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Abstract

Let G be a unitary, symplectic or orthogonal group over a non-archimedean local field of residual
characteristic different from 2, considered as the fixed point subgroup in a general linear group
G̃ of an involution. Following [7] and [13], we generalize the notion of a semisimple character for
G̃ and for G. In particular, following the formalism of [4], we show that these semisimple char-
acters have certain functorial properties. Finally, we show that any positive level supercuspidal
representation of G contains a semisimple character.

Introduction

Let F be a non-archimedean local field and let G̃ = GL(N,F ). One of the main ingredients in the
description of the admissible dual of G̃ by Bushnell and Kutzko ([6], [7]) is the notion of simple
characters: these are arithmetically defined characters of certain compact open subgroups of G̃.
To obtain all the irreducible supercuspidal representations of G̃ in [6], there are three main steps:
first, to show that these simple characters have some rather remarkable properties of functoriality
(and it turns out that they even have such properties when the dimension N is allowed to vary
(see [6], [10]) and similarly for the base field F (see [4], [5] and sequels); second, to show that any
irreducible supercuspidal representation of G̃ contains a simple character θ of a group denoted H1;
and finally, to find the representations of the normalizer in G̃ of θ which contain θ.
The purpose of this paper is to prove results analogous to the first two steps for unitary, symplectic
and orthogonal groups G, in the case where the residual characteristic of F is not 2. To do this,
we must first generalize the notion of simple characters to what we call semisimple characters
of G̃ and G. (There is a definition of semisimple characters in [13] but, as is remarked there,
it is not sufficiently general.) We calculate the intertwining of these characters and demonstrate
some functorial properties. Finally, we show that any irreducible supercuspidal representation of
G contains a semisimple character of a group denoted H1

−.

Now we give a more detailed description of the results obtained. As above, let F be a non-
archimedean local field of residual characteristic different from 2, equipped with a galois involution
with fixed field F0 (where we allow the possibility F0 = F ). Let V be an N -dimensional F -vector
space, G̃ = AutF (V ) ' GL(N,F ) and let G be the group of fixed points in G̃ of an involution σ
defined by a nondegenerate hermitian or skew-hermitian form on V ; so G is a unitary, symplectic
or orthogonal group defined over F0. We also set A− = LieG ⊂ A = EndF (V ) ' M(N,F ).
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Mathematics Subject Classification (2000): 22E50

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/2767029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The simple characters for G̃ are parametrized by triples (β,Λ,m) consisting of: an element β ∈ A
which generates a field extension E over F , with the technical condition kF (β) < 0; an oE-lattice
sequence Λ of period e(Λ) in V , where oE is the ring of integers of E; and an integer m with
0 ≤ m < kF (β)e(Λ). (See §1.2 and §2.1 for some explanations of the terms here.) To such a
triple is associated a compact open subgroup Hm+1 = Hm+1(β,Λ) of G̃ and a finite set C(Λ,m, β)
of simple characters. If (β,Λ′,m′) is another such triple with b m

e(Λ)c = b m′

e(Λ′)c, the functoriality
properties mentioned above give a canonical bijection between the sets C(Λ,m, β) and C(Λ′,m′, β).
(Here, bqc denotes the greatest integer less than or equal to q.)

If we have a self-dual triple, that is β ∈ A− and Λ is a self-dual lattice sequence, then the group
Hm+1 and the set of simple characters are fixed by the involution σ and we can define the set
C−(Λ,m, β) of simple characters for G to be obtained by restricting to Hm+1

− := Hm+1 ∩ G the
simple characters in C(Λ,m, β). Equivalently, and often more usefully, they are the transfers of
those simple characters fixed by σ under the Glauberman correspondence (note that Hm+1 is
a pro-p group, with p 6= 2). The intertwining of simple characters for G can be calculated by
intersection, from the intertwining in G̃ (cf. [13], [12]). Moreover, if (β,Λ′,m′) is another such
triple with b m

e(Λ)c = b m′

e(Λ′)c, the canonical bijection above commutes with action of σ (Proposition
2.12) and so induces a bijection between C−(Λ,m, β) and C−(Λ′,m′, β).

In [13], the notion of simple character is generalized to that of semisimple character, and in §3 we
generalize it further (cf. [13] §5 Remark 2). We take now a triple (β,Λ,m) where β generates a
sum of fields E = ⊕iEi; this gives us decompositions β =

∑
i βi (with Ei = F [βi]) and V = ⊕iV

i,
with each V i an Ei = F [βi]-vector space, and we also require that Λ decompose as a direct sum
⊕iΛi, with each Λi an oEi-lattice chain. (Again, there is a technical condition which can be written
k0(β,Λ) < 0.)
For each i, the triple (βi,Λi,m) determines a compact open subgroup Hm+1(βi,Λi) and a set of
simple characters as above. Analogously to the definitions in the simple case, we can then define
a compact open subgroup Hm+1(β,Λ), whose restriction to the Levi subgroup M of G̃ determined
by the decomposition V = ⊕iV

i is the product of the groups Hm+1(βi,Λi). The set of semisimple
characters C(Λ,m, β) for G̃ then consists of characters of Hm+1(β,Λ) which restrict to simple
characters on each Hm+1(βi,Λi) and are trivial elsewhere (there must also be some compatibility
conditions between these simple characters).
In §3.3 we calculate the intertwining of such a semisimple character and in §3.5 we show that
semisimple characters possess the same transfer properties as simple characters. Finally, in §3.6,
we consider the situation when, for each i, the triple (βi,Λi,m) is self-dual (note that, in this
situation, M ∩G is not a Levi subgroup of G); using Glauberman’s correspondence again, all the
results pass over to G, as in the simple case, and we get a set C−(Λ,m, β) of semisimple characters
for G.

Our main result is Theorem 5.1:

Any positive-level irreducible supercuspidal representation of G contains a semisimple char-
acter θ ∈ C−(Λ, 0, β), for some self-dual semisimple triple (β,Λ, 0).

The proof is very much along the lines of [6] (8.1.5), though the geometry causes some extra
complications. We know already, from [14] §1.3, that such a representation π contains a semisimple
stratum, that is, a semisimple character in some C−(Λ, n− 1, β), where n = −νΛ(β). The idea is to
“refine” this character, that is, to find a related semisimple character of lower level which is also
contained in π. We illustrate the first step of the process here.
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The representation π must contain a character of the group Hn−1
− (β,Λ); comparing this to the

semisimple characters of Hn−1
− (β,Λ) gives rise to a derived stratum in the centralizer of β. There

are three possibilities now: if the stratum is non-fundamental (see Definition 1.2), by changing Λ,
we can obtain a semisimple character of lower level; if the stratum is G-split (see Definition 1.3), we
show (Theorem 4.9) that π has a non-zero Jacquet module, which contradicts the supercuspidality
of π; otherwise, by replacing both β and Λ we obtain a semisimple character of lower level.

To prove the theorem, we iterate this, noting that we can bound the denominator of the level of
the semisimple characters we consider so the process will terminate.

1 Preliminaries

We refer the reader to [6], [7], [12], [13] for more details on the results recalled in this section.

1.1 Notations

Let F be a non-archimedean local field equipped with a galois involution with fixed field F0;
we allow the possibility F = F0. Let oF be the ring of integers of F , pF its maximal ideal and
kF = oF /pF the residue field; we assume throughout that the residual characteristic p := char kF

is not 2. We denote by o0, p0, k0 the same objects in F0, and will use similar notation for any non-
archimedean local field. We fix a uniformizer $F of F such that $F = −$F if F/F0 is ramified,
$F = $F otherwise. We put $0 = $2

F if F/F0 is ramified, $0 = $F otherwise; so $0 is a
uniformizer of F0.

Let V be an N -dimensional vector space over F , equipped with a nondegenerate ε-hermitian form,
with ε = ±1. We put A = EndFV and denote by the adjoint (anti-)involution on A induced by
h. Set also G̃ = AutFV and let σ be the involution given by g 7→ g−1, for g ∈ G̃. We also have an
action of σ on the Lie algebra A given by a 7→ −a, for a ∈ A (this is the differential of the action
on G̃). We put Σ = {1, σ}, where 1 acts as the identity on both G̃ and A.

We put G = G̃Σ = {g ∈ G̃ : h(gv, gw) = h(v, w) for all v, w ∈ V }, a unitary, symplectic or
orthogonal group over F0, and A− = AΣ ' LieG. In general, for S a subset of A, we will write S−
or S− for S ∩A−, and, for H a subgroup of G̃, we will write H− or H− for H ∩G.

Let ψ0 be a character of the additive group of F0, with conductor p0. Then we put ψF = ψ0◦trF/F0
;

since p 6= 2, F/F0 is at worst tamely ramified so ψF is a character of the additive group of F with
conductor pF . For S an oF -lattice in A, we put S∗ = {x ∈ A : ψA(xS) = 1}. If S is fixed by σ,
then we have S∗ ∩A− = {x ∈ A− : ψA(xS−) = 1}.
We will also frequently have a decomposition V =

⊕l
i=1 V

i. Then, for 1 ≤ i ≤ l, we denote by 1i

the projection V → V i with kernel
⊕

j 6=i V
j and put Aij = 1iA1j = Hom F (V j , V i). Then we will

use the block decomposition

A =

A
11 · · · A1l

...
. . .

...
Al1 · · · All

 .

We also put Au =
⊕

1≤i<j≤lA
ij , Al =

⊕
1≤j<i≤lA

ij and M =
⊕l

i=1A
ii; and Nu = 1 + Au,

Nl = 1 +Al, M = M×, Pu = MNu, Pl = MNl.
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Finally, for r ∈ R, we denote: by dre the smallest integer greater than or equal to r; by r+ the
smallest integer strictly greater than r; by brc the greatest integer less than or equal to r; and by
r− the greatest integer strictly less than r.

1.2 Strata

Recall, from [7] §2, that an oF -lattice sequence in V is a function Λ from Z to the set of oF -lattices
in V such that

(i) Λ(k) ⊂ Λ(j), for k ≥ j;

(ii) there exists a positive integer e = e(Λ|oF ), called the oF -period of Λ, such that $F Λ(k) =
Λ(k + e), for all k ∈ Z.

A lattice sequence is called strict if Λ(k) 6= Λ(j), for k 6= j (so Λ is really just an oF -lattice chain
– see e.g. [6] (1.1.1)).

For L an oF -lattice in V , we put L# = {v ∈ V : h(v, L) ⊂ pF }. Then we call an oF -lattice sequence
Λ self-dual if there exists d ∈ Z such that Λ(k)# = Λ(d− k), for all k ∈ Z. Without changing any
of the objects associated to a self-dual oF -lattice sequence Λ (except for a scale of the indices), we
may (and do) normalize all self-dual lattice sequences Λ so that d = 1 (see [14] §2).

There is also a well-defined notion of the direct sum of lattice sequences (see [7] §2 for the defini-
tion and some properties). The direct sum of self-dual lattice sequences is itself self-dual, by the
assumption d = 1.

Associated to an oF -lattice sequence Λ in V , we have a decreasing filtration {an(Λ) : n ∈ Z} of A
by oF -lattices; a0 is a hereditary oF -order in A and a1 is its Jacobson radical. As in [7], we will
allow the indices in the filtration to be real numbers, by putting an = adne, for n ∈ R. Note also
that, for n ∈ Z, the integers bn

2 c + 1 and bn+1
2 c often appear in [6], [7] etc.; with the notation as

here, we have
abn

2
c+1 = an

2
+, and abn+1

2
c = an

2
.

The filtration on A also gives rise to a valuation νΛ on A, with νΛ(0) = +∞.

If Λ is self-dual, then each an(Λ) is fixed by σ and a−n = a−n (Λ) = an(Λ) ∩ A− gives a filtration of
A− by oF -lattices. Moreover, νΛ is fixed by σ.

Given an oF -lattice sequence Λ, we also put U = U(Λ) = a0(Λ)×, a compact open subgroup of G̃,
and Un = Un(Λ) = 1 + an(Λ), for n > 0, a filtration of U(Λ) by normal subgroups. For n > 0, we
have a group isomorphism an/an+

∼→ Un/Un+ induced by x 7→ 1 + x.

If Λ is self-dual, then U , Un are fixed by σ and we put P = P (Λ) = U(Λ)Σ = U(Λ)∩G, a compact
open subgroup of G, with a filtration of P (Λ) by normal subgroups Pn = Pn(Λ) = Un(Λ)Σ =
Un(Λ) ∩G, for n ≥ 1. As before, for n ≥ 1 we have a group isomorphism a−n /a

−
n+

∼→ Pn/Pn+. We
also have, for n > 0, a bijection a−n → Pn given by the Cayley map x 7→ C(x) = (1 + x

2 )(1− x
2 )−1,

which is equivariant under conjugation by P .

We define the normalizer K(Λ) to be K(Λ) =
⋂

n≥0N eG(Un(Λ)), where N eG denotes the normalizer
in G̃. Note that, if x ∈ K(Λ), then νΛ(x) = −νΛ(x−1) (see [7] (3.4)). On the other hand, if x ∈ G
and Λ is self-dual then νΛ(x) = νΛ(x−1) = νΛ(x−1), since νΛ is fixed by σ (acting on A). Thus, if
x ∈ K(Λ) ∩G, we have νΛ(x) = 0, whence K(Λ) ∩G = P (Λ).
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Definition 1.1 ([6] (1.5), [7] (3.1)). (i) A stratum in A is a 4-tuple [Λ, n, r, b], where Λ is an
oF -lattice sequence, n ∈ Z and r ∈ R with n ≥ r ≥ 0 and b ∈ a−n(Λ).

(ii) Two strata [Λ, n, r, bi], i = 1, 2, are called equivalent if b1 − b2 ∈ a−r(Λ).

(iii) A stratum [Λ, n, r, b] is called skew if Λ is self-dual and b ∈ A−.

(iv) A stratum [Λ, n, r, b] is called null if n = r and b = 0.

Then, for n ≥ r ≥ n
2 > 0, an equivalence class of strata corresponds to a character of Ur+(Λ), by

[Λ, n, r, b] 7→ (ψb : x 7→ ψA(b(x− 1)), for x ∈ Ur+),

and an equivalence class of skew strata corresponds to a character of Pr+(Λ), by

[Λ, n, r, b] 7→ ψ−b := ψb|Pr+ .

Let [Λ, n, r, b] be a stratum in A. Put yb = $
n/g
F be/g ∈ a0(Λ), where e = e(Λ) and g = (n, e). Let

Φ(X) ∈ oF (X) be the characteristic polynomial of yb. Then we define the characteristic polynomial
ϕb(X) ∈ kF [X] of the stratum to be the reduction modulo pF of Φ(X). Note that this depends
only on the equivalence class of the stratum [Λ, n, n− 1, b].

Definition 1.2. We say that the stratum [Λ, n, n− 1, b] is fundamental if ϕb(X) 6= XN .

Now suppose that [Λ, n, r, b] is a skew stratum in A. Then we have yb = ηyb, for η = ± a sign
(precisely, η = (−)e/g if F/F0 is unramified, η = (−)n/g(−)e/g otherwise), and thus Φ(X) = Φ(ηX)
and ϕb(X) = ϕb(ηX).

Definition 1.3. We say that the skew stratum [Λ, n, n− 1, b] is G-split if ϕb(X) has an irreducible
factor ψ(X) such that (ψ(X), ψ(ηX)) = 1.

Definition 1.4 ([6] (1.5.5). [7] (5.1)). A stratum [Λ, n, r, β] in A is called pure if

(i) the algebra E = F [β] is a field;

(ii) Λ is an oE-lattice chain (we usually write ΛoE when we are thinking of it as such);

(iii) νΛ(β) = −n;

Let [Λ, n, r, β] be a pure stratum and E = F [β]. We put B = Bβ = CA(E), the A-centralizer of E,
and bk = ak ∩B, for k ∈ R. We also let aβ denote the adjoint map (with kernel B) x 7→ βx− xβ,
x ∈ A. For k ∈ R, we put nk = nk(β,Λ) = {x ∈ a0 : aβ(x) ∈ ak}. Then we define

k0(β,Λ) = max {−n,max {k ∈ R : nk 6⊂ b0 + a1}} .

Note that, in the case E = F , this is not the same definition as in [6] (1.4.5) (k0(β,Λ) = −∞
there). If e(Λ|oE) denotes the oE-period of Λ, then k0(β,Λ)/e(Λ|oE) is an integer independent of
the choice of Λ; we denote it kF (β). (See [7] and [12] for more details.)

Definition 1.5 ([6] (1.5.5), [7] (5.1)). A stratum [Λ, n, r, β] in A is called simple if, either it is
null, or it is pure and k0(β,Λ) < −r.
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We remark that this is not quite the usual definition of simple strata since we call a null stratum
simple (but see the remarks following [6] (5.5.10)). In particular, any stratum [Λ, n, n, β] is equiv-
alent to the null stratum [Λ, n, n, 0] so we may use the null stratum as the initial step in inductive
proofs “along k0(β,Λ)”.

Finally, for β ∈ A such that E = F [β] is a field, we put B = CA(E) and recall the notion of a
tame corestriction s = sβ on A relative to E/F ([6] (1.3.3)): it is a (B,B)-bimodule homomorphism
s : A→ B such that s(a0(Λ)) = b0(Λ) for all oE-lattice sequences Λ. It is unique upto multiplication
by a unit u ∈ o×E and we have s(an) = bn. If, moreover, β ∈ A−, then there exists a tame
corestriction s which commutes with the involution on A (see [11] (2.1.1)); it is unique upto
multiplication by a unit u ∈ o×E such that uu = 1. Then we have s(a−n ) = b−n .

2 Simple characters

In this section we recall some properties of simple characters for G̃ and G (see [6], [7], [13]). Many
of these are only available for strict lattice sequences and we will require them for general lattice
sequences, which is the main purpose of this section. We remark that, for G̃, these results (and
much more) have also been obtained by Secherre in [10].
We begin with a general intertwining lemma which will prove useful in extending results known
for strict lattice sequences to the general case. Let M be a Levi subgroup of G̃ and Pu a parabolic
subgroup with Levi component M . Let Nu be the unipotent radical of Pu and let Nl be the
unipotent radical of the opposite parabolic Pl. Recall that a subgroup H of G̃ is said to have an
Iwahori decomposition with respect to (M,Pu) if

H = (H ∩Nl)(H ∩M)(H ∩Nu).

We also recall that, given subgroups H1,H2 of G̃ and representations ρ1, ρ2 of H1,H2 respectively,
the intertwining in G̃ of ρ1 with ρ2 is

I eG(ρ1|H1 , ρ2|H2) = {g ∈ G̃ : Hom gH1∩H2(
gρ1, ρ2) 6= 0},

where gρ1 is the representation of gH1 = gH1g
−1 given by gρ1(x) = ρ1(g−1xg), for x ∈ gH1. Notice

that, if ρ1, ρ2 are characters, then g intertwines ρ1 with ρ2 if and only if

ρ1(g−1xg) = ρ2(x), for all x ∈ gH1g
−1 ∩H2.

We use analogous notation for the intertwining of representations of subgroups of G, M etc.

Lemma 2.1. For i = 1, 2, let Hi be a subgroup of G̃ with an Iwahori decomposition with respect
to (M,Pu) and let ξi be a character of Hi which is trivial on Nl and Nu. Then

I eG(ξ1|H1 , ξ2|H2) ∩M = IM (ξ1|H1∩M , ξ2|H2∩M ).

Proof We certainly have the containment⊂. For the converse, we takem ∈ IM (ξ1|H1∩M , ξ2|H2∩M )
and h1 = mh2m

−1 ∈ H1 ∩mH2m
−1; by the Iwahori decomposition, we have

h1,lh1,Mh1,u = h1 = mh2m
−1 = (mh2,lm

−1)(mh2,Mm
−1)(mh2,um

−1),

where hi,l ∈ Hi ∩Nl, hi,M ∈ Hi ∩M , hi,u ∈ Hi ∩Nu. But, by uniqueness of Iwahori decomposition,
we have h1,l = mh2,lm

−1, etc.. In particular, H1 ∩mH2m
−1 has an Iwahori decomposition. The

assertion of the lemma is now trivial. �
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Corollary 2.2. Let H be a subgroup of G̃ with an Iwahori decomposition with respect to (M,Pu)
and let ξ be a character of H which is trivial on Nl and Nu. Let m ∈M be such that m normalizes
H. Then m normalizes ξ if and only if it normalizes ξ|H∩M .

2.1 Lattice sequences

Let [Λ, n,m, β] be a simple stratum in A. When Λ is strict, the set of simple characters C(Λ,m, β)
is defined in [6] (3.2) – the elements are certain arithmetically defined characters of the group
Hm+(β,Λ). (This group is defined in [6] (3.1) and denoted Hm+1(β,Λ) there – note that, for m
real, we have C(Λ,m, β) = C(Λ, bmc, β).) Moreover, a large number of properties of these characters
are described in [6] §3. The definitions are extended to the case when Λ is not strict in [7] §5 and
certain of the properties are established (see also [10]). However, for our purposes, we require more
of these; in particular, we calculate the intertwining.

It is convenient here to express our results in terms of ps-characters, whose definition we recall
([4] §8). First, a simple pair is a pair (k, β) consisting of a nonzero element β generating a field
extension E of F and a positive integer k < kF (β). Then, if we are given

(i) V ′ a finite dimensional E-vector space,
(ii) B′ a hereditary oE-order in EndEV

′,

(iii) m′ a real number such that bm′/e(B′|oE)c = k,

(2.3)

we obtain a stratum [A′, n′,m′, β] in A′ = EndFV
′ as follows: A′ is the hereditary oF -order defined

by the same lattice chain as B′ and the integer n′ = −νE(β)e(B′|oE), where νE is the normalized
valuation on E. The condition on k means precisely that this stratum is simple, for any choice of
(V ′,B′,m′) as in (2.3). Moreover, given two triples (V ′

i ,B
′
i,m

′
i), i = 1, 2, as in (2.3), we have, by

[6] (3.6.14), a canonical bijection

τA′1,A′2,β : C(A′
1,m

′
1, β) ∼−→ C(A′

2,m
′
2, β). (2.4)

Recall ([6] (3.6.1)) that if V ′
1 = V ′

2 = V ′ and θ′1 ∈ C(A′
1,m

′
1, β) then τA′1,A′2,β(θ′1) is the unique simple

character θ′2 ∈ C(A′
2,m

′
2, β) such that 1 ∈ G̃′ intertwines θ′1 with θ′2, where G̃′ = AutFV

′.

A ps-character attached to a simple pair (k, β) is a simple-character-valued function Θ which
attaches to each triple (V ′,B′,m′) as in (2.3), a simple character Θ(A′) ∈ C(A′,m′, β) (called the
realization of Θ on A′ of level m) subject to the condition that, given two realizations Θ(A′

i),
i = 1, 2, we have Θ(A′

2) = τA′1,A′2,β(Θ(A′
1)). Thus a ps-character is completely determined by any

one of its realizations.

Now we put ourselves in the following situation (cf. [7] (5.2)): let [Λ, n,m, β] be a simple stratum
in A, with E = F [β] and e = e(Λ|oE). Let V0 be a finite dimensional E-vector space and let Λ0 be
a strict oE-lattice sequence in V0 of oE-period e. We put

V ′ = V ⊕ V0;
Λ′ = Λ⊕ Λ0.

We also put A′ = EndFV
′ and G̃′ = AutFV

′, G̃0 = AutFV0. Then M = G̃0× G̃ is a Levi subgroup
of G̃′ and we put Nl = 1 + Hom F (V, V0), Nu = 1 + Hom F (V0, V ). We also denote by 1V the
projection onto V with kernel V0.
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Now Λ′ is a strict oE-lattice chain in V of oE-period e and [Λ′, n,m, β] is a simple stratum
in A′. Hence we have the set of simple characters C(Λ′,m, β) of Hm+(β,Λ′). Then, by def-
inition, Hm+(β,Λ) = Hm+(β,Λ′) ∩ G̃ and C(Λ,m, β) is the set of restrictions θ′|Hm+(β,Λ), for
θ′ ∈ C(Λ′,m, β). We remark that, from [7] (5.5), this is independent of the choice of Λ0; indeed
it depends only on the ps-character determined by θ′, and may be thought of as the realization of
this ps-character on Λ.
Let r = −k0(β,Λ) = −k0(β,Λ′). We put

M′
m = Mm(β,Λ′) = ar−m(Λ′) ∩ n−m(β,Λ′) + J

r
2 (β,Λ′),

where J
r
2 (β,Λ′) = Jb

r+1
2
c(β,Λ′) is defined in [6] (3.1). Then, for θ′ ∈ C(Λ′,m, β), we have

I eG′(θ′|Hm+(β,Λ′)) = (1 + M′
m)B′×(1 + M′

m),

where B′ = EndEV
′, by [6] (3.3.2).

Proposition 2.5. Let θ ∈ C(Λ,m, β) so that θ = θ′|Hm+(β,Λ), for some θ′ ∈ C(Λ′,m, β). Then

I eG(θ|Hm+(β,Λ)) = (1 + Mm)B×(1 + Mm),

where Mm = Mm(β,Λ) = M′
m ∩A = 1V M′

m1V and B = EndEV .

Proof We remark first that, by [7] (5.6), Mm is independent of the choice of Λ0. We abbreviate
H ′ = Hm+(β,Λ′) and H = Hm+(β,Λ).
By Lemma 2.1, we have IM (θ′|H ′ ∩M) = IM (θ′|H ′) = (1 + M′

m)B′×(1 + M′
m) ∩M and this is

precisely (1 + M′
m) ∩M ·B′ ∩M · (1 + M′

m) ∩M by [12] (1.3) (cf. op. cit. (3.15)). But then

I eG(θ|H) = I eG(θ′|H ′ ∩M)

=
(
(1 + M′

m) ∩M ·B′ ∩M · (1 + M′
m) ∩M

)
∩ G̃

= (1 + Mm)B×(1 + Mm)

as required. �

Lemma 2.6. Let Θ be a ps-character attached to the simple pair (k, β). For i = 1, 2, let Λi be an
oE-lattice sequence of oE-period e in a finite dimensional E-vector space V and let mi ∈ R be such
that bmi/ec = k. Let θi = Θ(Λi) be the realization of Θ on Λi of level mi. Then we have

1 ∈ I eG(θ1, θ2).

Moreover, θ2 is the unique simple character in C(Λ2,m2, β) such that 1 ∈ I eG(θ1, θ2).

Proof As above, let V0 be a finite dimensional E-vector space and let Λ0 be a strict oE-lattice
sequence in V0 of oE-period e. We put V ′ = V ⊕ V0, Λ′

1 = Λ1 ⊕ Λ0, Λ′
2 = Λ2 ⊕ Λ0 and also

A′ = EndFV
′ and G̃′ = AutFV

′.
For i = 1, 2, let θ′i = Θ(Λ′

i) be the realization of Θ on the strict lattice sequence Λ′
i of level mi, so

we have Hmi+(β,Λ′
i) ∩ G̃ = Hmi+(β,Λi) and θ′i|Hmi+(β,Λi) = θi. Then the first assertion follows

immediately from Lemma 2.1.
For the final assertion, suppose θ′2 = Θ′(Λ2) and 1 ∈ I eG(θ1, θ′2). Consider V0 = V ⊕ · · · ⊕ V (e
times) and, for i = 1, 2, the strict lattice sequence Λi

0 given by

Λi
0(k) = Λi(k)⊕ Λi(k + 1)⊕ · · · ⊕ Λi(k + e− 1), for k ∈ Z.
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Put θ0 = Θ(Λ1
0) and θ′0 = Θ′(Λ2

0). Writing M = G̃ × · · · × G̃ ⊂ G̃0 = AutFV0, we have θ0|M =
θ1⊗· · ·⊗θ1 and θ′0|M = θ′2⊗· · ·⊗θ′2; in particular, 1 ∈ IM (θ0|M , θ′0|M ). But, by [7] (5.2) Proposition,
θ0, θ′0 restrict trivially to the unipotent radical of any parabolic subgroup with Levi factor M so,
by Lemma 2.1, we have 1 ∈ I eG0

(θ0, θ′0). But each Λi
0 is strict so, by [6] (3.6.1), the characters θ0,

θ′0 correspond under the canonical bijection τΛ1
0,Λ2

0,β in (2.4). Hence θ′0 = Θ(Λ2
0) also and, since a

ps-character is determined by one of its realizations, we have Θ = Θ′, as required. �

We will sometimes use τΛ1,Λ2,β to denote the correspondence C(Λ1,m1, β) ∼−→ C(Λ2,m2, β) given
by the ps-characters.

Recall that, if we have [Λ, n, r, β] pure, with Λ strict and r = −k0(β,Λ), and [Λ, n, r, γ] is simple
and equivalent to [Λ, n, r, β], then the map

C(Λ,m, β) → C(Λ,m, γ)
θ 7→ θψγ−β

is bijective for r
2 ≤ m < r, by [6] (3.3.18). Note that this then clearly holds also when Λ is not

necessarily strict.
In fact, there will be several occasions when we will need to be careful in the way we choose a γ as
above. To describe this, we recall the notion of a “generalized (W,E)-decomposition” from [7] §5.3
(see also [6] §1.2).
Let E/F be a field extension in A and put B = EndEV . We write A(E) = EndFE and A(E) for
the unique hereditary order in A(E) normalized by E×. Let W be the F -span of an E-basis of V .
Then the isomorphism E ⊗F W → V induces an isomorphism of (A(E), B)-bimodules.

A(E)⊗E B ' A.

In particular, the choice of W also induces an embedding of algebras ιW : A(E) ↪→ A extending
the embedding of E in A.
Now let Λ be an oE-lattice sequence in V , which we may also view as an oF -lattice sequence. We
put bn(Λ) = an(Λ) ∩B, for n ∈ R. We say that W is in general position relative to Λ over E if W
has an F basis w1, ..., wm such that, for each k ∈ Z, there are integers k(i), 1 ≤ i ≤ m, such that

Λ(k) = p
k(1)
E w1 ⊕ · · · ⊕ p

k(m)
E wm.

(That is, W is the F -span of an E-basis of V which is a splitting of Λ – see §3.1.) Then [7] 5.3
Lemma says that, for such W , we have isomorphisms

A(E)⊗oE bn(Λ) ' an(Λ), n ∈ R,

of (A(E), b0(Λ))-bimodules.
Now suppose [Λ, n, r, β] is a pure stratum with r = −k0(β,Λ) and E = F [β]. Then [7] 5.3 Corollary
states that, for W in general position relative to Λ over Eβ , [Λ, n, r, β] is equivalent to a simple
stratum [Λ, n, r, γ] with γ ∈ ιW (K(A(E))).

Now, for i = 1, 2, let [Λi, n, r, β] be a pure stratum in Ai = EndFVi, with e = e(Λi|oEβ
) and

r = −k0(β,Λi). Put V = V1 ⊕ V2, A = EndFV and Λ = Λ1 ⊕Λ2; then [Λ, n, r, β] is a pure stratum
in A. For i = 1, 2, let Wi be in general position relative to Λi over Eβ and put W = W1 ⊕W2,
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which is in general position relative to Λ over Eβ. Then there exists γ ∈ ιW (K(A(E))) ⊂ A1 ⊕ A2

such that [Λ, n, r, γ] is simple and equivalent to [Λ, n, r, β]. In particular, we can regard γ as an
element of A, A1 or A2 and, for i = 1, 2, [Λi, n, r, γ] is a simple stratum equivalent to [Λi, n, r, β].
Then, for θ ∈ C(Λ,m, β) with r

2 ≤ m < r and i = 1, 2, we have

τΛ,Λi,β(θ)ψγ−β = τΛ,Λi,γ(θψγ−β), (2.7)

since the transfer maps are simply restriction. In particular, we obtain that, for θ ∈ C(Λ1,m, β),
we have τΛ1,Λ2,β(θ)ψγ−β = τΛ1,Λ2,γ(θψγ−β).

2.2 The orders H and J

Let [Λ, n, 0, β] be a simple stratum in A. If Λ is strict then the orders H(β,Λ) and J(β,Λ) are
defined in [6] (3.1); if Λ is not strict, they are defined in [7] by restriction from a larger space, as
in the previous section. However, it would be possible to make the definitions directly as in [6]
(3.1). In this section we show that these two definitions coincide. In fact, this will follow almost
immediately from the following two lemmas. We suppose V = V1 ⊕ V2 and use our standard block
notation.

Lemma 2.8. Let X, Y be oF -lattices in A such that 1iX1j ⊂ X and 1iY 1j ⊂ Y , for i, j = 1, 2.
Then, for i, j = 1, 2,

(i) 1i(X + Y )1j = 1iX1j + 1iY 1j;

(ii) 1i(X ∩ Y )1j = 1iX1j ∩ 1iY 1j.

Proof (i) is clear while for (ii) we have 1i(X ∩ Y )1j ⊂ 1iX1j ∩ 1iY 1j ⊂ X ∩ Y ; then, applying
1i on the left and 1j on the right, we have the required equality. �

Lemma 2.9. Let X be as in the previous lemma. Define (1iX1i)∗ = {a ∈ Ai : trAi/F (a1iX1i) ⊂
pF }. Then

(1iX1i)∗ = 1iX∗1i.

Proof Straightforward properties of trace. �

Let now [Λ, n, 0, β] be a simple stratum in A with r = −k0(β,Λ) and e = e(Λ|oE), where E = F [β].
Let V0 be a finite dimensional E-vector space and let Λ0 be a strict regular oE-lattice sequence in
V0 of oE-period e, where regular means that dim kE

Λ0(i)/Λ0(i+ 1) is independent of i (so that the
associated hereditary order bβ,0 = a0∩Bβ is principal, where Bβ is the centralizer of β). Note that,
since Λ0 is regular, the valuation map νΛ0 : K(Λ0

oE
) → Z is surjective.

We put V ′ = V ⊕ V0, Λ′ = Λ⊕ Λ0. Using a generalized (W,E)-decomposition as above, we choose
γ such that [Λ, n, r, γ] is a simple stratum equivalent to [Λ, n, r, β] and [Λ′, n, r, γ] is simple and
equivalent to [Λ′, n, r, β]. Now Lemma 2.8 implies immediately that we have H(β,Λ) = bβ,0 +
H

r
2
+(γ,Λ) and J(β,Λ) = bβ,0 + J

r
2 (γ,Λ).
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We also observe that, since Λ0 is regular, we have K(ΛoE ) = 1V K(Λ′
oE

)1V : the containment ⊃ is
clear; conversely, for x ∈ K(ΛoE ), there exists x0 ∈ K(Λ0

oE
) such that νΛ(x) = νΛ0(x0) and then

x = 1V

(
x 0
0 x0

)
1V ∈ 1V K(Λ′

oE
)1V .

Now the main results of [6] (3.1) follow easily for an arbitrary lattice sequence. In particular we
have

Lemma 2.10 (cf. [6] (3.1.9–13)). (i) For 0 ≤ t ≤ r, H
t
2
+(β,Λ) is a bimodule over the ring

n−t(β,Λ), as is J
t
2 (β,Λ).

(ii) For k ∈ R, Hk(β,Λ) ⊂ Jk(β,Λ) are invariant under conjugation by K(ΛoE ).

(iii) For k, l > 0, Jk(β,Λ)Jl(β,Λ) ⊂ Hk+l(β,Λ).

(iv) For k > 0, Hk(β,Λ) is a two-sided ideal of J(β,Λ).

2.3 Simple characters for G

We say that a simple pair (k, β) is skew if the galois involution can be extended to E = F [β] in
such a way that β = −β. Then, if we are given

(i) V ′ a finite dimensional E-vector space equipped with an ε-hermitian
form f ′ : V ′ × V ′ → E,

(ii) B′ a hereditary oE-order in EndEV
′ fixed by the involution

induced by f ′,
(iii) m′ a real number such that bm′/e(B′|oE)c = k,

(2.11)

we obtain a skew stratum [A′, n′,m′, β] in A′ = EndFV
′ as follows: we choose an F0-linear form λ0

on E0 such that
{e ∈ E0 ; λ0(eoE0) ⊂ pF0} = pE0

(as in [3] §5), and let λ be the F -linear form on E given either by extending linearly (if F 6= F0)
or by composing with trE/E0

(if F = F0); then V ′, as an F -vector space, is equipped with the
ε-hermitian form h′ = λ ◦ f ′. Note that the duality induced by h′ is independent of the choice of
λ0.
We say that a ps-character Θ attached to a skew simple pair (k, β) is self-dual if there exists a
triple as in (2.11) such that the realization Θ(A′) ∈ C(A′,m′, β) is fixed by σ : x 7→ x−1, x ∈ G̃′,
where G̃′ = AutFV

′.

Proposition 2.12. Let (k, β) be a skew simple pair and, for i = 1, 2, let V ′
i be an E-vector space

as in (2.11)(i), Λ′
i be a self-dual oE-lattice sequence of oE-period e′i in V ′

i and m′
i ∈ R be such that

bm′
i/e

′
ic = k. Then the canonical bijection τΛ′1,Λ′2,β commutes with σ.

Proof Let Λ′
0 be a strict self-dual oE-lattice sequence of oE-period e′0 = lcm(e′1, e

′
2) in an E-vector

space V ′
0 as in (2.11)(i) and let m′

0 = ke′0. We consider the E-vector space V ′ = V ′
0 ⊥ V ′

1 ⊥ V ′
2

equipped with the form f ′ = f ′0 ⊥ f ′1 ⊥ f ′2, that is

f ′(v0 + v1 + v2, w0 + w1 + w2) = f ′0(v0, w0) + f ′1(v1, w1) + f ′2(v2, w2), for vi, wi ∈ V ′
i .
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Set Λ = Λ′
0 ⊥ Λ′

1 ⊥ Λ′
2, a strict self-dual oE-lattice sequence of oE-period e′ = e′0 in V ′, and

m′ = m′
0. Then we have τΛ′1,Λ′2,β = τΛ′,Λ′2,β ◦ τ−1

Λ′,Λ′1,β
so we need only check that τΛ′,Λ′1,β commutes

with σ, by symmetry.

Let θ ∈ C(Λ′,m′, β), θ1 ∈ C(Λ′
1,m

′
1, β) be such that θ1 = τΛ′,Λ′1,β(θ). Then, by the definition of

C(Λ′
1,m

′
1, β) (cf. [7] (5.5)), we have θ1 = θ| eG1

, where G̃1 = AutFV
′
1 . But then θσ

1 = θσ| eG1
so, again

by definition, θσ
1 = τΛ′,Λ′1,β(θσ) as required. �

Corollary 2.13. Let Θ be a self-dual ps-character attached to the skew simple pair (k, β). Let V
be an E-vector space as in (2.11)(i), Λ be a self-dual oE-lattice sequence of oE-period e in V and
m ∈ R be such that bm/ec = k. Then the realization θ = Θ(Λ) on Λ of level m is fixed by σ.

In particular, a ps-character is self-dual if and only if every realization of it is fixed by σ.

3 Semisimple characters

In [13], the author defined semisimple characters for split semisimple strata. Here we extend this
definition to the “relatively split” case of [7] §6. We lay down the groundwork in §3.1 and define the
relevant groups and semisimple characters in §3.2. The main results are then the calculation of the
intertwining of semisimple character (Theorem 3.22) and the transfer property (Proposition 3.26).
In §3.6, we let the involution σ act and obtain all the analogous results for our classical group G.

3.1 Preparation

Let [Λ, n, r, β] be a stratum in A and suppose we have a decomposition V =
⊕l

i=1 V
i. Let Λi be

the lattice sequence in V i given by Λi(k) = Λ(k)∩V i and put βi = 1iβ1i, where 1i is the projection
onto V i with kernel

⊕
j 6=i V

j . We say that V =
⊕l

i=1 V
i is a splitting for the stratum [Λ, n, r, β] if

we have Λ(k) =
⊕l

i=1 Λi(k), for all k ∈ Z, and β =
∑l

i=1 βi. Similarly, we say that a basis v1, ..., vN

for V is a splitting of Λ (respectively the stratum) if V =
⊕N

i=1 Fvi is a splitting for it.

Whenever we have such a splitting, we will use the block notation Aij = Hom F (V j , V i) as in §1.1.
In particular, M =

⊕l
i=1A

ii

Definition 3.1 (cf. [7] (3.6)). A stratum [Λ, n, n−1, β] in A is called split if there exists a splitting
V =

⊕l
i=1 V

i such that the characteristic polynomials φi(X) of [Λi, n, n − 1, βi], i = 1, . . . , l are
pairwise coprime.

Definition 3.2. A stratum [Λ, n, r−, β] in A is called semisimple if either it is null or νΛ(β) = −n
and there exists a splitting V =

⊕l
i=1 V

i for the stratum such that

(i) for 1 ≤ i ≤ l, [Λi, qi, r−, βi] is a simple or null stratum, where qi = r− if βi = 0, qi = −νΛi(βi)
otherwise;

(ii) for 1 ≤ i, j ≤ l, i 6= j, [Λi ⊕ Λj , q, r−, βi + βj ] is not equivalent to a simple or null stratum,
with q = max {qi, qj}.

Remarks 3.3. (i) A simple stratum is semisimple, with the trivial splitting. We will also consider
null strata [Λ, n, n, 0] as a special case of simple strata, as in §1.2.
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(ii) A non-simple semisimple stratum [Λ, n, n− 1, β] is certainly split (by a coarsening of the same
splitting), by [6] (2.5.8).
(iii) If [Λ, n, r−, β] is a semisimple stratum then the associated splitting V =

⊕l
i=1 V

i is determined
(upto order) by β: for i = 1, .., l, let Ψi(X) denote the minimal polynomial of βi, which is irreducible
since F [βi] is a field; then the Ψi(X) are distinct (so pairwise coprime), by condition (ii) of Definition
3.2 so the minimal polynomial of β is

∏l
i=1 Ψi(X) and V i = kerΨi(β).

Note that any stratum satisfying condition (i) of Definition 3.2 is clearly equivalent to a semisimple
stratum, by coarsening the splitting suitably. In particular, for 1 ≤ i ≤ l, let [Λi, qi, r, γ

′
i] be a

simple or null stratum equivalent to [Λi, qi, r, βi] and put γ′ =
∑l

i=1 γ
′
i. Then [Λ, n, r, γ′] satisfies

(i) and hence is equivalent to a semisimple stratum [Λ, n, r, γ], with splitting V =
⊕m

j=1 V
Ij , where

{1, . . . , l} =
⋃m

j=1 Ij and V Ij =
⊕

i∈Ij
V i. This allows us to proceed by induction along r for

semisimple strata. (Note that, although we allow real values of r, only integer values really play a
role.)
In fact, we will have to be a little more careful in the way in which we choose γ. Recall that, given
[Λ, n, 0, β] a simple stratum with r = −k0(β,Λ) and E = F [β], [7] 5.3 Corollary states that, for W
in general position relative to Λ over E, [Λ, n, r, β] is equivalent to a simple stratum [Λ, n, r, γ] with
γ ∈ ιW (K(A(E))). We show now that we have a similar result for semisimple strata.

Proposition 3.4. Let [Λ, n, r−, β] be a semisimple stratum in A, split by V = ⊕l
i=1V

i and such
that [Λ, n, r, β] is equivalent to a simple stratum [Λ, n, r, γ]. Put Ei = F [βi]; then, given W i in
general position relative to Λi over Ei, for 1 ≤ i ≤ l, we may choose γ ∈

∏
ιW i(K(A(Ei))) ⊂M.

Proof We show, by induction, that [Λ, n, t, β] is equivalent to a simple stratum [Λ, n, t, γ(t)] as
required, n− 1 ≥ t ≥ r, t ∈ Z.

Let ψi(X) = ϕi(X)di be the characteristic polynomial of the stratum [A(Ei), ni, ni − 1, βi], where
ni = n/e(Λi|oEi). Then the characteristic polynomial of [Λi, n, n − 1, βi] is ψi(X)δi , where δi =
dim EiV

i, so the characteristic polynomial of [Λ, n, n − 1, β] is
∏l

i=1 ψi(X)δi . This stratum is
equivalent to a simple stratum so it is non-split; hence ϕi(X) = ϕ(X), for 1 ≤ i ≤ l.
Now we choose Φ(X) ∈ oF [X] such that ϕ(X) = Φ(X) (mod pF ). Then, by [6] (2.5.11), we can
find simple strata [A(Ei), ni, ni − 1, γi] equivalent to [A(Ei), ni, ni − 1, βi] such that the minimal
polynomial of γi is Φ(($−n/g

F X)e/g). Then we put γ(n−1) =
∑l

i=1 ιW i(γi).

Now suppose we have found [Λ, n, t, γ(t)] equivalent to [Λ, n, t, β] as required. We will omit the
superscript (t) and put Eγ = F [γ]. We choose tame corestrictions sγ on A, A(Ei) which are
compatible with the (W,E)-decompositions (cf. [6] (1.3.9), (2.2.8)).
We have [A(Ei), ni, ti, γ] ∼ [A(Ei), ni, ti, βi], with ei = e(Λi|oEi), ti = b t

ei
c. Let [A(Ei), ni, b t−1

ei
c, ξi]

be a simple stratum equivalent to [A(Ei), ni, b t−1
ei
c, βi]. By [6] (2.4.1), [A(Ei)oEγ

, ti, b t−1
ei
c, sγ(ξi−γ)]

is equivalent to a simple or null stratum in A(Ei), where sγ is a tame corestriction relative to
Eγ/F . Let ψi(X) = ϕi(X)di be the characteristic polynomial of this stratum. Then, as above, the
characteristic polynomial of [ΛoEγ

, t, t− 1, sγ(ξ − γ)] is
∏l

i=1 ψi(X)δi , where ξ =
∑l

i=1 ιW i(ξi).
Now let [Λ, n, t − 1, β′] be a simple stratum equivalent to [Λ, n, t − 1, β]; then, if b′ = β′ − γ =
(β′ − β) + (β − γ), we have b′ ≡ ξ − γ (mod a1−t) so

[ΛoEγ
, t, t− 1, sγ(b′)] ∼ [ΛoEγ

, t, t− 1, sγ(ξ − γ)].

The former stratum is equivalent to a null or simple stratum, by [6] (2.4.1), so we deduce that
ϕi(X) = ϕ(X), for 1 ≤ i ≤ l.
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First suppose ϕ(X) = X, i.e. the strata above are equivalent to null strata. Then, by [6] (2.2.1),
for 1 ≤ i ≤ l there exists a conjugate γ′i of γ by the group U1(A(Ei)) such that [A(Ei), ni, b t−1

ei
c, γ′i]

is equivalent to [A(Ei), ni, b t−1
ei
c, βi] and we put γ(t−1) =

∑l
i=1 ιW i(γ′i).

So we may assume ϕ(X) 6= X; in particular, b t−1
ei
c = ti − 1. Choose Φ(X) ∈ oEγ [X] such that

ϕ(X) = Φ(X) (mod pEγ ) and choose ci ∈ Bγ(Ei) = EndEγEi such that

[A(Ei)oEγ
, ti, ti − 1, sγ(ξi − γ)] ∼ [A(Ei)oEγ

, ti, ti − 1, ci]

and ci has minimal polynomial Φ(($−t/g
Eγ

X)e/g), where g = (e, t) and $Eγ is a (fixed) uniformizer
in Eγ .
We put E′

i = Eγ [ci]; these are all isomorphic to E′ := Eγ [c], where c has minimal polynomial
Φ(($−t/g

Eγ
X)e/g). Consider the simple stratum [A(E′), n′, t′, γ] in A(E′) and the derived stratum

[A(E′)oEγ
, t′, t′ − 1, c], where e′ = e(Λi|oE′

i
) and n′ = n/e′, t′ = t/e′. Choose b ∈ A(E′) such that

νA(E′)(b) = −t′ and s′γ(b) = c, where s′γ is a tame corestriction on A(E′) relative to Eγ/F ; then the
stratum [A(E′), n′, t′ − 1, γ + b] is simple, by [6] (2.2.3).
Now let Yi be in general position relative to A(Ei) over E′ ' E′

i and consider the stratum
[A(Ei), ni, ti − 1, ιYi(γ + b)]. This is simple and, as in [6] (2.2.8), some conjugate, by the group
U1(A(Ei)), [A(Ei), ni, ti − 1, γ′i] is equivalent to [A(Ei), ni, ti − 1, ξi] ∼ [A(Ei), ni, ti − 1, βi]. Then
γ(t−1) =

∑l
i=1 ιW i(γ′i) is as required. �

The previous proposition shows, in particular, that we may choose γ ∈ M, and this is the only
property of γ which we will use in §§3.2–3.3. Then each decomposition V Ij =

⊕
i∈Ij

V i is a
decomposition of F [γj ]-spaces, 1 ≤ j ≤ m. If sj is a tame corestriction on AIj ,Ij relative to
F [γj ]/F , then [ΛIj

oEj
, r, r − 1, sj(βIj − γIj )] is equivalent to a semisimple stratum with splitting

V Ij =
⊕

i∈Ij
V i ((i) comes from [6] (2.4.1) while (ii) follows by [6] (2.2.8)).

We also have a converse to these observations, which follows from [6] (2.2.8), (2.3.12):

Lemma 3.5 (cf. [6] (2.2.8)). Let [Λ, n, r, γ] be a semisimple stratum with splitting V =
⊕m

j=1 V
j.

Put Ej = F [γj ] and let sj be a tame corestriction on Ajj relative to Ej/F . For 1 ≤ j ≤ m, let
bj ∈ a

jj
−r be such that [Λj

oEj
, r, r−, sj(bj)] is equivalent to a semisimple stratum and put b =

∑m
j=1 bj.

Then [Λ, n, r−, γ + b] is equivalent to a semisimple stratum.

Now let [Λ, n, 0, β] be a non-null semisimple stratum and put

k0(β,Λ) = −min {r ∈ Z : [Λ, n, r, β] is not semisimple}. (3.6)

Note that this is consistent with the definition for simple strata in §1.2. There are two possibilities
here:

(i) For some i, 1 ≤ i ≤ l, we have k0(β,Λ) = k0(βi,Λi). Then, putting ei = e(Ei|F ), we have

k0(β,Λ)
e(Λ|oF )

=
kF (βi)
ei

.

(ii) There exist i, j, 1 ≤ i, j ≤ l, such that [Λi, q, r, βi] and [Λj , q, r, βj ] are simple and [Λi ⊕
Λj , q, r, βi + βj ] is equivalent to a simple stratum [Λi ⊕ Λj , q, r, γ], where r = −k0(β,Λ) and q =
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qi = qj are as in Definition 3.2. Then, by [6] (2.4.1), there exist ci, cj ∈ Eγ = F [γ] such that
[Λi

oEγ
, r, r − 1, sγ(γ − βi)] ∼ [Λi

oEγ
, r, r − 1, ci], and likewise for j. Since, by definition of k0(β,Λ),

[Λi ⊕ Λj , q, r − 1, βi + βj ] is not equivalent to a simple stratum, the derived strata above do not
have the same characteristic polynomial, by [6] (2.2.8). In particular, at least one (say for i) is
fundamental and we have r = −νΛi

oEγ

(ci). Then, putting ei = e(Ei|F ) = e(Eγ |F ), we have

k0(β,Λ)
e(Λ|oF )

= −
νEγ (ci)
ei

.

Now let [Λ′, n′, 0, β] be another semisimple stratum (with splitting V =
⊕l

i=1 V
i). Then, whichever

of the two cases above occurs, we have

k0(β,Λ)
e(Λ|oF )

=
k0(β,Λ′)
e(Λ′|oF )

.

(For case (ii), note that there is an Ei-basis of V i which is a splitting of both Λi and Λ′i; taking
W i to be the F -linear span of this basis – so that it is in general position relative to both Λi and
Λ′i – and choosing W j similarly, we may use Proposition 3.4 to choose the same γ for Λ and Λ′.)

3.2 Definitions

We continue in the situation above, so [Λ, n, r−, β] is a semisimple stratum with splitting V =⊕l
i=1 V

i and [Λ, n, r, β] is equivalent to the semisimple stratum [Λ, n, r, γ], with γ ∈ M; we write
b = β − γ. Let Bβ denote the A-centralizer of β; we have Bβ =

⊕l
i=1B

ii
βi

. We consider the adjoint
map aβ : x 7→ βx − xβ, for x ∈ A. Note that the restriction of aβ to Aij is certainly bijective for
i 6= j. For k ∈ Z we put

nk(β,Λ) = {a ∈ a0 : aβ(x) ∈ ak}.

We clearly have nk(β,Λ)ii = nk(βi,Λi), for 1 ≤ i ≤ l.

Lemma 3.7. For k ≤ r we have

(i) for i 6= j, n−k(β,Λ)ij ⊂ ar−k;

(ii) n−k(β,Λ) = bβ,0 + n−k(β,Λ) ∩ ar−k.

Proof We note first that we have n−k(β,Λ) ∩ ar−k = n−k(γ,Λ) ∩ ar−k, since, for x ∈ a−r−k,
aβ(x) ≡ aγ(x) (mod a−k). Also, (ii) holds in the simple case by [6] (1.4.9) (see also [12] §4) and
hence follows immediately from (i) in the general case.

Let us fix i 6= j. We put q = max {qi, qj} and let t ∈ Z with r ≤ t ≤ q be minimal such that
[Λi ⊕ Λj , q, t, βi + βj ] is equivalent to a null or simple stratum, say [Λi ⊕ Λj , q, t, ζ]. Put E = F [ζ]
and let sζ be a tame corestriction on EndF (V i ⊕ V j) relative to E/F . Put b = βi + βj − ζ; then,
by the minimality of t and [6] (2.2.8), the derived stratum [Λi

oE
⊕ Λj

oE
, t, t − 1, sζ(b)] is split. We

put s = −k0(ζ,Λi ⊕ Λj).

Now let y ∈ a
ij
−k; then sζ(y) ∈ b

ij
ζ,−k so, by [7] (3.7) Lemma 4, there exists z ∈ bζ,t−k such that

asζ(b)(z) = sζ(y). Then y−ab(z) ∈ ker sζ ∩a−k so, by [6] (1.4.10), there exists x ∈ n−k(ζ,Λi⊕Λj)∩
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as−k such that aζ(x) = y−ab(z). Then aβ(x+z) ≡ y (mod a1−k) and, since x+z ∈ ar−k, it follows

easily that the image aβ

(
a

ij
s−k

)
contains a

ij
−k. Since aβ is bijective on Aij , we get an isomorphism

n−k(β,Λ) ∩ a
ij
s−k

∼→ a
ij
−k. (3.8)

Since s > r, we have n−k(β,Λ)ij ⊂ as−k ⊂ ar−k, as required. �

Now we define the orders H(β,Λ) ⊂ J(β,Λ) inductively by

H(β,Λ) = bβ,0 + H
r
2
+(γ,Λ),

J(β,Λ) = bβ,0 + J
r
2 (γ,Λ),

with H(0,Λ) = J(0,Λ) = a0(Λ). Note that this is consistent with the definitions of [6] §3.1 in the
simple case, by op. cit. (3.1.9)(v), (3.1.10)(v). Moreover, as in the Remark following loc. cit., to
check that this definition of H(β,Λ) is independent of the choice of γ ∈M, we need only prove:

Lemma 3.9 (cf. [6] (3.1.9)(v)). Let [Λ, n, r−, β′] be a semisimple stratum equivalent to [Λ, n, r−, β]
and with the same splitting. Then

H
r
2 (β′,Λ) = H

r
2 (β,Λ).

Proof We assume in this proof that H(β′,Λ) has been defined relative to the same semisimple
stratum [Λ, n, r, γ]; then the only possible difference between the two orders must lie in M, since Bβ

and Bβ′ are both contained in M. But, for each i, [Λi, n, r−, β′i] and [Λi, n, r−, βi] are equivalent
simple strata so

H
r
2 (β′,Λ)ii = H

r
2 (β′i,Λ

i) = H
r
2 (βi,Λi) = H

r
2 (β,Λ)ii,

by the simple case [6] (3.1.9)(v). �

Similarly, J(β,Λ) is independent of the choice of γ ∈M.

Lemma 3.10 (cf. [6] (3.1.10)). For 0 ≤ k ≤ r, we have

(i) n− k
2
(β,Λ) ∩ ar− k

2
⊂ Jr− k

2 (β,Λ);

(ii) J
k
2 (β,Λ) is an n−k(β,Λ)-bimodule.

Proof We proceed by induction on r, with the simple case given by [6] (3.1.10). By Lemma
3.7(ii),

n− k
2
(β,Λ) ∩ ar− k

2
= n− k

2
(γ,Λ) ∩ ar− k

2

= bγ,r− k
2

+ n− k
2
(γ,Λ) ∩ ar− k

2
+.

Now, since r − k
2 ≥

r
2 , we have that Jr− k

2 (β,Λ) = Jr− k
2 (γ,Λ) and also bγ,r− k

2
⊂ Jr− k

2 (γ,Λ), while

n− k
2
(γ,Λ) ∩ ar− k

2
+ ⊂ Jr− k

2
+(γ,Λ) ⊂ Jr− k

2 (γ,Λ), by induction, so (i) follows.
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We have that J
k
2 (β,Λ) = bβ, k

2
+ J

r
2 (γ,Λ) and also n−k(β,Λ) ⊂ n−r(β,Λ) = n−r(γ,Λ) so that

n−k(β,Λ)J
r
2 (γ,Λ) ⊂ J

r
2 (γ,Λ) by induction. Also, n−k(β,Λ) = bβ,0 + n−k(β,Λ) ∩ ar−k by Lemma

3.7(ii). The result now follows from (i) since

(n−k(β,Λ) ∩ ar−k)bβ, k
2

⊂ n− k
2
(β,Λ) ∩ ar− k

2

⊂ Jr− k
2 (β,Λ) ⊂ J

k
2 (β,Λ).

�

Similarly, n− k
2
(β,Λ) ∩ ar− k

2
⊂ Jr− k

2 (β,Λ) and H
k
2
+(β,Λ) is an n−k(β,Λ)-bimodule, for 0 ≤ k ≤ r.

Lemma 3.11 (cf. [6] (3.1.13)). (i) For k < r, we have

(n−k(β,Λ) ∩ ar−k)J
k
2 (β,Λ) ⊂ H

k
2
+(β,Λ).

(ii) For k > 0, we have bβ,1J
k(β,Λ) ⊂ Hk+1(β,Λ).

(iii) For k, l > 1, Jk(β,Λ)Jl(β,Λ) ⊂ Hk+l(β,Λ).

(iv) For k > 0, Hk(β,Λ) is a two-sided ideal of J(β,Λ).

Proof The simple case is given by [6] (3.1.13). We have J
k
2 = bβ, k

2
+ J

r
2 (γ,Λ). Now

(n−k(β,Λ) ∩ ar−k)bβ, k
2

⊂ n− k
2
(β,Λ) ∩ ar− k

2

⊂ Hr− k
2 (β,Λ) ⊂ H

k
2
+(β,Λ),

since k < r. On the other hand,

(n−k(β,Λ) ∩ ar−k)J
r
2 (β,Λ) = (n−k(γ,Λ) ∩ ar−k)J

r
2 (γ,Λ) ⊂ H

r
2
+(γ,Λ)

by induction.
For (ii), it suffices to show that bβ,1J

r
2 (β,Λ) ⊂ H(β,Λ), which is immediate from (i), with k = r−1.

The remaining assertions follow, as in [6] (3.1.13). �

Now, for m ≥ −1, we put Hm+1(β,Λ) = H(β,Λ)∩Um+1(Λ) and similarly for Jm+1(β,Λ). We will
usually write J(β,Λ) = J0(β,Λ). Note also that Hm+1(β,Λ) ∩ G̃i = Hm+1(βi,Λi), for 1 ≤ i ≤ l,

Corollary 3.12 (cf. [6] (3.1.15)). Abbreviating Hm = Hm(β,Λ) and likewise for Jm, we have:

(i) for 0 < m ≤ r
2+ and 0 < l ≤ r

2 ,

Hm = (Um(Λ) ∩Bβ) ·H
r
2
+, J l = (U l(Λ) ∩Bβ) · J

r
2 ;

(ii) for m ≥ 0, Hm ⊂ Jm and, for m > 0, Hm / J ;

(iii) for k, l > 0, [Jk, J l] ⊂ Hk+l.

We also remark that H(β,Λ) and J(β,Λ) have Iwahori decompositions with respect to M .
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Definition 3.13 (cf. [6] (3.2.1), (3.2.3), [13] (3.11))). For 0 ≤ m < r, the set C(Λ,m, β) of
semisimple characters of Hm+(β,Λ) is the set of characters θ such that

(i) θ|
Hm+(β,Λ)∩ eGi

∈ C(Λi,m, βi), for 1 ≤ i ≤ l;

(ii) if m′ = max {m, r
2}, the restriction θ|Hm′+(β,Λ) is of the form θ0ψb for some θ0 ∈ C(Λ,m′, γ),

where b = β − γ.

Note that this too is consistent with the definitions of [6] §3.2, by [6] (3.3.20).

Remarks 3.14. (i) If m ≥ r
2 then we have Hm+(β,Λ) = Hm+(γ,Λ) and condition (i) of the

definition is implied by (ii). In particular we have a bijection

C(Λ,m, γ) → C(Λ,m, β);
θ 7→ θψb.

(ii) Suppose [Λ, n, r, γ′] is another semisimple stratum which is equivalent to [Λ, n, r, β], with γ′ ∈
M. Then we could define the set C(Λ,m, β) with respect to this stratum also. However, these
definitions coincide: this follows as in [6] (3.3.20) from the fact that, if [Λ, n, r−, β′] is a semisimple
stratum equivalent to [Λ, n, r−, β] and with the same splitting, then

C
(
Λ, r

2−, β
′) = C

(
Λ, r

2−, β
)
.ψβ′−β

(cf. [6] (3.3.20)(ii)). To prove this, we assume that C
(
Λ, r

2−, β
′) has been defined relative to

the same semisimple stratum [Λ, n, r, γ]; then, given θ ∈ C
(
Λ, r

2−, β
)
, the character θψβ′−β of

H
r
2 (β,Λ) = H

r
2 (β′,Λ) certainly satisfies condition (ii) of Definition 3.13, while condition (i) comes

from the simple case [6] (3.3.20)(i).
(iii) The set C(Λ,m, β) is indeed independent of r since, if r < −k0(β,Λ), we may take γ = β in
the definitions.

Lemma 3.15. (i) Let 0 ≤ m < r and θ0 ∈ C(Λ, r
2 , γ). For 1 ≤ i ≤ l, let θi ∈ C(Λi,m, βi) be

such that θi agrees with θ0ψb on H
r
2
+(β,Λ) ∩ G̃i. Then there exists a unique character θ of

Hm+ = Hm+(β,Λ) such that θ|Hm+∩M =
⊗l

i=1 θi and θ|
H

r
2+(β,Λ)

= θ0ψb. Moreover, θ is
trivial on Nl and Nu.

(ii) Let θ0 ∈ C(Λ, r
2 , γ). Then J(β,Λ) normalizes θ0ψb|H r

2+(γ,Λ)
.

(iii) Let 0 ≤ m ≤ r − 1 and θ ∈ C(Λ,m, β). Then θ is normalized by J(β,Λ).

Proof We proceed by induction, the case of a simple stratum being given by [6] (3.3.1); so we
assume the results hold for γ, βi.
(i) The characters θ0ψb and

⊗l
i=1 θi certainly agree where they are both defined. Now Hm+ ∩M

normalizes H
r
2
+(β,Λ) since θ0ψb|H r

2+(β,Λ)∩ eGi
∈ C(Λi, r

2 , βi), for 1 ≤ i ≤ l. But θ0ψb is trivial on

Nl and Nu and hence Hm+ ∩M normalizes the pair (H
r
2
+1(γ,Λ), θ0ψb), by Corollary 2.2. The

assertions are now clear.
(ii) For j ∈ J

r
2 (γ,Λ), this is implied by (iii) for γ and, as in (i), J ∩ M normalizes the pair

(H
r
2
+(γ,Λ), θ0ψb).

(iii) For m ≥ r
2 , this follows from (ii) so assume m < r

2 ; then, for j ∈ J(β,Λ), h ∈ H
r
2
+(β,Λ) we

have θ(jhj−1) = θ(h). Also, for j ∈ J(β,Λ) ∩Nl, h ∈ Hm+(β,Λ) ∩M , we have θ([j, h]) = 1 since
[j, h] ∈ Hm+(β,Λ) ∩Nl ⊂ ker θ, and likewise for Nu. Hence we need only check that J(β,Λ) ∩M
normalizes

⊗l
i=1 θi, which follows from the simple case. �
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For m ≤ r, we put
mm(β,Λ) = n−m(β,Λ) ∩ ar−m + J

r
2 (β,Λ).

Note that for m ≤ r
2 we have mm(β,Λ) = J

r
2 (β,Λ). On the other hand, for m > r

2 , n−m(β,Λ) ∩
ar−m = n−m(γ,Λ) ∩ ar−m = bγ,r−m + n−m(β,Λ) ∩ ar−m+, by Lemma 3.7(ii); hence mm(β,Λ) =
bγ,r−m + mm(γ,Λ).

We note that, if [Λ, n, r−, β] is simple, then mm(β,Λ) is not the same as the lattice Mm(β,Λ)
defined in [7] (5.6), unless dre = −k0(β,Λ); otherwise, we have mm(β,Λ) = bβ,r−m + Mm(β,Λ) so
mm(β,Λ) does in fact depend on r, though only in a rather trivial way.

For 0 ≤ m < r, we put Γm(β,Λ) = 1 + mm(β,Λ) and we also put Γr(β,Λ) = mr(β,Λ)×. Hence we
have, for m > r

2 , Γm(β,Λ) = (Ur−m(Λ)∩Bγ)Γm(γ,Λ), with the first factor normalizing the second.

Lemma 3.16. Let 0 ≤ m < r and θ ∈ C(Λ,m, β). Then θ is normalized by Γm(β,Λ).

Proof For m ≤ r
2 this is weaker than Lemma 3.15 so suppose m > r

2 so that Γm(β,Λ) =
(Ur−m(Λ) ∩ Bγ)Γm(γ,Λ) and θ = θ0ψb. Then Γm(β,Λ) normalizes θ0, by induction and Lemma
3.15. But we have Γm(β,Λ) ⊂ Ur−m(Λ) so Γm(β,Λ) clearly normalizes ψb also. �

3.3 Intertwining

In this section we calculate the intertwining of semisimple characters. We remark that we certainly
have B×

β ⊂ IM (θ|Hm+(β,Λ)∩M ), by the simple case [6] (3.3.2), and hence B×
β ⊂ I eG(θ) by Lemma

2.1. Then, by Lemma 3.16, we certainly have

I eG(θ) ⊃ Γm(β,Λ)B×
β Γm(β,Λ).

We will show that we in fact have equality here. First we need some exact sequences.

Lemma 3.17 (cf. [7] (6.3) Lemma). Let 0 ≤ m < r. The sequence

0 → bβ,r−m → mm(β,Λ)
aβ→ (Hm+(β,Λ))∗ ∩ im aβ → 0

is exact. Moreover, if h ∈ B×
β and 0 → l1 → l2 → l3 → 0 denotes the above sequence, then the

sequence
0 → h−1l

ij
1 h+ l

ij
1 → h−1l

ij
2 h+ l

ij
2 → h−1l

ij
3 h+ l

ij
3 → 0

is also exact, for any 1 ≤ i, j ≤ l.

Proof In the (i, i)-blocks, the sequences are exact by the simple case, [7] (6.3) Lemma (recall
that mm(β,Λ)ii = bβi,r−m + Mm(βi,Λi)), while in the (i, j)-blocks, i 6= j, the exactness of the first
sequence says that aβ induces an isomorphism

mm(β,Λ)ij ∼→ (Hm+(β,Λ))∗ij .

We put q = max {qi, qj} and let r ≤ t ≤ q be minimal such that [Λi ⊕Λj , q, t, βi + βj ] is equivalent
to a null or simple stratum, say [Λi⊕Λj , q, t, ζ]. Put E = F [ζ] and let sζ be a tame corestriction on
EndF (V i ⊕ V j) relative to E/F . Also put b = βi + βj − ζ and s = −k0(ζ,Λ). The derived stratum
[Λi

oE
⊕ Λj

oE
, t, t− 1, sζ(b)] is split.
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We have

mm(β,Λ)ij = n−m(ζ,Λi ⊕ Λj) ∩ a
ij
s−m + J

s
2 (ζ,Λi ⊕ Λj)ij ,

(Hm+(β,Λ))∗ij = (Hm′+(ζ,Λi ⊕ Λj))∗ij ,

where m′ = max {m, s
2}. Then

aζ(mm(β,Λ)ij) ⊂ a
ij
−m + aζ(J

s
2 (ζ,Λi ⊕ Λj)ij),

which is contained in (Hm+(β,Λ))∗ij by the simple case, and

ab(mm(β,Λ)ij) ⊂ a
ij
s−t−m + a

ij
s
2
−t ⊂ a

ij
−m′ .

Hence we have aβ(mm(β,Λ)ij) ⊂ (Hm+(β,Λ))∗ij so we need only check surjectivity.

Let y ∈ (Hm+(β,Λ))∗ij ; then sζ(y) ∈ b
ij
ζ,−m′ so, by [7] (3.7) Lemma 4, there exists z ∈ b

ij
ζ,t−m′

such that sζ(y) = asζ(b)(z). Then y − ab(z) ∈ (Hm+(β,Λ))∗ij ∩ ker sζ so, by the simple case, there
exists x ∈ mm′(β,Λ)ij = J

s
2 (ζ,Λi ⊕ Λj)ij such that aζ(x) = y − ab(z). Then aβ(x+ z) = y + ab(x)

and we have ab(x) ∈ a
ij
s
2
−t ⊂ a

ij
− s

2
. Then, by (3.8) with k = s

2 , there exists v ∈ n− s
2
(β,Λ) ∩ a

ij
s
2
⊂

J
s
2 (ζ,Λi ⊕ Λj)ij such that aβ(z) = ab(x). Then we have y = aβ(x+ z − v).

The exactness of the second sequence is now clear, since all the lk are bβ,0-modules and the canonical
projections 1i lie in bβ,0. �

Similarly, we have an exact sequence

0 → bβ,m+ → Hm+(β,Λ)
aβ→ (mm(β,Λ))∗ ∩ im aβ → 0.

In particular, with m = r
2 we have

0 → bβ, r
2
+ → H

r
2
+(β,Λ)

aβ→ (J
r
2 (β,Λ))∗ ∩ im aβ → 0. (3.18)

Lemma 3.19. Let 0 ≤ m < r, g ∈ Γm(β,Λ), h ∈ H
m
2

+ and θ ∈ C(Λ, r
2 , β). Then the commutator

[g, h] ∈ H
r
2
+(β,Λ) and

θ[g, h] = ψg−1βg−β(h).

Proof We proceed by induction, the simple case being given by [6] (3.2.11). We suppose first that
m > r

2 so that we can write g = ug′ with u ∈ (Ur−m(Λ)∩Bγ), g′ ∈ Γm(γ,Λ). Also, if [Λ, n, r, γ] is a
semisimple stratum equivalent to [Λ, n, r, b], then θ = θ0ψb, for some θ0 ∈ C(Λ, r

2 , γ) and b = β − γ.
Then

θ0[g, h] = θ0[ug′, h] = θ0[g′, h] since u normalizes θ0
= ψg′−1γg′−γ(h) by induction
= ψg−1γg−γ(h) since u commutes with γ.

We easily see that ψb[g, h] = ψg−1bg−b(h) so the result holds for m > r
2 .

Ifm ≤ r
2 then g ∈ Γm = J

r
2 normalizes θ. Then the result follows from the fact that aβ(mm(β,Λ)) ⊂

(H
r
2
+(β,Λ))∗, from Lemma 3.17. �
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Corollary 3.20. Let 0 ≤ m < r, g ∈ Γm(β,Λ) and θ ∈ C(Λ, m
2 , β). Then g normalizes H

m
2

+(β,Λ)
and

θg = θψg−1βg−β .

Proof H
m
2

+ is an n−m-bimodule so g certainly normalizes H
m
2

+ and, for h ∈ H
m
2

+, θg(h) =
θ(h)θ([g, h]). But [g, h] ∈ H

r
2
+ so θ([g, h]) depends only on the restriction θ|H

r
2
+ and, by Lemma

3.19, θ([g, h]) = ψg−1βg−β(h), as required. �

Corollary 3.21. Let 0 ≤ m < r, g ∈ Γm+(β,Λ)B×
β Γm+(β,Λ) and θ ∈ C(Λ,m, β). Then, as

characters of Hm+(β,Λ) ∩ g−1Hm+(β,Λ)g, we have

θg = θψg−1βg−β .

Proof For g ∈ Γm+, this is given by Corollary 3.20. Now consider g = ybh, with y, h ∈ Γm+,
b ∈ B×

β . Then, since Γm+ normalizes Hm+, for any x ∈ Hm+ ∩ g−1Hm+g, we also have x ∈
h−1b−1Hm+bh and x ∈ h−1Hm+h. Hence we have

θg(x) = θy(bhxh−1b−1) = θ(bhxh−1b−1)ψy−1βy−β(bhxh−1b−1)

= θ(hxh−1)ψg−1βg−h−1βh(x)
= θ(x)ψh−1βh−β(x)ψg−1βg−h−1βh(x)
= θ(x)ψg−1βg−β(x)

as required. �

Theorem 3.22 (cf. [6] (3.3.2), [7] (6.4)). Let 0 ≤ m < r and let θ ∈ C(Λ,m, β). Then we have

I eG(θ) = Γm(β,Λ)B×
β Γm(β,Λ).

Proof We proceed by induction on r, the simple case being given by [6] (3.3.2). Further, the
result for m < r

2 follows from the case m = b r
2c since then mm(β,Λ) = mb r

2
c(β,Λ). So we may

assume m ≥ b r
2c. By Lemma 3.16, Lemma 2.1 and the simple case, we need only show that

I eG(θ) ⊂ ΓmMΓm.
Since the result for all m follows from that for integral m, we suppose m ∈ Z (in particular, we will
write m+ 1 for m+, etc.). We proceed by induction on m, beginning with the case “m = r”. That
is, we show

I eG(θ|Hr+1(β,Λ)) = Γr(β,Λ)B×
β Γr(β,Λ).

But this is immediate from induction on r, since θ|Hr+1(β,Λ) ∈ C(Λ, r, β) and B×
β ⊂ (U0(Λ) ∩

Bβ)M(U0(Λ)∩Bβ). So we suppose m < r and we have the result for m+ 1. Let g ∈ I eG(θ); then g
certainly intertwines the restriction of θ to Hm+2(β,Λ) so we can write g = yhy′, with y, y′ ∈ Γm+1

and h ∈ B×
β . Also, by Lemma 3.21, we have

θg = θψg−1βg−β as characters of Hm+1(β,Λ) ∩ g−1Hm+1(β,Λ)g.
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Now we proceed by induction on l, the case l = 1 being the simple case. Let V = W 1 ⊕ W 2

be a coarsening of the splitting V =
⊕l

i=1 V
i. We now use our block notation with respect this

new splitting (so A21 denotes Hom F (W 1,W 2), etc.), but denote the Levi subgroup and unipotent
radicals M ′, N ′

l , N
′
u. By induction, we assume that the result holds for θ| eGi ∈ C(Λi,m, βi), i = 1, 2.

Consider the restriction of θ to the group

Kl = 1 + kl, kl =
(

Hm+2 Hm+1

Hm+2 Hm+2

)
.

Then g intertwines θ on Kl so we have

g−1(β + k∗l )g ∩ (β + k∗l ) 6= ∅.

Write y = nymyly, with ny = 1 + yn ∈ N ′
u ∩ Γm+1, my ∈M ′ ∩ Γm+1 and ly = 1 + yl ∈ N ′

l ∩ Γm+1;
likewise, y′ = l′ym

′
yn

′
y. Now aβ(yn) ∈ k∗l so n−1

y (β+ k∗l )ny = β+ k∗l , and likewise for n′y. The same is
also true for my, m′

y since they normalize θ|Kl
by Corollary 2.2. Hence g′ = lyhl

′
y intertwines the

coset β + k∗l , that is
h−1aβ(yl)h+ aβ(y′l) ≡ 0 (mod h−1k∗l h+ k∗l ).

This is certainly satisfied in all blocks except possibly the (2,1)-block, where we have

h−1aβ(yl)h+ aβ(y′l) ≡ 0 (mod (h−1k∗l h+ k∗l ) ∩A21).

By Lemma 3.17, there exist zl, z′l ∈ m21
m such that

aβ(h−1ylh+ y′l) = aβ(h−1zlh+ z′l).

Then, by the injectivity of aβ on A21, we have g′ = (1 + zl)h(1 + z′l).

Now the fact that Γm+1 normalizes Γm implies that, absorbing factors into Γm, we may assume
g = nymyhm

′
yn

′
y. Similarly, by considering the restriction of θ to

Ku =
(

1 + Hm+2 Hm+2

Hm+1 1 + Hm+2

)
,

(that is, reversing the roles of the (1, 2)- and (2, 1)-blocks) we reduce to the case g = myhm
′
y ∈M ′

so the result holds by the inductive hypothesis. �

3.4 Heisenberg extension

We continue with the notation of the previous section, so [Λ, n, r−, β] is a semisimple stratum,
[Λ, n, r, γ] is a semisimple stratum equivalent to [Λ, n, r, β] and we put b = β − γ.

Lemma 3.23 (cf. [6] (3.2.8)). Let 0 ≤ m < r, θ ∈ C(Λ,m, β) and let j ∈ Jk(β,Λ), j′ ∈ J l(β,Λ)
with k + l > m. Then [j, j′] ∈ Hm+(β,Λ) and

θ[j, j′] = ψj−1βj−β(j′).
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Proof The first assertion is Corollary 3.12(iv). We proceed by induction on r but first reduce
to the case k, l ≥ r

2 . Put k′ = max {k, r
2}, l

′ = max {l, r
2}; then we may write j = uh, with

u ∈ Uk(Λ) ∩B×
β and h ∈ Jk′(β,Λ), and likewise j′ = u′h′. Then

θ[j, j′] = θ[u, hj′h−1]θ[h, h′]θ[h′hh′−1, u′].

Let θ̃ ∈ C(Λ, k−, β) extend θ; then u ∈ Hk(β,Λ) and θ[u, hj′h−1] = θ̃[u, hj′h−1] = 1, since J(β,Λ)
normalizes θ̃. Similarly, θ[h′hh′−1, u′] = 1 so we have

θ[j, j′] = θ[h, h′].

On the other hand,
ψj−1βj−β(j′) = ψh−1βh−β(u′h′),

since u commutes with β. We write h = 1 + x, u′ = 1 + y, with x ∈ Jk′(β,Λ), y ∈ bβ,l. Then

ψh−1βh−β(u′) = ψF ◦ tr(aβ(x)y − x(1 + x)−1aβ(x)y),

where tr is trA/F . Now ψF ◦ tr(aβ(x)y) = ψF ◦ tr(−xaβ(y)) = 1 as y commutes with β. Also

ψF ◦ tr(x(1 + x)−1aβ(x)y) = ψF ◦ tr(aβ(x)yx(1 + x)−1)

and yx(1 + x)−1 ∈ bβ,lJ
k′(β,Λ) ⊂ H

r
2
+(β,Λ). But aβ(x) ∈ (H

r
2
+(β,Λ))∗, by Lemma 3.17, so

altogether we have
ψj−1βj−β(j′) = ψh−1βh−β(h′)

and we have reduced to the case k, l ≥ r
2 . Indeed, we may (and do) assume k = l = r

2 so
[j, j′] ∈ Hr(β,Λ).
We have

θ[j, j′] = θ0[j, j′]ψb[j, j′],

for some θ0 ∈ C(Λ, r−, γ), and θ0[j, j′] = ψj−1γj−γ(j′) by induction. But it is straightforward that
ψb[j, j′] = ψj−1bj−b(j′) so the result follows. �

Proposition 3.24 (cf. [6] (3.4.1)). Let 0 < m ≤ r and let θ ∈ C(Λ,m−, β). The pairing

kθ : (g, g′) 7→ θ[g, g′], g, g′ ∈ Jm(β,Λ)

induces a nondegenerate alternating bilinear form

Jm(β,Λ)/Hm(β,Λ)× Jm(β,Λ)/Hm(β,Λ) → C×.

Proof As in [6] (3.4.1), we need only show that

θ[g, g′] = 1 ∀g′ ∈ Jm(β,Λ) ⇐⇒ g ∈ Hm(β,Λ),

the implication ⇐ being immediate, from Lemma 3.15(iii).
We proceed as usual by induction, the simple case being [6] (3.4.1). Suppose first m > r

2 ; then
θ = θ0ψb, for some θ0 ∈ C(Λ,m−, γ), and, for g, g′ ∈ Jm(β,Λ), we have [g, g′] ∈ U r+(Λ) ⊂ kerψb.
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Hence kθ = kθ0 and the result follows from induction, since Jm(β,Λ) = Jm(γ,Λ), and likewise for
Hm.

Now suppose m ≤ r
2 and write g = 1 + x, g′ = 1 + y, with x, y ∈ Jm(β,Λ). By Lemma 3.23, we

have
θ[g, g′] = ψg−1βg−β(g′) = ψF ◦ tr((1 + x)−1aβ(x)y) = 1,

where tr is trA/F . This is true for all y ∈ Jm(β,Λ) so we have (1 + x)−1aβ(x) ∈ (Jm(β,Λ))∗ ⊂
(J

r
2 (β,Λ))∗. Then aβ(x) ∈ (J

r
2 (β,Λ))∗ ∩ im aβ so, by (3.18), we have x ∈ (Bβ + H

r
2
+(β,Λ)) ∩

Jm(β,Λ) = Hm(β,Λ) as required. �

Corollary 3.25. Let 0 ≤ m < r and let θ ∈ C(Λ,m, β). Then there exists a unique irreducible
representation η of Jm+(β,Λ) which contains θ. Moreover, dim η = (Jm+ : Hm+)

1
2 and I eG(η) =

ΓmB
×
β Γm.

3.5 Transfer property

In this section we extend the transfer property [6] (3.6.1) to semisimple strata. We continue with
a semisimple stratum [Λ, n, r−, β] with splitting V =

⊕l
i=1 V

i and let θ ∈ C(Λ,m, β), 0 ≤ m < r.
We assume moreover that r = −k0(β,Λ) (see (3.6)) and let [Λ, n, r, γ] be a semisimple stratum
equivalent to [Λ, n, r, β] chosen as in Proposition 3.4. Put m0 = max {m, r

2}; then we have{
θ| eGi

= θi, for some θi ∈ C(Λi,m, βi),
θ|Hm0+(β,Λ) = θ0ψγ−β, for some θ0 ∈ C(Λ,m0, γ).

Now let [Λ′, n′, r′−, β] be another semisimple stratum, r′ = −k0(β,Λ′). Let m′ ∈ Z be such that
b m′

e(Λ′|oF )c = b m
e(Λ|oF )c and θ′ ∈ C(Λ′,m′, β′). For each i, there is an Ei-basis of V i which is a splitting

of both Λi and Λ′i. Taking W i to be the F -linear span of this basis (so that it is in general position
relative to both Λi and Λ′i), we may use Proposition 3.4 to choose γ as above in

∏
ιW i(K(A(Ei)))

(with notation as in 3.4). In particular, we may assume that [Λ′, n′, r′, γ] is a semisimple stratum
equivalent to [Λ′, n′, r′, β]. Put m′

0 = max {m′, r′

2 } and define θ′i and θ′0 as above; note that we have

b m′
0

e(Λ′|oF )c = b m0
e(Λ|oF )c.

Proposition 3.26 (cf. [6] (3.6.1)). There exists a canonical bijection

τΛ,Λ′,β : C(Λ,m, β) → C(Λ′,m′, β′)

such that, for θ ∈ C(Λ,m, β), θ′ := τΛ,Λ′,β(θ) is the unique simple character in C(Λ′,m′, β′) such
that B×

β ∩ I eG(θ, θ′) 6= ∅. Moreover B×
β ⊂ I eG(θ, θ′).

Proof Let θ ∈ C(Λ,m, β) be as above and suppose θ′ ∈ C(Λ′,m′, β′) is such that b ∈ I eG(θ, θ′)∩B×
β .

Then bi ∈ I eGi
(θi, θ

′
i) ∩B

×
βi

so we have θ′i = τΛi,Λ′i,βi
(θi) by the simple case. But θ′ is trivial on Nu,

Nl and hence it is clearly uniquely determined.
So we need only show the existence of such a θ′. We proceed by induction on k0(β,Λ) = −r, the
simple case being given by Lemma 2.6 (see also [6](3.6.1)). Consider τΛ,Λ′,γ(θ0)ψγ−β as a character
of Hm′

0+(β,Λ′). Then, by (2.7) and putting H = Hm0+(β,Λ′) ∩ G̃i and H ′ = Hm′
0+(β,Λ′) ∩ G̃i,

we have

τΛi,Λ′i,βi
(θi)|H′ = τΛi,Λ′i,βi

(θi|H) = τΛi,Λ′i,γi
(θ0|H)ψγi−βi

= τΛ,Λ′,γ(θ0)ψγ−β|H′ .
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Then, by Lemma 3.15, there exists θ′ ∈ C(Λ′,m′, β) such that θ′|
Hm′

0+(β,Λ′)
= τΛ,Λ′,γ(θ0)ψγ−β and

θ′| eGi
= τΛi,Λ′i,βi

(θi). Finally, we have B×
β ⊂ I eG(θ, θ′) by Lemma 2.1. �

We remark that the above result holds also without the assumption r = −k0(β,Λ), since the set
C(Λ,m, β) does not depend on r.

3.6 Semisimple characters for G

Finally, in this section we describe the situation for the group G. As for simple characters, the
semisimple characters of G will be obtained by transfer from those for G̃.
Let [Λ, n, r−, β] be a semisimple stratum in A which, in addition, is skew – that, is, β ∈ A− and
the decomposition V =

⊕l
i=1 V

i is orthogonal with respect to the form h. Let [Λ, n, r, γ] be a
semisimple stratum equivalent to [Λ, n, r, β], with γ ∈ M . Then, by [13] (1.10), we may in fact
suppose that γ ∈ M− so the stratum is skew. In particular, we see that the groups Hm+(β,Λ),
Jm+(β,Λ), Γm(β,Λ) are fixed by Σ and that Σ acts on the set C(Λ,m, β) of semisimple characters.
We put Hm+

− (β,Λ) = Hm+(β,Λ)Σ, and likewise for Jm+
− (β,Λ) and Γ−m(β,Λ). Then Glauberman’s

correspondence ([9] – see [13] §2 for this situation) gives a bijection g between the irreducible
representations of Hm+(β,Λ) fixed by Σ and the irreducible representations of Hm+

− (β,Λ). We set

C−(Λ,m, β) = {g(θ) : θ ∈ CΣ(Λ,m, β)},

where CΣ(Λ,m, β) denotes the semisimple characters fixed by Σ, and θ− ∈ C−(Λ,m, β) is called a
skew semisimple character . Note that, since θ is a character, g(θ) is in fact just the restriction of
θ.

Proposition 3.27. Let θ− ∈ C−(Λ,m, β); then IG(θ−) = Γ−m(β,Λ) ·Bβ ∩G · Γ−m(β,Λ).

Proof We have θ− = g(θ), for some θ ∈ CΣ(Λ,m, β) and, by [13] (2.5), IG(θ−) = i eG(θ)Σ. Now
the result follows from Theorem 3.22 and [12] (2.3), if we can show that, for b ∈ B×

β ,

ΓmbΓm ∩B×
β = Γm ∩B×

β · b · Γm ∩B×
β .

Note that the containment ⊃ is clear.
Put m′ = min {r − m, r

2}; then we have bm′ ⊂ mm ⊂ am′ so Γm ∩ B×
β = Um′(Λ) ∩ B×

β and
Γm ⊂ Um′(Λ). Then, by [6] (1.6.1), we have

ΓmbΓm ∩B×
β ⊂ Um′(Λ)bUm′(Λ) ∩B×

β = Um′(Λ) ∩B×
β · b · Um′(Λ) ∩B×

β

as required. �

Proposition 3.28. Let θ− ∈ C−(Λ,m−, β). Then the pairing

kθ− : (g, g′) 7→ θ[g, g′], g, g′ ∈ Jm
− (β,Λ)

induces a nondegenerate alternating bilinear form

Jm
− (β,Λ)/Hm

− (β,Λ)× Jm
− (β,Λ)/Hm

− (β,Λ) → C×.

25



Proof We have θ− = g(θ), for some θ ∈ CΣ(Λ,m−, β) and we consider the form kθ : Jm/Hm ×
Jm/Hm → C×. Now σ acts linearly on the kF -space Jm/Hm and, moreover, preserves kθ. The
result is now immediate from Proposition 3.24, since the homomorphism Jm

− ↪→ Jm induces an
isomorphism Jm

− /H
m
− ' (Jm/Hm)Σ and kθ− corresponds to the restriction of kθ to (Jm/Hm)Σ. �

Corollary 3.29. Let θ ∈ CΣ(Λ,m, β) and put θ− = g(θ) ∈ C−(Λ,m, β). Then there exists a
unique irreducible representation η− of Jm+

− (β,Λ) which contains θ−, dim η− = (Jm+
− : Hm+

− )
1
2

and IG(η−) = Γ−m · Bβ ∩ G · Γ−m. Moreover, if η is the irreducible representation of Jm+(β,Λ)
containing θ, then we have η− = g(η).

Proof The first assertions are immediate from the previous proposition and, moreover, dim η− =
(Jm+

− (β,Λ) : Hm+
− (β,Λ))

1
2 . Now the restriction η|Hm+

− (β,Λ) is a multiple of θ− so η|Jm+
− (β,Λ) is a

multiple of η−. In particular, η− = g(η). �

Remark 3.30. Let [Λ, n, r−, β] be a skew semisimple stratum in A, with associated splitting
V =

⊕l
i=1 V

i, and put Ei = F [βi] as usual; we also denote Ei,0 the fixed field of the involution in
Ei. Suppose that we have

∑l
i=1[Ei;F ] = N ; then J−(β,Λ)/J1

−(β,Λ) '
∏l

i=1N1(ki) is a product of
cyclic groups, where ki is the residue field of Ei and N1(ki) denotes the elements x ∈ ki such that
Nki/ki,0

x = 1, where ki,0 is the residue field of Ei,0. In particular, there exists an extension of η−
to a representation κ− of J−(β,Λ), and any extension takes the form κ− ⊗ χ, for χ the inflation
of a character of J−/J1

−. We have IG(κ−) ⊂ IG(η−) = J1
− · Bβ ∩ G · J1

− = J− so the induced
representation

π = Ind G
J−κ−

is irreducible and supercuspidal (since J− is compact) and (J−, κ−) is a [G, π]G-type.

In general, to obtain a supercuspidal representation we will have to extend η− to a representation
of J− and twist by the inflation of a cuspidal representation of J−/J1

−. In order to control the
intertwining of this representation (cf. [6] (5.3), [15] (SC3)), we will need the following result:

Proposition 3.31 (cf. [6] (5.1.8), [13] (4.3)). Let [Λ, n, 0, β] be a skew semisimple stratum in
A, let θ− ∈ C−(Λ, 0, β) and let η− be as in Corollary 3.29. Then, for g ∈ G, we have

dim Ig(η−, η−) =

{
1 if g ∈ J1

− ·Bβ ∩G · J1
−;

0 otherwise.

Proof As in [6] (5.1.8), the result will follow if we can show that, for y ∈ Bβ ∩ G, J1
−yJ

1
− is the

union of (J1
− : H1

−) distinct (H1
−,H

1
−)-double cosets, where (K1 : K2) denotes group index. As in

[6] (5.1.9), it is then enough to prove that (J1
− : J1

− ∩ (J1
−)y) = (H1

− : H1
− ∩ (H1

−)y).
Now we have J1

− = C(J1
−) and H1

− = C(H1
−), where C denotes the Cayley transform; also J1

− ∩
(J1

−)y = C(J1
−∩ (J1

−)y) and likewise for H1
−. Then, as in [6] (5.1.10), the result will follow if we can

show that the following sequence is exact:

0 → b−β,1 + (b−β,1)
y → J1

− ∩ (J1
−)y aβ→ (H1

−)∗ ∩ ((H1
−)∗)y s→ b−β,0 + (b−β,0)

y → 0,

where s is a tame corestriction on A given by

s

 l∑
i,j=1

aij

 =
l∑

i=1

si(aii), aij ∈ Aij ,
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for si a tame corestriction on Aii relative to Ei/F which commutes with the involution, 1 ≤ i ≤ l.
Exactness comes from Lemma 3.17 at all places except the final one, where it follows from the
simple case [7] (6.3) Lemma. �

We end this section by looking at the transfer of skew semisimple characters.

Proposition 3.32. Let [Λ, n, 0, β], [Λ′, n′, 0, β] be skew semisimple strata in A and let m,m′ be such
that 0 ≤ m < k0(β,Λ) and b m′

e(Λ′|oF )c = b m
e(Λ|oF )c. Then the bijection τΛ,Λ′,β given by Proposition

3.26 commutes with σ.

Proof Given θ ∈ C(Λ,m, β) with θ| eGi
= θi ∈ C(Λi,m, βi), the transfer θ′ := τΛ,Λ′,β(θ) is the

character of Hm′+(β,Λ′) which is trivial on Nu, Nl and such that θ′| eGi
= τΛi,Λ′i,βi

(θi) so the result
follows immediately from the simple case in Proposition 2.12. �

In particular, this implies that we have a canonical bijection

τΛ,Λ′,β : C−(Λ,m, β) → C−(Λ′,m′, β)

and, for θ− ∈ C−(Λ,m, β), θ′− := τΛ,Λ′,β(θ−) is the unique simple character such that 1 ∈ IG(θ−, θ′−),
by [13] (2.5).

4 Relatively G-split strata

In this section we look at the “relatively G-split” case and construct a non-zero Jacquet module
(cf. [7] §6 and [14] §3). This will be crucial to the refinement process in §5.

4.1 Definition and intertwining

Let [Λ, n,m, β] be a skew semisimple stratum in A, with associated splitting V =
⊕l

i=1 V
i. In

this section we will assume that m is an integer. We have Bβ the A-centralizer of β and let Bi be
the Aii-centralizer of βi, 1 ≤ i ≤ l, so that Bβ =

⊕l
i=1Bi. We put Ei = F [βi] and oi = oEi , for

1 ≤ i ≤ l, and let si be a tame corestriction on Aii relative to Ei/F . We suppose we are given a
decomposition of E1-vector spaces V 1 = V 1

0 ⊥ (V 1
1 ⊕ V 1

−1), where V 1
1 and V 1

−1 are totally isotropic
with respect to h, such that Λ1(k) =

⊕
−1≤j≤1(Λ

1(k) ∩ V 1
j ). We will write A11 =

⊕
−1≤j,k≤1A

11
jk

for the corresponding decomposition of A11.
Let bi ∈ Aii ∩ a−m, for 1 ≤ i ≤ l, where b1 =

∑
−1≤j≤1 b1,j with b1,j ∈ A11

jj . We suppose that the
derived stratum [Λ1

o1
,m,m − 1, s1(b1)] in B1 is G-split (see Definition 1.3) by the decomposition

V 1 = V 1
0 ⊥ (V 1

1 ⊕ V 1
−1) (cf. [14] §3.1). That is, the stratum is split by this decomposition, the

stratum [Λ1,1
o1 ,m,m− 1, s1(b1,1)] has characteristic polynomial of the form ψ(X)d and the stratum

[Λ1,−1
o1 ,m,m− 1, s1(b1,−1)] has characteristic polynomial ψ(ηX)d, where η = (−1)m/g(−1)e/g with

e = e(Λ1|o1) and g = (m, e); in particular, ψ(X) is coprime to ψ(ηX).

We now consider the decomposition

V = V 1
−1 ⊕

(
V 1

0 ⊕
l⊕

i=1

V i

)
⊕ V 1

1
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and we will abbreviate V 1
−1 = V−1, V 1

1 = V1 and V 1
0 ⊕

⊕l
i=1 V

i = V0. We will consider the
block picture A =

⊕
−1≤j,k≤1Ajk with respect to this splitting and we put Au =

⊕
−1≤j<k≤1Ajk,

Al =
⊕

−1≤k<j≤1Ajk, as usual. We also put M =
⊕

−1≤j≤1Ajj , M = M×, Nu = 1 + Au,
Nl = 1 + Al, Pu = MNu, Pl = MNl, and we write b0 = b1,0 +

∑l
i=2 bi ∈ A0,0. We will also retain

the block notation Aii = EndFV
i, for 1 ≤ i ≤ l, alongside this new block decomposition.

We look at the lattice

k =

Hm b1 + mm−1 b1 + mm−1

Hm Hm b1 + mm−1

Hm Hm Hm

 ,

where b1 = bβ,1 = a1 ∩Bβ and mm−1 = mm−1(β,Λ). Since Γm−1 = 1 + mm−1 and 1 + b1 normalize
Hm(β,Λ), K = 1 + k is a compact open subgroup of G̃ which is, moreover, fixed by Σ.

Proposition 4.1 (cf. [7] (6.1)). Let θ ∈ CΣ(Λ,m − 1, β). There exists a unique character ϑ of
K which extends θ and is trivial on K ∩Nu. Moreover, ϑ is fixed by σ.

Proof Uniqueness is clear, while existence is because K ∩Nu normalizes θ. The final statement
is clear, since K ∩Nu is fixed by σ. �

Note that, if 0 ≤ k ≤ m − 1 and θ̃ ∈ C(Λ, k, β) extends θ, then θ̃ is trivial on Hk+1 ∩Nu (and on
Hk+1 ∩Nl), by [7] (5.2) Proposition and Lemma 3.15(i), so ϑ and θ̃ agree on Hk+1 ∩K.

We now consider the character ξ = ϑψb of the group K, where b = b−1,1 + b0 + b1,1 and ψb denotes
the extension of ψb|Hm to K which is trivial on K ∩Nu.

Theorem 4.2 (cf. [7] (6.2)). Suppose g ∈ Nu intertwines the character ξ of K. Then g ∈ K∩Nu.

Before giving the proof of this theorem, we observe the following easy consequence:

Corollary 4.3. Let ξ− be the restriction of ξ to the group K− = K∩G. Suppose g ∈ N−
u intertwines

ξ−; then g ∈ K− ∩N−
u .

Proof We have IG(ξ−) = I eG(ξ) ∩G, by [13] (2.5), so the result is immediate. �

Now we will prove Theorem 4.2 so we suppose g ∈ I eG(ξ|K). Then g certainly intertwines ξ|Hm+1 =
θ|Hm+1 ∈ C(Λ,m, β) so we have g ∈ ΓmB

×
β Γm. We will first show

g ∈ ΓMΓ, (4.4)

where Γ = 1 + b1 + mm−1. Note also that Γ normalizes the pair (Hm, ξ|Hm).

We write g = (1 + x)t(1 + y)−1, with x, y ∈ mm, and t ∈ B×
β . By Lemma 3.21, we have

θ1+x = θψ(1+x)−1β(1+x)−β

as characters of Hm(β,Λ). But

(1 + x)−1β(1 + x)− β = aβ(x)− (1 + x)−1xaβ(x)
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and (1 + x)−1xaβ(x) ∈ (Hm+1)∗, by Lemma 3.17 and Lemmas 3.10, 3.11, so we have

θ1+x = θψaβ(x).

Now t intertwines the restrictions of ξ1+x, ξ1+y to Hm(β,Λ) so it intertwines their restrictions to
Hm(β,Λ) ∩B×

β . Now ψaβ(x), ψaβ(y) restrict trivially here, whilst (1 + x), (1 + y) fix the characters
ψb, so t intertwines θψb on Hm(β,Λ) ∩B×

β . But θ ∈ C(Λ,m− 1, β) so θ|Hm(β,Λ)∩B×
β

is intertwined

by all of B×
β , by Theorem 3.22, and t intertwines the character ψb|Hm(β,Λ)∩B×

β
.

We write t =
∑l

i=1 ti, with ti ∈ B×
i , for 1 ≤ i ≤ l, and look at the character ψb|Hm(β,Λ)∩B×

1
= ψb1 .

There exists a character ψB1 of B1, of the form ψE1 ◦ trB1/E1
, such that ψa|B1 = ψB1,s1(a) for any

a ∈ A11. In particular, ψb1 |B1 = ψB1,s1(b1) so [12] (4.14) shows that

t1 ∈ U1(Λ1
o1

) ·B×
1 ∩M · U1(Λ1

o1
).

Then, since B×
i ⊂M for 2 ≤ i ≤ l, we have

t ∈ (1 + b1) ·B×
β ∩M · (1 + b1).

As (1+b1) normalizes Γm, we may absorb these factors into Γ and assume g = (1+x)t(1+ y) with
x, y ∈ mm and t ∈ b×β ∩M . We write 1 + x = (1 + xl)(1 + xm)(1 + xu), with xl ∈ Al, xm ∈ M,
xu ∈ Au, and, likewise, 1 + y = (1 + yu)(1 + ym)(1 + yl).

We now consider the restriction of ξ to the group

Kl = 1 + kl, kl =

Hm+1 Hm Hm

Hm+1 Hm+1 Hm

Hm+1 Hm+1 Hm+1

 .

Then, as in the proof of Theorem 3.22, we find that we may assume xl, yl ∈ mm−1. (Note that the
projections 1i : V → Vi lie in Bβ so the exact sequences of Lemma 3.17 are still exact.) Repeating
with Ku, again as in the proof of Theorem 3.22, we get xu, yu ∈ mm−1 also so, absorbing these
terms into Γ, we get g ∈ Γm ∩M ·B×

β ∩M · Γm ∩M ⊂M as required.

So we have proved (4.4). Now let g ∈ Nu intertwine ξ; then g = γmγ′, for some m ∈M , γ, γ′ ∈ Γ.
The group Γ has Iwahori decomposition Γ = Γ ∩Nl · Γ ∩M · Γ ∩Nu so we can write γ = γuγMγl,
γ′ = γ′lγ

′
Mγ

′
u. Thus, for a certain m′ ∈ M , we have γ−1

u gγ′−1
u = γlm

′γ′l ∈ Nu ∩ Pl = {1}. Hence
g = γuγ

′
u ∈ Γ ∩Nu = K ∩Nu as required. �

4.2 Covers

For −1 ≤ i ≤ 1, we put Gi = G ∩AutF (V i) and suppose that we are given:

(i) a subgroupK1 of U(Λ1) containing and normalizingHm
− ∩G1 and an irreducible representation

ρ1 of K1 whose restriction to K1 ∩K− is a multiple of ξ−;

(ii) a subgroup K−
0 of P (Λ0) containing and normalizing Hm

− ∩ G0 and an irreducible represen-
tation ρ−0 of K−

0 whose restriction to K−
0 ∩K− is a multiple of ξ−.

We think of K1 embedded in G as


kσ

1
k

 : k ∈ K1

 .
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Proposition 4.5 (cf. [7] (6.6)). (i) The set K̃− = (K1 ×K−
0 ).K− is a group.

(ii) There is a unique irreducible representation ρ− of K̃− which is trivial on K−∩N−
u , K−∩N−

l

and whose restriction to K1 ×K−
0 is ρ1 ⊗ ρ−0 .

(iii) The pair (K̃−, ρ−) is a G-cover of (K̃− ∩M,ρ1 ⊗ ρ−0 ).

Proof This is identical to [7] (6.6), except we take the element ζ to be

ζ =

$F

1
$σ

F

 .

�

4.3 Jacquet modules

Proposition 4.6. Let (π,V) be a smooth representation of G which contains θ−ψ−b on Hm
− . Then

π contains the character ξ− of K− also.

Proof We first suppose m ≥ 2 and put, for q ∈ Z,

kq =


Hm + Hq+1 ∩Au for bm+1

2 c ≤ q ≤ m− 1;
Hm + mm−(q+1) ∩Au for 0 ≤ q ≤ bm

2 c − 1;
Hm + (b1 + mm−1) ∩Au for q = −1.

Then we put Kq = 1 + kq and K−
q = Kq ∩G. Note, in particular, that K−1 = K.

We also put

Ξ−
q =


Γ−q ∩Nl for bm+1

2 c ≤ q ≤ m− 1;
Hm
− ∩Nl for 1 ≤ q ≤ bm

2 c − 1;
(1 + bm−1) ∩N−

l for q = 0.

Lemma 4.7. For bm+1
2 c < q ≤ m− 1 or 0 ≤ q ≤ bm

2 c − 1, Ξ−
q acts transitively on the characters

of K−
q−1 which restrict to ξ− on K−

q .

Proof We treat first the case bm+1
2 c < q ≤ m − 1. The quotient K−

q−1/K
−
q is abelian so any

character of K−
q−1 which restricts to ξ− on K−

q is given by ξ−ψ−c , for some c ∈ k∗q,−/k
∗
q−1,−, that is,

in (Hq+1)∗ ∩A−
l /(H

q)∗ ∩A−
l .

We have mqH
q ⊂ Hm+1, by Proposition 2.12, so (ψ−b )C(x) = ψ−b , for x ∈ mq∩A−

l , and, for k ∈ K−
q−1,

we have [C(x), k] ∈ Hm+1
− . Let θ̃− ∈ C−(Λ, q, β) extend θ−; then, by Lemma 3.21,

θ−[C(x), k] = θ̃
C(x)
− (k)θ̃−(k−1) = ψ−

C(x)−1βC(x)−β
(k).

Now C(x)−1βC(x)− β ≡ aβ(x) (mod (Hq)∗ ∩A−
l ) so, altogether, we have

ξ
C(x)
− = ξ−ψ

−
aβ(x).

But, by Lemma 3.17, aβ(mq ∩A−
l ) = (Hq+1)∗ ∩A−

l and the result follows.
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For 1 ≤ q ≤ bm
2 c − 1, the proof is almost identical, with the roles of m and H reversed.

Suppose then that q = 0. We have K−1 = K0 · (1 + b1) ∩N−
u , with the second factor normalizing

the first and normalizing ξ− on it. Hence any character of K−1 which restricts to ξ− on K0

takes the form ξ−ψ
−
c , for ψ−c some character of (1 + b1) ∩ N−

u trivial on (1 + b2) ∩ N−
u , that is,

c ∈ b−1 ∩ A−
l /b0 ∩ A−

l . Now (1 + bm−1) ∩N−
l normalizes ξ− on K−

0 while, on (1 + b1) ∩N−
u , we

have
ξ− = ψ−b = ψ−B1,s1(b1),

where s1 is a tame corestriction on A11 relative to E1/F which commutes with the involution.
(Note that Bβ ∩ Au ⊂ B1 and, likewise Bβ ∩ Al ⊂ B1.) We put δ = s1(b1) ∈ b−−m. Then for
x ∈ bm−1 ∩A−

l , we have
(ψ−B1,δ)

C(x) = ψ−B1,δψ
−
B1,aδ(x).

Then the result follows since aδ(bm−1 ∩A−
l ) = b1 ∩A−

l as in [14] (3.4). �

Lemma 4.8. Ξ−
bm+1

2
c acts transitively on the characters of K−

bm
2
c−1 which restrict to ξ on K−

bm+1
2

c.

Proof The proof is almost identical to the first case of the previous lemma, but we must use
Lemma 3.23 in place of Lemma 3.21. �

The proof of Proposition 4.6 in the case m ≥ 2 is now immediate since, by successively conjugating
by a suitable element of Ξ−

q , we see that π contains ξ−|K−
q−1 (where q − 1 should be replaced by

bm
2 c − 1 in the case q = bm+1

2 c). The proof in the case m = 1 is similar but easier, requiring only
Lemma 4.8. �

Theorem 4.9. Let (π,V) be a smooth representation of G containing the character θ−ψ−b of Hm
− .

Then π is not supercuspidal.

Proof By Proposition 4.6, (π,V) contains the character ξ−|K− and, by Proposition 4.5, the pair
(K−, ξ−) is a G-cover of (K−∩M, ξ−|K−∩M). Then, by [8] (7.9), the ξ−|K−∩M -isotypic component

V
ξ−|K−∩M

u of the Jacquet module of V with respect to Pu ∩G is non-zero. �

5 Supercuspidal Representations

This section is devoted to the proof of our main theorem, that every positive-level irreducible
supercuspidal representation of G contains a skew semisimple character. The proof is very much
along the lines of [6] (8.1.5), though there are added geometric complications. In particular, our
Lemma 5.4 (whose proof is given in §5.2) would be relatively straightforward in the case of G̃.

5.1 The main theorem

Theorem 5.1 (cf. [6] (8.1)). Let π be a positive-level irreducible supercuspidal representation
of G. Then π contains a skew semisimple character θ− ∈ C−(Λ, 0, β), for some skew semisimple
stratum [Λ, n, 0, β].
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Proof We know from [14] §2.3 that π contains some skew semisimple stratum [Λ, n, n − 1, β] in
A. We consider pairs ([Λ, n,m, β], θ−) consisting of a skew semisimple stratum with m ∈ Z and a
semisimple character θ− ∈ C−(Λ,m, β) such that π|Hm+1

− (β,Λ) contains θ−.
If m = 0 then we are done, so assume m ≥ 1 for all such pairs. Then π contains some irreducible
representation ϑ of Hm

− (β,Λ) such that ϑ|Hm+
− (β,Λ) contains θ−. However, θ− extends to an

abelian character θ̃− ∈ C−(Λ,m− 1, β) of Hm
− (β,Λ) and the quotient Hm

− /H
m+
− is abelian. Hence

ϑ is one-dimensional and we may write

ϑ = θ̃−ψ
−
c |Hm

− (β,Λ) for some c ∈ a−−m.

Lemma 5.2 (cf. [6] (8.1.12)). Let x ∈ m−
m. Then, C(x) normalizes Hm

− (β,Λ) and

ϑC(x) = ϑψ−aβ(x).

Proof Since m < r, we have mm ⊂ α1; as c ∈ am, we surely have ψC(x)
c = ψc on Hm. On the

other hand, by Lemma 3.21, we have

θ̃
C(x)
− = θ̃−ψ

−
C(x)−1βC(x)−β

;

a simple computation now shows that

C(x)−1βC(x)− β ≡ aβ(x) (mod (Hm+)∗),

and the lemma follows. �

We return to the proof of Theorem 5.1. Let V =
⊕l

i=1 V
i be the decomposition associated to the

skew semisimple stratum [Λ, n,m, β]. For i 6= j, we have cij ∈ a−−m ∩ Aij . Hence, by (3.8), there
exists x ∈ n−m ∩ a−r−m such that cij = −aβ(x)ij , for i 6= j. By Lemma 5.2, ϑC(x) = θ̃−ψ

−
c′ ; this

character certainly occurs in π and we have s(c′) = s(c) and c′ij = 0, for i 6= j. Hence we may, and
will, assume that c ∈M.
Put Ei = F [βi], oi = oEi , and let si be a tame corestriction on Aii relative to Ei/F . We consider
the derived stratum

l⊕
i=1

[Λ(i)
oi
,m,m− 1, si(ci)].

We will write E = ⊕l
i=1Ei, oE = ⊕l

i=1oi and we will abuse notation by calling an oF -lattice sequence
Λ′ in V an oE-lattice sequence if it is of the form Λ′ = ⊕l

i=1Λ
′(i), with Λ′(i) an oi-lattice sequence

in V i. We also let s : M→ B be the map s = ⊕l
i=1si and we will call it a tame corestriction on A

relative to E/F . Altogether, we will write the derived stratum above as

[ΛoE ,m,m− 1, s(c)]. (5.3)

The following lemma, whose proof we defer to §5.2 will be crucial.

Lemma 5.4. Let θ̃ ∈ C−(Λ,m − 1, β) and c ∈ a−−m ∩M be such that π contains ϑ := θ̃−ψ
−
c on

Hm
− (β,Λ). Suppose we have an oE-lattice sequence Λ′, an integer m′ and α′ ∈ b−−m such that

s(c) + b−m+ ⊂ α′ + b′−m′+

Then there exist θ̃′ ∈ C−(Λ′,m′ − 1, β) and c′ ∈ a′−−m′ ∩M such that s(c′) = α′ and π contains the
character ϑ′ := θ′−ψ

−
c′ of Hm′

− (β,Λ′). Moreover, if α′ = 0 then we may take c′ = 0.
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Returning to the proof of Theorem 5.1, we first show that we may assume that the derived stratum in
(5.3) is fundamental, in the sense that at least one of the strata [Λ(i)

oi
,m,m−1, si(ci)] is fundamental.

Proposition 5.5. Let [Λ, n,m, β] be a semisimple skew stratum, θ̃− ∈ C−(Λ,m − 1, β) and c ∈
a−−m ∩M be such that π contains θ̃−ψ−c . Then there exist [Λ′, n′,m′, β], a skew semisimple oE-
stratum, θ̃′− ∈ C−(Λ′,m′ − 1, β) and c ∈ a′−m′

− ∩ M such that m′/e(Λ′|oF ) ≤ m/e(Λ|oF ) and
π contains θ̃′−ψ

−
c and the derived stratum [Λ′

oE
,m′,m′ − 1, s(c)] is fundamental. In particular,

e′/(m′, e′) ≤ N , where e′ = e(Λ′|oF ).

Proof We first observe that the final assertion follows from the fact that one [Λ′(i)
oi
,m′,m′−1, si(ci)]

is fundamental (cf. [14] (2.11)).

As above, π contains the character ϑ = θ̃−ψ
−
c , where θ̃− ∈ C−(Λ,m−1, β) extends θ− and c ∈ a−−m.

If [ΛoE ,m,m − 1, s(c)] is fundamental, we are done so we assume it is not. Then, by [14] (4.3),
for i = 1, . . . , l, there exist a self-dual oi-lattice sequence Λ′(i)

oi
, with e(Λ′(i)|oi) ≤ 2(2dim EiV

i), and
m′

i ∈ Z such that

si(ci) + bii
−m+ ⊂ b′ii−m′

i
,

m′
i/e(Λ

′(i)|oi) < m/e(Λ(i)|oi).

[The extra factor 2 compared to loc. cit. in the bound for the period of Λ′(i) comes from the
assumption that “d = 1” for the duality on on all self-dual lattice sequences (see §1.2). In any case,
the period e(Λ′(i)|oF ) ≤ 4dim EiV

ie(Ei/F ) ≤ 4N .]

We put Λ′ = ⊕l
i=1Λ

′(i), e′ = e(Λ′|oF ), n′ = −νΛ′(β) and m′ = e′ sup{m′
i/e(Λ

′(i)|oF )} so that
[Λ′, n′,m′, β] is a skew semisimple oE-stratum. By Lemma 5.4, there exists θ′− ∈ C−(Λ′,m′, β)
contained in π, and we also have m′/e′ < m/e. As above, there now exist θ̃′− ∈ C−(Λ′,m′ − 1, β)
and c ∈ a′−m′

− ∩M such that π contains θ̃′−ψ
−
c .

The result now follows by iterating the above process, which will end either with m′ = 0, contra-
dicting the assumption on π, or with a fundamental derived stratum as required. Note that the
iteration will terminate since the rationalm/e is strictly decreasing each time, while its denominator
is bounded by, for example, (4N)!. �

Hence we may take our pair ([Λ, n,m, β], θ−), with θ− contained in π, such that π contains ϑ =
θ̃−ψ

−
c , for some c ∈ a−−m, with [ΛoE ,m,m − 1, s(c)] fundamental. Moreover, since e/(m, e) is

bounded, where e = e(Λ|oF ), we may take such a pair with m/e minimal.

Now suppose that our fundamental stratum [ΛoE ,m,m − 1, s(c)] is non-G-split, in the sense that
none of the [Λoi ,m,m − 1, si(ci)] are G-split. Then, by [14] (4.4), for i = 1, . . . , l, there exists a
semisimple skew stratum [Λ′(i)

oi
,m′

i,m
′
i − 1, α′i] in Bii such that

si(ci) + bii
−m+ ⊂ α′i + b′ii−m′

i+
,

m/e(Λ(i)|oi) = m′
i/e(Λ

′(i)|oi),
Λ′(i) is a refinement of Λ(i).

As above, we put Λ′ = ⊕l
i=1Λ

′(i), e′ = e(Λ′|oF ) and m′ = m′
ie
′/e(Λ′(i)|oF ). Note that the final two

conditions imply that a′−m′ ∩M ⊂ a−m ∩M, so that α′ ∈ b′−m′ ⊂ b−m.
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Now we may apply Lemma 5.4 once again to conclude that there exist θ̃′ ∈ C−(Λ′,m′ − 1, β) and
c′ ∈ a′−m′ such that s(c′) = α′ and π contains the character ϑ′ := θ′−ψ

−
c′ of Hm′

− (β,Λ′). However,
[Λ′, n′,m′ − 1, β + c′] is equivalent to a semisimple stratum [Λ′, n′,m′ − 1, β′], by Lemma 3.5, and
θ̃′−ψ

−
c′ ∈ C−(Λ′,m′− 1, β′). But we have (m′− 1)/e(Λ′|oF ) < m/e(Λ|oF ) and (using Proposition 5.5

if necessary to obtain a fundamental derived stratum) this contradicts the minimality of m/e.

Hence we must have that the derived stratum [ΛoE ,m,m− 1, s(c)] is G-split; we suppose, without
loss of generality, that [Λ′

o1
,m′,m′ − 1, s1(c1)] is G-split. As in [14] §2.1, this gives rise to a

decomposition of E1-vector spaces V 1 = V 1
0 ⊥ (V 1

1 ⊕ V 1
−1), where V 1

1 and V 1
−1 are totally isotropic

with respect to h, such that Λ(k) = ⊕−1≤j≤1(Λ(k) ∩ V 1
j ) and s(c)V 1

j ⊂ V 1
j , for j = −1, 0, 1. Note,

however, that we do not necessarily have c1V 1
j ⊂ V 1

j , for j = −1, 0, 1. We show that we may in
fact assume that this is the case.
For j, k ∈ {−1, 0, 1}, we write A(1)

jk for the space Hom F (V 1
k , V

1
j ), and, for a ∈ A(11), we will write

a =
∑

j,k ajk, with ajk ∈ A
(1)
jk . For j 6= k we have s1(c1)jk = 0 so (c1)jk ∈ a−−m ∩ aβ(A(1)

jk ). In

particular, by (3.8), there exists x ∈ m
(11)−
m such that (c1)jk = −aβ(x)jk. But, by Lemma 5.2, C(x)

normalizes Hm
− and we have ϑC(x) = θ̃−ψ

−
c′ , where c′ = c+ aβ(x). This character certainly occurs

in π and we have s(c′) = s(c) and c′V 1
j ⊂ V 1

j , for j = −1, 0, 1, as required.
We are now in the situation of §4 and, by Theorem 4.9, π is not supercuspidal, a contradiction.
This completes the proof of Theorem 5.1. �

Remark 5.6. We have shown that any positive-level irreducible supercuspidal representation π
of G contains a skew semisimple character θ− ∈ C−(Λ, 0, β). Then π certainly also contains the
Heisenberg representation η− of J1

−(β,Λ).

5.2 Proof of Lemma 5.4

We are now left to prove Lemma 5.4, for which we need some preliminary lemmas. All notation
will be as in the previous section, so that [Λ, n,m, β] is a skew semisimple stratum with associated
decomposition V =

⊕l
i=1 V

i and π is an irreducible positive-level supercuspidal representation of
G containing ϑ = θ̃−ψ

−
c , for some θ̃− ∈ C−(Λ,m− 1, β) and c ∈ a−−m ∩M. For t > 0, we put

kt
1(Λ) =

⊕
i6=j

a
ij
t
2
+
⊕
⊕

i

aii
t , Kt

1(Λ) = 1 + kt
1(Λ),

kt
2(Λ) =

⊕
i6=j

a
ij
t
2

⊕
⊕

i

aii
t , Kt

2(Λ) = 1 + kt
2(Λ),

and Kt
i,− = Kt

i,−(Λ) = Kt
i (Λ) ∩ G, for i = 1, 2. We also put Ht

i = H(β,Λ) ∩Kt
i , for i = 1, 2, and

define J t
i , H

t
i,− and J t

i,− similarly. We observe that we have Hm
1 = Hm

2 , and similarly for J .

Let ϑ = θ̃−ψ
−
c , as in the previous section, and let ϑ̃ denote the extension of ϑ to Hm

1,− which is
trivial on the unipotent parts – that is, ϑ̃ = θ̃−ψ

−
c , where θ̃− is now extended to a simple character

(also denoted θ̃−) of H
m
2

+.

Lemma 5.7. π contains ϑ̃.

Proof We show that π contains the character θ̃−ψ−c′ of H
m
2

+
− , for some c′ ∈ a−−m ∩M such that

c ≡ c′ (mod (Hm)∗). Then certainly ϑ̃ = θ̃−ψ
−
c′ |H

m
1,− is contained in π.
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Since H
m
2

+
− /Hm

− is abelian and ϑ extends to a character θ̃−ψ−c of H
m
2

+
− , π certainly contains some

character of H
m
2

+
− extending ϑ, of the form

ϑ1 = θ̃−ψ
−
c1 , for some c1 ∈ a−m with c1 ≡ c (mod (Hm)∗)

Now, since c ∈ M, for i 6= j we have (c1)ij ∈ (Hm)∗. By Lemma 3.17, there exists x ∈ mm−1 such

that aβ(x)ij = −(c1)ij , for i 6= j. By Corollary 3.20, C(x) normalizes H
m
2

+
− and we have

ϑ2 := ϑ
C(x)
1 = θ̃−ψ

−
c2 , where c2 = c1 + C(x)−1(β + c1)C(x)− (β + c1)

A simple calculation shows that c2 ≡ c1 + aβ(x) (mod (Hm−1)∗) so (c2)ij ∈ (Hm−1)∗, for i 6= j.

Since ϑ2 certainly occurs in π, we can iterate this process until, with m′ = bm+1
2 c, we get ϑm′ =

θ̃−ψ
−
cm′ in π, with (cm′)ij ∈ (H

m
2

+)∗, for i 6= j. Now, putting c′ =
∑l

i=1(cm′)ii ∈ M, we see that π

contains ϑm′ = θ̃−ψ
−
c′ , as required. �

Proposition 5.8 (cf. [6] (8.1.7)). Let G be an open subgroup of Km
2,− and ρ an irreducible

representation of G such that ρ|Hm
1,−(β,Λ) ∩G contains ϑ̃|Hm

1,−(β,Λ) ∩G. Then π|G contains ρ.

Proof We know, from Lemma 5.7, that π contains ϑ̃. Now the proof is identical to that of [6]
(8.1.7), given the following lemma:

Lemma 5.9 (cf. [6] (8.1.8)). There is a unique irreducible representation τ of Km
− such that

τ |Hm
1,−(β,Λ) contains ϑ̃.

Proof By Corollary 3.12(iii), the commutator [Jm
1 , J

m
1 ] ⊂ Hm+, so the pairing

keϑ : Jm
1,−/H

m
1,− × Jm

1,−/H
m
1,− → C×,

keϑ(x, y) = ϑ̃[x, y],

depends only on ϑ̃|Hm+
− = θ−. By Proposition 3.28, keθ− on J

m
2

+/H
m
2

+ is nondegenerate and

since, from the simple case, keθ− is nondegenerate on J
m
2

+∩M/H
m
2

+∩M , it follows that keϑ is also

nondegenerate. Hence there is a unique irreducible representation µ of Jm
1,− containing ϑ̃.

The result now follows once we have shown that the intertwining of µ in Km
2,− is contained in Jm

1,−,

for then τ := Ind
Km

2,−
Jm
1,−

µ is irreducible and is as required.

Since the restriction of µ to Hm+
2,− is actually a multiple of θ̃−|Hm+

2,− , it is enough to show that
the intertwining of θ̃−|Hm+

2,− in Km
2,− is contained in Jm

1,− = Jm
2,−. Moreover, using Glauberman’s

correspondence as usual, we have θ̃− = g(θ̃), for some θ̃ ∈ CΣ(Λ, m
2 , β) and it is enough to show

that the intertwining in Km
2 of the character θ̃|Hm+

2 is contained in J .

So let g ∈ Km
2 intertwine θ̃|Hm+

2 ; then certainly g intertwines the simple character θ̃|Hm+ so, by
Theorem 3.22, we have g ∈ ΓmB

×
β Γm ∩Km

2 . Since ΓmK
m
2 Γm ∩B×

β ⊂ J normalizes θ̃, we need only
consider g ∈ Γm ∩ Km

2 . We write g = 1 + x, with x ∈ mm, and use the Iwahori decomposition
g = lgmgug, with lg ∈ Nl, mg ∈ M , ug ∈ Nu. We also write lg = 1 + xl, mg = 1 + xm and
ug = 1 + xu, with xl ∈ mm ∩Al, xm ∈ mm ∩M and xu ∈ mm ∩Au.
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We proceed now in a very similar way to the proofs of Theorems 3.22 and 4.2. Set

kl = Hm+ + H
m
2

+ ∩Au, Kl = 1 + kl.

g certainly intertwines θ̃ on Kl so, by Corollary 3.20, we have

g−1(β + k∗l )g ∩ (β + k∗l ) 6= ∅.

Now aβ(xm) and aβ(xu) ∈ k∗l , by Lemma 3.17 so we see that this implies aβ(xl) ∈ k∗l also. This is
all really happening in Al, where k∗l ∩ Al = (H

m
2

+)∗ ∩ Al so, again by Lemma 3.17, we find that
there exists yl ∈ mm

2
such that aβ(yl) = α(xl). Then, by injectivity of aβ on Al, we see that xl = yl

so that gl ∈ Γm
2
. But m

2 < r
2 so Γm

2
⊂ J and gl normalizes θ̃.

Hence we may assume g = gmgu and, repeating with ku = Hm+ +H
m
2

+∩Al, we see we may assume
g ∈ Γm ∩M . Now the result follows from the simple case in the proof of [6] (8.1.8). �

This also completes the proof of Proposition 5.8. �

Now we are in a position to prove Lemma 5.4 with the additional hypothesis:

(H) Um′
(Λ′) ⊂ Km

2 (Λ)

From the simple case (see [6] §1.3), we may choose c′ ∈ a′−−m′ ∩a−−m∩M such that s(c′) = α′. (Note
that we may take c′ = 0 if α′ = 0). Put δ = c′ − c; then, since s(c) + b−m+ ⊂ s(c′) + b′−m′+, we
have

δ ∈
(
a′−1−m′ + aβ(A)

)
∩ a−−m ∩M = a′−1−m′ ∩ a−−m ∩M+ aβ(A) ∩ a−−m ∩M,

where the equality of lattices is from the simple case [6] (8.1.13). Then, again by the simple case
[6] (1.4.10), there exists x ∈ nm ∩ a−r−m such that

δ − aβ(x) ∈ a′−1−m′ ∩ a−−m ∩M.

C(x) normalizes Hm
− (β,Λ) and ϑC(x) = ϑψ−aβ(x), by Lemma 5.2. Now, from the transfer property,

there exists θ′− ∈ C−(Λ′,m′ − 1, β) such that θ− and θ′− agree where they are both defined. Then,
on Hm

− (β,Λ) ∩Hm′
− (β,Λ′), we have

ϑC(x) = θ−ψ
−
c ψδ = θ′−ψ

−
c′ .

Moreover, since C(x) ∈ M , ϑ̃C(x) and θ′−ψ
−
c′ are trivial on the unipotent parts Nu and Nl so that

ϑ̃C(x) and θ′−ψ
−
c′ agree where they are both defined. Finally, since Hm′

(β,Λ′) ⊂ Um′
(Λ′) which, by

hypothesis (H), is included in Km
2 (Λ), by Proposition 5.8 we have that π contains ϑ′ := θ′−ψ

−
c′ , as

required.

For the general case we need some additional technical lemmas, which use the description of the
building in terms of lattice functions from [2]. We refer the reader to op. cit. §§0–7 for more
details. The idea is that, if (H) is not satisfied, we can pass more gradually from Λ to Λ′, via some
intermediate sequences.
For Λ, Λ′ two lattice sequences, there exists a common splitting – that is, an F -basis B of V which
splits them – which we fix. Choosing such a basis is the same thing as choosing an apartment in
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the (extended) affine building I1(G̃, F ) of G̃. Indeed, by [2] Propositions 1.4, 2.4, there is a (unique
upto translation) G-set isomorphism between I1(G̃, F ) and the set of lattice functions on V , of
which, by op. cit. §7, the lattice sequences are the subset of “rational points” (i.e. barycentres of
vertices with rational weights). By transferring the structure from the building, we then have an
affine structure on the set of lattice sequences.

The choice of a basis of V (or apartment in I1(G̃, F )) gives us a set of roots {αij}, (1 ≤ i, j ≤ N ,
i 6= j) by αij(diag(u1, ..., uN )) = uju

−1
i . We also set αii to be the “zero root”, for each i. Then,

if x ∈ I1(G̃, F ) corresponds to Λ, [2] Corollaries 4.5, 4.6 say that, for r ∈ R, ar(Λ) is the set of
matrices (yij) ∈M(N,F ) ' A satisfying

yij ∈ p
d( r

e
−αij(x))e

F , i, j = 1...N, (5.10)

where e = e(Λ). This does not depend on the choice of the identification between I1(G̃, F ) and
the set of lattice functions.

Lemma 5.11. Let [Λ,m,m− 1, b], [Λ′,m′,m′ − 1, b′] be strata in A and put e = e(Λ), e′ = e(Λ′).
Suppose that

b+ a−m+(Λ) ⊂ b′ + a−m′+(Λ′), b′ ∈ a−m(Λ).

Let t be a rational number and put

Λt = (1− t)Λ + tΛ′, et = e(Λ), mt = et

(
(1− t)

m

e
+ t

m′

e′

)
.

Then b, b′ ∈ a−mt(Λt), for all 0 ≤ t ≤ 1, and, for 0 ≤ s ≤ t ≤ 1 rational numbers,

a−ms+(Λs) ⊂ a−mt+(Λt)

Note that, in this lemma, we are just looking at the line segment [Λ,Λ′] in the building.

Proof For r ∈ R, we abbreviate ar = ar(Λ) and a′r = ar(Λ′). We note that, since b′ ∈ a−m∩a′−m′ ,
the same is also true for b and a−m+ ⊂ a′−m′+.

We let x, x′ be the points in the building corresponding to Λ,Λ′ respectively and, for 0 ≤ t ≤ 1, let
xt be the point corresponding to Λt. We also put at

ij = αij(xt), for 1 ≤ i, j ≤ N and 0 ≤ t ≤ 1,
and we will use the description (5.10).

Since b ∈ a−m ∩ a′−m′ , we have, for 1 ≤ i, j ≤ N ,

vF (bij) ≥ −m
e − a0

ij , vF (bij) ≥ −m′

e′ − a1
ij .

But then vF (bij) ≥ (1− t)(−m
e − a0

ij) + t(−m′

e′ − a1
ij) = −mt

et
− at

ij . Since vF (bij) is an integer, this
means that b ∈ a−mt(Λt), as required. The same is true for b′.

For the last assertion, we observe that, since mt is an integer and every at
ij can be written as a

fraction with denominator et, a−mt+(Λt) is the set of matrices (yij) ∈M(N,F ) ' A satisfying

yij ∈ p

“
−mt

et
−at

ij

”
+

F , i, j = 1...N.
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Since a−m+ ⊂ a′−m′+, we have (
−m

e − a0
ij

)
+ ≥

(
−m′

e′ − a1
ij

)
+

But we certainly have that (−mt
et
− at

ij) lies in the interval whose endpoints are (−m
e − a0

ij) and
(−m′

e′ − a1
ij), and the result follows easily. �

Now, if x, x′ are points in the building corresponding to Λ,Λ′ respectively, we put

|Λ− Λ′| := max 1≤i,j≤N |αij(x)− αij(x′)|.

Again, this does not depend on the choice of the identification between I1(G̃, F ) and the set of
lattice functions.

Lemma 5.12. Let k > 0. Then there exists δ > 0 such that, for all lattice sequences Λ,Λ′ split by
B with |Λ− Λ′| < δ, we have ake(Λ) ⊂ a ke′

2
+
(Λ′), where e = e(Λ) and e′ = e(Λ′).

Proof We just take δ = k
2 and the result is clear from (5.10). �

We can now complete the proof of Lemma 5.4 in the general case (i.e. without the hypothesis (H)).
We put α = s(c), k = min {m

e ,
m′

e′ } and choose δ as in Lemma 5.12. Let q be an integer greater
than 1

δ |Λ−Λ′| and, for each integer t with 0 ≤ t ≤ q, let Λt be the lattice sequence (1− t
q )Λ + t

qΛ′.
(This was denoted Λt/q in Lemma 5.11.). Note that each Λt is an oE-lattice sequence, since Λ and
Λ′ are. By Lemma 5.11 applied to these oE-lattice sequences, we have that, for 0 ≤ t < q,

(i) α ∈ b−−mt
(Λt);

(ii) b−mt+(Λt) ⊂ b−mt+1+(Λt+1).

Moreover, by Lemma 5.12, we also have

(iii) Umt+1(Λt+1) ⊂ U
mt
2

+(Λt).

Taking the dual of (ii), we see that bmt+1(Λt+1) ⊂ bmt(Λt). Now, by choosing a common “gen-
eralized (W,E)-decomposition” for Λt, Λt+1, we see (as in [6] top of page 272) that we also have
amt+1(Λt+1) ∩M ⊂ amt(Λt) ∩M. In particular, together with (iii) this implies

Umt+1(Λt+1) ⊂ Kmt
2 (Λt)

The result now follows by repeated application of the case where (H) is satisfied. �
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