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Summary

Planar flow past a finite number of thin blades travelling in sequence, aligned or nearly aligned
over flat ground, is examined analytically and numerically for large Reynolds numbers. The
work is motivated by concerns with rotorcraft in ground effect. The representative blade length,
wake length and height above ground are taken to be comparable, with each wake (except the
final one) intersecting the next blade. Inner–outer interaction covers the whole system as all
the wake shapes adjust to maintain pressure equality, forcing viscous–inviscid coupling through
lateral offsets within each wake. Results are presented for several configurations, in the frame
of the blades with the ground moving at freestream speed. The limits of small relative height
and of many blades are then investigated. It is found, for the case of identical blade and wake
lengths, that as the height is reduced the ground effect first becomes significant at heights just
below one half of the blade length but then grows substantially; and that a virtually streamwise
periodic motion emerges for about three or more blades.

1. Introduction

Fluid flows induced by a rotor blade have much practical importance, not least with respect to
helicopter aerodynamics, as well as in fans, propellers, food mixers, hover mowers and so on.
For many years the helicopter has played an important role in both military and civilian air
transportation, most crucially when asked to perform tasks that fixed wing aircraft cannot, such as
vertical take-off and landing and the capacity to hover. Recent works by Smith and Timoshin (1,2),
Conlisk (3), Jones (4), Bowles and Smith (5, 6), Bhattacharyya and Smith (7) survey the main
background in theoretical and numerical terms. When a rotor blade or system is forced to perform
near the ground its aerodynamics are considerably altered, with the lift generated for a given power
output generally being greatly increased. This is somewhat akin to the ground effect for a single
blade or airfoil (see Newman (8), Widnall and Barrows (9), Tuck and Bentwich (10) and references
therein, and in particular Jones (4) who includes viscous effects as well as inviscid mechanisms
considered in earlier articles). In fact, the earliest helicopters were only powerful enough to hover
with the assistance of the cushioning effect of the ground. The ground effect has implications
in terms of both safety and control of the aircraft as well as providing the opportunity to exploit
the phenomenon (see Seddon (11), Bramwell (12)). There is also relevance to other applications
including slip-streaming, pursuit problems, and delay of take-off or landing at airfields (see Moore
and Saffman (13)). An understanding of how proximity to the ground influences the significant
aspects of vorticity shedding from one blade to another and sheltering effects (among others), and
the mechanisms by which the enhanced lift is generated, is therefore desirable. However, most
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studies are either experimental (see for example Caradonna and Tung (14), Parthasarathy et al. (15),
Hoad et al. (16), Hoad (17), Lorber (18) and McAlister et al. (19) among many others), where
the very complicated flow structures may mask the underlying physics, or computational (see for
example McCroskey (20), Egolf and Sparks (21), Ramachandran et al. (22) and Srinivasan and
Sankar (23)), which generally requires the use of empirical formulae to handle certain features and
again important aspects may be lost.

The present theoretical investigation which is motivated by the ground effect on a hovering rotor
blade system considers the flow past multiple blades near horizontal ground. As in most of the
studies above, modelling for large Reynolds numbers is used, the justification being based on
improved analytical and physical understanding in addition to at least qualitative agreement with
experiments (Bowles and Smith (6)).

The work in effect combines two previous studies in similar regimes. First, Smith and Timoshin
(2) considered the planar flow past many blades but with no ground effect. An important new
interaction is encountered in their article due to non-symmetry, namely inner–outer interaction,
whereby the entire viscous-layer and inviscid flows are coupled and must be solved simultaneously.
This is discussed below and is of importance in the current regime also. Although we limit ourselves
to two-dimensional flow here it still has relevance to the full three-dimensional rotor case in the
regime of large radial distance from the hub and that of the many-blade limit, as discussed in Smith
and Timoshin (2) and Purvis (24). Secondly, Jones (4) describes the flow past a single blade or
aerofoil near the ground. There the author derives a solution for the outer flow given the presence
of the ground but has no inner–outer coupling as there is only one blade present. Here we combine
these two problems, examining the incompressible flow past many blades in ground effect, and
include both the inner–outer interaction aspect and the solving of the inviscid problem for many
blades with the ground present. We extend the analysis of Jones (4) for the outer flow past a single
blade, to find the equivalent relation in the context of flow past many blades, and develop a method
to solve it in tandem with the inner viscous-layer flow.

We take as our starting point the steady two-dimensional Navier–Stokes equations in terms of
non-dimensional velocity components U, V , corresponding Cartesian coordinates x, y, pressure P
and the Reynolds number defined to be Re = U∞L/ν, where ν is the kinematic viscosity of the
fluid, U∞ is the velocity of the free stream and L is a typical length scale, taken here as the length of
a representative blade. The freestream pressure is written as P∞. For Re large the motion is expected
to split into viscous and inviscid parts. The configuration of the problem is that of n thin blades, the
i th one running from its leading edge x = ai to its trailing edge x = bi . The blade shapes are given

by y = Re− 1
2 f ±(x), where f +(x), f −(x) give the upper and lower blade shapes respectively and

are assumed to be smooth and typically O(1). We also require that f +(x) = f −(x) at the leading
and trailing edges. These blades are positioned in a slip-streaming arrangement at an O(1) distance
h above the moving ground and in an otherwise uniform stream with non-dimensional velocity of
unity. We take the first leading edge a1 to be the origin. Thus the coordinate frame has the blades
being fixed, while the ground moves horizontally with velocity 1; see Fig. 1.

In section 2 the two parts of the problem are examined, both the viscous layer’s multi-blade flow
(section 2.1) and the outer inviscid flow (section 2.2) driven by displacement effects from the viscous
layer(s). We also discuss in more detail the all-important inner–outer interactions introduced above.
Having set up the outer problem in terms of needing to find an analytic function in the complex
plane, we turn in section 2.2 to solving the inviscid problem, determining integral equations for the
velocity and pressure, and then solve these to enable calculation of the unknown outer flow in terms
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Fig. 1 The flow configuration of n(= 4 here) blades at a distance h above horizontal moving ground.
Although shown as flat plates here they can have thickness and a shape through f (x)

of the unknown inner. We move in section 3 to consider the numerical solution of the combined
inner and outer problem. Results are presented in section 4 for several configurations, varying the
number, the ground clearance and angle of attack of the blades. The computational results are then
used to guide further analysis. In section 5 we consider two limits of interest, those of large and
small ground clearances h. For large clearances, we derive an expression for the leading-order
ground effect, recovering the no ground effect case of Smith and Timoshin (2). In the case of small
h a relatively simple form for the pressure and velocities emerges, yielding good agreement with the
relevant results from section 4. Then section 6 addresses the many-blade limit (large n), in which
a periodic flow forms on each blade and wake, accompanied by slower variation over a long length
scale. Further comments are made in section 7.

2. Flow structure

2.1 The viscous layers

With Re being large, the aim as far as the viscous part of the motion is concerned is to resolve the
viscous boundary-layer and wake motions for the flow past all the blades. Although the ground is
outside the viscous layers, the effect of the ground does enter through the necessary coupling of the
solution for the boundary layer and wake with properties from the outer inviscid flow by means of
unknown lateral shifts in the wake shapes at each leading edge, developed in more detail below.

We introduce the scaled viscous coordinate Y in the normal direction given by y = Re− 1
2 [ f (x)+

Y ], where f (x) is the scaled shape of the known blade and unknown wake centre-line. The

governing equations then become, for the scaled velocity components ū[= U ], v̄[≡ Re
1
2 V −

ū f ′(x)],
∂ ū

∂x
+ ∂v̄

∂Y
= 0, ū

∂ ū

∂x
+ v̄

∂ ū

∂Y
= 0 + ∂2ū

∂Y 2
, (2.1a,b)
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subject to the no-slip and free-stream conditions

ū = v̄ = 0 at Y = 0 on each blade, (2.1c)

ū → 1 as Y → ±∞, (2.1d)

in turn, with the velocities being continuous in the wakes. There is also a starting condition at the
first leading edge requiring

ū = 1 at x = 0, Y �= 0. (2.1e)

The Prandtl transposition used above is known on the blades, with f (x) = f ±(x), but is unknown
in the wakes as the wake centre-line shape is to be found. With a single aerofoil this does not affect
the boundary-layer calculation; there is Blasius flow over the aerofoil and a Goldstein-type wake
beyond the trailing edge, regardless of the wake shape which can then be obtained independently
by examining the outer flow. By contrast, in the present multi-blade case the wake shape is crucial.
If the position of the wake centre-line as the wake encounters the following blade is unknown, that
is, the position of the leading edge in relation to the oncoming flow is unknown, then the flow
solution in the subsequent boundary layer cannot be determined. The Y -shift in each wake flow, the
scaled distance by which each wake centre-line is deflected at the onset of the next leading edge,
is determined by considering the outer flow introduced in the next subsection. Likewise the outer
inviscid flow, driven by the presence of the viscous layers, cannot be calculated until the boundary
layer(s) and wake(s) and hence the scaled displacement effects,

δ±(x) ≡ ±
∫ ±∞

0
(1 − ū(x, Y ))dY, (2.2)

which drive the outer flow, have been resolved. This causes inner–outer interaction, with each aspect
(viscous, inviscid) of the overall problem requiring the solution to the other.

2.2 The outer inviscid parts

Outside the boundary layer the free stream U = 1 is only slightly disturbed by the presence of the
sequence of thin blades and related viscous layers and hence we expand the velocities and pressure
as

U = 1 + εv(x, y) + · · · , V = 0 + εv(x, y) + · · · , P = P∞ + εp(x, y) + · · · ,

(2.3a,b,c)

where ε ≡ Re− 1
2 is small. So the Euler equations hold but linearized about the free stream, yielding

the Cauchy–Riemann equations for v and p. We express the flow problem here in terms of the
complex function w(x + iy) = p(x, y) + iv(x, y) which is analytic and required to be bounded in
the far field, and we define

w(x + 0i) = p+(x) + iv+(x),

w(x − 0i) = p−(x) + iv−(x),

w(x − hi) = p=(x) + i0
(2.4a,b,c)
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as the pressures and velocities just above and below the viscous layers, and the pressure on the
ground, respectively. The boundary condition at the ground is v= = 0 in view of the negligible
viscous displacement produced by the horizontal movement there. We also impose pressure
continuity across the wake which requires

p+(x) = p−(x) in the wakes. (2.4d)

This condition is required since the largest pressure jump that each wake can support is typically
O(Re−1) at most.

The outer flow is driven by displacement effects from the viscous layers, so that matching requires

v± =



s′(x) for x < 0,

c′(x) ± 1
2 t ′(x) ± δ′±(x) for x on blades,

s′(x) ± δ′±(x) for x in wakes,
(2.5)

where εc(x) = ε( f +(x) + f −(x))/2 is the camber of the blade, εt (x) = ε( f +(x) − f −(x)) is the
thickness of the blade, εs(x) is the wake centre-line shape and δ±(x) are the viscous displacement
thicknesses given by (2.2). For given blade shapes, c(x) and t (x) are known while s(x) is unknown
and must be determined as part of the whole inviscid solution. Also, δ±(x) can be determined from
the viscous layers through (2.2) only once s(x), and hence the Y -shifts, are computed.

In the inviscid problem, to satisfy the ground condition (2.4c), we introduce the image of the
system of blades at y = −2h. This requires finding the analytic complex function w bounded in the
far field but now satisfying

w(x ± 0i) = p±(x) + iv±(x), (2.6a)

w(x − 2hi ± 0i) = p∓(x) − iv∓(x), (2.6b)

p+(x) = p−(x) in the wakes. (2.6c)

Following the method employed by Jones (4) for a single blade, we apply Cauchy’s integral formula
for w using the contours �+, �=, �− in the complex plane as in Fig. 2 at a point away from y = 0,
and in the limit as the radius R of the semi-circles in �± tends to infinity we find

w(z) = 1

2π i

∫ ∞

−∞
[p](ξ) + i[v](ξ)

ξ − z
dξ − 1

2π i

∫ ∞

−∞
[p](ξ) − i[v](ξ)

ξ − 2ih − z
dξ . (2.7a)

Here and in what follows we use the notation

[v] (x) = v+(x) − v−(x), 〈v〉(x) = v+(x) + v−(x), (2.7b,c)

and so on for the differences and sums of the velocities and pressures on each side of the viscous
layer. The real and imaginary parts of (2.7a) give the pressure and normal velocity as

p(x, y) = 1

2π

∫ ∞

−∞

(
ξ − x

(ξ − x)2 + y2
+ ξ − x

(ξ − x)2 + (y + 2h)2

)
[v](ξ)dξ

+ 1

2π

∫ ∞

−∞

(
y

(ξ − x)2 + y2
− y + 2h

(ξ − x)2 + (y + 2h)2

)
[p](ξ)dξ, (2.8a)

v(x, y) = 1

2π

∫ ∞

−∞

(
y

(ξ − x)2 + y2
+ y + 2h

(ξ − x)2 + (y + 2h)2

)
[v](ξ)dξ

− 1

2π

∫ ∞

−∞

(
ξ − x

(ξ − x)2 + y2
− ξ − x

(ξ − x)2 + (y + 2h)2

)
[p](ξ)dξ, (2.8b)
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und

Fig. 2 Contours �+, �= and �− for a point away from y = 0

and then u (= −p) follows. However, while [p](x) is known to be zero in the wakes from (2.6c), the
pressure difference is unknown on the blades. To determine the outer solution we must determine
[p](x) for all x . For this we again use Cauchy’s integral formula but this time at a point on y = 0
and use the new contours �+, �=, �−, where �+, �= now circumnavigate the point x with a small
semi-circle of radius ε. In the limit as R → ∞ and ε → 0 we obtain

w(x + 0i) + w(x − 0i) = 1

π i

∫ ∞

−∞
w(ξ + 0i) − w(ξ − 0i)

ξ − x
dξ

− 1

π i

∫ ∞

−∞
w(ξ − 2hi + 0i) − w(ξ − 2hi − 0i)

ξ − x − 2hi
dξ . (2.9)

Applying the boundary conditions (2.6a,b) gives, from the real and imaginary parts, the integral
relations

〈v〉 = 1

π

∫ ∞

−∞
l(ξ − x)[v](ξ)dξ − 1

π

∫ ∞

−∞

(
1

ξ − x
− m(ξ − x)

)
[p](ξ)dξ, (2.10a)

〈p〉 = 1

π

∫ ∞

−∞

(
1

ξ − x
+ m(ξ − x)

)
[v](ξ)dξ − 1

π

∫ ∞

−∞
l(ξ − x)[p](ξ)dξ, (2.10b)

where l(x) = 2h

x2 + 4h2
, m(x) = x

x2 + 4h2
. The integral equations (2.10) for the velocity and

pressure sums must be solved subject to the boundary conditions

[v](x) =



0 for x < 0,

t ′(x) + (δ′+ + δ′−)(x) on blades,
(δ′+ + δ′−)(x) in the wakes,

(2.11a)
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〈v〉(x) = 2c′(x) + (δ′+ − δ′−)(x) on blades, (2.11b)

[p](x) = 0 in the wakes, (2.11c)

from (2.4d), (2.5), with the quantities 〈v〉, 〈p〉 in the wakes and [p], 〈p〉 on the blades being
unknown, to be determined from solving (2.10a,b). Possibly the most significant quantity is
〈v〉(x) = 2s′(x) + (δ′+ − δ′−)(x) in the wakes, which will allow us to find the Y -shifts required
in the viscous-layer calculation later. However, while [v](x) is known for all x through (2.11a), we
cannot determine 〈v〉(x) until we obtain [P](x) on the blades. Once we have [p](x) everything else
follows from (2.10), (2.11) along with the simple relation 2v±(x) = 〈v〉(x) ± [v](x) and similarly
for p.

After a slight rearrangement (2.10a) becomes

1

π

∫
blades

(
1

ξ − x
− m(ξ − x)

)
[p](ξ)dξ = 1

π

∫ ∞

−∞
l(ξ − x)[v](ξ)dξ − 〈v〉(x), (2.12a)

where ∫
blades

≡
n∑

i=1

∫ bi

ai

, (2.12b)

since [p](x) = 0 in the wakes. The above is a singular Fredholm equation of the first kind for [p](x),
where the right-hand side can be calculated from the viscous-layer calculation and the boundary
conditions (2.11a,b). This type of integral equation, notoriously difficult to solve, can be reduced to
one of the second kind. It has a Cauchy kernel. We rewrite (2.12a) as

1

π

∫
blades

[p](ξ)

ξ − x
dξ = f (x) + 1

π

∫
blades

m(ξ − x)[p](ξ)dξ, (2.13a)

where

f (x) = 1

π

∫ ∞

−∞
l(ξ − x)[v](ξ)dξ − 〈v〉(x). (2.13b)

Then applying a result from Muskhelishvili (25) to (2.13a) we obtain

ψ(x) = h(x) + 1

π

∫
blades

S− 1
2 (ξ)M(x, ξ)ψ(ξ)dξ, (2.14a)

where

h(x) = − 1

π

∫
blades

S
1
2 (ξ) f (ξ)

ξ − x
dξ, M(x, ξ) = − 1

π

∫
blades

S
1
2 (ξ1)m(ξ1 − ξ)

ξ1 − x
dξ1, (2.14b,c)

and

ψ(x) = S
1
2 (x)[p](x), S(x) =

n∏
i=1

∣∣∣∣ x − ai

x − bi

∣∣∣∣ . (2.14d,e)

Here (2.14a), which is a Fredholm equation of the second kind, determines, via (2.14d,e), the
required pressure differences on the blades.
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3. Numerical method

For the viscous-layer calculations we adopted a semi-explicit finite-difference approach of second-
order accuracy as in Smith and Timoshin (1, 2), which is robust, accurate and has little difficulty
in dealing with the leading and trailing edge irregularities present in the multi-blade flows. The
momentum equation (2.1b) is discretized as

ūi−1 j
ūi j − ūi−1 j

	x
+ v̄i−1 j

ūi j+1 − ūi j−1

2	Y
= ūi j+1 − 2ūi j + ūi j−1

	2
Y

, (3.1)

where ūi j ( j = −J to J ) are the unknown ū quantities at the x-station i	x , for Y values j	Y ,
with step sizes 	x , 	Y in the x and Y directions respectively. Along with the relevant boundary
conditions from (2.1c,d), this determines all of the required ūi j values at the current station. The
continuity equation (2.1a) is discretized similarly as

ūi j − ūi−1 j

	x
= − v̄i j+1 − v̄i j−1

2	Y
, (3.2)

allowing the v̄i j values to be determined at any given x-station once the ūi j have been calculated
from (3.1).

These discretizations are second-order accurate in Y but as yet only first-order accurate in
x . Second-order x-accuracy is obtained by employing a double-stepping procedure (Smith and
Timoshin (1,2)). Further, at each of the x-stations ai −	x a careful interpolation of the approaching
flow profile is necessary in order to have the correct profile to integrate over the i th blade. Rather
than just sweeping as before at these points we know the leading edge to be at the point Y = f +(ai )

and we re-align the oncoming profiles of ūi−1 j and v̄i−1 j , interpolating them using cubic splines
and then shifting them up or down by the relevant distance calculated/updated through the inviscid
region. This is how the ground effect, via the inviscid problem, permeates the viscous-layer
calculation. Typically 	x = 0·005, 	y = 0·05 and J = 400 were found to be sufficient to obtain
accuracy to within O(10−6) except perhaps far downstream with many blades present.

There are several parts to determining the outer contribution ψ . We limit our discussion to blades
of unit length, that is, we take bi − ai = 1, and also to gaps of unit length, that is, ai − bi−1 = 1, to
illustrate the method of solution, and the solutions themselves, without excessive complication.

First for the calculation of (2.14b) we introduce Ŝ j (x) such that

∣∣∣∣ x − a j

x − b j

∣∣∣∣ Ŝ j (x) = S(x), h(x) = − 1

π

∫
blades

∣∣∣∣ξ − a j

ξ − b j

∣∣∣∣
1
2 Ŝ

1
2
j (ξ) f (ξ)

ξ − x
dξ . (3.3a,b)

There are two problems to be addressed here: on each blade the integral has a square root singularity
at ξ = bi and, if x is on the blade, also a Cauchy-type kernel. For the former we make the
substitution ξ = b j − cos2 θ = sin2 θ + a j , x = sin2 φ + ai . Substituting into (3.3b) gives

h(sin2 φ + ai ) = − 2

π

j=n∑
j=1, j �=i

∫ π/2

0

sin2 θ Ŝ
1
2
j (sin2 θ + a j ) f (sin2 θ + a j )

sin(θ + φ) sin(θ − φ) + (a j − ai )
dθ

− 2

π
−
∫ π/2

0

sin2 θ Ŝ
1
2
j (sin2 θ + a j )(θ − φ)

sin(θ + φ) sin(θ − φ)

f (sin2 θ + a j )

(θ − φ)
dθ, (3.4)
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where the integrals in the summation are no longer singular and the final one is now a Cauchy
integral. The former are straightforward to evaluate numerically. To calculate the final one we
used a NAG library routine D01AQF, as the non-Cauchy part of that final one is no longer singular.
Similar substitutions are made for the calculation of M . To solve (2.14a) we adopted a simple
iteration procedure,

ψk+1(sin2 φ + ai ) = h(sin2 φ + ai )

+ 2

π

∫
blades

S− 1
2 (sin2 θ + a j )M(sin2 φ + ai , sin2 θ + a j )ψk(θ) sin θ cos θdθ, (3.5)

from an initial guess ψ0. Typically to obtain convergence such that |ψk+1 − ψk | ∼ O(10−6)

required about one hundred iterations of (3.5).
Finally updated values of the Y -shifts at each leading edge are found through (2.11). Since in the

wake v± = s′(x)±δ′±(x), integration with respect to x in the wake between blades i and i +1 gives
the wake shape as

s(x) = s(bi ) + 1

2

∫ x

bi

{〈v〉(ξ) − (δ′+(ξ) − δ′−(ξ))}dξ, (3.6a)

and hence the Y -shift Ys(ai+1) at the leading edge of blade i + 1 is

Ys(ai+1) = s(bi ) + 1

2

∫ ai+1

bi

{〈v〉(ξ) − (δ′+(ξ) − δ′−(ξ))}dξ, (3.6b)

where s(bi ) is known from the position of the previous trailing edge, 〈v〉(x) is calculated from
(2.10a) and δ′±(x) from the viscous-layer calculations. Working with δ′ is convenient as it is given
by the value of the lateral velocity at the edge of the viscous layer.

In summary, the sweeping used to determine the complete viscous-layer and inviscid flows is as
follows.

1. Make an initial guess for the Y -shift at each leading edge; typically Ys(a j ) = 0 for all j is a
sufficiently good first estimate.

2. Sweep through the viscous-layer solution, interpolating where necessary to satisfy the current
Y -shift guesses.

3. Compute δ′±(x), and hence [v](x), using (2.2) and the viscous-layer solution.
4. Calculate [p](x) by iterating on (2.14a), calculating f (x) from the new [v](x) values.
5. Using the [p](x) values, calculate 〈v〉(x) through (2.10a) and hence recalculate new Y -shift

approximations from (3.6b).
6. Check on convergence; return to 2 and re-sweep, or finish.

Depending on the configuration, this procedure typically takes four to eight complete cycles for
an accuracy of the order 10−6 in successive Y -shift approximations.

Evaluating ψ(sin2 φ +ai ) was found to require a step size in φ of about π/500 to obtain the same
order of accuracy. All of the results were checked by varying the grid sizes to ensure numerical
accuracy.

4. Results

Results are presented in Figs 3 to 9 for various flow geometries, varying the number of blades, the
blade height h and the angle of attack through c(x). These figures show the viscous displacement
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thicknesses δ±(x), wake shapes s(x) and the pressures p±, p=. We consider mainly two different
configurations in detail, presenting results for two and five blades (later nine blades are examined
briefly), varying h and considering three sample cases: that of flat blades and two examples of
non-symmetry where the blades have positive and then negative angle of attack. In the case of five
flat plates, each with zero camber and thickness, Figs 3a and 3b show the displacement thicknesses
and Figs 4a and 4b show the pressures for a variety of heights ranging from h = 4 to h = 1

32 . There
is very little variation in the pressures with varying h for values of h > 1

2 . As h is decreased p−
increases rapidly while p+ is relatively unchanged. Closer inspection of the small-h cases suggests
p− increasing like 1/h, an extreme which is explored further in the next section. Another striking
feature of the small-h cases is the very flat shapes in the lower displacement thicknesses in the wake.
Physically this is due to the pressure requirement causing relatively little fluid to be entrained from
beneath the wake compared with that above and forcing the downward reflection of s(x). The flow
appears to have a relatively simple form here and we examine it in more detail in section 5. There
also appear to be distinct leading and trailing edge regions, similar to those considered by Jones (4),
where the wake shape and the pressure adjust rapidly. We also present in Figs 5a,b a few examples
of the displacement thicknesses for five blades at positive and negative angles of attack. Features
analogous to those discussed earlier can be observed.

In Figs 6a,b we present the corresponding results for two flat blades, seeing features similar to
those of the five-blade case.

Figures 7a,b give the case of two blades at an angle of attack with c(x) no longer zero, considering
in turn both positive and negative angles. Similar features are again observed, with the flattening
wake shape and increasing pressure differences [p] as h is reduced still clearly visible. Other
configurations of possible interest include having each blade with a different camber and also
experimenting with varying the thickness of the blades, but these are not featured here.

In Fig. 8 we present the lift profiles, from the integrals of the pressure differences [p](x) along
each blade, for the five-flat-blade case at each of the values of h considered. Away from the ground
this configuration does not normally generate any lift; so any lift here is solely as a direct result of
the influence of the ground. For the larger h values (greater than one-half) there is effectively no
lift generated. As h is reduced, and there is a non-zero lift produced, sheltering effects are clearly
visible, with more lift created on the first blade compared with the following ones. The lift can be
seen to increase substantially as 1/h as h is reduced even further.

Finally here, we also present a single case of nine blades, at a height h = 1
32 , in Fig. 9. Observe

the almost periodic nature of the wake shape beyond the third or fourth blade and the similar δ±(x)

shapes, except for the gradual growth. This suggests there are two important length scales present:
one shorter scale from leading edge to successive leading edge with a fast-varying and periodic
form, and a longer slowly varying scale containing the steady growth in size of the boundary layer.
This is considered in more detail in section 6.

5. Extreme clearances

5.1 Large ground clearances (h � 1)

When the distance between the blades and the ground is large, the velocity and pressure sums and
differences expand as

〈v〉(x) = 〈v〉0(x) + 1

2h
〈v〉1(x) + · · · , [v](x) = [v]0(x) + 1

2h
[v]1(x) + · · · (5.1)
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Fig. 5 Displacement thicknesses and wake centre-line shapes for five blades at angle of attack, for various
heights; (a) positive angle

and so on, together with expansions of �(x), m(x) for x � h. Care must be taken when x ∼ h � 1
to ensure that all the necessary terms are retained at each order. Substituting into (2.10) yields, to
leading order,

〈v〉0 = − 1

π

∫ ∞

−∞
[p]0(ξ)

ξ − x
dξ, 〈p〉0 = 1

π

∫ ∞

−∞
[v]0(ξ)

ξ − x
dξ . (5.2)

These can be inverted readily to give

[p]0(x) = S− 1
2 (x)

π

∫
blades

S
1
2 (ξ)

ξ − x
〈v〉0(ξ)dξ, (5.3)

as in Smith and Timoshin (2) for the flow past multiple blades with no ground present. The
entire leading-order solution can now be calculated as before. To next order, and including the
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Fig. 5 cont. (b) negative angle

contributions from the region where ξ ∼ h (Purvis (24)), we obtain the complete expressions as

〈v〉1 = 1

π

∫ ∞

−∞
([v]1 − 〈v〉0) (ξ)dξ − 1

π

∫ ∞

−∞
[p]1(ξ)

ξ − x
dξ, (5.4a)

〈p〉1 = − 1

π

∫ ∞

−∞
([p]1 − 〈p〉0) (ξ)dξ + 1

π

∫ ∞

−∞
[v]1(ξ)

ξ − x
dξ . (5.4b)

These can also be inverted to yield an expression for [p](x) on the blades and hence give the
complete solution; (5.4) provide the first sign of the effect of the ground as the O(1/2h) correction is
the leading-order ground effect for large h. Notice also that the first integrals in (5.4) are dependent
only upon the quantities beneath the blades, v− and p− respectively.
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h = 2 to h = 0·0625 as in Fig. 6a; (a) positive, (b) negative angle

5.2 Small ground clearances (h � 1)

For the other extreme, of small ground clearances, although still sufficiently large that the ground is
entirely outside the viscous layers, we return to the original Cauchy–Riemann equations for v and
p. (See also Jones (4) who uses a different approach for a single blade.) We write y + h = h ŷ and
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Fig. 9 The wake centre-line shapes and viscous displacements for nine blades at angle of attack. Note the
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expand the velocities and pressures below the system of blades as

v−(x, y) = v−
0 + · · · , p−(x, y) = 1

h
p−
−1 + p−

0 + · · · . (5.5a,b)



154 R. PURVIS AND F. T. SMITH

Above the blades the leading-order terms are O(1) in both the pressure and normal velocity but we
do not consider these here. Substituting into the Cauchy–Riemann balances yields the leading-order
governing equations as p−

−1x = −v−
0y , p−

−1y = 0. These must be solved subject to the boundary
conditions at the underside of the blade, ŷ = 1, namely v−

0 (x, 0) = c′(x) − 1
2 t ′(x) − δ′−(x) on the

blades, v−
0 (x, 0) = s′(x) − δ′−(x) in the wakes, p−

−1 = 0 in the wakes.
The velocity conditions here are from (2.5) and we require zero p−

−1 in the wake as the leading-
order pressure above the blades is O(1) and so for continuity across the wakes the pressure beneath
must be zero at this order.

Hence v−
0ŷ ŷ = 0, which we integrate to give v−

0 = A(x)ŷ satisfying the ground condition v−
0 = 0

at ŷ = 0. The underside conditions lead to v−
0 = (

c′(x) − 1
2 t ′(x) − δ′−(x)

)
ŷ, which gives the

leading-order pressure underneath blade i as

p−
−1(x) = p−

−1(ai ) − c(x) + 1
2 t (x) + δ−(x), (5.6)

where the constant of integration p−
−1(ai ) is unknown.

This shows that to leading order the pressure is independent of y beneath the blades, that is,
p− = p=, a property which can be clearly seen emerging in the results for small h presented in
section 4. Also, for the flat plate case presented in Fig. 3b, c(x) and t (x) are zero and so (5.6)
gives the scaled pressure responding as δ−(x). Again this can be seen in the pressure plots for
the relevant cases in section 4. Perhaps more importantly it shows the pressure beneath the blade
system increasing as 1/h while that above the system remains O(1), giving an increasingly large
pressure difference across the blade and so greatly enhancing any lift or downforce produced. A
further feature of interest in the numerical results is the flat shape of the lower displacement function
δ−(x) in the wakes. This can also be explained here, as in the wakes p−

−1 = 0 implies v−
0 = 0 with

no fluid being entrained to leading order. The wake boundary condition after (5.5b) then implies
s(x) = δ−(x) + D, where D is a constant of integration, and so the graphs showing s(x) − δ−(x)

would indeed be expected to be flat to leading order.

6. The many-blade limit

The central problem in the many-blade limit is periodic, that of a single blade with leading edge
at x = 0, trailing edge at x = t and the next leading edge at x = L , all at a distance h from
horizontal ground. It is assumed that the flow has already come over a large number of identical
L -periods upstream of the blade–wake pair of interest and likewise may have a large number still
to pass subsequently.

The present results for increasingly many blades, along with the analysis in Smith and Timoshin
(1, 2), suggest a two-tiered structure to the flow in the viscous layers. In Figs 10a,b we present the
u velocity profiles mid-blade and mid-wake in each relevant period for a representative ten-blade
case, obtained as in sections 3, 4. The seemingly periodic nature of the inner tier can be seen in
the relatively constant flow for small Y after about three or four blades in each figure but with a
changing profile through the period. There is also a slowly growing outer viscous tier, with little
change from one blade into the following wake but gradual growth as many blades are passed. These
results suggest a two-tiered structure in Y in the viscous layers. In Fig. 10c we compare successive
wake centre-line shapes, which again suggest convergence to a periodic state.

After passing over a large number of blades, n say, there are two streamwise length scales of
significance: one a longer, slowly varying scale over all the blades passed so far with x = nx�, and
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the other having a fast-varying dependence on the local shifted x of O(1) near the current blade. So
we express the x dependence as x = xs + nx�. At a streamwise distance of order n downstream

the normal viscous scale is of order n
1
2 as expected. The normal scaling of the inner tier is implied

by the viscous–inviscid balance in the governing equations between u∂/∂x ∼ ∂2/∂Y 2 along with

the known scalings xs ∼ O(1) and u ∼ O(Y n− 1
2 ). These imply Y n− 1

2 ∼ Y −2 and so give the
normal scaling as Y ∼ n

1
6 in the inner tier. Details are discussed in Purvis (24), from which we

bring out in brief the following points. The bulk of the original viscous layer has primarily mean
Blasius flow but sheltered from all the leading and trailing edges by the inner viscous sublayer, and
it also serves to communicate displacement effects from the latter through to the outer potential flow
region. The sublayer is still governed in essence by (2.1a to c) but now with

∂ ū/∂Y → ±λ as Y → ±∞, (6.1a)

L − periodicity in xs . (6.1b)

Here the shear-flow requirement (6.1a) is to match with the bulk motion, where λ [= 0·4696x
− 1

2
L ]

is the scaled Blasius wall shear value, and (6.1b) is the short scale periodicity requirement. The
solution determines the sublayer displacement effects b±(x) = |Y |∓ ū/λ at large |Y |, which in turn
drive the outer inviscid motion and couple with rearrangements due to periodicity applying there.

The viscous problem is thus similar to that in sections 2 to 4 apart from the shear and periodicity
requirements (6.1). The solution technique adopted is also much as previously, with the same
discretization, changing the |Ỹ | → ∞ condition to satisfy (6.1a) and meeting the periodicity
condition by iterating over the L-period until the successive velocity profiles at x = L are identical,
to within a reasonable accuracy, to their values on the previous sweep. The problems involved in
evaluating the integrals in the inviscid region are largely as before. Overall, given a starting profile,
we sweep the viscous-layer solution over the blade and wake period to x = L; we then apply the
necessary Y -shift calculated from inviscid properties; and this then yields the starting profile for the
next sweep if convergence has not been attained. Once converged, the necessary displacements b±
can be determined.

We present in Figs 11a,b two comparisons between the periodic solution thus obtained and that of
sections 3, 4. The figures show the wake shapes for h = 0·25 and h = 0·0625, calculated both by the
periodic approach and shown with the fourth wake shape from the five-blade calculations presented
in section 4, with L = 2 and t = 1 in this case. The comparisons add weight to the proposed
structure as there is good agreement in both cases, particularly for the smaller-h case where the
solution appears to settle into a periodic state far quicker than at large h. Better agreement could
probably be achieved by including the next-order displacement effects, but these results appear
encouraging with regard to the validity of the three-region structure and the periodicity assumption.
In Figs 11c,d we also present comparisons between the pressures beneath the blades at the same
heights, comparing this periodic case with the pressure found under blade 4 of the five-blade
calculations presented earlier.

7. Final comments

This article has examined the steady planar flow past a number (n) of blades positioned in sequence
at an O(1) distance h from the ground. Here h is measured relative to a typical blade chord. Various
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Fig. 11 Comparison between the wake shapes s(x) for the periodic method of section 6 and blade 4 of the
five-blade case from section 4, for (a) h = 0·25, (b) h = 0·0625. The shape from section 6 is the lower of the

two

configurations have been examined, as were two important limits, that of extreme relative ground
clearances h (large or small) and the many-blade limit. It is interesting to note that there is almost
no change from the large-h case until h is reduced to below about 1

2 ; see Figs 3 and 4. As h is
reduced further the flow gradually approaches the small-h form which essentially describes the flow
for h < 1

16 in practice. Likewise, for flat blades at a height h > 1
2 , the induced pressure jump

is negligibly small and effectively no lift is produced, while for small h the pressure jump, and
hence the lift, behave as h−1. It is also worth noting the usefulness of the many-blade limit and
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Fig. 11 cont. (c) Comparison between the underneath pressures p− for the periodic method (lower curves)
and for blade 4 of the five-blade case, for h = 0·0625. (d) As (c) but h = 0·25

its periodic form. Examining the results suggests that the periodic form is reached after only three
or four blades in practice (see Fig. 10 for example). After this the many-blade analysis is found to
produce good agreement with further blade features, especially if the next-order displacement terms
are included in the calculation. In fact that many-blade work then continues to describe the flow for

all subsequent blades until n is very large, of O(Re
3
5 ), after which a new interaction appears with the

outer induced pressure becoming comparable in size with the viscous-induced pressure, giving rise
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to interactive pressure-displacement problems as in Bowles and Smith (5, 6). This is assuming that
the thickness of the viscous layers on the blades and in their wakes, and especially the trailing-edge
effect, is insufficiently large to interact directly with the ground. See the interactions in Jones (4)
and Purvis (24).

There are many other aspects which present themselves as follow-up questions to this study. The
working is limited so far to blades and gaps of unit length. Investigations into varying the ratio of
blade to gap may be of interest, particularly for the case of short blades which physically is closer
to a typical rotor-blade setup. Also an investigation into the flow if the blades are not all identical,
having varying shapes and/or angles of attack for example, would be of merit, particularly on how
the periodic structure develops. Another configuration which warrants attention is that of blades at
large angles of attack, when the characteristic wake may no longer encounter the following leading
edge. Further enquiry into sheltering effects may also prove fruitful, examining lift, drag and the
benefits of slipstreaming.

Of perhaps most importance in technological as well as theoretical terms is the extension to three-
dimensional flow, either for a genuine rotating system (see Smith and Timoshin (1)) or for three-
dimensional blades in a uniform stream similar to the model discussed here. The main difficulty in
three dimensions is in solving the outer inviscid problem to feed back into the viscous-layer solution
by way of scaled normal shifts, analogous with those in the present study. Non-zero global angles
of attack or non-slipstreamed blades also raise difficult issues both with and without ground effect
present.
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