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1 IntroductionA common feature of many �nancial time series, such as returns on exchange ratesand stock market indices, is that irregular data points tend to cluster. Large (small)absolute realizations typically are followed by large (small) realizations of either sign.Therefore, such clusters can be viewed as corresponding to periods with high (low)volatility. Given that volatility, as a measure of risk, is a dominant element in many�nancial analyses, it seems important to try to capture the behavior of volatility inan econometric time series model. The autoregressive conditional heteroskedasticity(GARCH) and generalized ARCH (GARCH) models, introduced by Engle (1982)and Bollerslev (1986), respectively, are by now the most widely used models for thispurpose, see Bollerslev et al. (1992), Bera and Higgins (1993), and Bollerslev et al.(1994) for recent surveys.The GARCH model can describe the excess kurtosis and the positive and slowlydecaying autocorrelations in the squared observations, which are characteristic prop-erties of many �nancial time series. However, Ter�asvirta (1996) shows that theGARCH model with normal conditional errors cannot capture these stylized factscompletely. In particular, the excess kurtosis cannot be completely accomodated.Ter�asvirta suggests that models with fat-tailed conditional distributions, such as theStudent t, might do better in this respect. When such GARCH-t models are appliedin practice, it often appears that the estimated residuals still have high excess kur-tosis, see, e.g., Baillie and Bollerslev (1989). Hence, there may remain observationsthat cannot be described satisfactorily by an extended GARCH model. Such datapoints may correspond to another data generating process (DGP), possibly withmarkedly distinct distributional properties from the DGP of the other observations.A typical example of an aberrant observation is an additive outlier (AO), see, e.g.,Martin and Yohai (1986) for a de�nition. Neglecting AO's in an observed time seriescan suggest leptokurtic behavior. In particular, a short sequence of two AO's already1



results in a positive bias in the �rst order autocorrelation of the squared observa-tions. Such a sequence of AO's may, for example, be caused by an overreaction tosome news fact, while this reaction is corrected in a subsequent period. On the otherhand, low order autocorrelation coe�cients are biased towards zero by isolated AO's,and, hence, neglecting AO's may blur inference on conditional heteroskedasticity. Insum, it seems worthwhile to account for the presence of both GARCH e�ects andoutliers when dealing with �nancial time series. Moreover, as the economic inter-pretation of both phenomena is rather di�erent, statistical procedures are called forthat separate the e�ects of outliers from those of GARCH behavior.In this paper, we focus on the �rst step in modeling �nancial time series, byconsidering the sensitivity of tests for conditional heteroskedasticity to the presenceof AO's. We focus on the Lagrange Multiplier (LM) test put forward in Engle (1982),as this test is by far the most popular method to test for ARCH. An additionalmotivation for considering the e�ect of AO's on this ARCH test is given by theobservation that it is applied routinely to the residuals of a �tted econometric timeseries model. In fact, many computer packages contain this test as a diagnosticcheck. Therefore, it seems warranted to examine the properties of this test whileallowing for the presence of AO's. We show analytically that both the size and powerof the LM test are adversely a�ected by neglected AO's and construct a robust testthat can handle AO's much better.The outline of this paper is as follows. In section 2, the GARCH model and theassociated standard LM test are briey discussed. Section 3 formally investigatesthe e�ects of additive outliers on the asymptotic distribution of this standard teststatistic. An outlier robust variant of the LM test is developed in section 4. In section5, Monte Carlo experiments are used to investigate the small sample properties ofboth the conventional and the robust test. The robust test is shown to performmuch better in terms of size and power. Empirical illustrations are given in section6, where the LM tests are applied to the French industrial production series and to2



weekly returns of the Spanish peseta/US dollar exchange rate. Section 7 concludeswith suggestions for further research.2 The LM test for GARCHConsider the autoregressive (AR) model of order m with GARCH(p,q) disturbancesfor a univariate time series yt with mean �,�(L)(yt � �) = "t; t = 1; :::; T; (1)"tj
t�1 � (0; ht); (2)ht = ! + qXi=1 �i"2t�i + pXj=1�jht�j � ! + �(L)"2t�1 + �(L)h2t�1; (3)where 
t�1 represents the information set available at time t � 1 and �(L) is apolynomial of order m in the lag operator L, de�ned by Lkyt = yt�k. We assumethat the roots of �(z) lie outside the unit circle. For the conditional variance of "t tobe strictly positive, the parameters in (3) have to satisfy ! > 0, �i � 0; i = 1; : : : ; q,and �j � 0; j = 1 : : : ; p. A necessary and su�cient condition for the existence ofthe unconditional variance of "t is given by Pqi=1 �i + Ppj=1 �j < 1, see Bollerslev(1986). When this condition is satis�ed, this unconditional variance is given byE("2t ) = !=(1�Pqi=1 �i�Ppj=1 �j). The conditional distribution of the disturbances"t usually is assumed to be either normal or Student t. If p = 0, the error processreduces to the ARCH(q) process, see Engle (1982), while for p = q = 0, "t is simplywhite noise.Although nowadays estimation of GARCH models has become fairly straight-forward, it still is sound practice to start any speci�cation analysis with testingfor the presence of ARCH e�ects. The LM test procedure has become one of themost popular methods to test white noise errors against the alternative of condi-tional heteroskedasticity, as it only requires estimation of the model under the nullhypothesis. The testing problem can be formulated as testing the null hypothesisH0 : �1 = : : : = �q = �1 = : : : = �p = 0, against the alternative Ha : �i > 0, �j > 03



for at least one i = 1; : : : ; q and j = 1; : : : ; p. Lee (1991) shows that the LM testagainst this GARCH(p,q) alternative is the same as the LM test against the alterna-tive of ARCH(q) errors. This follows from the fact that under the null hypothesis,the gradient of the log likelihood of the AR(m)-GARCH(p,q) model (1)-(3) withrespect to the parameters �1; : : : ; �p is equal to zero. The LM test against ARCH(q)errors was developed by Engle (1982) and is given by�� = 12 f̂ 0Ẑ(Ẑ 0Ẑ)�1Ẑ 0f̂ ; (4)where Ẑ 0 = (ẑ01; : : : ; ẑ0T ), ẑt = (1; "̂2t�1; : : : ; "̂2t�q)0, and f̂ 0 = (f̂ 01; : : : ; f̂ 0T ), f̂t = ("̂2t=�̂2�1), with �̂2 = PTt=1 "̂2t=T . In (4), least squares estimates of the conditional meanequation (1), obtained under the null of no ARCH, are used. This statistic takes thesame form as the well-known heteroskedasticity test of Breusch and Pagan (1979).Engle (1982) notes that the test does not depend on the linear form of the conditionalvariance function ht in (3), which implies that the same test statistic results for anyspeci�cation of ht which depends only on the past squared disturbances "2t�i; : : : ; "2t�q.Under the assumption of conditional normality of the "t's, an asymptoticallyequivalent statistic is given by� = T f̂ 0Ẑ(Ẑ 0Ẑ)�1Ẑ 0f̂f̂ 0f̂ = TR2; (5)where R2 is the uncentered coe�cient of determination of an auxiliary regression ofthe squared LS residuals "̂2t on an intercept and q lags "̂2t�1 through "̂2t�q. Under thenull hypothesis of no (G)ARCH, the LM statistic � is asymptotically �2 distributedwith q degrees of freedom. Weiss (1986) shows that, subject to certain momentconditions, this LM test is also appropriate for nonnormal conditional distributions,see also Koenker (1981).The small sample properties of the LM test � have been investigated by Dieboldand Pauly (1989), Gregory (1989), and Lee and King (1993), among others. Themain �ndings of these studies can be summarized as follows. One consistently �nds4



that the actual size of the test is lower than its nominal size, while the power isreasonable, although not overwhelming. Diebold and Pauly (1989) report that thepower of the exact test (4) seems better than the power of its asymptotic equivalent(5). However, for the test against an ARCH(1) or GARCH(1,1) alternative, thedi�erences disappear already for sample sizes of 100 observations. Gregory (1989)�nds that the power of the LM test is sensitive to departures from symmetry inthe conditional error distribution, while both Gregory (1989) and Lee and King(1993) show that the LM statistic is fairly robust against leptokurtic conditionalerror distributions.In this paper, we are concerned with the potential e�ects on the LM test forARCH of a particular deviation from conditional normality, namely the presence ofadditive outliers. In the next section, we focus on these e�ects in more detail.3 Additive outliers, size, and powerIn this section we demonstrate the e�ects of AO's on the asymptotic distribution ofthe LM test for ARCH. In subsection 3.1 we present the e�ect of isolated additiveoutliers on the level of the ARCH test if the model in levels contains an AR spec-i�cation, which is of importance for the use of the LM test as a diagnostic check.In subsection 3.2 we derive the e�ect of patchy additive outliers on the level of thetest. Finally, in subsection 3.3 we obtain the e�ect of isolated additive outliers onthe power of the ARCH test, which seems relevant for the application of the test to�nancial time series.In order to simplify the exposition and to abstract from unnecessary complica-tions, we focus on the AR(1) model with zero mean and ARCH(1) errors,yt = �yt�1 + "t; (6)"tj
t�1 � IN(0; ht); (7)ht = ! + �"2t�1; (8)5



with ! > 0, 0 � � < 1 and �1 < � < 1. The series yt is observed with error asxt = yt + ��t; (9)where f�tg is a stochastic contamination process, which takes nonzero values withpositive probability, and where � > 0 is a constant indicating the magnitude of theoutliers.Deriving the e�ect of outliers on the asymptotic distribution of the ARCH test� in (5) is nontrivial, because 8-th order (cross-)moments of the di�erent stochasticvariables in (6) through (9) are involved. Therefore, instead of deriving the exacte�ects, we follow a slightly di�erent route. In order to avoid presenting undulylengthy derivations, we concentrate on the e�ect of outliers on the noncentralityparameter of the asymptotic �2 distribution of the ARCH test, compare Koenker(1981). To be more precise, we only look at the e�ect of outliers on the maindeterminant of this noncentrality parameter, namely the expectation of (xt � ~�xt�1)2~�2 � 1! (xt�1 � ~�xt�2)2; (10)where ~� is the probability limit of the ordinary least squares (OLS) estimator ofthe AR(1) parameter, and where ~�2 is the probability limit of the OLS estimatorof the variance of the regression errors. The noncentrality parameter is given bythe squared expectation of (10) divided by the variance of (10). For simplicity, weabstract from the e�ect of outliers on the variance of (10). We also abstract from thefact that in practice the test is based on a series of �nite length. The �nite samplebias is of course interesting on its own, but its e�ect on the noncentrality parameteris of a lower order than the expectation of (10). By focusing on the expectation of(10) only, we obtain tractable results that reveal the main consequences of outlierson the standard ARCH test. These consequences are further illustrated by meansof Monte Carlo simulations in section 5. 6



3.1 A homoskedastic AR(1) and isolated additive outliersWe �rst consider an AR(1) model with homoskedastic errors "t and isolated additiveoutliers, so � = 0 in (8) and �t is an i.i.d. process, with P (�t = 0) = 1 � �,P (�t = 1) = P (�t = �1) = �=2. In this situation, additive outliers have severale�ects, see, e.g., Denby and Martin (1979), Bustos and Yohai (1986), and Martinand Yohai (1986). First, they cause a bias in the estimate of the autoregressiveparameter �. Second, additive outliers a�ect the estimate of the error variance.Both e�ects have implications for the noncentrality parameter of the ARCH test.The probability limit of the OLS estimate of the AR(1) parameter � under iso-lated AO contamination is given byplimT!1 �̂ � ~� = E(xtxt�1)E(x2t�1) = �1 + ��2(1� �2)=! : (11)The OLS residuals are given by"̂t = xt � ~�xt�1= "t + ��t � ~���t�1 + (�� ~�)yt�1; (12)from which the estimated error variance follows easily as being~�2 = E("̂2t )= !  1 + (�� ~�)21� �2 !+ ��2(1 + ~�2): (13)The derivation of the exact expectation of (10) is much more cumbersome. Us-ing computer algebra we obtain the correct expression, which is available from thecorresponding author. To save space, we only present �gures of the expectation of(10) for several parameter con�gurations in Figure 1.- insert Figure 1 -The �rst thing to notice from this Figure is the increase in the expectation forlarger values of �. This follows directly from the fact that a larger � causes a larger7



bias in the autoregressive parameter estimate. Also, the increasing behavior in �is evident; if � is larger, the discrepancy between the true residuals "t and thecontaminated residuals "̂t becomes larger if outliers are added. This again followsfrom the bias in the estimator for �, given in (11). Finally, if � increases, theexpectation decreases and, hence, the value of the noncentrality parameter decreasestowards zero. In other words, the distribution gets closer to the nominal distributionif the fraction of contamination becomes larger.All these �ndings are intuitively clear. If a homoskedastic AR(1) process is con-taminated with a dominant white noise process, the OLS estimator is biased towardsthat white noise process. Consequently, the regression residuals will be autocorre-lated, as will be the squared regression residuals. Therefore, the ARCH test willreject the null hypothesis too often compared to the nominal level. If the proba-bility of outliers � increases further and � is large, the white noise contaminationbecomes completely dominant and the regression residuals are approximately equalto the contamination white noise process.3.2 Homoskedastic white noise and patchy additive outliersAdditive outliers can occur either in isolation or in patches. In this subsection, weshow that the occurence of only a few adjacent AO's may result in spurious detectionof ARCH e�ects. The e�ect of patchy additive outliers on the level of the test isthus similar to that of isolated outliers, compare subsection 3.1.We study the e�ect of additive outliers that occur in patches of length k on amodel that contains neither AR nor GARCH behavior, i.e., � = ~� = � = 0. A patchof outliers occurs if we allow the contamination process �t in (9) to be autocorrelated,�t = ( ~�t if vi 6= 0 for some i = t� k + 1; : : : ; t;0 else; (14)with ~�t and vt i.i.d., P (~�t = 1) = P (~�t = �1) = 1=2, P (vt = 0) = 1 � �, andP (vt 6= 0) = �. 8



As there is no AR parameter to be estimated in the present setting, we directlyproceed with the e�ect of patchy outliers on the estimate of the variance of theregression errors, ~�2. We obtain~�2 = E(x2t )= E(y2t ) + �2E(�2t )= ! + �2(1� P (vt�k+1 = 0; : : : ; vt = 0))= ! + �2(1� (1� �)k): (15)Furthermore, we obtain thatE(x2tx2t�1) = E((yt + ��t)2(yt�1 + ��t�1)2)= E(y2t y2t�1 + y2t �2�2t�1 + y2t�1�2�2t + �4�2t �2t�1)= !2 + 2!�2(1� (1� �)k) + �4 �P (9i2ft�k+1;:::;t�1g : vi 6= 0)+P (vt 6= 0; vt�1 = 0; : : : ; vt�k+1 = 0; vt�k 6= 0))= !2 + 2!�2(1� (1� �)k) + �4 �1� (1� �)k�1 + (1� �)k�1�2�= !2 + 2!�2(1� (1� �)k) + �4 �1� (1� �)k(1 + �)� : (16)As a result, the expectation of (10) can be written asE(x2tx2t�1)� ~�4~�2 = �4(1� �)k+1(1� (1� �)k�1)! + �2(1� (1� �)k) : (17)Expression (17) clearly demonstrates that unless there are no outliers, i.e., � = 0or � = 0, or only outliers, i.e., � = 1, the noncentrality parameter of the ARCH testis nonzero. This results in a rejection frequency of the test above the nominal level,despite the absence of ARCH e�ects. So AO's occurring in patches can result ina spurious detection of ARCH e�ects. This is intuitively clear, as additive outliersresult in large values of the innovations. If several of such values occur in a row,the ARCH test is biased towards the detection of volatility clustering, i.e., largeinnovations following large innovations. If patches become very long (k !1) or if9



the probability of a patch of outliers occurring is large (� " 1), then the noncentralityparameter tends to zero again. So long patches of dominant patches result in adistribution of the ARCH test close to its null distribution. Put di�erently, longpatches lead to small size distortions. It can be shown, however, that the samephenomenon for the noncentrality parameter holds under the alternative of genuineARCH e�ects, such that long patches of outliers lead to a power loss of the ARCHtest. This is again intuitively clear, because in such cases the homoskedastic whitenoise contamination will dominate the original ARCH signal, such that the volatilityclustering will go unnoticed. To get some intuition, one can consider the extremecase of an in�nitely long patch of dominant outliers, k ! 1 and � ! 1. In thatcase one no longer observes the original process, but only the contaminating whitenoise.3.3 White noise, ARCH(1), and isolated additive outliersThe �nal e�ect of additive outliers we demonstrate in this paper concerns the powerof the ARCH test. Consider the same model for yt as in subsection 3.2, only with"t being ARCH(1) instead of homoskedastic. The outlier process �t is now assumedto be i.i.d. as in subsection 3.1. We �rst compute the variance of xt,~�2 = E(x2t )= E(y2t ) + �2E(�2t )= !=(1� �) + �2�: (18)Moreover, E(x2tx2t�1) = E((yt + ��t)2(yt�1 + ��t�1)2)= �2�4 + 2��2!=(1� �) + E((! + �y2t�1)y2t�1)= �2�4 + (2��2 + !)!=(1� �) +3�!2(1 + �)=((1� 3�2)(1� �)); (19)10



where we assume that 3�2 < 1, such that the unconditional fourth moment of ytexists. As a result, the expectation of (10) can be written asE(x2tx2t�1)� ~�4~�2 = 3�!2(�2 + �+ 2=3)(1� 3�2)(1� �)(! + �2�(1� �)) : (20)Expression (20) clearly demonstrates that the noncentrality parameter is decreas-ing in both � and �. As the noncentrality parameter involves the square of (17),we can see that the power of the test decreases very rapidly if the magnitude of theoutliers � increases. The intuition behind these results is that, if we have a GARCHprocess which is contaminated with a dominant homoskedastic white noise process,the test will have di�culty in spotting the GARCH behavior of the underlying un-contaminated series. So, under the alternative, large fractions of contamination orcontamination with large outliers both lead to a severe power loss in the presentcontext. In section 6 we will give an empirical example of this phenomenon.In section 5 we use Monte Carlo simulations to examine if and how the asymptoticresults presented in this section carry over to small samples. First however, in thenext section we put forward an outlier robust variant of the LM test for ARCH.4 An outlier robust test for ARCHThe results in the previous section show that the LM test for ARCH can be severelydistorted by additive outliers. Van Dijk et al. (1996) investigate a similar problemwhen testing for linearity of the conditional mean. They show that an outlier robusttest statistic is obtained if the model under the null hypothesis is estimated by anoutlier robust estimator. In particular, they suggest to use a high breakdown pointgeneralized maximum likelihood type (HBP-GM) estimator to have maximum pro-tection against AO's. General introductions to outlier robust estimation techniquescan be found in, e.g., Huber (1981), Martin (1981), Hampel et al. (1986), and, morerecently, Lucas (1996). The idea of estimating the model under the null using anoutlier robust estimator can also be used to robustify the LM test for ARCH in (5).11



For technical details we refer to Van Dijk et al. (1996), here we only present thegeneral concepts involved.The class of GM estimators can be interpreted as a type of weighted least squaresestimator, with the weights chosen endogenously in such a way that inuential ob-servations, such as AO's, do not a�ect the parameter estimates. In particular, inthe AR(1) example the GM estimator solves the �rst order conditionTXt=1 yt�1 � wr(rt)(yt � �yt�1) = 0 ; (21)where wr(�) is a weight function, which determines the weight for the t-th obser-vation, rt is the standardized residual, rt = (yt � �yt�1)=(�"wy(yt�1)), with wy(�)a weight function for the regressor yt�1, and �" is an estimate of the scale of "t.Both weight functions wr(�) and wy(�) are bounded by zero and one. The �rst ordercondition (21) is nonlinear in � and, therefore, estimation requires an iterative pro-cedure. In order to have maximum protection against outliers, the breakdown pointof the estimator, that is, the maximum fraction of contaminated observations theestimator can cope with, should be as high as possible. Simpson et al. (1992) andCoakley and Hettmansperger (1993) show that if a high breakdown point (HBP)estimator is used to construct starting values for � and �" and if only one iterationof the weighted least squares scheme is performed, an e�cient estimator is obtainedwhich retains the high breakdown point of the initial estimator. The least median ofsquares (LMS) estimator of Rousseeuw (1984) is used to obtain a starting value forthe autoregressive parameter, while the median absolute deviation (MAD) estima-tor provides an initial scale estimate, i.e., �̂ = 1:483 �med(jyt�1�med(yt�1)j) wheremed denotes the median. The constant 1.483 is used to make the MAD a consistentestimator of the standard deviation in case "t is normally distributed.De�ning  (rt) = rtwr(rt), we use the polynomial  function as proposed in Lucaset al. (1996), given by (rt) = rt(1�H(jrtj � c1))sgn(rt) +H(jrtj � c1)(1�H(jrtj � c2))g(jrtj) ; (22)12



where c1 and c2 are tuning constants, H(�) is the Heaviside function, de�ned byH(z) = 1 if z > 0 and H(z) = 0 otherwise, sgn is the signum function, and g(jrtj)is a �fth order polynomial such that  (�) is twice continuously di�erentiable. Forthis choice of  (�), the resulting weight function wr(�) is such that the observationat time t receives a weight equal to 1 if its standardized residual is within (�c1; c1)and a weight equal to zero if rt is larger than c2 in absolute value. Partial weightingoccurs in-between. The tuning constants c1 and c2 are taken to be the square rootsof the 0.99 and 0.999 quantiles of the �2(1) distribution, that is, c1 = 2:576 andc2 = 3:291.The weight function wy(�) for the regressor is speci�ed aswy(yt�1) =  (d(yt�1)�)=d(yt�1)� ; (23)where again  (�) is given by (22), d(yt�1) is the Mahalanobis distance of yt�1, i.e.,d(yt�1) = jyt�1 � myj=�y, with my and �y measures of location and scale of yt�1,respectively. These measures are estimated robustly by the median and the MAD,respectively. Finally, following Simpson et al. (1992), the constant � in (23) is setequal to 2 in order to obtain robustness of standard errors.Hampel et al. (1986) and Peracchi (1991) show that the robustness properties ofestimators carry over to test statistics based on these estimators. This suggests thatthe HBP-GM estimator discussed above can be used to construct a robust versionof the LM statistic for ARCH. In particular, a robust equivalent to the LM testin (5) is obtained as T , the sample size, times the coe�cient of determination of aregression of the weighted squared residuals  (rt)2 on a constant and q lags. Underconventional assumptions, the outlier robust LM test, which will be denoted by �R,retains its limiting �2(q) distribution. In the next section we compare the smallsample properties of � and �R using Monte Carlo experiments.
13



5 Monte Carlo experimentsMonte Carlo experiments are conducted to complement the asymptotic results ob-tained in section 3 by some estimates of the size and power of the standard LMtest for ARCH in small samples in the presence of outliers. In addition, these ex-periments are used to investigate the properties of the robust test developed in theprevious section.5.1 Monte Carlo designAll the models which are used to generate series are nested within the contaminatedAR(1)-GARCH(1,1) model,yt � � = �(yt�1 � �) + "t; t = 1; : : : ; T; (24)"tj
t�1 � IN(0; ht) (25)ht = ! + �"2t�1 + �ht�1; (26)xt = yt + ��t; (27)where P (�t = 1) = P (�t = �1) = �=2 and P (�t = 0) = 1 � �. The probability ofoccurrence of AO's � is �xed at 0.05 throughout. In all experiments, � is set equalto zero, while ! = 1 � � � �, such that the unconditional variance of the errors "tequals 1 for all choices of � and �. In the Monte Carlo experiments, we study thee�ects of varying the autoregressive parameter �, the GARCH-parameters � and�, the absolute magnitude of the AO's �, and the sample size T . The necessarystarting values for both yt and "t are set equal to zero, while the starting value for htis set equal to the unconditional variance. The �rst 100 observations of each seriesare discarded in order to avoid possible dependence of the results on these initialconditions. The AR order is assumed known, while an intercept is always includedin the estimation of the linear model under the null hypothesis.
14



5.2 SizeThe e�ects of isolated outliers on the size of the LM test in small samples areinvestigated by generating 1000 series according to an AR(1) model with condi-tionally homoskedastic errors, i.e., (24)-(27) with � and � �xed at zero. We set� = 0:0; 0:1; 0:3; : : : ; 0:9, � = 0; 3; 4; 5, and T = 100; 250; 500, giving a total of 72experiments. - insert Table 1 -Rejection frequencies of the standard and robust LM test against GARCH(1,1)errors using 5% asymptotic critical values are given in Table 1 (results for testsagainst higher order ARCH alternatives and other contamination fractions are avail-able on request from the corresponding author). The size of the standard test in caseof no outliers corroborates the �ndings of other Monte Carlo studies mentioned inSection 2 in that the empirical size is below the nominal size. The size of the robusttest is quite reasonable as well. In the presence of outliers, the rejection frequenciesremain fairly low for small values of the autoregressive parameter for all sample sizesconsidered. For � = 0:7 or 0:9 however, it is seen that AO's have quite a dramatice�ect on the behavior of the standard test, which now rejects the null much moreoften than expected. This �nding con�rms the asymptotic result obtained in section3.1 that the noncentrality parameter of the ARCH test is larger for larger values ofthe autoregressive parameter.The robust test is a�ected by the presence of AO's as well, albeit to a much lesserextent. Rejection frequencies typically remain below 10% and 25% for T = 100 and250, respectively. The e�ects of the magnitude of the outliers on the size estimates forthe standard test is seen to accord with the results of section 3.1 as well. Increasingthe absolute magnitude of the outliers initially leads to more frequent rejection ofthe null. For � = 5 and T = 250 and 500, it becomes noticeable that the distributionof the LM test approaches the nominal distribution again. By contrast, the rejection15



frequencies for the robust test decline when moving from � = 3 to � = 4 as well.Obviously, a larger outlier is more easily detected by the robust estimation procedureand, therefore, has less e�ect on the level of the robust test.5.3 PowerThe e�ects on the power of the LM test are investigated by generating 1000 seriesaccording to (24)-(27) with � �xed at zero (which is assumed known). We set� = 0:1; 0:3; 0:5; 0:7; 0:9, � = 0:2; 0:4; 0:6; 0:8, � = 0; 3; 4; 5, and T = 100; 250; 500.Only combinations of the GARCH parameters for which � + � < 1 are considered,leaving a total of 120 experiments.- insert Table 2 -Table 2 shows the rejection percentages for these experiments. The entries inthe columns for which � = 0 indicate that the LM test is more sensitive in the�- than in the �-direction. The power increases quite rapidly when � gets larger,while it is hardly a�ected when � gets larger. As Lee and King (1993) argue, thisis not surprising since the LM test is derived as a test for ARCH(1) disturbances.Comparing the standard and robust tests, it is seen that in the absence of outliers,there is a power loss when using the robust test compared to the nonrobust test.The loss of power becomes less for larger sample sizes, but remains considerable forcombinations of small � and large �, which are values for the GARCH parameterstypically encountered in practice. This power loss has to be considered as a kind of"insurance premium" one has to pay in order to be protected against the bad e�ectsof outliers.In the presence of outliers, the power of the conventional test drops quite dra-matically, con�rming the asymptotic result of section 3.3. By contrast, the power ofthe robust test is hardly a�ected and is considerably higher than the power of thestandard test. Moreover, the power of the robust test is insensitive to the magni-16



tude of the outliers, whereas the OLS based test su�ers relatively more from largeroutliers.6 Empirical illustrationsIn this section we present two empirical applications to illustrate the behavior of theLM test for ARCH in the presence of AO's. In Section 6.1, we apply the test as adiagnostic check to the residuals from a model for the quarterly French industrialproduction index. This example shows that AO's may give rise to spurious indicationof the presence of ARCH e�ects. In Section 6.2, the test is applied to weekly exchangerate returns of the Spanish peseta versus the US dollar. Surprisingly, the standardtest does not �nd any evidence for conditional heteroskedasticity. Application of therobust test to the same series reveals that ARCH e�ects are masked by only a fewoutlying observations.6.1 ARCH e�ects in French industrial production?In this subsection we illustrate the use of the LM test as diagnostic check to testthe adequacy of a �tted model. We consider modelling the quarterly, seasonallyunadjusted index of industrial production for France, for which we may expect anAO to appear in the second quarter of 1968 because of the nationwide strike in Mayof that year. The data cover the period 1960(i)-1987(iv) and are constructed byaveraging the corresponding monthly observations, which are taken from the OECDMain Economic Indicators. The data are made approximately stationary by takingseasonal di�erences of the logarithms. The resulting series is graphed in the leftpanel of Figure 2. Two marked features of this series stand out from this graph.First, the 1975 recession following the �rst oil crisis is clearly visible, leading to�ve subsequent quarters of negative growth. Second, the observations 1968(ii) and1969(ii) show a pattern which is typical for an additive outlier in the level of theseries, i.e., a large dip for the �rst observation and a strong peak for the second one.17



- insert Figure 2 -A speci�cation search leads to an AR model for this series with lags 1, 4, 5, 8and 9 included as regressors. The standard LM test for ARCH(q) is applied to theresiduals from this model, where q ranges from 1 to 12. The outcomes of the testsare set out in the second column of Table 3. The p-values of the tests do not exceedconventional signi�cance levels, and hence, based on this standard test, we wouldconclude there is very strong evidence for the presence of ARCH.- insert Table 3 -To check the robustness of this result to the possible presence of AO's, we applythe robust LM test for ARCH. The weights assigned by estimating the selectedAR model using our robust method are displayed in the right part of Figure 2. Itis seen that 18 observations (out of a total of 99) are downweighted, while 15 ofthese observations receive a weight equal to zero. The corresponding observationsof the quarterly di�erence series are marked with circles in the left panel of thesame �gure. Most of these observations are associated with either the 1968 strike orthe 1975 recession. Note that this relatively large number of zero weights does notimply that the series contains a large number of outliers, but merely that the AO'sa�ect many subsequent observations, due to the large AR structure. The robust testresults along with the corresponding p-values, given in the third column of Table 3clearly demonstrate that all evidence for the presence of ARCH disappears. Hence,we conclude that the previous suggestion of heteroskedasticity in French industrialproduction is caused by aberrant observations associated with the strike in May 1968and the oil crisis around 1974.The LM test for ARCH has power against a range of other alternatives as well.This can be most easily understood by noting that it is asymptotically equivalentto the portmanteau test of McLeod and Li (1983). Hence, one might argue that itis somewhat naive to take the results of the standard LM test as equivalent to the18



presence of ARCH in the French industrial production series, and that they rathershould be interpreted as a sign of general misspeci�cation of the conditional mean.Perhaps it is good to remark that the robust test is useful in this respect as well,because the weights obtained from the robust estimation procedure indicate whichobservations cause the model to be misspeci�ed.6.2 ARCH e�ects in the Spanish peseta exchange rate!The GARCH(1,1) model has been frequently applied to (high frequency) �nancialtime series such as exchange rates. Examples include Baillie and Bollerslev (1989)and Hsieh (1989). In this section, we apply the standard and robust LM tests forARCH to weekly returns for the Spanish peseta against the US dollar. The data areobtained from the database of the Federal Reserve Bank of Chicago and consist ofWednesday noon bid rates from January 1, 1986 until December 27, 1995. In casethe market was closed on a particular Wednesday, the observation on the followingThursday is used. The return series was created by taking �rst di�erences of thelogarithm of the exchange rate and is graphed in the left panel of Figure 3.- insert Figure 3 -- insert Table 4 -The upper panel of Table 4 gives some summary statistics for the return se-ries. The median is seen to di�er substantially from the mean, while the skewnessis signi�cantly positive as well, suggesting asymmetry in this series. The value ofthe kurtosis is typical for many �nancial time series, being substantially above thenormal value of 3. By contrast, the autocorrelation coe�cients of the centered andsquared returns, given in the middle panel of Table 4, do not �t the pattern char-acteristic for �nancial time series of being small but signi�cant for a large numberof lags. In fact, of the �rst twenty autocorrelations, only the third and twentiethare signi�cantly di�erent from zero. This may be regarded as a �rst suggestion of19



additive outliers, since isolated AO's bias the low order autocorrelation coe�cientstowards zero. This conjecture is strengthened by the observation that the autocor-relations at some extremely high lags such as 35, 43 and 78 (not reported here)suddenly become signi�cant again.Following Baillie and Bollerslev (1989), we assume that exchange rate returnsare uncorrelated, possible with nonzero mean �. Testing for ARCH in the residualscan now be done by simply applying the LM test against ARCH(q) to the demeanedand squared return series. The test results for q ranging from 1 until 13 are setout in the second column of the bottom panel of Table 4. The p-values for thestandard test are well above conventional signi�cance levels, giving no rise to rejectthe null hypothesis. This result is rather puzzling, even more so because estimatinga GARCH(1,1) model for this series gives signi�cant estimates for the parametersin the conditional variance equation, i.e., � = 0:122 and � = 0:676 with standarderrors equal to 0.047 and 0.097, respectively.We apply the robust test to check whether the standard test results might bedriven by neglecting the presence of AO's. The drift is now estimated as the medianof the return series. The p-values associated with the robust test, shown in thethird column of the bottom panel of Table 4, indicate that ARCH e�ects are presentindeed. Only for q = 1 there may be some doubt, as the test rejects the null onlyat the 14.4% signi�cance level. Inspection of the weights from the robust estimationprocedure, shown in the right panel of Figure 3, reveals that from the total 521observations, only 13 are are downweighted. Notice that nine of these observationsdo not receive a weight equal to zero. Hence, our robust estimation method allowfor a less harsh treatment of aberrant observations. As can be seen from Figure3, the downweighted observations concern extreme or outlying values of absolutereturns. Whether these observations can be modeled by the AO model depends onthe events that have taken place on these speci�c dates. If no particular events canbe identi�ed, the modeler might conclude that a leptokurtic conditional distribution20



is needed for the present exchange rate return series.7 Concluding remarksIn this paper we proposed a robust LM test for conditional heteroscedasticity. Theneed for such a robust test is motivated by both analytical derivations and MonteCarlo simulations, which show that the standard LM test of Engle (1982) breaksdown in the presence of outliers. The robust test uses a HBP-GM estimator toestimate the homoskedastic model under the null hypothesis. The Monte Carloevidence suggests that the resulting test o�ers much better protection against theinuence of outliers than the standard test. The application to weekly exchange ratereturns shows that hidden ARCH can be revealed by taking care of outliers. Fur-thermore, the French industrial production example shows that obviously neglectedAO's suggest spurious ARCH.Further research should include a comparison of our robust test with the ro-bust test of Bollerslev and Wooldridge (1992). Furthermore, we aim to investigatethe estimation of GARCH models using robust methods as well as the forecastingproperties of robusti�ed GARCH models for out-of-sample volatility. The tentativeresults in Franses and Ghijsels (1995) seem to indicate that quite some forecastingpower can be gained. Finally, it is interesting to study how our robust test performsfor other �nancial time series, possibly sampled at di�erent frequencies, such as daysor minutes.
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Table 1: Size of LM test for ARCH(1) disturbances (5% outliers)� �R� � 0 3 4 5 0 3 4 5T = 100 0.0 3.8 2.7 2.5 2.5 4.7 4.1 3.7 4.70.1 4.0 1.8 2.0 2.6 4.6 4.0 4.5 4.00.3 3.2 4.0 3.7 3.7 3.3 5.8 6.4 5.10.5 4.0 7.9 8.4 6.8 5.1 7.6 8.7 8.30.7 2.8 14.7 17.6 15.5 2.8 9.3 10.0 6.30.9 3.8 42.1 60.0 60.9 4.4 14.7 10.1 7.1T = 250 0.0 3.0 2.6 2.4 2.3 3.0 4.7 5.2 5.10.1 2.7 2.9 3.0 2.8 2.7 4.6 5.3 6.10.3 3.9 6.3 5.7 5.6 3.9 7.4 6.1 6.60.5 5.0 12.5 11.4 9.2 5.0 11.6 10.8 9.60.7 4.6 40.7 46.4 38.3 4.5 23.8 14.3 8.60.9 3.7 85.4 96.7 96.6 3.7 25.7 7.7 4.8T = 500 0.0 4.8 4.0 4.4 4.1 5.6 6.4 8.1 8.90.1 4.2 3.8 3.5 3.3 5.2 6.7 9.9 8.10.3 4.2 6.2 6.1 5.8 3.9 11.3 16.5 11.30.5 3.6 24.8 23.8 16.3 4.5 20.2 26.3 14.20.7 4.4 69.6 76.5 68.4 4.0 37.5 27.7 9.00.9 4.4 99.6 100.0 100.0 4.2 43.9 14.2 5.8Note: Rejection frequencies at 5% signi�cance level using asymptotic critical values for series generated by (24)-(27)with � = 0, ! = 1, � = � = 0. Additive outliers are added with probability 0.05. The table is based on 1000replications.
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Table 2: Power of LM test for ARCH(1) disturbances (5% outliers)� �R� � � 0 3 4 5 0 3 4 5T = 100 0.1 0.2 14.3 5.5 4.7 4.8 10.8 7.0 8.4 9.90.1 0.4 14.7 5.7 4.6 4.9 11.5 7.4 9.5 11.10.1 0.6 15.4 5.9 4.7 5.0 11.5 8.2 10.5 12.00.1 0.8 17.4 6.5 5.5 4.8 12.4 9.5 10.9 12.90.3 0.2 51.8 16.1 8.9 6.9 30.0 20.8 28.4 31.30.3 0.4 52.8 18.2 9.9 7.8 30.1 22.7 30.0 31.30.3 0.6 55.6 20.0 12.5 8.9 32.0 25.2 32.0 34.40.5 0.2 75.9 28.5 17.3 11.2 43.6 36.0 45.4 46.60.5 0.4 76.8 27.3 17.4 11.8 43.9 41.5 45.1 44.70.7 0.2 86.8 29.0 19.4 14.0 50.7 51.3 51.3 50.9T = 250 0.1 0.2 31.3 8.9 5.5 4.8 20.7 12.5 18.2 20.80.1 0.4 32.6 9.2 5.7 4.8 21.4 12.7 19.2 22.50.1 0.6 33.8 9.6 5.9 4.8 23.5 13.2 21.0 23.60.1 0.8 39.7 11.1 7.0 5.2 25.3 15.7 23.3 25.70.3 0.2 89.1 33.2 14.8 8.1 65.8 46.3 64.9 67.80.3 0.4 90.6 36.3 17.6 9.2 66.0 49.6 66.4 69.20.3 0.6 93.3 42.5 23.0 14.6 70.9 61.1 72.0 72.50.5 0.2 99.5 55.5 32.3 19.3 86.0 74.7 85.9 85.20.5 0.4 99.4 53.7 34.6 22.2 87.0 85.9 87.2 86.50.7 0.2 99.9 55.9 36.1 24.8 92.2 92.9 92.1 91.8T = 500 0.1 0.2 51.6 8.9 4.6 4.0 34.3 20.9 31.5 36.20.1 0.4 51.9 9.2 4.6 4.1 36.0 21.7 32.8 37.10.1 0.6 54.8 9.9 5.0 4.1 37.1 23.5 34.9 39.10.1 0.8 64.0 12.2 5.1 4.2 44.9 28.7 42.8 47.70.3 0.2 99.2 44.6 17.0 7.6 91.6 75.4 90.6 91.80.3 0.4 99.1 51.4 21.0 10.0 93.4 80.2 92.5 93.70.3 0.6 99.4 61.1 33.4 17.4 93.9 89.3 94.1 94.50.5 0.2 100.0 78.1 45.5 24.4 98.7 95.9 98.6 98.60.5 0.4 100.0 72.4 48.0 31.2 98.4 98.8 99.0 98.80.7 0.2 100.0 75.3 50.9 35.1 99.4 99.4 99.2 99.2Note: Rejection frequencies at 5% signi�cance level using asymptotic critical values for series generated by (24)-(27) with� = 0; � = 0, ! = 1� �� �. Additive outliers are added with probability 0.05. The table is based on 1000 replications.
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Table 3: Tests for ARCH in French industrial productionq � �R1 20.172(0.000) 1.226(0.268)2 27.079(0.000) 3.002(0.223)3 37.052(0.000) 3.095(0.377)4 37.525(0.000) 3.538(0.472)5 37.700(0.000) 6.048(0.302)6 38.152(0.000) 4.321(0.633)7 39.074(0.000) 4.696(0.697)8 39.206(0.000) 4.669(0.792)9 39.624(0.000) 6.390(0.700)10 39.593(0.000) 6.961(0.729)11 39.690(0.000) 6.071(0.869)12 39.812(0.000) 5.937(0.919)Note: Sample period is 1961(i)-1987(iv). The tests areapplied to the residuals of an AR(1,4,5,8,9) model forquarterly di�erences of the French industrial produc-tion index. Asymptotic p-values of the LM test aregiven in parentheses.
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Table 4: Spanish peseta/US dollar exchange rateSummary statisticsMean -0.045Median -0.108Std. dev. 1.545Skewness 0.964Kurtosis 7.806Minimum -4.423Maximum 10.743Autocorrelation of squared observationsLags Lags1 0.020 11 0.0152 0.045 12 0.0033 0.089 13 0.0194 0.012 14 0.0085 0.052 15 0.0036 0.008 16 0.0117 0.035 17 �0:0068 0.041 18 0.0039 -0.027 19 �0:00710 -0.017 20 0.087Note: Standard error of autocorrelations is 0.044.LM test for ARCHq � �R1 0.195(0.659) 2.131(0.144)2 1.240(0.538) 9.176(0.010)3 5.204(0.157) 13.647(0.003)4 5.253(0.262) 16.572(0.002)5 6.228(0.285) 16.694(0.005)6 6.210(0.400) 16.635(0.011)7 6.719(0.459) 17.520(0.014)8 7.213(0.514) 17.606(0.024)9 7.743(0.560) 21.869(0.009)10 8.132(0.616) 21.847(0.016)11 8.193(0.696) 22.605(0.020)12 8.168(0.772) 24.462(0.018)13 8.356(0.820) 24.659(0.026)Note: Sample period is 1/8/1986-12/27/1995. Asymptotic p-valuesof the LM test are given in parentheses.
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Figure 1: Non-centrality parameter of LM test for ARCH in the presence of AO's

Note: Expected values of the numerator of the noncentrality parameter of the asymptotic distribution ofthe OLS-based LM test statistic for ARCH(1) applied to the residuals of an AR(1) model, given in (10)
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Figure 2: French industrial production: seasonal di�erences and weights

Note: Quarterly di�erences of French industrial production index, 1961(i)-1987(iv) (left panel) and weightsobtained from robust estimation of autoregressive model containing lags 1,4,5,8 and 9 (right panel).
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Figure 3: Spanish peseta/US dollar exchange rate: weekly returns and weights

Note: Weekly exchange rate returns for the Spanish peseta versus US dollar, over the period 1/8/1986 until12/27/1995 (left panel), together with weights assigned by robust estimation of drift term (right panel)
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