ell}$ with $n=k \ell$ and C_{ℓ} being the cyclic group of prime order ℓ, see Table 1 in [7]. In fact, $M=N_{G_{n}}(S)$ where $S \cong \operatorname{Sp}\left(2 k, 2^{\ell}\right)$ is naturally embedded in G_{n}.

The field of q elements is denoted by F_{q}. If n is a positive integer let $R:=M\left(2 n, F_{2}\right)$ denote the ring of all $2 n \times 2 n$ matrices over F_{2}. Let σ denote an anti-automorphism of R such that $G_{n}=\{x \in R: x \sigma(x)=\mathrm{Id}\} \cong \operatorname{Sp}(2 n, 2)$.

The aim of this section is to prove the following:

Theorem 3.7. Let $R=M\left(2 n, F_{2}\right)$ with $n>1$. Let F be a subfield of R such that $\operatorname{Id} \in F, \sigma(x)=x$ for all $x \in F$ and such that $\ell=\left[F: F_{2}\right]$ is a prime. Let H be a cyclic subgroup of G_{n} and set $N:=N_{G_{n}}(F)$. Then there exists some $g \in G_{n}$ such that $H \cap g N g^{-1}=1$, except for $n=2$ with $|H|=6$.

We mention that $N_{G_{n}}(S)$ with $S \cong S p\left(2 k, 2^{\ell}\right)$ is equal to $N=N_{G_{n}}(F)$, where $F=C_{R}(S)$ is a field on which σ acts trivially, and that N is determined up to conjugacy for any embedding of S in G_{n}. The proof of this theorem requires some preparatory results, and these follow now.

Lemma 3.8. Let σ and R be as above and let $e \neq 0$ be an idempotent such that $\sigma(e)=e \neq \mathrm{Id}$. Set $d=\operatorname{rank} e, C=e \operatorname{Re}$ and $C_{\sigma}=\{x \in C: \sigma(x) x=e\}$. Then C_{σ} is a group isomorphic to $\operatorname{Sp}(d, F)$.

Proof. Let V be the natural R-module and $W=e V$. Let $v_{1}, \ldots, v_{2 n}$ be a basis of V such that $v_{1}, \ldots, v_{d} \in W$. It is well known that σ can be described for $r \in R$ as $\sigma(r)=\Phi r^{t} \Phi^{-1}$ where Φ is a symmetric matrix with zero diagonal and r^{t} denotes the transpose of r. As $\sigma(e)=e$ and $e^{t}=e$ in this case, we have $\Phi e=e \Phi$ and hence $\Phi=\operatorname{diag}\left(\Phi_{1}, \Phi_{2}\right)$ where Φ_{1} stabilizes W. Clearly, eRe consists of matrices of shape $\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right)$ where $a \in M(d, F)$. Then $\sigma(a)=\Phi_{1} A^{t} \Phi_{1}^{-1}$. The matrix Φ_{1} is the Gram matrix of a symplectic form on W and hence the group C_{σ} is a symplectic group $\operatorname{Sp}(d, F)$ corresponding to this form.

Lemma 3.9. The theorem is true for G_{2}.
Proof. As can be seen from [2], the group $\operatorname{Sp}(4,2)$ is isomorphic to S_{6} and N is isomorphic to S_{5}. So G_{2} / N is the natural permutation set for $S_{6} \cong G_{2}$. Hence the result follows.

Lemma 3.10. Let $F=F_{q^{2}}$ and $X=S U(m, q)$.
(i) If $m>2$ then X is not contained in the normalizer of a proper non-central subring L of $M(m, F)$;
(ii) if $m=2$ then X is conjugate to $\operatorname{SL}\left(2, F_{q}\right)$.

Proof. (ii) is well known. Let V be the natural X-module. From [6, 2.10.6(ii)] it follows that X is absolutely irreducible. Let R be the Jacobson radical of L. If $R \neq 0$ then $R V \neq V$ as R is nilpotent and $x R V=R V$ for all $x \in X$. This is impossible and so $R=0$. If L is not simple then X permutes the minimal central idempotents of L, so X is imprimitive. This means that there exists a nontrivial homomorphism $X \rightarrow \operatorname{Sym}(m)$. As $\left|\operatorname{PSU}\left(m, F_{q}\right)\right|>(m)$! we see that X is not simple. Hence $(m, q)=(3,2)$. The latter case does not hold as the order of an imprimitive group in $\operatorname{SL}(3,4)$ is at most 54 . Therefore, L is simple and so $L \cong M(k, T)$ for some field T and integer k. Observe that $L V=V$ for otherwise $X L V=L X$. Therefore, V is a homogeneous L-module (as all nontrivial irreducible L-modules are isomorphic). We identify T with the subfield of scalar matrices in $M(k, T)$. Then T contains the identity of $M(m, F)$. As T is the centre of L, it is normalized by X. Since $\operatorname{Aut}(T)$ is abelian, we have $X \subseteq C_{M(m, F)}(T)$ unless $(m, q)=(3,2)$ which implies that $|T|=8$ and $|X| \leqslant 24$. This is absurd. Hence X centralizes T. By Schur's Lemma, $T \subseteq F$. Set $C:=C_{M(m, F)}(L)$. As each automorphism of L which is trivial on T is inner, we conclude that $X \subseteq L^{*} C^{*}$ where * indicates the group of units in the ring. If $C \neq F$ then X is tensor-decomposable which is not the case. So $C=F$ and $X \subseteq L^{*} F^{*}$. As $X=X^{\prime}$, this implies that $X \subseteq L$. However, X cannot be realized over a subfield of F, see $[6,2 \cdot 10.10(\mathrm{i})]$. This completes the proof of (i).

Lemma 3.11. Let $X \subseteq M\left(2 n, F_{2}\right)$ with $n>2$ be a non-central subring such that $g X g^{-1}=X$ for all $g \in G_{n}$. Then $X=M\left(2 n, F_{2}\right)$. If $n=2$ then this remains true with G_{2} being replaced by $G_{2}^{\prime} \cong A_{6}$.

Proof. For convenience abbreviate G_{n} to G. Suppose that $X \neq M(2 n, 2)$. Then X is semisimple. Indeed, if $Y=\operatorname{Rad} X$ then $Y V$ is a G-module, as $g Y V=$ $g Y g^{-1} g V \subseteq Y V$. If X is not simple then G is imprimitive and so we have a non-trivial homomorphism $G \rightarrow \operatorname{Sym}(2 n)$. If $2 n>4$ then G is simple and so $|G| \leqslant|\operatorname{Sym}(2 n)|$ which is not the case. If $2 n=4$ then G has a simple subgroup $G^{\prime} \cong A_{6}$ of index 2 . As $\left|A_{6}\right|>2|G L(2,2)|$, in this case G^{\prime} is primitive. Thus X is a simple ring and so $X=M\left(l, F_{q}\right)$ for some even q. If $q>2$ let L denote the centre of X, that is $L \cong F_{q}$. Then $g L g^{-1}=L$ for all $g \in G$ which means that there is a homomorphism from G into $\operatorname{Gal}\left(L / F_{2}\right)$, which is abelian. If $2 n>4$, this homomorphism has to be trivial and so G centralizes L. If $2 n=4$, the homomorphism must be trivial on $G^{\prime} \cong A_{6}$ so that G^{\prime} centralizes L. By Schur's Lemma G, if $2 n>4$, and G^{\prime}, if $2 n=4$, are not absolutely irreducible. If $2 n>4$,
this contradicts [6, 2.10.6]. If $2 n=4$ then A_{6} is not isomorphic to a subgroup of $G L(2, r)$ for any even r. So A_{6} is absolutely irreducible. Thus, $q=2$. Clearly, X contains Id, as otherwise $\mathrm{geg}^{-1}=e$ for the central idempotent e of X and all $g \in G$. This is not the case by Schur's lemma. Every automorphism of X is known to be inner. Therefore, for each $g \in G$ there exists $y_{g} \in X$ such that $g x_{g}^{-1}=y_{g} e y_{g}^{-1}$ for all $x \in X$. It follows that G has a projective representation $\tau: G \rightarrow G L(2 n, 2)$. It is in fact ordinary as both G and $G L(2 n, 2)$ have trivial center. It follows from Schur's lemma that τ is non-trivial, and also non-trivial on G^{\prime} if $2 n=4$. It is well known that G, and G^{\prime} if $2 n=4$, has no non-trivial representation of degree $l<2 n$.

Lemma 3.12. Let $2 n>4$ be even and let $\mathrm{Id}=e_{1}+e_{2} \in R=M\left(2 n, F_{2}\right)$ where e_{1} and e_{2} are idempotents of R with $\sigma\left(e_{1}\right)=e_{2}$. Set $C_{i}:=e_{i}$ Re for $i \in\{1,2\}$, $C:=C_{R}\left(e_{1}\right)$ (hence $\left.C=C_{1} \oplus C_{2}\right)$, and $C_{\sigma}:=C \cap G_{n}$. Let $M \subseteq R$ be a proper subring.
(i) There is $g \in G_{n}$ such that $e_{1}\left(g M g^{-1} \cap C_{\sigma}\right) \neq C_{1}$ and $g M g^{-1} \cap C_{\sigma} \neq C_{\sigma}$.
(ii) Let l be prime, $M \cong M\left(2 n / l, F_{2^{l}}\right)$ and $N=N_{G L(2 n, 2)}(M)$. Then $e_{1}\left(g N g^{-1} \cap\right.$ $\left.C_{\sigma}\right) \neq e_{1} C_{\sigma}$.

Proof. For convenience abbreviate G_{n} to G. As $e_{2}=\mathrm{Id}-e_{1}$, we have that $e_{1} e_{2}=e_{2} e_{1}=0$. By Lemma 3.11 there is some $g \in G$ such that $e_{1} \notin g M g^{-1}$. So we can assume that $e_{1} \notin M$. Set $M_{\sigma}=M \cap G$ and $C_{\sigma}=C \cap G$. Clearly, $C_{\sigma}=$ $\left\{x+\sigma\left(x^{-1}\right)\right\}$ where x runs over $C_{1}^{*}=G L(n, 2)$. Hence $e_{1} G_{\sigma}=C_{1}^{*}$. Observe that $e_{1} M_{\sigma} \neq C_{1}^{*}$. Indeed, as $e_{1}\left(x+\sigma\left(x^{-1}\right)\right)=x$, the equality $e_{1} M_{\sigma}=C_{1}^{*}$ implied that $M_{\sigma}=C_{\sigma} \cong C_{1}^{*}$. Therefore, $y \mapsto e_{1} x$ and $y \mapsto e_{2} x$ for $y \in C_{\sigma}=M_{\sigma}$ are dual representations of $C_{1}^{*}=G L(n, 2)$. As $n>2$ they are non-equivalent. Therefore $\left\langle M_{\sigma}\right\rangle$ is not a simple ring. Then it is easy to see that $\left\langle M_{\sigma}\right\rangle=C$ whereby $e_{1} \in C \subseteq M$, contradicting the above. Thus, $e_{1} M_{\sigma} \neq C_{1}^{*}$ and $C_{\sigma} \neq M_{\sigma}=M \cap C_{\sigma}$ as $C_{1}^{*}=e_{1} C_{\sigma}$. This proves (i). As N / M_{σ} is of prime order l, it is abelian. Hence if $e_{1} C_{\sigma} \subseteq e_{1}\left(C_{\sigma} \cap g N g^{-1}\right)$ then $e_{1} C_{\sigma} \subseteq e_{1} M_{\sigma}$. This is not true as $C_{\sigma} \cong G L(n, 2)$ is simple.

Lemma 3.13. Let $X \subset R$ be a subring and let I, J be ideals of X such that $I+J=X$.
(i) Suppose that $I \cap J \neq J$ and X / I is simple. Then $J /(I \cap J) \cong X / I$.
(ii) Let $e \in R$ be an idempotent with $e \neq 0$, Id and $X \subseteq C_{R}(e)$. Suppose that $e X$ is a simple non-commutative ring and that $(\mathrm{Id}-e) X$ is commutative. Then $e X \subseteq X$.

Proof. The first part is obvious. To prove (ii) set $\eta: X \rightarrow e X$ with $\eta(x)=e x$, $\eta^{\prime}: X \rightarrow(1-e) X$ with $\eta^{\prime}(x)=(1-e) x$ for $x \in X$, and let $I:=\operatorname{Ker} \eta$,
$J:=\operatorname{Ker} \eta^{\prime}$. Then $I \cap J=0$ and $J \subseteq e X$ as $x=e x+(1-e) x=e x$ for $x \in J$. Also, $J \neq 0$ as X / J is commutative and X is not. By (i) $J \cong X / I \cong e X$ and as $J \subseteq e X$ we have $e X=J$ as desired.

We now have the prerequisites to prove the main theorem of this section.
Proof of Theorem 3.7. By Lemma 3.9, we assume that $n>2$. Set $M:=C_{R}(F)$ so that $M \cong M(2 n / l, F)$ and F is the centre of M. For convenience again abbreviate G_{n} to G. Then $M_{\sigma}=: G \cap M=C_{G}(F)=\{x \in M: x \sigma(x)=\mathrm{Id}\}$ is isomorphic to $\operatorname{Sp}(2 n / l, F)$ and $N / C_{G}(F)$ is isomorphic to $\operatorname{Gal}\left(F / F_{2}\right)$. In particular, $N / C_{G}(F)$ is cyclic of order l. Set $A:=\langle H\rangle_{F_{2}}$. So A is a commutative ring. We split the argument into five parts.
(i) Suppose first that A is a field. Then $|H|$ is odd. As $\sigma(h)=h^{-1} \neq h$ for $h \in H$, we observe that σ acts non-trivially on the subfield $\langle h\rangle$ of A for each $h \neq 1$. Since $\sigma^{2}=1$ it follows that $\left[\langle h\rangle: F_{2}\right]$ is even, and $\langle h\rangle$ contains a unique subfield L_{h} isomorphic to F_{4}. The same is true for A and so $L_{h}=L$ does not depend on h. Let $t \in L$ be an element of order 3. As $H_{g}:=H \cap g N g^{-1} \neq 1$ for each $g \in G$, we observe that each H_{g} contains t, and hence $t \in N_{1}:=$ $\bigcap_{g \in G} g N g^{-1}$. Clearly, N_{1} is normal in G and $\left|N_{1}\right|>2$ which is impossible as $2 n>4$.
(ii) Now we assume that there exist idempotents e_{1} and e_{2} in $C_{R}(H)$ such that $\sigma\left(e_{1}\right)=e_{2}$ and $e_{1}+e_{2}=\mathrm{Id}$. Set $C=C_{R}\left(e_{1}\right)$. Clearly, $C=C_{1} \oplus C_{2}$ where $\sigma\left(C_{1}\right)=C_{2}, C_{i} \cong M\left(n, F_{2}\right)$ and where e_{i} is the identity of C_{i} for $i=1,2$. Set $C_{\sigma}:=C \cap G$ and $N_{C}=: N \cap C_{\sigma}$. By Lemma 3.12 we have that $e_{1} N_{C} \neq C_{1}^{*}$. By Theorem 1.1 of [8] there is some $y \in C_{1}^{*}$ such that $e_{1} H \cap y e_{1} N_{C} y^{-1}=1$, except possibly when $n=4$ and $e_{1} N_{C} \cong A_{7}$. As A_{7} is simple and N_{C} / M_{σ} is cyclic, this implies $e_{1} M_{\sigma}=e_{1} N_{C} \cong A_{7}$. However, A_{7} is absolutely irreducible in $\operatorname{GL}(4,2)$ and so it is not contained in any proper subring. If $T=\operatorname{diag}\left(y, \sigma\left(y^{-1}\right)\right)$ then $H \cap t H t^{-1}=1$, completing the proof of the theorem in the case under discussion.
(iii) Suppose that A is local. Let H_{1} be a maximal subgroup of odd order in H. The theorem is trivial if $H_{1}=1$. So suppose that $H_{1} \neq 1$. Then $B:=\left\langle H_{1}\right\rangle$ is a semisimple ring by Maschke's Theorem and hence B is a field as A is local. Set $C=C_{R}(B), C_{\sigma}=G \cap C, B_{\sigma}:=B \cap G$. Then $C \cong M(k, B)$ where $k \cdot\left[B: F_{2}\right]=2 n$. By (ii) we can assume that $B \cap N=1$, hence $H_{1} \cap N=1$. Then $C_{\sigma} \neq N \cap C_{\sigma}$, as otherwise Id $\neq H_{1} \subseteq B \cap G \subseteq C \cap G=C_{\sigma}=N \cap C_{\sigma} \subseteq N$, which is false.

Recall that $H \subseteq C_{\sigma}$ and that $H \cap g N_{C} g^{-1} \neq 1$ for each $g \in C_{\sigma} \subseteq G$. Let $1 \neq h \in H \cap g N_{C} g^{-1}$. Then $|h|$ is a 2-power, as otherwise $1 \neq h^{a} \in H_{1}$ for some a. Therefore, if t denotes the unique involution in H, we have that $t \in$ $g N_{C} g^{-1}$ for each $g \in C_{\sigma}$. Hence $t \in \bigcap_{g \in C_{\sigma}} g N_{C} g^{-1}=: D$ and D is normal in C_{σ}. As $C \cong M(k, B)$ and as $\left.\sigma\right|_{B} \neq \mathrm{Id}$, we have $C_{\sigma} \cong U(k, B)$. Since D contains t, we conclude that D contains a subgroup isomorphic to $\operatorname{SU}(k, B)$. Clearly, $M \cap C$ is not central in C as otherwise D is abelian because $N /(N \cap M)$
is cyclic. In addition, N normalizes M, hence $N \cap C$ normalizes $M \cap C$ so that $M \cap C$ is normalized by $S U(k, B)$. If $k>2$ then, by Lemma 3.10, it follows that $M \cap C=C$. Therefore $H_{1} \subseteq B_{\sigma} \subseteq C_{\sigma} \subseteq M \cap G \subseteq N$, which is false. So we are left with $k=2$.

Thus we have shown that if $H \cap g N g^{-1} \neq 1$ for all $g \in G$ then $k=2$, [$B: F_{2}$] $=n$ and $S U(2, B) \cong S L(2, q)$ where $q=2^{n}$. Observe that all involutions in $S L(2, q)$ are conjugate (as q is even) and so t normalizes some subgroup $Y \subseteq S U(2, B)$ of order $q-1$. Set $E:=H_{1} Y$. Then E is cyclic as $\left|H_{1}\right|$ divides $q+1$ and as H_{1} is central in $C_{\sigma} \cong U(2, q)$. Clearly, Y stabilizes an isotropic 1 -subspace of the natural $S U(2, B)$-module \mathcal{M}, so $C \cong M(2, B)$ contains nontrivial idempotents e_{1}, e_{2} which centralize Y, and such that $\sigma\left(e_{1}\right)=e_{2}$ and $e_{1}+$ $e_{2}=\operatorname{Id}$. (In $M(2, B)$ we have $Y=\left\{\operatorname{diag}\left(\alpha, \alpha^{-1}\right)\right\}$ where $\alpha \in F_{q^{2}}, \alpha^{q-1}=1$ and $e_{1}=\operatorname{diag}(1,0), e_{2}=\operatorname{diag}(0,1)$ with respect to a Witt basis of \mathcal{M}.) Furthermore, e_{1} and e_{2} centralize H_{1}, and hence E. Therefore by (ii) there is some $g \in G$ such that $E \cap g N g^{-1}=1$.

With this information for $k=2$ we rearrange the argument above, assuming from the very beginning of (iii) that $C_{G}\left(H_{1}\right)$ contains a subgroup Y of order $q-1$ such that $\left(H_{1} Y\right) \cap N=1$. Here also $H_{1} \cap N=1$ and so all of the above argument remains valid. However, now N_{C} cannot contain a subgroup isomorphic to $S U(2, q)$ as all subgroups of order $q-1$ in $C_{G}\left(H_{1}\right)=U(2, B)$ are contained in $S U(2, q)$. So $Y \cap N=1$ implies $N \cap S U(2, B) \neq S U(2, B)$. Therefore, there exists some $x \in S U(2, B)$ such that $t \notin x N_{C} x^{-1}$. Then $H \cap x N x^{-1}=1$.
(iv) Here we assume that A contains an idempotent e such that $\sigma(e)=e$. We use induction on n and also on the order of H therefore assuming the theorem being true for all proper subgroups of H. Replacing e by Id $-e$ we can assume that $|e H| \geqslant|(\operatorname{Id}-e) H|$ and we do this but one exception: if $|e H|=5$ and $|(\operatorname{Id}-e) H|=6$ or conversely, we prefer to have $|e H|=5$.

Let H_{2} be the kernel of $H \rightarrow e H$. Then $\left|H_{2}\right|<|H|$ as equality would mean that $e H=e$. By minimality of H there exists some $g \in G$ such that $H_{2} \cap g N g^{-1}=1$. Hence we can assume that $H_{2} \cap N=1$. Now it suffices to show that there is $x \in G$ such that $e x=x$ and $x e H x^{-1} \cap e N e=\mathrm{Id}$. To use induction here, we need $e N e$ to normalize a proper non-central subring of $e R e$.

Set $C:=e R e \cong M(r, 2)$ where $r:=\operatorname{rank}(e)$, let $A_{2}=(\operatorname{Id}-e) A$. As $e \in A$, clearly, $A_{2} \subset A$ and $A=e A \oplus A_{2}$. Set $C_{0}:=C+A_{2}$. Clearly $e C_{0}=C$ and $(1-e) C_{0}=A_{2}$. Hence C and A_{2} are ideals of C_{0}, and $H \subseteq C_{0}$. Let $M_{0}:=$ $M \cap C_{0}$ and so $H \cap M=H \cap M_{0}$. Observe that $M_{0} \cap C \neq C$, for otherwise M_{0} would contain a matrix of rank 1 and this is not the case. Moreover, $e M_{0} \neq C$. Indeed, suppose to the contrary that $e M_{0}=C$. By Lemma 3.13, we have $C \subseteq M_{0}$ and this contradicts $M_{0} \cap C \neq C$.

Set $L:=e M_{0} \neq C$ and $N_{0}=N \cap C_{0} \cap G$. Then $e N_{0} \neq e(C \cap G)=: C_{\sigma}$ as $e N_{0}=C_{\sigma}$ implied that C_{σ} normalizes L. By Lemma $3.8 C_{\sigma}=S p(r, 2)$. As $r>2$, by Lemma 3.11, L is central in C. Then $e N_{0}$ would be abelian (as $N^{\prime} \subseteq M$), which is impossible. If $r \geqslant 4$ and $|e H| \neq 6$, we can use the induction
assumption that Theorem 1.1 is true for $r<2 n$ to conclude that there exists some $h \in C_{\sigma}=\operatorname{Sp}(r, 2)$ such that $e H \cap h e N_{C} h^{-1}=1$, unless $r=4$ and $e N_{C}=A_{6}$. In the latter situation, as A_{6} is simple and $e N_{C}$ normalizes L, by Lemma 3.11, we conclude that $L=C$. Let $r=4$ and $|e H|=6$. Then H is of exponent 6 by the above, hence of order 6 as it is cyclic. The group algebra $F_{2} H$ has only one nontrivial idempotent. It follows that $|(\mathrm{Id}-e) H| \leqslant 2$. Then one can easily reduce the question to the case $n=3$ and use [2]. (Alternatively, the case with $|H|=6$ can be settled by using Lemma 4.2 below.)
(v) Let e be a minimal idempotent in A. By the above we are left with the situation when $\sigma(e) \neq e$ which implies that $\sigma(e) e=0$. Then $e_{1}:=e+\sigma(e)$ is an idempotent of A and $\sigma\left(e_{1}\right)=e_{1}$. If $e_{1}=$ Id then the theorem is true by (ii), otherwise, it is true by (iv).

4. The groups $U_{3}(q),{ }^{2} B_{2}(q)$, and ${ }^{2} G_{2}(q)$

We turn to the permutation representations of the unitary groups $U_{3}(q)$, the Suzuki groups $S z(q)={ }^{2} B_{2}(q)$ and the Ree groups $R(q)={ }^{2} G_{2}(q)$. First we note a fact that can be found in [7]:

Theorem 4.1. None of the groups $U_{3}(q),{ }^{2} B_{2}(q)$, and ${ }^{2} G_{2}(q)$ admits a non-trivial factorisation.

It will therefore be sufficient to consider only the doubly transitive representations. It turns out that each case is a simple application of the following trivial lemma:

Lemma 4.2. Let $H \subset G$ be finite groups. Let Ω be a G-set such that H has no regular orbit on Ω. Let S_{1}, \ldots, S_{m} be the minimal non-trivial subgroups of H. Then $|\Omega| \leqslant \sum_{i=1}^{m}\left|\operatorname{fix}\left(S_{i}\right)\right|$.

Proof. If $\alpha \in \Omega$ then $H_{\alpha} \neq 1$ and so α is fixed by some non-trivial minimal subgroup $S \subseteq H_{\alpha}$.

The basic description of the unitary group $U_{3}(q)=\operatorname{PSU}\left(3, q^{2}\right)$, with q some power of a prime p, is the following, see [3,5]. The group has one doubly transitive representation on $q^{3}+1$ points. The order is $\left(q^{3}+1\right) q^{3}\left(q^{2}-1\right) d^{-1}$ where $d=(q+1,3)$. The stabilizer B of a point is the normalizer of a Sylow p-subgroup S and B is a split extension of S by a cyclic group C. Clearly, C is the stabilizer of 2 points, of order $q^{2}-1$.

Theorem 4.3. In the doubly transitive permutation action of $U_{3}(q)$ of degree $q^{3}+1$ with $q>2$ every cyclic subgroup H has a regular orbit.

Proof. Suppose the theorem is false and let $S_{1}, \ldots, S_{m} \subseteq H$ be as in Lemma 4.2. Clearly, if p_{i} is the order of S_{i} then we may assume that p_{1} divides q and p_{2}, \ldots, p_{m} divide $q^{2}-1$. Then S_{1} fixes exactly one point and fix $\left(S_{i}\right) \leqslant q+1$ as can be seen from page 242 of [5]. As a rough estimate for m we may use $m \leqslant 1+\ln \left(q^{2}-1\right)$. Lemma 4.2 now gives the contradiction $q^{3}+1 \leqslant$ $1+\ln \left(q^{2}-1\right) \cdot(q+1)$.

The basic description of the Suzuki group $S z(q)={ }^{2} B_{2}(q)$ with $q=2^{2 m+1}$ taken from [3] is the following. The group acts doubly transitively on $q^{2}+1$ points such that the stabilizer of any three points is the identity. Its order is $\left(q^{2}+1\right) q^{2}(q-1)$. The stabilizer B of one point is the normalizer of a Sylow 2 -subgroup S and B is a split extension of S by a cyclic group C. In other words, B is a Frobenius group with kernel S and complement C which is the stabilizer of two points, of order $q-1$.

Theorem 4.4. In the doubly transitive permutation representation of $\operatorname{Sz}(q)$ of degree $q^{2}+1$ with $q>2$ every cyclic subgroup H has a regular orbit.

Proof. Suppose the theorem is false and let $S_{1}, \ldots, S_{m} \subseteq H$ be as in Lemma 4.2. Clearly, if p_{i} is the order of S_{i} then we may assume that $p_{1}=2$ and that p_{2}, \ldots, p_{m} divide $q-1$. Then S_{1} fixes exactly one point and fix $\left(S_{i}\right)=2$. We have, as before, $m \leqslant 1+\ln (q-1)$ and Lemma 4.2 gives the contradiction $q^{2}+1 \leqslant 1+2 \ln (q-1)$.

The Ree group $R(q)={ }^{2} G_{2}(q)$ with $q=3^{2 m+1}$ is doubly transitive on $q^{3}+1$ points, see again [3], and this is the only doubly transitive action. Its order is $\left(q^{3}+1\right) q^{3}(q-1)$. The stabilizer B of one point is the normalizer of a Sylow 3-subgroup S and B is a split extension of S by a cyclic group C. Clearly, C is the stabilizer of 2 points, of order $q-1$.

Theorem 4.5. In the doubly transitive action of $R(q)$ of degree $q^{3}+1$ with $q>3$ every cyclic subgroup H has a regular orbit.

Proof. Suppose the theorem is false and let $S_{1}, \ldots, S_{m} \subseteq H$ be as in Lemma 4.2. If p_{i} is the order of S_{i} then we may assume that $p_{1}=3$ and that p_{2}, \ldots, p_{m} divide $q-1$. Then S_{1} fixes exactly one point and fix $\left(S_{i}\right) \leqslant 2 q+1$ as can be seen easily from page 251 in [3]. As $m \leqslant 1+\ln (q-1)$, Lemma 4.2 gives the contradiction $q^{3}+1 \leqslant 1+\ln (q-1) \cdot 2(q+1)$.

5. Sporadic doubly transitive representations

Apart from the doubly transitive representations of $\operatorname{PSL}(n, q), S p(2 n, 2)$, $U_{3}(q),{ }^{2} B_{2}(q)$, and ${ }^{2} G_{2}(q)$ discussed in [8] and Sections 3 and 4 above, all other known permutation actions belong to a small list of sporadic examples:
(1) $\operatorname{PSL}(2,11)$ of degree 11 , two representations;
(2) $\operatorname{PSL}(2,8)$ of degree 28 ;
(3) A_{7} of degree 15 , two representations;
(4) $\operatorname{PSL}(2,11)$ of degree 11 , two representations;
(5) M_{11} of degree 11;
(6) M_{11} of degree 12 ;
(7) M_{12} of degree 12, two representations;
(8) M_{22} of degree 22;
(9) M_{23} of degree 23;
(10) M_{24} of degree 24;
(11) $H S$ of degree 176 , two representations;
(12) Co_{3} of degree 276.

Three of the first four groups have already been dealt with in [8, Theorem 1.1] and we may ignore A_{7}. To complete the proof of the main theorem it suffices therefore to look at the remaining cases:

Theorem 5.1. Let G be any of the groups $M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, H S$ or C_{3} and let Ω be any non-trivial G-set. Then every cyclic subgroup $H \subset G$ has a regular orbit on Ω.

Proof. This can be checked from the information given in the Atlas [2]. Elements of composite order $|H|$ involve at most two primes, say p and q, except in Co_{3} which has elements of order 30. To verify the statement for the representations stated as items 5-12 in the list above it is sufficient to use Lemma 4.2 together with the fact that all pairs of p - and q-elements together fix an insufficient number of elements. The same argument applies for the elements of order 2,3 , and 5 in the Conway group. This completes the embedding case.

The factorizations of G are available in Table 6 of [7] and in the Atlas. In each case we are looking at a factorisation $G=G_{\omega} \cdot G_{\delta}$ where G_{ω} is the one-pointstabilizer in one of the presentions 5-12 in the list. We may make use of the comment following Theorem 2.2 earlier and so we have to consider only the following cases:
(1) For $G=M_{12}$ and $G_{\omega}=M_{11}$ we have $G_{\delta}=L_{2}(11), G_{\delta}=2 \times S_{5}$, $G_{\delta}=4^{2} . D_{12}$ or $G_{\delta}=A_{4} \times S_{3}$;
(2) For $G=M_{23}$ and $G_{\omega}=M_{22}$ we have $G_{\delta}=23.11$;
(3) For $G=M_{24}$ and $G_{\omega}=M_{23}$ we have $G_{\delta}=M_{12} \cdot 2, G_{\delta}=2^{6} .3 . S_{6}$, $G_{\delta}=L_{2}(23), G_{\delta}=2^{6}\left(L_{3}(2) \times S_{3}\right)$ or $G_{\delta}=L_{2}(7)$;
(4) For $G=H S$ and $G_{\omega}=U_{3}(5) .2$ we have $G_{\delta}=M_{22}$.

Now we repeat the same argument as before for the action of G on the cosets Δ of G_{δ} in G. In all cases where the character of G on Δ is given in the Atlas the Lemma 4.2 gives the result immediately. The remaining cases are
(1) $G=M_{12}$ with $G_{\delta}=A_{4} \times S_{3}$ and $|\Delta|=1320$;
(2) $G=M_{23}$ with $G_{\delta}=23.11$ and $|\Delta|=40320$;
(3) $G=M_{24}$ with $G_{\delta}=L_{2}(23)$ and $|\Delta|=40320$, or with $G_{\delta}=L_{2}(7)$ and $|\Delta|=1457280$.

These can be ruled out by easy character estimates. Let $\pi=1+n_{1} \chi_{1}+\cdots+n_{r} \chi_{r}$ with $n_{i}>0$ be the character of G on Δ. For $G=M_{12}$ we have to consider only elements of order $|H|=6$. Here $\sum n_{i} \leqslant \frac{1320-1}{16}$ while the number of fixed points of 2 - and 3 -elements is $f_{2} \leqslant 1+7 \sum n_{i}$ and $f_{3} \leqslant 1+3 \sum n_{i}$. This contradicts $f_{2}+f_{3} \geqslant 1320$. For $G=M_{23}$ we have to consider elements of order $|H|=6,14$ or 15 but here all 2-, 3-, 5-, and 7-elements are fixed-point-free. For $G=M_{24}$ we have to consider elements of order $|H|=6,10,12,14,15$ or 21. If $G_{\delta}=L_{2}(23)$ one may estimate $f_{2} \leqslant 1+36 \sum n_{i}, f_{3} \leqslant 1+8 \sum n_{i}$ and $f_{5}=f_{7}=0$, thus contradicting Lemma 4.2. Finally, if $G_{\delta}=L_{2}$ (7) one has $f_{2} \leqslant 1+36 \sum n_{i}, f_{3} \leqslant 1+16 \sum n_{i}$ and $f_{5}=0$ and $f_{7} \leqslant 1+4 \sum n_{i}$. The result follows from Lemma 4.2 except for elements of order 6 where a slight variation of the same argument will work.

References

[1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984) 469-514.
[2] J. Conway, R. Curtis, R.A. Parker, R.M. Wilson, Atlas of Finite Simple Groups, Oxford University Press, London, 1985.
[3] J.D. Dixon, B. Mortimer, Permutation Groups, in: Graduate Texts in Math., Vol. 163, SpringerVerlag, Berlin, 1996.
[4] B. Huppert, Singer-Zyklen in klassischen Gruppen, Math. Z. 117 (1970) 141-150.
[5] B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin, 1967.
[6] P. Kleidman, M.W. Liebeck, Subgroup Structure of Classical Groups, in: London Math. Soc. Lecture Notes, Vol. 129, Cambridge Univ. Press, Cambridge, 1990.
[7] M.W. Liebeck, C.E. Praeger, J. Saxl, The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc. 86 (1990) 151.
[8] J. Siemons, A. Zalesskii, Intersections of matrix algebras and permutation representations of $\operatorname{PSL}(n, q)$, J. Algebra 226 (2000) 451-478.

[^0]: * Corresponding author.

 E-mail addresses: j.siemons@uea.ac.uk (J. Siemons), a.zalesskii@uea.ac.uk (A. Zalesskiĭ).

