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1. Introduction

In this paper we study regular orbits of cyclic subgroups of finite simple
groups. The main result is the following theorem.

Theorem 1.1. Let G be a known finite simple group, not isomorphic to an alter-
nating group An, which admits a doubly transitive permutation representation.
Then every cyclic subgroup H ⊂ G has a regular orbit in any non-trivial permu-
tation representation of G.

If H acts on∆ then anH -orbit is regular if its cardinality is |H |. The
alternating groups, already in their natural representation, do not have the
property of the theorem, hence the exception. The other known simple groups
with a doubly transitive permutation representation arePSL(n, q), Sp(2n,2)

(two representations),U3(q), 2B2(q), 2G2(q) and a short list of sporadic
examples which are reproduced in Section 5. If one assumes the completeness
of the classification of finite simple groups then these are all doubly transitive
representations of finite simple groups and the wordknown can be omitted in
the theorem. In our paper [8] the Theorem 1.1 was proved forPSL(n, q). Here
we consider the remaining doubly transitive groups. The same method can in
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principle be extended to other groups of Lie type. Similarly, it may also be
interesting to investigate the doubly transitive groups of affine type. However,
both problems may require essential additional efforts.

The theorem can be proved using the same ideas as in [8]. For each group one
distinguishes theembedding case where the result is proved for cyclicH ⊂ G

in doubly transitive representations, and thefactorization case where the result
is proved for cyclicH ⊂ G acting on aG-set ∆ for which G = Gω · Gδ

factorizes, withδ ∈ ∆ and ω ∈ Ω , for some doubly transitiveG-set Ω . The
details of this are explained again in Section 2. The proof of Theorem 1.1 follows
from Theorem 1.1 of [8] forPSL(n, q), from Proposition 3.6 and Theorem 3.7
for Sp(2n,2), from Theorems 4.1, 4.3, 4.4, and 4.5 forU3(q), 2B2(q), and2G2(q),
and from Theorem 5.1 for the sporadic examples.

2. Preliminaries

The notation in this paper is the usual one. IfG is a group andΩ a G-set
thengω is the image ofω ∈ Ω underg ∈ G and if H ⊆ G is a subgroup then
Hω is the orbit ofω underH . The stabilizer ofω in G is Gω and if Γ ⊆ Ω

thengΓ := {gγ : γ ∈ Γ }. All G-sets considered here are finite. The number of
G-orbits onΩ of sizek is denoted bynΩ(G,k) or just n(G,k). If K is a field
thenKG is the group ring overK andKΩ denotes the naturalKG-module withΩ

as a basis.
We collect the general results needed for this paper. The first is Theorem 3.1

in [8].

Theorem 2.1. Suppose that G acts doubly transitively on Ω and also transitively
on ∆, where |Ω | � 2. Let K be a field whose characteristic does not divide the
order of G. Then one and only one of the following occurs:

(i) There exists an injective KG-homomorphism ϕ : KΩ → K∆.
(ii) For any ω ∈ � and δ ∈ ∆ we have G = Gω · Gδ .

We refer to (i) as theembedding case and to (ii) as thefactorization case. The
conditionG = Gω · Gδ means thatGδ is transitive onΩ or, equivalently, that
Gω is transitive on∆. Instrumental in the embedding case is the following, see
Theorem 3.6 in [8]:

Theorem 2.2. Suppose that G acts doubly transitively on Ω and also transitively
on ∆, where |Ω | � 2. Let K be a field, let H ⊂ G be a cyclic group and put
h := |H |. If there exists an injective KG-homomorphism ϕ : KΩ → K∆ then
nΩ(H,h) � n∆(H,h).
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In [8] we have proved Theorem 1.1 for the projective special linear groups.
More precisely:

Theorem 2.3. Let PSL(n, q) ⊆ G ⊆ PGL(n, q) and let H be a cyclic subgroup
of G. Then H has a regular orbit in every non-trivial G-set Ω unless one of the
following holds:

(a) (n, q) ∈ {(2,2), (2,3)}, or
(b) (n, q) = (4,2), |Ω | = 8 and |H | = 6 or |H | = 15.

In the original statement of Theorems 1.1(b) and 1.2(b) in [8] we should
have mentioned the possibility|H | = 6 for G = SL(4,2) ∼= A8. In addition, in
Theorem 1.2(b) the exceptionH ∼= C3 × C3 should have been stated. These
omissions have no effect on any other result in [8].

The strategy of this paper is now clear. For each groupG under consideration
we first prove the result for any doubly transitive representation(G,Ω). So
1 � nΩ(H,h) and hencenΩ(H,h) � n∆(H,h) for any∆ in the embedding case.
This exhausts the vast majority of permutation representation ofG. For the second
part it remains to examine the maximal factorisations ofG. These are available in
Liebeck et al. [7]. At timesG has several doubly transitive representations and the
following simple fact cuts down further on the factorisation case: ifGδ is a factor
in one doubly transitive representation but not in some other doubly transitive
representation then no further work is needed, the result follows by embedding
the second representation. We start with the symplectic groups which are the most
difficult case to deal with.

3. The symplectic groups Sp(2n, 2)

In this section we treat the case whereG is the symplectic groupSp(2n,2).
As we shall use induction, we denote this group byGn. Let Q+

n and Q−
n

denote the quadratic forms defining the orthogonal groupsH +
n := O+(2n,2) and

H −
n := O−(2n,2), respectively, and letΩ+

n := Gn/H +
n , Ω−

n := Gn/H −
n . Then

Ω+
n andΩ−

n are doubly transitiveGn-sets. Ifdn := |Gn : H +
n | andcn := |Gn : H −

n |
one may observe thatcn = 2n−1(2n − 1) and dn−1 = 2n−1(2n + 1). We set
Ωn = Ω+

n ∪ Ω−
n .

We start off with an observation on the natural representations ofGn. Let Fq

be the field ofq elements and letV = F 2n
2 be the naturalGn-module. We keep the

same symbol for the restrictions toH +
n andH −

n . Let V +
s , V +

t (respectivelyV −
s ,

V −
t ) denote the set of singular and non-singular vectors inV with respect toQ+

n

(respectivelyQ−
n ). Let C denote the field of complex numbers. The following

observation illustrates the use of Theorem 2.1:
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Proposition 3.1. (Gn,V ) and (Gn,Ωn) are not isomorphic as permutation sets
while CV and CΩn are isomorphic as CGn-modules.

Proof. For the first part note thatGn has an orbit of length 2n − 1 onV and no
orbit of this length onΩn. For the second part note thatΩ+

n andΩ−
n are doubly

transitive permutationGn-sets so thatCΩ+
n = 1Gn + φ1 andCΩ−

n = 1Gn + φ2
where φ1 and φ2 are irreducibleCGn-modules. Therefore dimφ1 = dn − 1
and dimφ2 = cn − 1. As H +

n and H −
n are not transitive onV ∗ =: V \ {0},

Theorem 2.1 implies that there are injective homomorphismsCΩ−
n → CV ∗ and

CΩ+
n → CV ∗. In particular,CV ∗ contains a direct sum 1Gn ⊕ φ1 ⊕ φ2. As the

dimension of the right hand side module isdn + cn − 1 = 22n − 1, we have
the equalityCV ∗ = 1Gn ⊕ φ1 ⊕ φ2. As CΩn = 1Gn + CV ∗, the proposition
follows. ✷
Corollary 3.2. If A ⊂ Gn is a cyclic subgroup then (A,V ) and (A,Ωn) are
isomorphic permutation sets.

Proof. This follows from [8, Corollary 2.5] and Proposition 3.1.

3.1. The embedding case for Sp(2n,2)

Here we show that every cyclic subgroup ofGn has regular orbits in the doubly
transitive representations onΩ+

n and Ω−
n . We start with the following lemma

which is valid for arbitrary classical groups (with the same proof; however, to
avoid introducing more notation we record the proof only forSp(2n,2)). Observe
that similar situations (but different from the lemma below) are discussed in
Huppert [4, Satz 2] and Aschbacher [1, Section 5].

Lemma 3.3. Let X ⊂ Gn be a subgroup such that V is a completely reducible
X-module. Let W be a homogeneous component of X on V . Then W is either
non-degenerate or totally isotropic. In the second case there is another totally
isotropic homogeneous component W ′ of V such that W + W ′ is non-degenerate.

Proof. Recall that a homogeneous component ofV is the sum of all irre-
ducibleX-submodules isomorphic to some irreducibleX-moduleN , say. So let
HomX(N,W) �= 0. LetN∗ denote the dual ofN . SetW0 = W ∩W⊥, U = W/W0
and V0 = V /W⊥

0 . We show first that eitherW0 = 0 or W0 = W . For suppose
the contrary whenV0 �= 0 andU �= 0. Then all irreducible constituents ofV0
are dual to those ofW0 and in particular HomX(N∗,V0) �= 0. As W ⊆ W⊥

0 ,
HomX(N,V0) = 0 so N is not self-dual. Observe thatU is a non-degenerate
symplectic space and a homogeneousX-module. As every non-degenerate
X-submodule ofU is self-dual, each irreducibleX-submoduleU1 of U is totally
isotropic. HenceU/U⊥

1
∼= U∗

1 . As U1 ∼= N , this is a contradiction.
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Next letW = W0. As HomX(N∗,V0) �= 0 andV is completely reducible, there
exists a homogeneous componentW ′ of V such that HomX(N∗,W ′) �= 0. Show
thatZ = W + W ′ is non-degenerate. Indeed, ifZ0 = Z ∩Z⊥ �= 0 then irreducible
constituents ofV /Z⊥

0 are dual to those ofZ0 so they are isomorphic toN or N∗.
This is a contradiction. ✷
Lemma 3.4. Let A ⊆ Gn be an abelian subgroup with cyclic Sylow 2-subgroup S.
Suppose that A �= S and that A does not stabilize a pair of complementary and
mutually orthogonal subspaces of V . Then A is cyclic and at least 3·22n−2 points
of V belong to regular A-orbits.

Proof. Let A = B ×S. LetV = V1⊕· · ·⊕Vk whereV1, . . . , Vk are homogeneous
components forB. Clearly,AVi = Vi for eachi = 1, . . . , k. Thereforek � 2 by
Lemma 3.3 and ifk = 2 thenV1,V2 are totally isotropic. In the latter case, under
dual bases inV1 andV2, the matrices ofA have shape diag(a, (at)−1) wherea

runs overA1 = A|V1. Set B1 = B|V1 and let X = 〈B1〉F2 be the enveloping
algebra ofB1. As V1 is homogeneous forB, and hence forB1, X is a field and so
B1 is cyclic. ThereforeB and henceA are cyclic.

Let |X| = 2l where l > 1 asB1 �= 1. As X is a field,V1 can be viewed as
a vector space overX (in particularm = dimX V1 < dimV1) andL = EndX(V1)

is a subalgebra of EndF2(V1) formed by all elements of EndF2(V1) that commute
with those in X. ThereforeA1 ⊂ L. Let VX denoteV1 viewed as a vector
space overX. Let VX = W1 ⊕ · · · ⊕ Wr whereW1, . . . ,Wr are indecomposable
XA-submodules andd1 = dimX W1 � di = dimX Wi for i > 1. Assume first that
r = 1. ThenVX is uniserialXA-module (equivalently, a generatora of A is
represented by a single Jordan block). LetU be the largest properXA-submodule
of VX . Then dimX U = m − 1 andU contains each properXA-submodule ofVX.
Let w ∈ VX andw /∈ U . We claim thatw belongs to a regularA-orbit. Indeed, if
b = ai �= 1 andbw = w thenW = {v ∈ VX: bv = v} is a properA-submodule.
Hencew ∈ W ⊆ U which is a contradiction. The number of vectors inVX \ U is
equal toqm − qm−1 whereq = |X|.

Next letr > 1. AsA is cyclic andd1 � di for i = 1, . . . , r, it follows thatA is
faithful on W1 (that is, noa ∈ A excepta = 1 acts trivially onW1). Therefore at
least(qd1 − qd1−1)qm−d1 = qm − qm−1 vectors ofVX belong to regularA-orbits.

If V1 = V then dimV1 = 2n so qm − qm−1 = 22n − 22n−l � 22n − 22n−2 =
3 · 22n−2 asl > 1 and we are done.

If V �= V1 then dimV1 = n. In this case at leastqm(qm − qm−1) vectors ofV
belong to regular orbits. Soqm(qm − qm−1) = 2n(2n − 2n−l ) = 22n − 22n−l �
3 · 22n−2 as above. ✷

For 1� m < n consider the subgroupXm ⊆ Gn isomorphic toGm × Gn−m.
This is the stabilizer inGn of a non-degeneratem-dimensional subspace ofV .
We are interested in the action ofXm on Ω+

n andΩ−
n .
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Lemma 3.5. (1) As an Xm-set Ω+
n is the union of two orbits isomorphic to

Ω+
m × Ω+

n−m and Ω−
m × Ω−

n−m.
(2) As an Xm-set Ω−

n is the union of two orbits isomorphic to Ω+
m × Ω−

n−m

and Ω−
m × Ω+

n−m.

Proof. Let Vm be a non-degeneratem-dimensional subspace ofV such that
X is the stabilizer ofVm in G. Set Vn−m = V ⊥

m . For i = m,n − m let fi be
a (unique) bilinear form onVi preserved byXm. Let Q+

i andQ−
i denote non-

degenerate quadratic forms on 2i-dimensional vector spaces of Witt defect 0
and 1, respectively, with associated bilinear form given byfi . ThenQ+

m + Q+
n−m

andQ−
m + Q−

n−m are quadratic forms of Witt defect 0 whileQ+
m + Q−

n−m and
Q−

m + Q+
n−m are of Witt defect 1, see [6, 2.5.11]. Observe that the stabilizer

of Q+
m + Q+

n−m in Xm is H +
n × H +

n , and the stabilizer ofQ−
m + Q−

n−m in Xm

is H −
n × H −

n . HenceXm has orbits onΩ+
n isomorphic toΩ+

m ⊗ Ω+
n−m and

Ω−
m ⊗ Ω−

n−m. As the lengths of these orbits aredmdn−m andcmcn−m, their union
is Ω+

n . Similarly, the stabilizer ofQ−
m + Q+

n−m in Xm is H −
n × H +

n and the
stabilizer ofQ+

m + Q−
n−m in Xm is H +

n × H −
n . HenceXm has an orbit onΩ+

n

isomorphic toΩ−
m ⊗ Ω+

n−m andΩ+
m ⊗ Ω−

n−m. As the lengths of these orbits are
dmcn−m andcmdn−m, their union isΩ−

n . ✷

Proposition 3.6. Let A ⊆ Gn be an abelian subgroup with cyclic Sylow
2-subgroup S. Then A has a regular orbit on Ω+

n . If, in addition, the Sylow
3-subgroup of A is cyclic then A has a regular orbit on Ω−

n unless n = 1 or,
possibly, n = 2 with |A| = 6.

Proof. Suppose first thatV is not an orthogonal sum of proper non-degenerate
A-modules. IfA = S the claim is trivial. LetA �= S. By Lemma 3.4A is cyclic
and at least 3· 22n−2 vectors ofV belong to regularA-orbits. By Lemma 3.5 the
permutationA-setΩ+

n ∪ Ω−
n is isomorphic toV . As 3· 22n−2 > 2n−1(2n + 1) =

cn = |Ω+
n | > |Ω−

n |, not all points of regularA-orbits onΩ+
n ∪ Ω−

n belong toΩ+
n

or Ω−
n .

Next suppose thatV = V1 ⊕ V2 whereV1,V2 are non-degenerateA-modules
and V2 = V ⊥

1 . Let 2m = dimV1. ThenA ⊂ Xm = StabGn(V1). SetAi = A|Vi

for i = 1,2. The cases withn � 4 can be easily verified by using the tables in
[2] or by refining the argument below. So letn > 4, and we can assume that
m � n − m. By Lemma 3.5,Ω+

n viewing as anXm-set, containsΩ+
m × Ω+

n−m

hence the result follows by induction onn. Observe thatA2 has a regular orbit
on Ω−

n−m (otherwise,n − m � 2 which conflicts withn > 4). As Ω−
n contains

Ω+
m × Ω−

n−m, the result is again obtained by induction.✷
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3.2. The factorisation case for Sp(2n,2)

It remains to analyse the factorisations ofSp(2n,2), denoted byGn as before.
These are determined by Liebeck, Praeger and Saxl in [7]. Having in mind the
remark made following Theorem 2.2 we need to consider only those factorisations
where the maximal subgroup factors both withO+(2n,2) andO−(2n,2). This
only happens whenSp(2n,2) = M · O±(2n,2) whereM ∼= Sp(2k,25) · C5 with
n = k5 andC5 being the cyclic group of prime order5, see Table 1 in [7]. In fact,
M = NGn(S) whereS ∼= Sp(2k,25) is naturally embedded inGn.

The field of q elements is denoted byFq . If n is a positive integer let
R := M(2n,F2) denote the ring of all 2n × 2n matrices overF2. Let σ denote
an anti-automorphism ofR such thatGn = {x ∈ R: xσ(x) = Id} ∼= Sp(2n,2).

The aim of this section is to prove the following:

Theorem 3.7. Let R = M(2n,F2) with n > 1. Let F be a subfield of R such that
Id ∈ F , σ(x) = x for all x ∈ F and such that 5 = [F : F2] is a prime. Let H be
a cyclic subgroup of Gn and set N := NGn(F ). Then there exists some g ∈ Gn

such that H ∩ gNg−1 = 1, except for n = 2 with |H | = 6.

We mention thatNGn(S) with S ∼= Sp(2k,25) is equal toN = NGn(F ), where
F = CR(S) is a field on whichσ acts trivially, and thatN is determined up to
conjugacy for any embedding ofS in Gn. The proof of this theorem requires
some preparatory results, and these follow now.

Lemma 3.8. Let σ and R be as above and let e �= 0 be an idempotent such that
σ(e) = e �= Id. Set d = ranke, C = eRe and Cσ = {x ∈ C: σ(x)x = e}. Then
Cσ is a group isomorphic to Sp(d,F ).

Proof. Let V be the naturalR-module andW = eV . Let v1, . . . , v2n be a basis
of V such thatv1, . . . , vd ∈ W . It is well known thatσ can be described forr ∈ R

as σ(r) = Φrt Φ−1 whereΦ is a symmetric matrix with zero diagonal andrt

denotes the transpose ofr. As σ(e) = e andet = e in this case, we haveΦe = eΦ

and henceΦ = diag(Φ1,Φ2) where Φ1 stabilizesW . Clearly, eRe consists
of matrices of shape

(
A 0
0 0

)
wherea ∈ M(d,F ). Then σ(a) = Φ1AtΦ−1

1 . The
matrixΦ1 is the Gram matrix of a symplectic form onW and hence the groupCσ

is a symplectic groupSp(d,F ) corresponding to this form.✷
Lemma 3.9. The theorem is true for G2.

Proof. As can be seen from [2], the groupSp(4,2) is isomorphic toS6 andN is
isomorphic toS5. SoG2/N is the natural permutation set forS6 ∼= G2. Hence the
result follows. ✷
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Lemma 3.10. Let F = Fq2 and X = SU(m,q).

(i) If m > 2 then X is not contained in the normalizer of a proper non-central
subring L of M(m,F);

(ii) if m = 2 then X is conjugate to SL(2,Fq).

Proof. (ii) is well known. Let V be the naturalX-module. From [6, 2.10.6(ii)]
it follows that X is absolutely irreducible. LetR be the Jacobson radical ofL.
If R �= 0 thenRV �= V as R is nilpotent andxRV = RV for all x ∈ X. This
is impossible and soR = 0. If L is not simple thenX permutes the minimal
central idempotents ofL, soX is imprimitive. This means that there exists a non-
trivial homomorphismX → Sym(m). As |PSU(m,Fq)| > (m)! we see thatX
is not simple. Hence(m,q) = (3,2). The latter case does not hold as the order
of an imprimitive group inSL(3,4) is at most 54. Therefore,L is simple and
so L ∼= M(k,T ) for some fieldT and integerk. Observe thatLV = V for
otherwiseXLV = LX. Therefore,V is a homogeneousL-module (as all non-
trivial irreducibleL-modules are isomorphic). We identifyT with the subfield
of scalar matrices inM(k,T ). Then T contains the identity ofM(m,F). As
T is the centre ofL, it is normalized byX. Since Aut(T ) is abelian, we
haveX ⊆ CM(m,F )(T ) unless(m,q) = (3,2) which implies that|T | = 8 and
|X| � 24. This is absurd. HenceX centralizesT . By Schur’s Lemma,T ⊆ F .
SetC := CM(m,F )(L). As each automorphism ofL which is trivial onT is inner,
we conclude thatX ⊆ L∗C∗ where∗ indicates the group of units in the ring.
If C �= F thenX is tensor-decomposable which is not the case. SoC = F and
X ⊆ L∗F ∗. As X = X′, this implies thatX ⊆ L. However,X cannot be realized
over a subfield ofF , see [6, 2.10.10(i)]. This completes the proof of (i).✷
Lemma 3.11. Let X ⊆ M(2n,F2) with n > 2 be a non-central subring such that
gXg−1 = X for all g ∈ Gn. Then X = M(2n,F2). If n = 2 then this remains true
with G2 being replaced by G′

2
∼= A6.

Proof. For convenience abbreviateGn to G. Suppose thatX �= M(2n,2). Then
X is semisimple. Indeed, ifY = RadX then Y V is a G-module, asgY V =
gYg−1gV ⊆ Y V . If X is not simple thenG is imprimitive and so we have
a non-trivial homomorphismG → Sym(2n). If 2n > 4 thenG is simple and so
|G| � |Sym(2n)| which is not the case. If 2n = 4 thenG has a simple subgroup
G′ ∼= A6 of index 2. As|A6| > 2|GL(2,2)|, in this caseG′ is primitive. ThusX is
a simple ring and soX = M(l,Fq) for some evenq . If q > 2 let L denote the
centre ofX, that isL ∼= Fq . ThengLg−1 = L for all g ∈ G which means that
there is a homomorphism fromG into Gal(L/F2), which is abelian. If 2n > 4,
this homomorphism has to be trivial and soG centralizesL. If 2n = 4, the
homomorphism must be trivial onG′ ∼= A6 so thatG′ centralizesL. By Schur’s
LemmaG, if 2n > 4, andG′, if 2n = 4, are not absolutely irreducible. If 2n > 4,
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this contradicts [6, 2.10.6]. If 2n = 4 thenA6 is not isomorphic to a subgroup
of GL(2, r) for any evenr. SoA6 is absolutely irreducible. Thus,q = 2. Clearly,
X contains Id, as otherwisegeg−1 = e for the central idempotente of X and
all g ∈ G. This is not the case by Schur’s lemma. Every automorphism ofX

is known to be inner. Therefore, for eachg ∈ G there existsyg ∈ X such that
gxg−1 = ygey−1

g for all x ∈ X. It follows thatG has a projective representation
τ : G → GL(2n,2). It is in fact ordinary as bothG and GL(2n,2) have trivial
center. It follows from Schur’s lemma thatτ is non-trivial, and also non-trivial
on G′ if 2n = 4. It is well known thatG, andG′ if 2n = 4, has no non-trivial
representation of degreel < 2n. ✷
Lemma 3.12. Let 2n > 4 be even and let Id = e1 + e2 ∈ R = M(2n,F2) where
e1 and e2 are idempotents of R with σ(e1) = e2. Set Ci := eiRei for i ∈ {1, 2},
C := CR(e1) (hence C = C1 ⊕ C2), and Cσ := C ∩ Gn. Let M ⊆ R be a proper
subring.

(i) There is g ∈ Gn such that e1(gMg−1 ∩ Cσ ) �= C1 and gMg−1 ∩ Cσ �= Cσ .
(ii) Let l be prime, M ∼= M(2n/l,F2l ) and N = NGL(2n,2)(M). Then e1(gNg−1∩

Cσ ) �= e1Cσ .

Proof. For convenience abbreviateGn to G. As e2 = Id − e1, we have that
e1e2 = e2e1 = 0. By Lemma 3.11 there is someg ∈ G such thate1 /∈ gMg−1.
So we can assume thate1 /∈ M. SetMσ = M ∩G andCσ = C ∩G. Clearly,Cσ =
{x + σ(x−1)} wherex runs overC∗

1 = GL(n,2). Hencee1Gσ = C∗
1. Observe that

e1Mσ �= C∗
1 . Indeed, ase1(x + σ(x−1)) = x, the equalitye1Mσ = C∗

1 implied
thatMσ = Cσ

∼= C∗
1 . Therefore,y �→ e1x andy �→ e2x for y ∈ Cσ = Mσ are dual

representations ofC∗
1 = GL(n,2). As n > 2 they are non-equivalent. Therefore

〈Mσ 〉 is not a simple ring. Then it is easy to see that〈Mσ 〉 = C whereby
e1 ∈ C ⊆ M, contradicting the above. Thus,e1Mσ �= C∗

1 andCσ �= Mσ = M ∩Cσ

asC∗
1 = e1Cσ . This proves (i). AsN/Mσ is of prime orderl, it is abelian. Hence

if e1Cσ ⊆ e1(Cσ ∩gNg−1) thene1Cσ ⊆ e1Mσ . This is not true asCσ
∼= GL(n,2)

is simple. ✷
Lemma 3.13. Let X ⊂ R be a subring and let I , J be ideals of X such that
I + J = X.

(i) Suppose that I ∩ J �= J and X/I is simple. Then J/(I ∩ J ) ∼= X/I .
(ii) Let e ∈ R be an idempotent with e �= 0, Id and X ⊆ CR(e). Suppose that

eX is a simple non-commutative ring and that (Id − e)X is commutative.
Then eX ⊆ X.

Proof. The first part is obvious. To prove (ii) setη : X → eX with η(x) = ex,
η′ : X → (1 − e)X with η′(x) = (1 − e)x for x ∈ X, and let I := Kerη,
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J := Kerη′. ThenI ∩ J = 0 andJ ⊆ eX asx = ex + (1 − e)x = ex for x ∈ J .
Also, J �= 0 asX/J is commutative andX is not. By (i) J ∼= X/I ∼= eX and as
J ⊆ eX we haveeX = J as desired. ✷

We now have the prerequisites to prove the main theorem of this section.

Proof of Theorem 3.7. By Lemma 3.9, we assume thatn > 2. SetM := CR(F)

so thatM ∼= M(2n/l,F ) and F is the centre ofM. For convenience again
abbreviateGn to G. Then Mσ =: G ∩ M = CG(F) = {x ∈ M: xσ(x) = Id}
is isomorphic toSp(2n/l,F ) and N/CG(F) is isomorphic to Gal(F/F2). In
particular,N/CG(F) is cyclic of orderl. SetA := 〈H 〉F2. SoA is a commutative
ring. We split the argument into five parts.

(i) Suppose first thatA is a field. Then|H | is odd. Asσ(h) = h−1 �= h for
h ∈ H , we observe thatσ acts non-trivially on the subfield〈h〉 of A for each
h �= 1. Sinceσ 2 = 1 it follows that[〈h〉 : F2] is even, and〈h〉 contains a unique
subfieldLh isomorphic toF4. The same is true forA and soLh = L does not
depend onh. Let t ∈ L be an element of order 3. AsHg := H ∩ gNg−1 �= 1
for eachg ∈ G, we observe that eachHg containst , and hencet ∈ N1 :=⋂

g∈G gNg−1. Clearly,N1 is normal inG and|N1| > 2 which is impossible as
2n > 4.

(ii) Now we assume that there exist idempotentse1 and e2 in CR(H) such
thatσ(e1) = e2 ande1 + e2 = Id. SetC = CR(e1). Clearly,C = C1 ⊕ C2 where
σ(C1) = C2, Ci

∼= M(n,F2) and whereei is the identity ofCi for i = 1,2. Set
Cσ := C ∩ G andNC =: N ∩ Cσ . By Lemma 3.12 we have thate1NC �= C∗

1. By
Theorem 1.1 of [8] there is somey ∈ C∗

1 such thate1H ∩ ye1NCy−1 = 1, except
possibly whenn = 4 ande1NC

∼= A7. As A7 is simple andNC/Mσ is cyclic, this
implies e1Mσ = e1NC

∼= A7. However,A7 is absolutely irreducible inGL(4,2)

and so it is not contained in any proper subring. IfT = diag(y, σ (y−1)) then
H ∩ tH t−1 = 1, completing the proof of the theorem in the case under discussion.

(iii) Suppose thatA is local. Let H1 be a maximal subgroup of odd order
in H . The theorem is trivial ifH1 = 1. So suppose thatH1 �= 1. ThenB := 〈H1〉
is a semisimple ring by Maschke’s Theorem and henceB is a field asA is
local. SetC = CR(B), Cσ = G ∩ C, Bσ := B ∩ G. ThenC ∼= M(k,B) where
k · [B : F2] = 2n. By (ii) we can assume thatB ∩ N = 1, henceH1 ∩ N = 1. Then
Cσ �= N ∩ Cσ , as otherwise Id�= H1 ⊆ B ∩ G ⊆ C ∩ G = Cσ = N ∩ Cσ ⊆ N ,
which is false.

Recall thatH ⊆ Cσ and thatH ∩ gNCg−1 �= 1 for eachg ∈ Cσ ⊆ G. Let
1 �= h ∈ H ∩ gNCg−1. Then |h| is a 2-power, as otherwise 1�= ha ∈ H1 for
somea. Therefore, ift denotes the unique involution inH , we have thatt ∈
gNCg−1 for eachg ∈ Cσ . Hencet ∈ ⋂

g∈Cσ
gNCg−1 =: D and D is normal

in Cσ . As C ∼= M(k,B) and asσ |B �= Id, we haveCσ
∼= U(k,B). SinceD

containst , we conclude thatD contains a subgroup isomorphic toSU(k,B).
Clearly,M ∩ C is not central inC as otherwiseD is abelian becauseN/(N ∩ M)
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is cyclic. In addition,N normalizesM, henceN ∩ C normalizesM ∩ C so that
M ∩ C is normalized bySU(k,B). If k > 2 then, by Lemma 3.10, it follows that
M ∩ C = C. ThereforeH1 ⊆ Bσ ⊆ Cσ ⊆ M ∩ G ⊆ N , which is false. So we are
left with k = 2.

Thus we have shown that ifH ∩ gNg−1 �= 1 for all g ∈ G then k = 2,
[B : F2] = n andSU(2,B) ∼= SL(2, q) whereq = 2n. Observe that all involutions
in SL(2, q) are conjugate (asq is even) and sot normalizes some subgroup
Y ⊆ SU(2,B) of orderq − 1. SetE := H1Y . ThenE is cyclic as|H1| divides
q + 1 and asH1 is central inCσ

∼= U(2, q). Clearly, Y stabilizes an isotropic
1-subspace of the naturalSU(2,B)-moduleM, so C ∼= M(2,B) contains non-
trivial idempotentse1, e2 which centralizeY , and such thatσ(e1) = e2 ande1 +
e2 = Id. (In M(2,B) we haveY = {diag(α,α−1)} whereα ∈ Fq2, αq−1 = 1 and
e1 = diag(1,0), e2 = diag(0,1) with respect to a Witt basis ofM.) Furthermore,
e1 ande2 centralizeH1, and henceE. Therefore by (ii) there is someg ∈ G such
thatE ∩ gNg−1 = 1.

With this information fork = 2 we rearrange the argument above, assuming
from the very beginning of (iii) thatCG(H1) contains a subgroupY of order
q − 1 such that(H1Y ) ∩ N = 1. Here alsoH1 ∩ N = 1 and so all of the above
argument remains valid. However, nowNC cannot contain a subgroup isomorphic
to SU(2, q) as all subgroups of orderq − 1 in CG(H1) = U(2,B) are contained
in SU(2, q). SoY ∩ N = 1 impliesN ∩ SU(2,B) �= SU(2,B). Therefore, there
exists somex ∈ SU(2,B) such thatt /∈ xNCx−1. ThenH ∩ xNx−1 = 1.

(iv) Here we assume thatA contains an idempotente such thatσ(e) = e. We
use induction onn and also on the order ofH therefore assuming the theorem
being true for all proper subgroups ofH . Replacinge by Id − e we can assume
that |eH | � |(Id − e)H | and we do this but one exception: if|eH | = 5 and
|(Id − e)H | = 6 or conversely, we prefer to have|eH | = 5.

Let H2 be the kernel ofH → eH . Then |H2| < |H | as equality would
mean thateH = e. By minimality of H there exists someg ∈ G such that
H2 ∩gNg−1 = 1. Hence we can assume thatH2 ∩N = 1. Now it suffices to show
that there isx ∈ G such thatex = x andxeHx−1 ∩ eNe = Id. To use induction
here, we needeNe to normalize a proper non-central subring ofeRe.

SetC := eRe ∼= M(r,2) wherer := rank(e), let A2 = (Id − e)A. As e ∈ A,
clearly, A2 ⊂ A and A = eA ⊕ A2. Set C0 := C + A2. Clearly eC0 = C and
(1 − e)C0 = A2. HenceC and A2 are ideals ofC0, and H ⊆ C0. Let M0 :=
M ∩ C0 and soH ∩ M = H ∩ M0. Observe thatM0 ∩ C �= C, for otherwiseM0
would contain a matrix of rank 1 and this is not the case. Moreover,eM0 �= C.
Indeed, suppose to the contrary thateM0 = C. By Lemma 3.13, we haveC ⊆ M0
and this contradictsM0 ∩ C �= C.

Set L := eM0 �= C and N0 = N ∩ C0 ∩ G. Then eN0 �= e(C ∩ G) =: Cσ

as eN0 = Cσ implied that Cσ normalizesL. By Lemma 3.8Cσ = Sp(r,2).
As r > 2, by Lemma 3.11,L is central inC. TheneN0 would be abelian (as
N ′ ⊆ M), which is impossible. Ifr � 4 and|eH | �= 6, we can use the induction
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assumption that Theorem 1.1 is true forr < 2n to conclude that there exists some
h ∈ Cσ = Sp(r,2) such thateH ∩ heNCh−1 = 1, unlessr = 4 andeNC = A6.
In the latter situation, asA6 is simple andeNC normalizesL, by Lemma 3.11,
we conclude thatL = C. Let r = 4 and|eH | = 6. ThenH is of exponent 6 by
the above, hence of order 6 as it is cyclic. The group algebraF2H has only one
nontrivial idempotent. It follows that|(Id− e)H | � 2. Then one can easily reduce
the question to the casen = 3 and use [2]. (Alternatively, the case with|H | = 6
can be settled by using Lemma 4.2 below.)

(v) Let e be a minimal idempotent inA. By the above we are left with the
situation whenσ(e) �= e which implies thatσ(e)e = 0. Thene1 := e + σ(e) is
an idempotent ofA andσ(e1) = e1. If e1 = Id then the theorem is true by (ii),
otherwise, it is true by (iv). ✷

4. The groups U3(q), 2B2(q), and 2G2(q)

We turn to the permutation representations of the unitary groupsU3(q), the
Suzuki groupsSz(q) = 2B2(q) and the Ree groupsR(q) = 2G2(q). First we note
a fact that can be found in [7]:

Theorem 4.1. None of the groups U3(q), 2B2(q), and 2G2(q) admits a non-trivial
factorisation.

It will therefore be sufficient to consider only the doubly transitive represen-
tations. It turns out that each case is a simple application of the following trivial
lemma:

Lemma 4.2. Let H ⊂ G be finite groups. Let Ω be a G-set such that H has no
regular orbit on Ω . Let S1, . . . , Sm be the minimal non-trivial subgroups of H .
Then |Ω | � ∑m

i=1 |fix(Si)|.

Proof. If α ∈ � then Hα �= 1 and soα is fixed by some non-trivial minimal
subgroupS ⊆ Hα . ✷

The basic description of the unitary groupU3(q) = PSU(3, q2), with q some
power of a primep, is the following, see [3,5]. The group has one doubly
transitive representation onq3 + 1 points. The order is(q3 + 1)q3(q2 − 1)d−1

whered = (q + 1,3). The stabilizerB of a point is the normalizer of a Sylow
p-subgroupS andB is a split extension ofS by a cyclic groupC. Clearly,C is
the stabilizer of 2 points, of orderq2 − 1.

Theorem 4.3. In the doubly transitive permutation action of U3(q) of degree
q3 + 1 with q > 2 every cyclic subgroup H has a regular orbit.
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Proof. Suppose the theorem is false and letS1, . . . , Sm ⊆ H be as in Lemma 4.2.
Clearly, if pi is the order ofSi then we may assume thatp1 divides q and
p2, . . . , pm divide q2 − 1. ThenS1 fixes exactly one point and fix(Si) � q + 1
as can be seen from page 242 of [5]. As a rough estimate form we may
use m � 1 + ln(q2 − 1). Lemma 4.2 now gives the contradictionq3 + 1 �
1+ ln(q2 − 1) · (q + 1). ✷

The basic description of the Suzuki groupSz(q) = 2B2(q) with q = 22m+1

taken from [3] is the following. The group acts doubly transitively onq2 + 1
points such that the stabilizer of any three points is the identity. Its order is
(q2 + 1)q2(q − 1). The stabilizerB of one point is the normalizer of a Sylow
2-subgroupS andB is a split extension ofS by a cyclic groupC. In other words,
B is a Frobenius group with kernelS and complementC which is the stabilizer
of two points, of orderq − 1.

Theorem 4.4. In the doubly transitive permutation representation of Sz(q) of
degree q2 + 1 with q > 2 every cyclic subgroup H has a regular orbit.

Proof. Suppose the theorem is false and letS1, . . . , Sm ⊆ H be as in Lemma 4.2.
Clearly, if pi is the order ofSi then we may assume thatp1 = 2 and that
p2, . . . , pm divide q − 1. ThenS1 fixes exactly one point and fix(Si) = 2. We
have, as before,m � 1 + ln(q − 1) and Lemma 4.2 gives the contradiction
q2 + 1 � 1+ 2 ln(q − 1). ✷

The Ree groupR(q) = 2G2(q) with q = 32m+1 is doubly transitive onq3 + 1
points, see again [3], and this is the only doubly transitive action. Its order is
(q3 + 1)q3(q − 1). The stabilizerB of one point is the normalizer of a Sylow
3-subgroupS andB is a split extension ofS by a cyclic groupC. Clearly,C is
the stabilizer of 2 points, of orderq − 1.

Theorem 4.5. In the doubly transitive action of R(q) of degree q3 + 1 with q > 3
every cyclic subgroup H has a regular orbit.

Proof. Suppose the theorem is false and letS1, . . . , Sm ⊆ H be as in Lemma 4.2.
If pi is the order ofSi then we may assume thatp1 = 3 and thatp2, . . . , pm divide
q − 1. ThenS1 fixes exactly one point and fix(Si) � 2q + 1 as can be seen easily
from page 251 in [3]. Asm � 1 + ln(q − 1), Lemma 4.2 gives the contradiction
q3 + 1 � 1+ ln(q − 1) · 2(q + 1). ✷
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5. Sporadic doubly transitive representations

Apart from the doubly transitive representations ofPSL(n, q), Sp(2n,2),
U3(q), 2B2(q), and2G2(q) discussed in [8] and Sections 3 and 4 above, all other
known permutation actions belong to a small list of sporadic examples:

(1) PSL(2,11) of degree 11, two representations;
(2) PSL(2,8) of degree 28;
(3) A7 of degree 15, two representations;
(4) PSL(2,11) of degree 11, two representations;
(5) M11 of degree 11;
(6) M11 of degree 12;
(7) M12 of degree 12, two representations;
(8) M22 of degree 22;
(9) M23 of degree 23;

(10) M24 of degree 24;
(11) HS of degree 176, two representations;
(12) Co3 of degree 276.

Three of the first four groups have already been dealt with in [8, Theorem 1.1]
and we may ignoreA7. To complete the proof of the main theorem it suffices
therefore to look at the remaining cases:

Theorem 5.1. Let G be any of the groups M11, M12, M22, M23, M24, HS or Co3
and let Ω be any non-trivial G-set. Then every cyclic subgroup H ⊂ G has
a regular orbit on Ω .

Proof. This can be checked from the information given in the Atlas [2]. Elements
of composite order|H | involve at most two primes, sayp andq , except inCo3
which has elements of order 30. To verify the statement for the representations
stated as items 5–12 in the list above it is sufficient to use Lemma 4.2 together
with the fact that all pairs ofp- andq-elements together fix an insufficient number
of elements. The same argument applies for the elements of order 2, 3, and 5 in
the Conway group. This completes the embedding case.

The factorizations ofG are available in Table 6 of [7] and in the Atlas. In each
case we are looking at a factorisationG = Gω · Gδ whereGω is the one-point-
stabilizer in one of the presentions 5–12 in the list. We may make use of the
comment following Theorem 2.2 earlier and so we have to consider only the
following cases:

(1) ForG = M12 andGω = M11 we haveGδ = L2(11), Gδ = 2× S5,
Gδ = 42.D12 or Gδ = A4 × S3;

(2) ForG = M23 andGω = M22 we haveGδ = 23.11;
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(3) ForG = M24 andGω = M23 we haveGδ = M12.2, Gδ = 26.3.S6,
Gδ = L2(23), Gδ = 26(L3(2) × S3) or Gδ = L2(7);

(4) ForG = HS andGω = U3(5).2 we haveGδ = M22.

Now we repeat the same argument as before for the action ofG on the cosets∆
of Gδ in G. In all cases where the character ofG on ∆ is given in the Atlas the
Lemma 4.2 gives the result immediately. The remaining cases are

(1) G = M12 with Gδ = A4 × S3 and|∆| = 1320;
(2) G = M23 with Gδ = 23.11 and|∆| = 40320;
(3) G = M24 with Gδ = L2(23) and |∆| = 40320, or withGδ = L2(7) and

|∆| = 1457280.

These can be ruled out by easy character estimates. Letπ = 1+n1χ1+· · ·+nrχr

with ni > 0 be the character ofG on ∆. For G = M12 we have to consider
only elements of order|H | = 6. Here

∑
ni � 1320−1

16 while the number of fixed
points of 2- and 3-elements isf2 � 1 + 7

∑
ni and f3 � 1 + 3

∑
ni . This

contradictsf2 + f3 � 1320. ForG = M23 we have to consider elements of order
|H | = 6, 14 or 15 but here all 2-, 3-, 5-, and 7-elements are fixed-point-free.
For G = M24 we have to consider elements of order|H | = 6, 10, 12, 14, 15
or 21. If Gδ = L2(23) one may estimatef2 � 1 + 36

∑
ni , f3 � 1 + 8

∑
ni

andf5 = f7 = 0, thus contradicting Lemma 4.2. Finally, ifGδ = L2(7) one has
f2 � 1+ 36

∑
ni , f3 � 1 + 16

∑
ni andf5 = 0 andf7 � 1+ 4

∑
ni . The result

follows from Lemma 4.2 except for elements of order 6 where a slight variation
of the same argument will work.✷
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